
Theoretical Computer Science 2 (1976) 49-71.
© North-Holland Publishing Company

DETERMINISTIC LINDENMA YER LANGUAGES,
NONTERMINALS AND .. HOMOMORPHISMS*

Paul M. B. VITANYI

Mathematisch Centrum, Amsterdam, The Netherlands

Communicated by A. Salomaa
Received 12 December 1974
Revised 24 March 1975

Abstract. Lindenmayer systems are a class of parallel rewriting systems originally introduced to
model the growth and development of filamentous organisms. Families of languages generated by
deterministic Lindenmayer systems (i.e., those in which each string has a unique successor) are
investigated. In particular, the use of nonterminals, homomorphisms, and the combination of
these are studied for deterministic Lindenmayer systems using one-sided context (DlLs) and
two-sided context (D2Ls). Languages obtained from Lindenmayer systems by the use of
nonterminals are called extensions. Typical results are: The closure under letter-to-letter
homomorphism of the family of extensions of DlL languages is equal to the family of recursively
enumerable languages, although the family of extensions of DlL languages does not even contain
all regular languages. Let P denote the restriction that the system does not rewrite a letter as the
empty word. The family of extensions of PD2L languages is equal to the family of languages
accepted by deterministic linear bounded automata. The closure under nonerasing homomor
phism of the family of extensions of PDIL languages does not even contain languages like
{a,,a,,···,a.}*-{A}, n;;.2. The closure of the family of PDlL languages under homomor
phisms which map a letter either to itself or to the empty word is equal to the family of recursively
enumerable languages. Strict inclusion results follow from necessary conditions for a language to
be in one of the considered families. By stating the results in their strongest form, the paper
contains a systematic classification of the effect of nonterminals, letter-to-letter homomorphisms,
nonerasing homomorphisms and homomorphisms for all the basic types of deterministic
Lindenmayer systems using context.

1. Introduction

The study of Lindenmayer languages (also called L languages or developmental
languages) has been one of the major trends in automata and formal language
theory during the past few years. L languages are generated by highly parallel
rewriting systems introduced by Lindenmayer (12] to model the growth and
development of filamentous biological organisms. These Lindenmayer systems, or
L systems for short, have been investigated in a large number of papers both from
the language theory and the theoretical biology points of view. (See, for example,

• The research reported in this paper was supported by the Netherlands Organization for the
Advancement of Pure Research (Z.W.O.).and by the Mathematical Center under # IW 28/74. The
preparation of the manuscript was supported by NSF Grant GJ 998.

49

50 P. M. B. VITANYI

[9] and the references contained therein.) A Lindenmayer system is called
deterministic if each string has exactly one successor under the rewriting rules (we
do not consider so-called table L systems here). The purpose of this paper is to
make a systematic study of languages generated by deterministic L systems and the
effect of two essentially different defining mechanisms: the use of non terminals and
the use of homomorphic mappings of different kinds. Both mechanisms are
frequently used in formal language theory [19, 20].

An L system consists of an initial string of letters, symbolizing an initial linear
array of cells (a filament), and the subsequent strings (stages of development) are
obtained by rewriting all letters of a string simultaneously at each time step. When
the rewriting of a letter may depend on the m letters to its left and the n letters to
its right we talk about an (m, n)L system. If m = n = 0 the L system is said to be
context independent or without interactions; if m + n > 0 the L system is said to be
context dependent or with interactions. Most of the literature on L systems is
concerned with OL systems (m = n = 0), lL systems (m + n = 1), and 2L systems
(m = n = 1).

From the point of view of developmental biology, the language consisting of the
set of all strings generated by the system is of primary interest. Such an L language
is taken to correspond to the set of all developmental stages which might be
attained by the organism in its development. Here, also, homomorphic mappings
(especially those in which a letter is mapped to a letter) are of considerable
importance (cf. [14]).

More formal-language-theory oriented investigators, however, divide the set of
letters used by the L system into a set of terminals and nonterminals. The language
obtained from the L system by this mechanism consists of all the strings over
terminals generated by the system. Such languages are called extensions of L
languages. (They are obtained by taking the intersection of the "ordinary" L
language and the set of all strings over the terminals, an operation which extends
considerably the generating power of the type of L system under consideration.)
Families of extensions of L languages usually have welcome mathematical proper
ties, such as closure under certain operations.

One of the facts which have made the use of nonterminals interesting within the
theory of developmental languages is that it was established in [4, 5] that for basic
families of OL systems the use of nonterminals and the use of Jetter-to-letter
homomorphisms are equivalent as far as the generating capacity is concerned.
Thus, the trade-off between the two language-defining mechanisms (i.e., nontermi
nals versus homomorphisms) has become a very interesting and well motivated
problem for L systems. Continuing this train of thought, trade-offs between
combinations of one- or two-sided context, restrictions where no letter is rewritten
as the empty word, and the use of nonterminals and various kinds of homomorph
isms are interesting. The present paper is concerned with this topic, but we restrict
our attention to the deterministic L systems. .

These systems are particularly relevant in the biological setting, as would also
appear to be indicated by the fact that most attempts to provide L systems modeling
the development of actual biological organisms use deterministic systems (see [1,
6-10]). The study of the change in pattern, size and weight of a growing organism as

DETERMINISTIC UNDENMA YER LANGUAGES 51

a function of time constitutes a considerable portion of the literature on develop

mental biology. Usually, genetically identical specimens of a specific organism are

investigated in a controlled environment and their changes with respect to time are

described. The scientific presupposition is that identical genetical material and

identical environment will result in an approximately identical developmental

history, i.e., that the experiment is repeatable. This assumes a deterministic (causal)

underlying structure, and makes a good case for the biological importance of the
study of deterministic L systems.

This paper can be divided in three parts. In Section 2 we formally define L

systems and relate them to Turing machines, as in [3]. Sections 3 and 4 are

concerned with "ordinary" deterministic L languages, i.e., languages consisting of

all strings generated by the systems. In Sections 5 and 6 we deal with extensions of

deterministic L languages, i.e., languages consisting of all strings over some
terminals generated by the systems.

In Section 3 we are interested in Lindenmayer languages which are not recursive.

The existence of such languages is a known fact [3]. We provide a more detailed

construction for the deterministic case and develop a simulation technique which

will prove useful in the remainder of the paper. In Section 4 we compare families of

deterministic L languages with the Chomsky hierarchy. Here our results refine

those in [3, 17, 18]. In Section 5 we compare families of extensions of deterministic

L languages with the Chomsky hierarchy. Typical results are: the amount of context

needed for rewriting makes no difference for families of extensions; the only

differences lie in no context, context on one side and context on both sides. Let the

capital D denote the deterministic property. The family of extensions of D2L

languages is equal to the family of recursively enumerable languages, as is also the

closure under letter-to-letter homomorphism of the family of extensions of D lL

languages. On the other hand, the family of extensions of DlL languages does not

even contain all regular languages.
In Section 6 we consider extensions and homomorphisms of languages generated

by deterministic L systems with the propagating property: no letter can be rewritten

as the empty word. As is well known, such a restriction usually limits drastically the

generating capacity of a rewriting system. We show that the family of extensions of

PD2L languages (where P stands for propagating) is equal to the family of

languages accepted by deterministic linear bounded automata. The closure under

:.~merasing homomorphism of the family of extensions of PDlL languages is strictly

included in the family of extensions of PD2L languages. Indeed, this closure does

not even contain languages like {ai. a2, · · ., a"}* - {}..}, n ;:,, 2. (Contrast this with the

result for the nonpropagating case in Section 5.) On the other hand, the closure of

the family of PDlL languages under homomorphisms which map a letter either to

itself or to the empty word is again equal to the family of recursively enumerable

languages. ·

Our strict inclusion results follow from necessary properties of the language

families considered rather than by an exhaustive analysis of a particular example.

Essentially, the paper analyzes the trade-offs which are possible between

combinations of one- or two-sided context, the property that no letter is rewritten

as the empty word, the use of non terminals and various kinds of homomorphisms

52 P. M. B. VITANYI

Bv stating results in their strongest form'. the paper contains a systematic
cl~ssification of the effect of these mechamsms on the generating capacity of
deterministic L systems using context. .

F t t Of th. e effect of nonterminals, homomorphisms and letter-to-or a trea men .
letter homomorphisms in different variations of OL systems the reader 1s referred to

[14].

2. Lindenmayer systems and Turing machines

We assume that the reader is familiar with the usual terminology of formal
language theory, as presented, for instance, !n [llJ .or p9J. Except wh~~ otherwise
indicated we shall customarily use, with or without md1ces, the letters 1, J, k, l, m, n,
p q r s t to range over the set of natural numbers N = {O, 1, 2, · · · }; a, b, c, d, e to
r~n~e'o~er an alphabet W; and u, v, w, z to range over W* (i.e., the s~t o~ all words
(strings) over W, including the empty word A). # Z denotes the cardmahty of a set
Z; lg(z) denotes the length of a word z and lg(A)= 0.

A deterministic (m, n)L system (D(m, n)L) is a triple G = (W, o, w) where W is a
finite nonempty alphabet, 8 is a total mapping from U :"=o W' x W ~ U i=o Wi into
W*, and w E WW* is called the axiom. 8 induces a total mapping o from W* into
W* as follows: S(A) =A and fork> 0, S(v) = v' iff v = a1a2 · · · ak, v' = a1a2 · · · ak
and for all i, i = 1, 2, · · · , k,

where we take a; =A for all j such that j < 1 or j > k. The composition of i copies
of 8 is inductively defined by 8°(v) = v and S' (v) = 8 (Bi-I (v)) for i > 0. When no
confusion can result we shall write 8 for 8. The L language produced or generated
by G is defined as L(G)={8'(w): i ;;,:O}.

At this stage we would like to point out that although our definition of an L
system varies from the usual one (see, e.g., [9]) in that it dispenses with the
environmental letter g, it is exactly equivalent to the previous definitions. It has the
additional advantages that proofs become shorter and the notation more transpar
ent. With regard to the amount of context used, the following terminology is
standard throughout the literature: a D(O, O)L is called a DOL; a D(O, 1)L or
D(l, O)L is called a DlL (one-sided context); a D(l, 1)L is called a D2L (two-sided
context); a D(m, n)L such that m + n > 0 is called a OIL.

It was shown by van Dalen [3] that for a suitable standard definition of Turing
machines (e.g., the quintuple version), for every Turing machine T with symbol set
S and state set I/! we can effectively construct a D2L G = (W, o, w), with

· W = I/! US, which simulates it in real time, i.e., the tth instantaneous description of
T is equal to 8' (w). 1 If we do away with the excess blank symbols on the ends of the
Tu~ing machine tape, by letting the letters corresponding to such blank symbols
denve the empty word A in the L system simulation of T, then the following
statement clearly holds. Let G = (W, 8, w) be a D2L, let Sand if1 be disjoint subsets

' See, e.g., Minsky [13) for terminology and results on Turing machines.

DETERMINISTIC LINDENMA YER LANGUAGES 53

of W, and let hi be a homomorphism from S*ijJS* into S* defined by h1(a) =,\for

all a E t/I and hi(a) = a for all a ES. The set of languages of the form

h1(L(G) n S*ijJS*) is the family of recursively enumerable languages. Since the

family of recursive languages is closed under intersection with a regular set and

k-limited erasing, and since there exist recursively enumerable languages that are

not recursive, there exist D2L languages which are not recursive. 2 (S * if1S * is

regular and h 1 is 1-limited on S * if1S *.)That all L languages considered in this paper

are recursively enumerable follows by the usual Turing machine simulation
argument.

3. Nonrecursive L languages

At the end of the last section we gave the usual proof that there are nonrecursive

02L languages. By an application of a result due to Rabin and Wang [15] we can be

slightly more specific and at the same time develop a simulation technique which

will be of use in the sequel. Let the word at any moment t in the history of a Turing

machine be the string consisting of the contents of the minimum block on the tape

at t that includes all the marked squares and the square scanned at the initial
moment (the origin).

Theorem 3.1 (Rabin and Wang). For any fixed (finite) word at the initial moment

we can find a Turing machine T such that the set of words Pin its subsequent history
is not recursive.

Theorem 3.2. Let GT be a D2L which simulates (in the sense explained in Section

2) a Turing machine T satisfying the statement of Theorem 3.1. Then L (GT) is

nonrecursive.

Proof. Let h3 be a homomorphism on L (GT) defined by hJ(s) = s and h3(q) = ,\ for

all s ES and all q E ijJ, where S and if; are the symbol set and the state set of T,

respectively. Since L(GT) ~ S*if;S*, h3 is 1-limited on L(GT)· h3(L(GT)) = P and

since P is nonrecursive L (GT) is nonrecursive. 0

We use GT to construct a nonrecursive 0(0, l)L language.

Lemma 3.3. Let G = (W, o, w) be any D2L. There is an algorithm which, given G,

produces a D(O, l)L G' = (W', 8 1, w') such that for all t, 0'2 '(w') = ~o' (w) and

' A family of languages is said to be closed under k-limited erasing if, for any language L of the class

and any homomorphism h with the property that h never maps more than k consecutive symbols of any

sentence x in L to A, h (L) is in the class. We shall furthermore be concerned with nonerasing

homomorphisms, i.e. homomorphisms which map no letter to the empty word A; letter-to-letter

homomorphisms (also called codings), i.e. homomorphisms which map letters to letters; and

homomorphisms which map a letter either to itself or to the empty word A. (These homomorphisms are a

subclass of the weak codings where a letter is mapped either to a letter or to A.) For further details

concerning homomorphisms and other operations on languages and closure under these operations see

[11, 19].

54 P. M. B. VIT ANYI

8'21+'(w') = f'(a,, a2)(a2, a3) · · · (ak, A)

if 8' (w) = a1a2 · · · ak, where f and f are letters not in W.

Proof. Construct G' = (W', 81
, w') as follows.

W'= WU(Wx(WU{A}))U{f,f'},

where f and f are letters not in W,

w'=fw,

8'(A, a, c) =(a, c),

8'(,\, f, c) = f,
8'(A,f,A)=f,

8'(,\, (a, b), (b, c)) = 8(a, b, c),

8'(A, f, (a, c)) = f8(A, a, c),

8'(A, (a, A), A)= A,

for all a, b E Wand all c E WU {A}. (The arguments for which 8 1 is not defined will
not occur in our operation of G'.)

For all words v = a,a2 · · · ak E W* we have

k > 1: 812(fa1a2 · · · ak) = 81(f1(a,, a2) (a2, a3) · · · (ak, ,\))

= f8(A, ai, az)8(a,, a2, a3) · · · 8(ak-h ak, A)

= f8(a,a2 · · · ak);

k = 1: 812(fa1) = S'(f(a,, ,\)) = ~8 (A, a,, A)= fB(a,);

k = 0: B'2(f)= 8'(f) = f = fB(A).

Therefore, for all t, S121 (fw) = ~S'(w) and

812'+'(fw) = f(a,, az) (a2, a3) · · · (ak, A)

if

From Lemma 3.3 we see that if LE 2.'(D2L) then there is an L' E 2.'(D(O, l)L)
(respectively L"E.ct'(D(l,O)L)) such that {w: ~wEL'}=L (respectively {w:
w~EL"} = L).

The following two corollaries illustrate some more relations between DIL and
D2L languages.

Corollary 3.4. Let G = (W, 8, w) be a D2L. There is an algorithm which, given G,
produces a D(O, l)L G' (respectively a D(l, O)L G") and a letter-to-letter
homomorphism h4 such that h4(L(G')) = {~}L(G) (respectively h4 (L(G"))
= L(G){~}).

DETERMINISTIC LINDENMA YER LANGUAGES 55

(Hint: Let h4 be a letter-to-letter homomorphism defined by h4(a) = a for all

a E WU{~}, h.(~')=~' and h,((a, b)) = a for all (a, b) E W x (WU {A}).)

Corollary 3.5. Let G = (W, l>, w) be any D2L. There is an algorithm which, given
G, produces a D(O, l)L G' (respectively D(l,O)L G") and a homomorphism h5,

which maps a letter either to itself or to A, such that

hs(L(G') n WW*)= hs(L(G") n W*W) = L(G).

(Hint: hs is defined by hs(a) =a for all a E W and h 5(~) =.A. h5 is 1-limited on

WW* and W*{~}.)

Theorem 3.6. We can construct DlLs whose languages are not recursive.

Proof. Let GT= (WT, 8T, wT) be a D2L as in Theorem 3.2. By Corollary 3.5 we can

construct a D(O,l)L G' such that h5(L(G')n{~}Wn=L(GT)- Since WW} is

regular, hs is a I-limited homomorphism on {f} W}, and L (GT) is not recursive, it

follows that L(G') is not recursive. O

4. Deterministic L languages and the Chomsky hierarchy

A natural subclass of the L systems is formed by the propagating L systems. A

deterministic L system G = (W, 8, w) is propagating if for all arguments the value

of 8 is not equal to .A. We indicate this property by prefixing the capital P to the type

of L system, e.g. PD(m, n)L, POOL, PDIL. From the work of van Dalen [3],
Rozenberg [17] and Rozenberg and Lee [18] on nondeterministic L systems we can

readily deduce several facts about the place in the Chomsky hierarchy of the

deterministic L languages: e.g., the PDIL languages are strictly included in the

context sensitive languages, the DIL languages are strictly included in the

recursively enumerable languages. By the use of direct arguments concerning the

deterministic nature of the systems under consideration we shall refine these results

implicit in the above references and fix completely the place of the D(m, n)L and

PD(m, n)L languages with respect to the four main classes of the Chomsky

hierarchy.

Lemma 4.1. There are regular languages over a one letter alphabet which are not

DIL languages.

Proof. L = {aaa }*{a, aa} is such a language. To prove this we make use of the

following:
Claim. If G = (W, 8, w) is a unary D(m, n)L (i.e. # W = 1) which generates an

infinite language then there exist nonnegative integers to, p and x such that for all

t ~ t0 the following equation holds:

lg(8'+ 1(w)) = p(lg(S'(w))- m - n)+ x. (1)

Proof of ·claim. Let 8(a m, a, a•)= a P and let

56 P. M. B. VITA.NY!

m-1 n.-1

x = 2: lg(8(a\a,an))+ 2: lg(8(am,a,ai)).
i=O j-=O

If L (G) is infinite then there exists a to such that

lg(S'<>(w));;,: 2(m + n)+ x + l.

Case 1: p = O. lg(S'(w)) ~ y for all t > O where y = max{lg(S(ak)): k ~ m + n},
contrary to the assumption.

Case 2: p > 0. Clearly (1) holds. By observing that L ={a 1 : i ji 0 (mod 3)} we
see that for every positive integer k such that k = 0 (mod 3) holds that
a k- 1, a k+i, a k+z EL and a k flE L. Hence, if L (G) = L it follows that p = 1 in (1). But
then the lengths of the subsequent words in L (G), ordered by increasing length,
differ by a constant amount x - m - n and hence L (G)-!= L. D

Let X be any of the restrictions on L systems discussed above. Then 2:'(XL)
denotes the family of XL languages, e.g. 2(D(m, n)L), 2(DIL), 2:'(DOL). Let
;±'(REG), .:f(CF), 2(CS) and 2(RE) denote the families of the regular, context
free, context sensitive and recursively enumerable languages, respectively. Let <;;;;

denote inclusion and C strict inclusion.

Theorem 4.2. (i) For all m, n;;;: 0 the intersections of 2(PD(m, n)L) with 2:'(REG),
2:'(CF)- .ct'(REG) and 2:'(CS)- 2(CF) are nonempty; there are languages in
2(REG), .ct'(CF)- 2(REG) and 2(CS)- 2:'(CF) which are not in 2(PDIL);
2:'(PDIL) C 2(CS) (see Fig. 1).

L(CS)

L(CF)

L (REX;)

Fig. 1.

(ii) For all m, n ;;,: 0, such that m + n > 0, the intersections of 2:'(D(m, n)L) with
2(REG), .:f(CF)- 2(REG), .ct'(CS)- 2:'(CF) and 2(RE)- 2(CS) are nonempty;
there are languages in 2:'(REG), 2:'(CF)- 2:'(REG), !f(CS)- 2:'(CF) and !£(RE)-
2:'(CS) which are not in 2(DIL); 2:'(DIL) C2:'(RE) (see Fig. 2).

DETERMINISTIC LINDENMA YER LANGUAGES 57

L(RE)

L(CS)

L(CF)

L(REX;)

Fig. 2.

(iii) The intersections of .:t'(DOL) with 2(REG), 2(CF)- 2(REG) and 2(CS)-
2(CF) are nonempty; there are languages in .:t'(REG), .:t'(CF)- .:t'(REG) and
2(CS)- 2(CF) which are not in .:t'(DOL); 2(DOL) c2(CS) (see Fig. 3).

(iv) For all m, n ~ 0, .:f(PD(m, n)L) C2(D(m, n)L); 2(PDIL)C.:t'(DIL).

Proof. (i) and (ii). Let G1, G2 and 0 3 be PDOLs defined by:

G1 = ({a},{8(,\, a,,\)= a}, a),

G2 =({a, b, c}, {8(,\, a,,\)= a, 8(,\, b, A)= b, 8(,\, c, ,\) = acb }, c),

G3 = ({a},{8(,\, a, A)= aa}, a).

L(G1) ={a}, L(G2) ={a "cb": n ~ O} and L(G3) = {a 2": n:;.: O}. L(G1)E 2(REG);

it is well known that L(G2)E2(CF)-2(REG); L(G3)E2(CS) by the working

space theorem or the usual linear bounded automaton argument and

L (G 3) ~ 2(CF) by the uvwxy lemma.3 This proves that all considered families of

languages have nonempty intersections with 2(REG), 2(CF)- 2(REG) and

5.t'(CS)- 2(CF). By Theorem 3.6 there is a DlL language L(G) such that

' For the working space theorem see [19, p. 93]. The working space theorem is a variant of the linear

bounded automaton theorem which tells that the family of languages accepted by linear bounded

automata is equal to X(CS). For a definition of linear bounded automata see Section 6, [11] or [19]. For

the uvwxy lemma (or Bar Hillel's lemma) see [19, p. 56].

58 P. M. B. VITANYI

L(CS)

L(CF)

L (RBS)

Fig. 3.

L(G)E2(RE)-2(CS). The language L of Lemma 4.1 belongs to £'(REG) but
not to 2(DIL). LUL(G2)E2(CF)-2(REG) and it is easy to show that
L UL (G:) ~ 2(DIL). L' ={a 2(2'': t;:;;. O} does not belong to 2(DIL) because of eq.
(1) but L' E £'(CS)- £'(CF) by the working space theorem and the uvwxy lemma.
Each nonrecursive language A ~ {l}* belongs to £'(RE)- £'(CS) and A~ 2(DIL)
by eq. (1). Hence there are languages in £'(REG), 2(CF)- £'(REG), 2(CS)-
2(CF) and £'(RE)- £'(CS) which are not in 2(DIL). From this it follows that the
inclusions of 2(PDIL) in 2(CS) and of 2(DIL) in £'(RE) are strict.

(iii) follows from the proof of (i) and (ii) and the observation that !t'(DOL) ~
£'(CS), Salomaa [19, p. 245].

(iv) 2(PD(m, n)L) ~ 2(D(m, n)L) holds by definition. Strict inclusion follows
from the fact that if A EL and L E 2(D(m, n)L) then L ~ 2(PD(m, n)L). (It is
easy to give nontrivial counterexamples of DOL languages which are not PDOL
languages; for m + n > 0 there are nonrecursive D(m, n)L languages by Theorem
3.6 and all PD(m, n)L languages are context sensitive by (i).) Similarly we prove
2(PDIL) C!t'(DIL). D

From eq. (1) it follows immediately that 2(D(m, n)L) C 2(D(m ', n ')L) for
m<m' and n=n' or m=m' and n<n'. In particular 2(DOL)C2(D1L)C
2(D2L). Analogously this holds with the propagating restriction added. For a
further discussion of the inclusion relations between families of L languages using
different amounts of context see [17, 18].

5. Extensions of deterministic L languages

The usual device in formal language theory for extracting languages from rewriting
systems is the use of non terminals, i.e.lby selecting from the set of produced words

DETERMINISTIC LINDENMA YER LANGUAGES 59

all words over a terminal alphabet. This operation is called intersection with a
terminal alphabet. Such an operation considerably contributes to the generating
power and therefore a language E(G, VT)= L(G) n V{ is called an extension of an
L language where G is an L system and VT is some alphabet. We denote the family
of extensions of XL languages by ~(XL) where X is one of our usual restrictions.
Considering nondeterministic L systems, van Dalen [3] proved that ~(1L) =
.!t'(RE), and ~ (P2L) = 2(CS).

Furthermore, ~(OL) C 2(CS), see e.g. Herman and Rozenberg [9]. For deter
ministic L systems it therefore follows that ~(D1L)~~(D2L)~2(RE);
~(PDlL) ~ ~(PD2L) ~ 2(CS) (and in general by the working space theorem
~(PDIL) ~ .!t'(CS)); and Jg(DOL) C2(CS). From the definitions it is immediate that
.!t'(XL) ~ jg (XL) for all classes of XL systems.

Theorem 5.1. ~(D2L) = 2(RE).

Proof. Let A be a recursively enumerable language over some alphabet VT which
1:1

is enumerated by a 1 : 1 recursive function f: N ~A; n is recovered from f(n) by
r 1• That every infinite recursively enumerable language can be enumerated by a
one-one recursive function follows from Rogers (16, Exercise 5.2]; for finite
languages clearly an appropriate version of our proof suffices. Let T be a Turing
machine with symbol set S = VT U {a, b} where a, b~ VT and bis the blank symbol.
At time t = 0, T is presented with a finitely inscribed tape of which the origin
contains a. We assume that the tape is halfway infinite, i.e. the reading head of T
never scans a square left of the origin. That this is no restriction on the power of a
Turing machine is well known. T starts with erasing the finitely many marks on its
tape except the symbol a at the origin, returns to the origin, writes the representa
tion of 0 on the tape and calculates the value of f(O). Subsequently, T erases
everything else except the representation of f(O), retrieves the representation of 0
from f (0) by r1. adds one to this representation and computes f(l), and so on. In
particular we can do this in such a way that the specific symbol a is used only to
mark the origin and is erased only to indicate f(O), f(l), · · · ; it is printed again
before we calculate f(n + 1) from f(n). If P is the set of all words in the history of T
then P n {b} V{ = {b }A Let GT= (WT, 5T, wT) be a D2L which simulates Tin the
sense of Theorem 3.2. Since T uses a halfway infinite tape the strings of GT always
have a letter a at the left end except when f(n) has been computed for some n in
which case the string has a letter qi. (ind_jcating the state of the simulated Turing
machine) at the left end. That is, for each n E N there is a t" E N and a state qi. E t/I
(where if! is the state set of T) such that 5~(wT) = q;.af(n). We can construct T with
two distinguished states q', q" in If! such that (eliminating some superfluous
intermediate steps of T in the simulating GT) for all n:

r +I) 5.; (wT) = q'f(n ,

and q', q" never occur in 5HwT) for .t" + 2 < t ~ tn+1, n EN. Now we modify GT to
G = (WT, 5, wT) where 5 is defined by: if 8T(>.., q, a)= q' then 5(>.., q, a)= >..,
8(>..,c,d)= aq"c for all letters c E VT and d E VTU{A.}, and 5(·)= 5T(-) for all

60 P. M. B. VITANYI

other arguments. It is easily seen that tS'·+1(wT) = f(n) for all n and tS'(wT) =
S.;.(wT) E Wi-o/Wi- for all t such that tf t" + 1, n E§ N. Hence L(G) n Yi-= A. (To
capture the case where A EA we could define tS(A) = aq".) D

Theorem 5.2. The closure of ~(D(O,l)L) (or ~(D(l,O)L)) under letter to letter
homomorphism is equal to ft'(RE).

Proof. We prove the theorem for D(O, l)Ls. The case for D(l, O)Ls is completely
analogous. Let G =(W,8, w) be a D2L constructed as in Theorem 5.1. Let
G' = (W', 8', w') be a D(O, l)L defined as follows:

W'= WU(WX(WU{O,l,,\}))UH},

where 0, 1, ~ are letters not in W,

w' =(bi, 1) (b2, 0) · · · (bn, O) if w = b1b2 · · · bn,

f>'(A, a, b) = (b, 0),

8 '(A,~. a) = (a, 1),

8'(A, ~'A)= 6'(A, a, A)= tS'(A, (a, A), A)= A,

6'(,\, (a, 0), (b, 0)) =(a, b),

8 1(,\, (a, 1), (b, 0)) =~(a, b),

8'(,\, (a,O), A)= (a, A),

8'(A, (a, 1), A)= f(a, A.),

6'(,\, (a, b), (b, c)) = tS(a, b, c),

8'(A,~,(a,c))=~S(A,a,c),

for all a, b E Wand all c E WU {A}. (The arguments for which 8 1 is not defined
shall not occur in our operation of G'.) Assume that Ag L(G).

We see that for all t holds that h6(8'3'(w'))= tS'(w) where h6 is a letter-to-letter
homomorphism from (W x {l, O})* onto W* defined by h6((a, 0)) = h6((a, 1)) =a
for all a E W. Since by the synchronicity of the productions 8 " (w ') E mW'* for all
t;S 0 (mod 3) we have h6(L(G') n (W x {O, 1})*) = L(G) and therefore
h6(L(G') n (VT x {O, 1})*) = L(G) n Y}. (To capture the case where A E L(G) we
could define B'(A) = ~B(A), and the proof proceeds analogously.) D

Theorem 5.3. If LE i'(D2L), or equivalently LE ft'(RE), then H}L E i'(D(O, l)L)
(similarly L{~}E';g'(D(l,O)L)) where f is a letter not occurring in a.word in L.

Proof. Follows immediately from Lemma 3.3. D

We shall now prove some properties of DOL and DlL languages which give us
criteria to show that certain languages cannot be DOL or DlL languages or their
intersections with a terminal alphabet.

DETERMINISTIC .LINDENMA YER LANGUAGES 61

We call a language permutation free if no word in the language is a permutation
of any other word in the language.

Lemma 5.4. Let G = (W, 8, w) be a DOL. If L(G) is infinite then L(G) is
permutation free.

Proof. Suppose L (G) is infinite, v, v' E L (G), v ~ v ', and v' is a permutation of v.
Let 8 k (v) = v' for some k > 0. Since v' is a permutation of v we have for each
n > 0, 8"k (v) is a permutation of v. There are only a finite number of words in W*
which are a permutation of v and therefore there exist n2 > n1 > 0 such that
8"•k (v) = 5n,k (v). But v = 8'o(w) for some to and therefore 8'o+n,k (w) = 8'o+n,k(w) so
L(G) is finite: contradicting the assumption. 0

The converse of the lemma holds in the following sense. Let G = (W, 8, w) be a
DOL. L (G) is infinite iff for no integers i and j, i I j, holds that 81 (w) is a
permutation of Bi (w). (We consider A to be a permutation of A.)

Corollary 5.5. Let G = (W, 8, w) be a DOL and VT a subset of W. If E(G, VT) is
infinite then E(G, VT) is permutation free, i.e. all infinite languages in ~(DOL) are
permutation free.

We call a word v' a prefix (postfix) of a word v if v = v 'z (v = zv ') for some word
z. We call v' a proper prefix (proper postfix) of a word v if v' is a prefix (postfix) of v
and v' Iv.

Lemma 5.6. Let G = (W, 8, w) be a D(l,O)L (D(O, l)L).
(i) \ L(G) is finite iff 8' (w) = 8''(w) for some t, t' such that t~ t'.

(ii) Let L (G) be infinite. If v, v' E L (G) and v' is a proper prefix (proper postfix) of
v then, with finitely many exceptions, for each word u in L (G) there is a word u' in
L (G) such that u' is a proper prefix (postfix) of u.

Proof. (i) Obvious by the deterministic property of G.
(ii) We prove (ii) only for D(l, O)Ls and prefixes. The proof is completely

analogous for D(O, l)Ls and postfixes.
Case 1: 8'(w)=v' and 8k(v')=v=v'z for some t;;;.O and some k>O. For

each j;;;.O there is a z'E W* such that 8r+k+i(w)=8i(v)=8i(v'z)=81(v')z'=
5•+i(w)z', and by (i), z'~ A.

Case 2: 8'(w)= v = v'z and 8k(v'z)= v' for some r;;;.O and some k >0.
5k(v'z) = 8k(v')z' = v' for some z' E W* and by (i), z' I A. Therefore,
lg(8k (v')) < lg(v'). By iterating this argument lg(v')+ 1 times we obtain either
lg(8k(laC•'>+1>(v ')) < lg(v')- lg(v') which is impossible or 8k 1a<•'>(v ') = 8kC1aM+1>(v'). In
the latter case L(G) is finite; contradictory to the assumption. 0

If we allow B(A) I A then Lemma 5.6(ii) holds under the additional restriction:
not both A E L(G) and B(A) ~A.

62 P. M. B. VITANYI

Corollary 5.7. Let G=(W,8,w/ be a D(l,O)L (D(O,l)L) such that E(G, VT) is
infinite for some VT (and not both A EL(G) and S(A) I- A). If v, v' EE(G, VT) such
that v' is a proper prefix of v (v' is a proper postfix of v) then, with finitely many
exceptions, for each word u in E(G, VT) there is a word u' in E(G, VT) such that
u = u'z (u = zu') for some z E VT v~.

Clearly, Lemma 5.6 and Corollary 5.7 hold for D(m,O)Ls with respect to prefixes
and for D(O, m)Ls with respect to postfixes, m ~ 0.

Theorem 5.8. (i) The intersections of 'i€(PD1L) with 2(REG), £'(CF)- 2(REG)
and £'(CS)- £'(CF) are nonempty. There are languages in £'(REG), 2(CF)-
2(REG) and 2(CS)-2(CF) which are not in lg(PDIL). lg(PD1L)C2(CS).

(ii) The intersections of lg (DlL) with 2(REG), 2(CF)- £'(REG), 2(CS)
£'(CF) and 2(RE)- £'(CS) are nonempty. There are languages in .:t'(REG),
2(CF)- £'(REG), £'(CS)- £'(CF) and 2(RE)- £'(CS) which are not in 'i€ (DIL).
'i€(D1L) C2(RE).

(iii) The intersections ofg(DOL) with £'(REG), 2(CF)-2(REG) and 2(CS)
£'(CF) are nonempty. There are languages in 2(REG), £'(CF)- .:t'(REG) and
£'(CS)- £'(CF) which are not in lg (DOL). 'i€ (DOL) c £'(CS).

Proof. Since 2(DXL)C g(DXL), the first sentences of the statements (i)-(iii) are
correct by Theorem 4.2. Let L1={a,aa}U{b}{c}*{b}, L2={a,aa}U{a"bc":
n >0}, L3 ={a,aa}U{bncndn: n >0} and L4={a,aa}U{a}A{a} where A ~{1}*
is the nonrecursive language from Theorem 4.2. By Corollary 5.7, L 1, Lz, L3 and L4
do not belong to g(DlL). But L1ES'.'(REG); LzE2(CF)-£'(REG) and L3E
£'(CS) - 2(CF), as is well known; L4 E 2(RE)- £'(CS). The inclusion in the last
sentences of the statements of (i) and (iii) follows by the usual working space
theorem and strict inclusion by the foregoing. The inclusion in the last sentence of
the statement of (ii) is true by the usual Turing machine simulation argument and
strict inclusion follows by the foregoing. 0

We might note that the existence of languages in 2(REG), £'(CF)- 2(REG)
and £'(CS)- 2(CF) which are not in 'i€ (DOL) could also have been proven using
Corollary 5.5.

That with respect to families of extensions of L languages differences can only lie
in no context, one directional context and two directional context, but not in the
amount of context, is shown by the next theorem.

Theorem 5.9. (i) ~(D2L) = ~(DIL).
(ii) ~(PD2L) = lg(PDIL).

(iii) g(DlL)= U1eN ('i€(D(i,O)L)U'i€(D(O,i)L)).
(iv) ~(PDlL) = U1eN ('i€(PD(i, O)L) U 'i€(PD(O, i)L)).

Proof. We give the outline of a simulation technique to prove (i). (ii)-(iv) are
completely analogous. ((i) follows also from Theorem 5.1 but the present proof is
direct.)

DETERMINISTIC LINDENMA YER LANGUAGES 63

Let G = (W, o, w) be a D (m, n)L, m, n > 0, and let r be the greater one of m and
n. We construct a D2L G' == (W', o', w') as follows:

W' = W u ('f.)~ Wi x w x Q wj) and w' == w.

The production rules o' are defined in such a way that, for each production of G, G'
executes r productions. The first r - 1 of these r productions serve to gather the
necessary context for each letter in the string and the rth production produces the
string produced by G.

E.g., if o(a1a2 · · · ak) = a1a2 · · · ak, then

o"(a1a2 · · · ak) == o"-1((A, ai, a2)(a1, az, a3) · · · (ak-J, ak, A))

== o"-2((A, ai, a2a3) (ai, ai, a3a,) · · · (ak-2ak-1, ak, A))

Therefore, o'"(w ') = o' (w) for all t, and o" (w') ~ W* for all t~ 0 (mod r). Hence,
for each subset VT of W, L(G') n V~ = L(G) n V~. O

Similarly we can prove the analog of Theorem 5.9 for the general case of
nondeterministic L systems.

In the next section we study ~ (PD2L) and show, among other things, that the
closure of ~(PDlL) under nonerasing homomorphism is strictly contained in
~(PD2L).

6. Extensions of propagating deterministic L languages

A linear bounded automaton M is a Turing machine with, say, symbol set S, state
set if; and start state qo E l/J, such that M accepts a word v over a subset VT of S
using at most c lg(v) tapesquares during its computation, where c is a fixed
constant. It is well known that the family of languages accepted by linear bounded
automata is equal to .1'.'(CS) (see [11] or [19]). A deterministic linear bounded
automaton (DLBA) is a linear bounded automaton such that each instantaneous
description has exactly one successor.

We shall show that Jg(PD2L) equals the family of languages accepted by DLBAs,
i.e . .1'.'(DLBA). Thus the question of whether or not the inclusion of 'ie(PD2L) in
'ie(P2L) is strict is shown to be equivalent with one of the more famous open
problems in formal language theory, i.e. whether or not the inclusion of .1'.'(DLBA)
in .1'.'(CS) is strict (cf. [11] or (19]). That Jg(PDlL) c 'ie(PD2L) follows already from
the fact that it is easy to construct a PD2L G such that L(G) ={a, aa} U {b }{c }*{b}
which language is not in Jg (PDlL) by Corollary 5.7. However, we shall prove the

64 P. M. B. VITANYI

much stronger result that the closure of %' (PDlL) under nonerasing homomorph
isms is strictly contained in jg(PD2L).

Theorem 6.1. g(PD2L) = .Y'(DLBA).

Proof. We give an outline since the details would be tedious. Let G = < W, 8, w) be
a PD2L and Vr a subset of W. Construct a deterministic linear bounded automaton
Mas follows. Muses an amount of tape equal to 4(1ength of input + 1), divided in 4
sections I, II, III, IV of equal length. The input word v is written on I; section II
contains the axiom w, section III is blank and section IV contains the representa
tion of 0 in the # W -ary number system. M compares 8; (w) with v, i ~ 0, and
accepts v if 8; (w) = v. Otherwise, scuttling back and forth between sections II and
III, M produces 8'+'(w) from 8i(w) such that oi+'(w) is written on III if 8;(w) is
written on II and vice versa. (If lg(8;+ 1(w))=:;.lg(v)+ 1 then M rejects v.) Subse
quently, M increments the number .written on IV by 1. If IV contains a number
equal to # W'g<vi+i _ 1 then M rejects v. Otherwise, M compares 8;+'(w) with v,
and so on. Since v E L(G) iff v = 8;(w) for some i < # w1s<vl+ 1 - l we see that
L (M) = L (G), where L (M) is the language accepted by M. Now construct M'
from M where M' is exactly like M except that M' first ascertains that v E V} and
rejects v if v ~ V7-. .-hen L(M') = L(G) n V{.

Let M be a DLBA, which accepts L(M) over S, using no more than en
tapesquares for an input word of length n. Now construct a DLBA M' such that M'
generates all words v0 , v" · · · over S in lexicographical order and accepts or rejects
them by simulating M. In particular we can do it such that M', started in state q!> on
a word V;, i ~ 0, written from left to right from the origin with the remaining
(c - 1) lg(v;) tapesquares containing blank symbols, computes the next word V;+ 1

written from left to right from the origin with the remaining tapesquares containing
blank symbols. Subsequently, M' proceeds to the origin, enters the start state q0 of
M and simulates M. After rejection or acceptance M' erases everything but V;+i

from the tape and starts in q ~ at the origin, i.e. scanning the leftmost letter of V;+i,

and so on.
Let V be the set of symbols of M', b the blank symbol, and if1 the state set of M'.

Construct G = (W, 8, w) as follows:

W= VU(Ve X(lf!U{,\})x{0,1,2, .. .,c}),

w = (a, b, b, · · ·, b, qo, 1),

where a is the first word of SS* in the lexicographical order. G simulates M' as
follows: if QI (w) = llJQ2'' 'lln,

a,az .. ·a. E (Vex{,\} x {O})*(Vex if1 x {1,2,. · "c}) (Vex{,\} x {O})*,

then the jth element of a;, 1 ~ j ~ c and 1 ~ i ~ n, corresponds with the
(i + (j - l)n)th tapesquare of M', the (c + l)th element of a1 indicates the present
state of M' if one of the tapesquares coded in a; is under scan (and is,\ otherwise)
and the (c + 2)th element tells which tapesquare (and is 0 otherwise). In particular
we can construct G such that if M' enters an accepting state the accepted word v,

DETERMINISTIC LINDENMA YER LANGUAGES 65

over S is "read out" from right to left, and subsequently is restored (from left to
right) to the form

(ai, b, b, · · ·, b, q~, 1) (a2, b, b,. · ·, b, ,.\, 0) ···(a., b, b,- · "b, ,.\, 0)

for V; = a1a2 ···an. Hence L(G) n S* = L(M). D

We now proceed to show that the closure of ';g(PDlL) under nonerasing
homomorphism does not contain 2(REG).

Lemma 6.2. Let G = (W, S, w) be a PD(l, O)L such that L (G) is infinite. Let
r= #W.Foreacht"3rthereisaprefixvofo'(w),lg(v);3 lJog,((r-l)t+r)J,and
a constant k, 0 < k ""' r 1g<u\ such that vis a prefix of 8 r+nk (w) for all n. For PD(O, 1)Ls
this holds with respect to postfixes.

Proof. Denote the i th letter of a string 8 i (w), i, j E N, by aii· Since L (G) is infinite,
the slowest rate of growth G can achieve is by generating all words over W in
lexicographical order, i.e. lg(8' (w)) ;3 l log, ((r - 1)t + r) J. Therefore, a;i is indeed
a letter in W for all j such that j "3 L;::; r'. Since there are only r different letters in
W, there are natural numbers j 1 and k i, ji, k 1 ~ r and k1 > 0 such that a1ir = a1h+k,·
Since G is a PD(l, O)L, a1ir+nk, = a1i" for all n. Therefore, a letter in the second
position has a lh as its left neighbor at all times, ji + nk1, n EN. There is surely a
letter in the second position for all times t ;;:.: r. Therefore, there are positive natural
numbers h and kz, h;;:.: r, k2""' r2 and h + kz ~ r + r2 , such that h = h + n1ki,
h + k2 = j1 + nzk1 for some ni, nz EN and az,, = az12+k,. By iteration of this argu
ment, for each s = 1, 2, · · · there are positive natural numbers j, and k,, j, "3 2:f::: r',
k, ""'r' and j, + k, ~ Lf-1 r1, such that

for all n. Since G is a PD(l, O)L,

for all t and n. Therefore, for all s and all t such that

s s-1

L r; > t ;;:.: j, ;3 L r;,
i=l i=l

there is a prefix v of 8' (w), lg(v);;:.: l log, ((r - l)t + r) J = s, and a positive constant
k, ""' r' such that v is a prefix of 8 •+•k, (w) for all n. Hence the lemma. D

Contrasting Lemma 6.2 with Lemma 5.6 gives a nice insight in the influence of
the propagating restriction with respect to the necessary behavior of pre- and
postfixes of the sequence of words generated by DlLs.

Theorem 6.3. Let V be any alphabet containing at least two letters. No language
containing VV* belongs to the closure under nonerasing homomorphism of
';g(PDlL).

66 P. M. B. VITANYI

Proof. Assume that {a,b}~ V, and consider the subset L ={(anbn)i<nl: n ""'1} of
V*. Suppose that L ~ h(L(G)n V~) for some PD(l,O)L G = (W, 8, w), a set VT
and a nonerasing homomorphism h from V~ into V*. Define t,, by

tn = min{i EN: 8'(w)E V~ and h(o'(w)) = (a"b")1<">, n EN}.

As is easily seen, lg(o' (w)) :% m' lg(w) where m is the maximum length of a value
of 8. Therefore, 2n · f (n) :% m '• lg(w)c where c = max{lg(h (a)): a E VT}. Or, tn ""'
logrn(f(n)(2n/(lg(w)c)))>logrnf(n) for all n ~no where no is some fixed natural
number. For each n ""'n0, 8'·(w) has a prefix Vn such that, for f(n)> m\'"+l>,

lg(Vn) ~ l 1 O g, (tn (r - 1) + r) J > n, r = # W,

and v .. occurs infinitely often with a constant period k" by Lemma 6.2. Since for
each n the prefix v" of 8 '· (w) is mapped under h to a "bz, z E {a, b }*, v" cannot be
a prefix of 8 '··(w) for n I- n' and n, n' ~ n0 . We now derive a contradiction by
showing that then k .. = k .. , for all n ""' no. Since G is propagating and the prefix v ..
(n ~no) occurs with a constant period k .. there is a j. such that 81·(v"',) = v .. z for
some z E W*. But then

for all p and some z, Zp, z ~ E W*. I.e. from time t .. , + j,, the prefix v" occurs with
period kno and k .. = k .. , (or kn divides k"',) for all n ""' no. Hence.

#(h(L(G)n V~)n{(anbn)'<">: n ""'no}),,,; kno

and

VV* g'. h(L(G) n Vf).

(Since VV* = (VV*t, i.e. the language consisting of all words from VV* reversed,
the above proof holds also for PD(O, l)Ls.) D

We see that any language which contains a language like {(a"bn)f<nl: n""' 1}
cannot be the image under nonerasing homomorphism of a language in '/&'(PD lL).
Hence also e.g. ({a}{a}*{b}{b}*)*. The idea behind the proof of Theorem 6.3 is
roughly the following. If a language L contains a large enough subset L' where
each pair of words in L', say v and v', are distinguishable by their respective
prefixes (postfixes) u and u' such that lg(u) = O(loglog(lg(v))) and lg(u') =
O(log log(lg(v'))) then L cannot be in the closure under nonerasing homomorphism
of ~(PD(l,O)L) (~(PD(O,l)L)). For example {b}{b}*{a}*{b}{b}* contains
{bn(a")H">b": n;;.: 1} for each f and therefore is not contained in a nonerasing
homomorphic image of a language in ~(PDlL).

Let us denote the closure of a language family X under nonerasing homomor
phism by hAX and under letter-to-letter homomorphism by h1, 1X.

Theorem 6.4. (i) i(PDlL) C h1,1 ~(PDlL) ~ hA'(g(PDlL) c ~(PD2L) = .:f(DLBA)
= hA'(g(PD2L).

(ii) For each x E {,\, h11, h,} the language family x~(PDlL) has nonempty

DETERMINISTIC LINDENMA YER LANGUAGES 67

intersection with !£(REG), !£(CF)....:. !£(REG) and !£(CS)- !£(CF); there are lan
guages in !£(REG), !£(CF)- !£(REG) and !£(CS)- !£(CF) which are not in
x~(PDlL); h.x~(PDlL) C!t'(DLBA).

Proof. (i) Let

G = <fai. az, a3, b, c}, {8(,\, ai, A)= aza3, 8(,\, a2, A)

= 8(a2, a3, ,\) = 8(,\, b, ,\) = b, 8(b, b, ,\) = S(c, b, ,\) = cb,

8(b, c, ,\) = B(c, c, ,\) = c}, a1)

be a PD(l,O)L. Leth be a Jetter to Jetter homomorphism defined by h(a;) =a for
i = 1, 2, 3, and h (b) = b, h(c) =c. h(L(G)) ={a, aa} U {b }{c }*{b} and by Corollary
5.7, h(L(G))fE_ c;g(PDlL). Therefore, ~(PDlL)Ch 1 , 1)g(PDlL). h1,1)g(PDlL)t;;;;
hA?!(PDlL) holds by definition. It is easy to show that !t'(DLBA) = h.x!t'(DLBA);
together with Theorem 6.1 this gives)g(PD2L) = h.x~(PD2L) = .:£(DLBA). Since
~(PDlL)t;;;; ~(PD2L), we have hA)g(PDlL)t;;;; ~(PD2L) . .:£(CF)c2(DLBA) (see
[11, Exercise 3.3]), and therefore {a, b}{a, b}* E i(PD2L) and by Theorem 6.3,
{a, b }{a, b }* fE_ h.x~(PDlL). Hence hA)g(PDlL) C)g(PD2L).

(ii) Since 2(PD1L) <;;;; x~(PDlL), the first sentence follows from Theorem 4.2.
The second sentence follows by taking languages from 2(REG), !t'(CF)
!t'(REG), !£(CS)- !£(CF) forming their union with {a, b }{a, b }* and applying
Theorem 6.3. The last sentence follows from (i). D

In the foregoing we have seen that with deterministic propagating one
directional L systems, together with nonterminal mechanisms and nonerasing
homomorphisms, we stay within the range of the DLBA languages and cannot even
obtain all regular languages. We conclude by proving that the closure of 2(PD1L)
under homomorphisms, which map a Jetter either to itself or to A, is equal to the
family of recursively enumerable languages.

The proof method was suggested by a proof of Ehrenfeucht and Rozenberg [5)
for the equality of 2(RE) and the closure of 2(D2L) under weak coding. The
difficulty lies in the fact that we have to "read out" the whole word in the language
in one production since otherwise also subwords of the desired words appear under
the homomorphism. This solution makes essential use of the parallelism in L
":/stems by a firing squad.simulation. The firing squad synchronization problem, see
e.g. [13], can be stated as follows. Suppose we want to synchronize an arbitrary long
finite chain of interacting identical finite state automata. All finite state automata
are initially in the same state m and stay in that state if both neighbors are in state
m. The automata on the ends of the chain are allowed to be different since they
sense that they Jack one neighbor. Synchronization is achieved if all automata enter
the firing state fat the same time and no automaton in the chain is in state f before
that time. In the terminology of L systems a firing squad is a PD2L F = (WF, 8F, m k)
such that BF(m, m, m) = 8F(m, m, A)= m. F satisfies the following requirement:
there is a function t : N ~ N such that for each k EN it holds that B~'k'(m k) = r and
8 Hm k) ~ WHf} W~ for all i, O :s;; i < t(k). Balzer [2] proved that there is such an F
with # WF = 8 and t(k) = 2k - 2. After these preliminaries we state the theorem.

68 P. M. B. VITANYI

Theorem 6.5. The closure of !t(PDlL) under homomorphisms, which map a letter
either to itself or to A, is equal to !t(RE).

Proof. Since by now these kinds of proofs are familiar we give only an outline. Let
A be an infinite recursively enumerable language enumerated by a 1 : 1 recursive

function f: N ~A; n is recovered from f(n) by r 1• (The case where A is finite
follows by a similar method.) Let T be a Turing machine which starts with the
representation of 0 on its tape, say a1a2 ···a,.., computes f(O), replaces everything
except f(O) on its tape by the blank symbol b and returns to the leftmost symbol of
f(O). Subsequently T retrieves 0 from f(O) by r 1, increments 0 with 1, and computes
f(l), and so on. In particular we can do this in such a way that after the computation
of f(n) the instantaneous description of T is b 1q'f(n)b' for some l, r EN and a
distinguished state q' of T. The next instantaneous description of T is b 1q"f(n)b'
for another distinguished state q" of T. Scanning the leftmost symbol of f(n), T
starts retrieving n from f(n) by r 1 in state q". We simulate T by a PD2L
G = (W, 8, w); hence the blank symbols will not disappear. G is defined as follows:

W=(tf!xSU(S-{b}))x WFUS,

where I/I is the state set of T, S is the symbol set of T and b is the blank symbol, and
WF is the alphabet of the firing squad F.

w = (qo, a1, m)(a2, m) ···(a,,., m),

where qo is the start state of T, a 1a 2 • • ·a,.. is the representation of 0 and m is the
initial state of the firing squad F. G simulates T until the situation

occurs where C1C2 · · · c1o is f(O). Subsequently, the substring between the b 's
executes a firing squad and, when the squad fires, maps itself to f (0). Le

o 'n+2lo-2(w) = b1 (q', C1, f) (c2, f) · · · (c1o, f)b',

l)'o+2lo-t(w) = b1C1C2 • • • C1ob' = b 1f(O)b'.

o is constructed such that a letter c ES -{b} is rewritten as (c, m), except when it
has b or A as left neighbor in which case it is rewritten as (q", c, m). Therefore,

o'o+2lo(w) = b' (q", C1, m)(c2, m) · · · (c1o, m)b',

and G continues simulating T, retrieves 0, adds 1 and computes the representation
of f(I), a~d so on. Hence h(L(G)) =A where h is a homomorphism defined by
h (a)= a if a ES - {b} and h (a)= A otherwise.

We now simulate G by a PDlL G' = (W', 8', w') which is defined exactly as the
D(O,l)L in Lemma 3.3 except that 8'(A,(a,A),A)=b for all aEW. Then
h'(L(G')) =A where h' is a homomorphism defined by h'(a) =a if a E S-{b}
and h '(a)= A otherwise. D

DETERMINISTIC LINDENMA YER LANGUAGES 69

We see that the simplest form of erasing homomorphism, i.e. all letters which are
not mapped to A are mapped to themselves, adds tremendously to the generating
power of PDlL systems.

We summarize the more important results of Sections 5 and 6 in Fig. 4.
Connection by a solid line means that the upper language family strictly contains
the lower one; connection by a dotted line means that the upper language family
contains the lower one and it is not known yet whether the inclusion is strict; if two
language families are not connected at all this means that their intersection is
nonempty but neither contains the other, i.e. they are incomparable.

E(DlL)

E(PD!L)

Fig. 4.

L (RE) = E (D2L) = h 1 : / (DlL)

= hJ(PDlL)

L (CS) = E (P2L)

L (DI.BA.) = E (PD2L) = h/ (PDIL)

L(CF)

L(Rffi)

We denote the closure of 5t'(PD1L) under homomorphisms which map a letter
either to itself or to A, by hw.:t'(PDlL). (These homomorphisms are a restricted type
of weak codings.)

(1) .:t'(RE) = jg (D2L) = h11 jg (DlL) = hw.st'(PD lL); Theorems 5.1, 5.2 and 6.5.
(2) jg (D lL) C .st'(RE) and i (D lL) incomparable with .:t'(CS), .st'(DLBA), .st'(CF)

and .:t'(REG); Theorem 5.8.
(3) jg(DlL) incomparable with hi:1jg(PDlL) and hA~(PDlL).
This needs a brief explanation. Let L ={a, aa} U {b }{c }*{b }. L E h1:1 'it'(PDlL) ~

h/i€(PD1L) by the proof of Theorem 6.4(i), and L~ ~(DlL) by the proof of
Theorem 5.8. Therefore

(a) hu~(PDlL)g lfJ(DlL) and hAjg(PDlL)g lfJ(DlL).
Since i (DlL) contains languages in .:t'(RE)- .:t'(CS) by Theorem 5.8(ii) and
h 11 lfJ(PDlL)~ hAjg(PDlL)g.st'(CS) by Theorem 6.4(i) we have

70 P. M. B. VITANYI

(b) 'l(DlL)g; h11 'l(PD1L) and 'l(DlL)g h,'l(PDlL).
Furthermore, by definition:

(c) 'l(PDlL)c;;;:; 'l(DlL) and 'l(PDIL) c;;;:; hll 'l(PDlL) c;;;:; h,~(PDlL).
From (a). (b) and (c) it follows that 'l(DlL) is incomparable with both h1:1 'l(PDlL)
and h,fc(PDlL).

(4) ~'(CS)== 'it(P2L); van Dalen [3].
(5) .P(DLBA) = 'l(PD2L) = h,'l(PDIL); Theorems 5.9 and 6.1. .
(6) 'l(PDlL) c h 1 1 'l(PD lL) c;;;:; h,'l (PDIL) c 2(DLBA); Theorem 6.4(1).
(7) 'l (PD lL) c;;;:; 'l (DlL) by definition. Strict inclusion since 'l (PD lL) .~£'(CS) by

Theorem 6.4(i) and 'l (D lL) n (.P(RE)- .P(CS)) r' 0 by Theorem 5.8(11). .
(8) 'l(PDlL) is incomparable with both .P(CF) and 2(REG) by Theorem 5.8(1).
(9) (a) .P(REG)g'.h,'l(PDlL) by Theorem 6.3.

(b) 'l(PDIL) c h1:1 'l(PDlL) c;;;:; h,'l(PDlL) by Theorem 6.4(i). .
(c) 'l(PDIL) is incomparable with .P(REG) and .P(CF) by Theorem 5.8(1).

From (a), (b) and (c) it follows that both h11'l(PDlL) and h,'l(PDlL) are
incomparable with .P(REG) and .P(CF), respectively.

Acknowledgement

I thank Professor A. Salomaa for constructive criticism on an early draft of this
paper.

References

[!] R. Baker and G. T. Herman, Simulation of organisms using a developmental model, I: Basic
description; II: The heterocyst formation problem in blue-green algae, Intern/. J. Bio-Med.
Compur. 3 (1972) 201-215; 251-267.

[2) R. Balzer, An 8 state minimal solution to the firing squad synchronization problem, Information
and Control 10 (1967) 22-42.

(3J D. van Dalen, A note on some systems of Lindenmayer, Math. Systems Theory S (1971) 128-140.
[4] A. Ehrenfeucht and G. Rozenberg, The equality of EOL languages and codings of OL languages,

Intern{. 1. Comput. Math. 4 (1974) 95-104.
[5] A. Ehrenfeucht and G. Rozenberg, Trade off between the use of nonterminals, codings and

homomorphisms in defining languages for some classes of rewriting systems, in: Automata,
Languages and Programming (J. Loeckx, ed.), Lecture Notes in Computer Science 14 (Springer,
Berlin, 1974) 473-480.

[6] D. Frijters and A. Lindenmayer, A model for the growth and flowering of Aster-Angliae on the
basis of table (1, O)L systems, in: L Systems (G. Rozenberg and A. Salomaa, eds.), Lecture Notes in
Computer Science 15 (S!lringer, Berlin, 1974) 24-52.

(7] G. T. Herman and W. H. Liu, The daughter of CELIA, the french flag and the firing squad,
Simulation 21 (1973) 33-41.

[8] G. T. Herman, W. H. Liu, S. Rowland and A. Walker, Synchronization of growing cellular arrays,
Information and Control 25 (1974) 103-121.

[9] G. T. Herman and G. Rozenberg, Developmental Systems and Languages (North-Holland,
Amsterdam, 1975).

[10] G. T. Herman and G. L. Schiff, Simulation of organisms based on L systems, Department of
Computer Science, SUNY at Buffalo, N. Y., Tech. Rept. # 75 (1974).

DETERMINISTIC LINDENMA YER LANGUAGES 71

[11]. J.E. Hopcroft and J. D. Ullman, Formal Languages and Their Relation to Automata (Addison
Wesley, Reading, Mass., 1969).

(12] A. Lindenmayer, Mathematical models for cellular interactions in development I and II, J. Theoret.
Biol. 18 (1968) 280-315.

[13] M. Minsky, Computation: Finite and Infinite Machines (Prentice Hall, Englewood Cliffs, N.J.,
1967).

[14] M. Nielsen, G. Rozenberg, A. Salomaa and S. Skyum, Nonterminals, homomorphisms and codings
in different variations of OL systems, Department of Computer Science, University of Aarhus,
Tech. Rept. PB-21 (1974).

[15] M. 0. Rabin and H. Wang, Words in the history of a Turing machine with fixed input, J. ACM 10
(1963) 526-527.

(16] H. Rogers, Theory of Recursive Functions and Effective Computability (McGraw-Hill, New York,
1967).

(17] G. Rozenberg, L systems with interactions: the hierarchy, Department of Computer Science,
SUNY at Buffalo, Tech. Rept. # 28 (1972).

[18] G. Rozenberg and K. P. Lee, Some properties of the class of L languages with interactions,
J. Comput. System Sci. 11 (1975) 129-147.

(19] A. Salomaa, Formal Languages (Academic Press, New York, 1973).
(20] A. Salomaa, On sentential forms of context free grammars, Acta Informatica 2 (1973) 40-49.

