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Logical depth for reversible Turing machines with

an application to the rate of decrease in logical

depth for general Turing machines
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Abstract

The logical depth of a reversible Turing machine equals the shortest
running time of a shortest program for it. This is applied to show that the
result in [1] is valid notwithstanding the error noted in Corrigendum [7].
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1 Introduction

A book on number theory is difficult, or ‘deep.’ The book lists a number of
difficult theorems of number theory. However, it has very low Kolmogorov
complexity, since all theorems are derivable from the initial few definitions. Our
estimate of the difficulty, or ‘depth,’ of the book is based on the fact that it
takes a long time to reproduce the book from part of the information in it. The
existence of a deep book is itself evidence of some long evolution preceding it.

The logical depth of a (finite) string is related to complexity with bounded
resources and measures the tradeoff between program sizes and running times.
Computing a string x from one of its shortest programs may take a very long
time, but computing the same string from a simple “print(x)” program of
length about |x| bits takes very little time.

Logical depth as defined in [4] for a string comes in two versions: one based
on the compressibility of programs of prefix Turing machines and the other using
the ratio between algorithmic probabilities with and without time limits. Since
both are approximately the same ([5, Theorem 7.7.1] based on [4, Lemma 3]) it
is no restriction to use the compressibility version.

The used notions of computability, resource-bounded computation time, self-
delimiting strings, big-O notation, and Kolmogorov complexity are well-known
and the properties, notations, are treated in [5].
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2 Preliminaries

All Turing machines in this paper are prefix Turing machines. A prefix Turing

machine is a Turing machine with a one-way read-only program tape, an aux-
iliary tape, one or more work tapes and an output tape. All tapes are linear
one-way infinite and divided into cells capable of containing one symbol out of
a finite set. Initially the program tape is inscribed with an infinite sequence of
0’s and 1’s and the head is scanning the leftmost cell. When the computation
terminates the sequence of bits scanned on the input tape is the program. For
every fixed finite contents of the auxiliary tape the set of programs for such a
machine is a prefix code (no program is a proper prefix of another program).
Let T0, T1, . . . be the standard enumeration of prefix Turing machines. A uni-

versal prefix Turing machine simulates every prefix Turing machine given its
index number. We also require it to be optimal which means that the simula-
tion program is as short as possible. We choose a reference optimal universal

prefix Turing machine and call it U .
The prefix Kolmogorov complexity is based on the prefix Turing machine

similar to the (plain) Kolmogorov complexity based on the (plain) Turing ma-
chine. Let x, y be finite binary strings. The prefix Kolmogorov complexityK(x|y)
of x with auxiliary y is defined by

K(x|y) = min
p

{|p| : U(p, y) = x}.

If x is a binary string of length n then K(x|y) ≤ n + O(log n). Restricting
the computation time resource is indicated by a superscript giving the allowed
number of steps, usually denoted by d. The notation Ud(p, y) = x means that
U(p, y) = x within d steps. If the auxiliary string y is the empty string ǫ, then we
usually drop it. Similarly, we write U(p) for U(p, ǫ). The string x∗ is a shortest

program for x if U(x∗) = x and K(x) = |x∗|. A string x is b-incompressible if
|x∗| ≥ |x| − b.

3 Reversible Turing Machines

A Turing machine behaves according to a finite list of rules. These rules deter-
mine, from the current state of the finite control and the symbol contained in
the cell under scan, the operation to be performed next and the state to enter
at the end of the next operation execution.

The device is (forward) deterministic. Not every possible combination of
the first two elements has to be in the set; in this way we permit the device to
perform no operation. In this case we say that the device halts. Hence, we can
define a Turing machine by a transition function.

Definition 1. A reversible Turing machine [3, 2] is a Turing machine that
is forward deterministic (any Turing mchine as defined is) but also backward

deterministic, that is, the transition function has a single-valued inverse. The
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details of the formal definition are intricate [3, 2] and need not concern us here.
This definition extends in the obvious manner to multitape Turing machines.

In [3] for every 1-tape ordinary Turing machine T a 3-tape reversible Turing
machine Trev is constructed that emulates T in linear time such that with input
p the output is Trev(p) = (p, T (p)). The reversible Turing machine that emulates
U is called Urev.

Definition 2. Let x be a string and b a nonnegative integer. The logical depth
of x at significance level b, is

depthb(x) = min
{

d : p ∈ {0, 1}∗ ∧ Ud(p) = x ∧ |p| ≤ K(p) + b
}

,

the least number of steps to compute x by a b-incompressible program.

Theorem 1. The logical depth of a string x at significance level b ∈ N for

reversible Turing machines is equal to

depthb(x) = min
{

d : p ∈ {0, 1}∗ ∧ Ud
rev(p) = (p, x) ∧ |p| ≤ K(x) + b

}

,

the least number of steps to compute x by Urev from a program of length at most

K(x) + b.

Proof. Since a reversible Turing machine is backwards deterministic, and an
incompressible program cannot be computed from a shorter program, the length
of an incompressible program for x can only be the length of a shortest program
for x. The logical depth at significance b is then the least number of steps to
compute x by Urev from a program p of length K(x) + b.

4 The Rate of Decrease of Logical Depth

In [1, Section 4 ] it is assumed that, for all x ∈ {0, 1}∗, the string x∗ is the only
incompressible string such that U(x∗) = x. That is, logical depth according
to Theorem 1 is used. However, this assumption is wrong for general Turing
machines in that for many x there may be an incompressible string p with
|x| ≥ |p| > |x∗| such that U(p) = x. The computation of U(p) = x may be
faster than that of U(x∗) = x. For example, the function from x ∈ {0, 1}∗

to the least number of steps in a computation U(p) = x for an incompressible
string p may be computable. The argument in the paper is, however, correct
for the set of reversible Turing machines. These Turing machines are a subset
of the set of all Turing machines [3, 2] and emulate them in linear time. This
implies the correctness of [1, Theorem 2] as we shall show.

Lemma 1. Let ψ be defined by

ψ(n) = max
|x|=n

min
d

{d : Ud
rev(x

∗) = (x∗, x)}.

Then ψ is not computable and grows faster than any computable function.

3



Proof. If a function ψ as in the lemma were computable, then for an x of length n
we could run Urev emulating U [3] forward for ψ(n) steps on all programs of
length n+O(log n). Among those programs that halt within ψ(n) steps, we could
select the programs p which output (p, x). Subsequently, we could select from
that set a program p of minimum length, say x∗. Such a program x∗ has length
K(x) since Urev is emulating U . This would imply thatK would be computable.
But the function K is incomputable [6, 5]: contradiction. Therefore ψ cannot
be computable. Since this holds for every function majoring ψ, the function ψ
must grow faster than any computable function.

Corollary 1. The set of reversible Turing machines is a subset of the set of all
Turing machines. The emulation of U(p) by Urev(p) is linear time for all binary
inputs p by [3]. Therefore, replacing in the lemma Urev by U changes ψ(n) to
φ(n) = Ω(ψ(n)). Hence the lemma holds with ψ replaced by φ and Urev by
U . This gives us [1, Lemma 1] and therefore [1, Theorem 2] (the Busy Beaver
upper bound is proved as it is in [1]):

Theorem 2. The function

f(n) = max
|x|=n, 0≤b≤n

{x : depthb(x) − depthb+1(x)}

grows faster than any computable function but not as fast as the Busy Beaver

function.
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