
Centrum
voor

Wiskunde
en

lnformatica
Centre for Mathematics and Computer Science

M. Li, P.M.B. Vitanyi

A new approach to formal language theory by
Kolmogorov complexity

(Preliminary version)

Computer Science/Department of Algorithmics & Architecture Report CS-R8919 April

1989

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301633968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

M. Li, P.M.B. Vitanyi

A new approach to formal language theory by
Kolmogorov complexity

(Preliminary version)

Computer Science/ Department of Algorithmics & Architecture Report CS-R8919 April

~.....: :: : -

The Centre for Mathematics and Computer Science is a research institute of

the Stichting Mathematisch Centrum, which was founded on February 11,

1946, as a nonprofit institution aiming at the promotion of mathematics, com

puter science, and their applications. It is sponsored by the Dutch Govern

ment through the Netherlands Organization for the Advancement of Research

(N.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

A New Approach to Formal Language Theory by
Kolmogorov Complexity

(Preliminary Version)

MingU

York University, Department of Computer Science
North York, Ontario MJJ IPJ, Cunada

Paul M.B. Vttclnyl

Centrum voor Wiskundc en lnformulica
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

and
Universiteit van Amsterdam, Facultelt Wiakunde en Informatica

ABSTRACT

We introduce Kolmogorov complexity as a new technique in Formal
Language Theory. We give an alternative for pumping lemma(s) and a new
characterization for regular languages. For the separation of deterministic
contextfree languages and contextfrcc languages no pumping lemmas or any
other general method was known. We give a first general technique to
separate these classes, and illustrate its use on four examples previously
requiring labourous ad hoe methods. The approach is also successful at the
high end of the Chomsky hierarchy since one cttn quantify nonrecursiveness
in terms of Kolmogorov complexity. We also give u new proof, using Kol
mogorov complexity, of Yao and Rivest's result that k + l heads are better
than k heads.

1980 Mathematics Subject Clas.v(ficat/011: 68('2,, 6KF05, 68005, 94Al7.

CR Categories: F.2, F.4.

Keywords and Phrases: Kolmogorov complexity, Algorithmic Informa
tion Theory, Formal Language Theory, Pumping Lemmas, Finite Auto
mata, Context-free languages, Deterministk Context-free languages, Recur
sive sets, Recursively Enumerable Sets, Multihcnd i:initc Automata

Note: To appear in: Proc. 16th lntt•mt1tlm1"l Colloquium on Automata,
Languages, and Programming, 1989.

The work of the first author was supported in part by Nutionul Sdence Foundation Grant DCR-8606366,

Office of Naval Research Grant N00014-85-k-0445, Army Research Office Grant DAAL03-86-K-0171, and

NSERC Operating Grant OGP0036747.

Report CS-R8919
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

_____ -.: .. : ~ ·-

- 2 -

1. Introduction

It is feasible to reconstruct parts of Formul Lunguuge Theory using algorithmic

information theory (Kolmogorov complexity). We prnve theorems on how to use

Kolmogorov complexity as a concrete, powerful, tool. We do not just want to intro

duce fancy mathematics; our goal is to help our rt:ud~rs do proofs in the most

essential, usually easiest, sometimes even obvious wayii. In this paper it is only

important to us to demonstrate that the applkatlon of Kolmogorov complexity in

the targeted area is not restricted to trivialitie11. The proofs of the theorems in this

paper may not be easy. However, the Lheorems ua·e of the type that are used as a

tool. Once derived, our theorems are very easy to upply.

1.1. Prelude

The first application_ of Kolmogorov complexity in the theory of computation was

in [16, 17). By re-doing proofs of known results, it was shown that static, descrip

tional (program size) complexity of a single random string can be used to obtain

lower bounds on dynamic, computational (running time) complexity. None of the

inventors of Kolmogorov complexity originally had these applications in mind.

Recently, Kolmogorov complexity has been applied extensively to solve classic

open problems of sometimes two decades standing [10, 14]. See also a survey of

two decades of applied Kolmogorov complexity [11].

The secret of Kolmogorov complexity's success in dynamic, computational

lower bound proofs rests on a simple fact: the overwhelming majority of strings has

hardly any computable regularities. We call such u string 'Kolmogorov random'. A

Kolmogorov random string cannot be (effectively) compressed. Incompressibility is

a noneffective property: it can be shown that no particular string, except finitely

many, can be proved to be random. Recall, that a traditional lower bound proof

by counting usually involves all inputs of certain length. One shows that a certain

lower bound has to hold for some "typical" input. Since a particular "typical" input

is hard (sometimes impossible) to find effectively, the proof has to involve all the

inputs. Now we understand that a "typical input" cun be constructed via a Kolmo

gorov random string. But we cannot exhibit such a typical input since we cannot

prove a string to be random. No wonder the old counting arguments had to involve

all inputs. In a proof using Kolmogorov complexity, we first choose a random

string that is known to exists (although we cannot construct it). Then we show that

if the assumed lower time bound would not hold, then this string could be

compressed, and hence it would not be random.

1.2. Outline of This Paper

It turns out that the same approach works in a new urea for application of Kolmo

gorov complexity: Formal Languages and Automutu Theory proper. We show a

powerful alternative to the pumping lemma for regulur languages. It is well known

that not all nonregular languages can be shown to be nonregular by the usual uvw

pumping lemma. There is a plethora of pumping lemmas to show nonregularity,

- 3 -

like the 'marked pumping lemma', and so on. In fact, it seems that many example

nonregular languages require their own special purpose pumping lemmas, see for
instance [6]. Comparatively recently, a pumping lemma (to end all pumping lem

mas) was exhibited: namely a pumping lemmu that characterizes the regular
languages [4]. This ultimate pumping lemma is complicated and uses Ramsey
theory. In contrast, using Kolmogorov complexity we give a new characterization of

the regular languages that simply makes our intuition of "finite state"ness of these

languages rigorous and is easy to apply. Being a characterization it works for all
non-regular languages. We give several examples of its application, some of which
were quite difficult using pumping lemmas.

While there is a pumping lemma to 11how lhut certain languages are not
context-free (CFL), there is no pumping lemmu or uny other general technique to
separate the deterministic contextfree languages (DCFL) from the CFL languages.

All known examples required very laborous ad hoe proofs, cf. [6]. We give neces
sary (Kolmogorov complexity) conditions for DCFL, that easily separates CFL
from DCFL on all witness languages we have tried. We test the new method on
four examples, which were very hard to handle before. For completeness we present
a known characterization of recursive languuges, und a necessary condition for
recursively enumerable languages.

As further examples of the Kolrnogorov complexity approach we test the
approach on some known results: deterministic muchines equivalent to nondeter
ministic machines may require exponentially more slutes, and a new proof of the
Yao-Rivest result that k + I heads are better thunk. heads for multihead finite state
automata. We include some exercises for the reader.

2. Kolmogorov Complexity

Any of the usual definitions of Kolmogorov complexity [2, 8, 11, 17] will do

for the sequel. To fix thoughts, consider the problem of describing a string x over
O's and I's. Any partial recursive function f from strings over O's and I's to such
strings, together with a string p, the program for f to compute x, such that
f (p) = x, is such a description. It is useful lo generalize this idea to the condi
tional version: f (p, x) = y such that p is n progrum for f to compute x given y .
Then the descriptional complexity Kj of x, re/uti11t' lo fund y, is defined by

K.r(x I y) = min{ IP I: p E { 0, l} "', f (p.y) = x },

or oo if no such p exists, where Ix I is the length (number of bits) of string x.

For a universal partial recursive function f 0 we know lhat, for all f, there is a

constant CJ such that for all strings x,y, K1
0

(.'< IJ') .-.; K_1(x ly) + c1. So the canonical

relative descriptional complexity K(x I y) can he set eyuul to K1
0
(x ly). Hence we fix

a reference universal function Jo and dispense with the subscript: the conditional

Kolmogorov complexity of x given y is defined U!I K (x I y) = K1
0
(x I y), and the

unconditional Ko/mogorov complexity of .\' is K(x) -- K(x It:), where t: denotes the

- 4 -

empty string (I £I = 0).

Since there are 2n binary strings of length 11, but only 2n - 1 possible shorter
descriptions d, it follows that K (x) ~ I x I for some binary string x of each length.
We call such strings incompressible or random. h also follows that, for any length n
and any binary string y, there is a binary string x of length n such that
K(xjy)~lxl.

Example. (Substrings of incompressible strings.) Is a substring of an
incompressible string also incompressible? A string x = uvw can be specified by a
short description for v of length K(v), a description of I u I, and the literal descrip
tion of uw. Moreover, we need information to tell these three items apart. Such
information can be provided by prefixing each item with a self-delimiting descrip
tion of its length, as explained in the next section. Together this takes
K(v) + I uw I + 0 (log Ix I) bits. Hence,

K(x) ~ K(v)+OOog jx I> I jttw I ,
Thus, if we choose x incompressible, K (x) ;;;;. I x j , then we obtain

K(v) ~ Iv j - O(log Ix I> .
It can be shown that this is optimal - a substring of un incompressible string can be
compressible. This conforms to a fact we know from probability theory: every
sufficiently long random string must contain long runs of zeros, so it must contain
some substring which is compressible.

Example. (State Blow-Up in Converting NFA to DFA) The usual construc
tion to convert a nondeterministic finite automaton (NFA) with n states into a
deterministic finite automaton (DFA) with f (n) states that recognizes the same
language uses f (n) = 0(2n) [9]. No general construction exists that uses
significantly less states. We provide a new pr<x>f of this.

To convert an n-state NFA to a DFA, the /JFA rt•qttlrt.•s sometimes 2°<n) states.

Proof Consider the language Lk = { x I the kth bit from right is 1}. Lk can be
accepted by a NFA with k + 1 states. Suppose 11 DFA A with only 2o(k) states
accepts Lk. We will also use A to denote A's description. Fix a string x of length k

such that K(x jA,k)~ Ix I· Give xO* to A as input. Stop A when it reads the last
bit of x. Record the current state of A. Reconstrucl .\· by running A starting from
the recorded current state; Feed A with input O's: Al the:: ith 0, if A accepts, then
the ith bit of x is 1, otherwise it is 0. This Jc::sc .. :ription of x needs only o(k) bits
since A has only 2°<k) states. So K(x IA,k)< Ix j, contradiction.•

Corollary. (Language reversal) The same urgumc::nt shows that if Lis accepted
by an n-state DFA, then any DFA accepting l R (l reversed) may require 2°<n)
states.

Corollary. (One-way input versus two-way input) The same argument shows
that if Lis accepted by an n-state 2-way DFA, then any one-way DFA accepting L
may require 2°<n) states.

-s -

Example. (Descriptions and Self-Delimiting Strings) Let x be a binary string

of length n. The shortest program (and its length K(x)) of x is generally uncomput

able. Let us consider 'good' computable approximations to it. Now a description of

x can be given as follows.

(1) A piece of text containing several formal parameters p 1, ••• ·Pm· Think of

this piece of text as a formal parurnetrized procedure in an algorithmic

language like PASCAL. It is followed by

(2) an ordered list of the actual values of the parameters.

The piece of text of (I) can be thought of as bdng encoded over a given finite

alphabet, each symbol of which is coded in bits. Therefore, the encoding of (1) as

prefix of the binary description of x requires 0(1) bits. This prefix is followed by

the ordered list (2) of the actual values of p 1, ••• •Pm in binary. To distinguish one

from the other, we encode (1) and the different items in (2) as self-delimiting

strings, as follows.

For natural numbers x, in the sequel of this paper let x denote both the

natural number and the xth binary string in the sequence 0, 1, 00, 01, 10, 11, OOO,

So the natural number 3 corresponds both to the natural number 3 and to the

binary string 00. For each string x, the string x is obtained by inserting a zero

after each letter in x except for the last leth:r where we insert a one. Let

x' = Ix I w. The string x' is called the self-delimit/11~ code of x. So '100101011' is

the self-delimiting code of '01011'. The self-Jclimhing code of a positive integer x

requires logx + 2loglogx bits, which is equivulent l<> suying that the self-delimiting

code of a binary string x requires Ix I + 21og 1.\" I hits. All logarithms are base 2

unless otherwise noted. For convenience, we denote the length I x I of a natural

number n by "logx".

3. Regular Sets and Finite Automata

It is useful to first develop formal language theory in a way that is not exactly new,

but for some reason has fallen into disregard. In connection with the Kolmogorov

approach, we believe that a simple and transparent theory results.

An automaton is a 'black box' function B: VXM~M. with V the nonempty

finite input alphabet, M a set of states of memory. We extend B to B' on V* by

B'((,m) = m and

B'(a(l) ... a(n),m) = B(a(n), B'(a(J) ... a(n - 1),m)).

Clearly, if B' is not one-one, then the automuton 'forgets' because some x and y

from V* drive B into the same memory stule. Assuming an initial memory state

m 0 , we denote 'indistinguishability' of a pair of histories x,y E V* by x ""Y• defined

as B'(x,mo) = B'(y,m 0). 'lndistinguishabllity' of objects is intuitively reflexive, sym

metric, transitive, and right-invariant, i.e., ,_. is u right-invariant equivalence rela

tion on V*. It is a simple matter to ascertain this formally. We add output by a

function o : M ~ { 0, 1}, and say B ac~·epts u language L defined as

- -- ,.-~ .

. 6 .

{x EV*: B'(x,m 0)=m, o(m)= I}. If the set of classes induced by,...,, is finite, then

B is a finite automaton. This way, it is a straight-forwurd exercise to verify from the
definitions:

Theorem (Myhill, Nerode). The following statements about L ~ V* are

equivalent.
(i) L ~ V* is accepted by some finite automato11.
(ii) L consists of a union of right-invariant --equivalence classes of V*, where

I V*f,...,, I <oo.
(iii) For all x,y E V* define x ,...,,y by: for all z E V"' we have xz EL if! yz EL. Then

IV*!,...,,l<oo.

Subsequently, closure under complement, union and intersection follow by
simple construction of the appropriate black box functions from given ones. The
clumsy pumping lemma approach can now be repluced by the Kolmogorov formu
lation below.

3.1. Kolmogorov Complexity Replacement for tbc Pumping Lemma

An important part of formal language theory is deriving a hierarchy of language
families. The main division is the Chomsky hicrun.:hy, with regular languages,
context-free languages, context-sensitive lunguugc11 und recursively enumerable
languages. The common way to prove that certuin lunguages are not regular is by

using "pumping" lemmas, e.g., the uvw-lemmu. However, these lemmas are quite
difficult to state and cumbersome to prove or use. In '-'ontrast, below we show how
to replace such arguments by simple, intuitive und yc:t rigorous, Kolmogorov com
plexity arguments. Below, languages are intlnite sets of strings over a finite alpha
bet.

Regular languages coincide with the languages accepted by finite automata
(FA). This invites a straightforward apf.lication of Kolmogorov complexity. Let us
give an example. We prove that {Ok I : k ;;;;i: I} is not regular. If it were, then the
state q of the accepting FA after processing ok is, up to a constant, a description of
k. Namely, by running the FA, starting from state q, on a string consisting of I's, it
reaches its first accepting state precisely after k I's. Hence, since the FA has a fixed
finite number of states, there is a fixed finite number that bounds the Kolmogorov
complexity of each natural number: contradiction. We generalize this observation

as follows. (In the lexicographic order short strings precede long strings.)

Lemma (KC-Regularity). Let L be regttlar, and c a constant depending only on
L. For each x, if xy is the nth string in tht• lexicographical order in (or in the comple
ment of) Lx = {xy:xy EL} then K(Y)~K(n)+c.

Proof. Let L be a regular language. A stringy such that xy EL for some x

can be described by

This discussion, and a description of the FA thal accepts L,

The state of the FA after processing x und the number n.

The statement "(or in the complement oO" follows, since regular languages are

- 7 -

closed under complementation. 0

As another application of the KC-Regularity Lemma we prove that {IP: p is

prime } is not regular. Consider the string xv consisting of p l's, with p is the
(k + l)th prime. Set in the lemma x equal lo 1P' with p' the kth prime, soy = IP - p',

and n = I. It follows that K(p - p')==O(l). Sin(;e the differences between the con

secutive primes rise unbounded, this implies that there is an unbounded number of

integers of Kolmogorov complexity 0(1). Since there: ure only 0(1) descriptions of

length 0 (1), we have a contradiction. (To prove thut p · · p' rises unbounded: If P is
the product of the first j primes, then no P I i (I~; .-;.j) is prime.) We give two
more examples from the well-known textbook of Hopcroft and Ullman that are

marked * as difficult there:

Example [Exercise 3.l(h)* in [6)). Prove that L={xxRw: x,wE{O,l}*} is

not regular. Fix x such that K(x)~ Ix I· Consider prefix (OI)310gix Ix. The first
string with this prefix in L is (OI)310Slx I xxR(I0)310Slx I 0. By the KC-regularity

lemma, K(xR(I0)310glx I O)~K(l) + c, a contradiction.

Example [Exercise 3.6* in [6)). Prove that L = { O; Ii: GCD (i,j) = 1} is not
regular. Obviously Lis regular iff L' = {Oill: GCD(i,j)=/=1} is regular. Fix a primep

such that K (p) ~logo - loglogv (by density of primes). Consider prefix fY1. By the
KC-regularity lemma, K(IP)~K(2)+c, a contradiction.

3.2. Kolmogorov Complexity Characterization of Regular Languages

We can show that the lemma is not only a device to show that some nonregular

languages are nonregular, as the common pumping lemmas, but the condition is a
characterization of the regular sets. (So it can be useJ to show nonregularity for all

nonregular languages.) While the pumping lemma's are not precise enough (except

for the difficult Ehrenfeucht-Parikh-Rozenberg construction) to characterize the reg
ular languages, with Kolmogorov complexity this is easy. In fact, the lemma above

is a direct corrollary of the characterization below. If V is a finite nonempty alpha
bet, then fix an effective order v 1, v 2, • • • of the elements of V*. (This can be the
lexicographic order.) For each x E V*, let x=x1xi · · · be the characteristic

sequence of x, such that the ith element x1 -=-· I if x111 EL, and Xi = 0 otherwise. We

denote X1 · · · Xn by XI :n·

Theorem (Regular KC-Characterization). Lei L c; V"'. The foil owing statements

are equivalent.
(i) L is regular.
(ii) There is a constant cL depending only on L. .mch that for all x E V*, for all n,

KCx1 :n I n) < CL.

(iii) There is a constant CL depending on{y on L. suc:h that for all x E V*, for all n,

KCx1 :n) < K(n) + CL·

Proof (Outline). (i)-,)(ii): by similar proof us the KC-Regularity Lemma.

(ii)-,)(iii) : obvious.

(iii)~(i): Define x is recursive, if there is a recursive function f: N ~{ 0, I}

- 8 -

such that Xn = f (n) for all n.

Claim. For each constant c there are only llnitcly many x such that, for all n,
K <x1 :n) .,.;;;; K (n) + c, and each of these x is recursive.

Proof Omitted. It follows by combining arguments due to D.W. Loveland,

A.R. Meyer and G.J. Chaitin in [3, 12). D

By (iii) and the claim, there are only finitely many distinct x's associated with

the x's in V*, and all of them are recursive. Define the right-invariant equivalence
relation,_, by x ,....,x' if x=x'. This relation induces a partition of V* in equivalence

classes [x] = {y:y,....,x} . Since there is a one-one correspondence between the [x)'s

and the x's, and there are only finitely many distinct x's, there are also only finitely
many [x]'s, which implies that L is regular by the Myhill-Nerode theorem. D

The difficult part of the Regular KC-Characterization consists in proving that

the KC-Regularity Lemma is exhaustive, i.e., cun be used to prove the nonregular

ity of all nonregular languages. This is non-trivial, since Item (iii) does not hold for
the self-delimiting version of Kolmogorov complexity.

Exercises

I. Prove that {On lm I m >n} is not regulur.

2. Prove that {x#xy I x,y E{O, 1}"'} is not regular.

3. Prove that {x#y Ix appears (possib{y nonconsecutively) in y} is not regular.

4. Prove that { x # y I at least 1/2 of x is a substring in y} is not regular.

5. Prove that {x#y#z I x*y = z} is not regular.

6. Prove that {p Ip is a prime represented in binary starting with a 1} is not

regular.

4. Context-free Languages

In this section we study CFL's and DCFL's (deterministic context-free

languages) using Kolmogorov complexity. We provide a lemma to establish neces
sary properties in terms of Kolrnogorov complexity for a language to be DCFL.

Our lemma can be used to prove many CFL languages to be non-DCFL's. This is
all the more interesting, since there does not appear to be a natural pumping

lemma to separate DCFL from CFL; previously the only recourse was to ad hoe
reasoning.

4.1. Necessary Conditions for Deterministic Context-free Languages

While there are pumping lemmas to show nonregularity, we hope to have con

vinced the reader that using Kolmogorov complexity is both easier and more

natural. To prove that a language is in CFL - DCFL there is no pumping lemma at

all; yet in this section we present a KC-DCFLness Lemma that is easily used to

demonstrate witnesses to the nonernptiness of CFL - DCFL. Previously, this was

done one at a time in an ad hoe fashion. The resulting proofs were usually quite

- 9 -

complicated. (See for example the Solution for Exercise 10.5 (a) in [6].)

For a string x = x 1x2 ... xm we use notation Xt:.J = X;X; + 1 ... x1. xR is the
reverse of x. We say that a string x is finitf(I' gf.'llt'l'"tab/e if x is a prefix of the
infinite string generated by some finite state deterministic machine (on empty
input). Like in the case of the regular sets, we first stale u simplified version of the
theorem we aim at. We also use the definitions and notions in the previous section.
If M is a dpda, then we use IM I to denote the length of a self-delimiting descrip
tion of it.

Lemma (KC-DCFL). Let L be a DCFL ac·c"1'1t'd l~r" dpda M, and let FSu and
FSv be finite state generators. For large enough u mu/ v .mch that uv is the first word

in (or in the complement of) L with prefix u, and 11Wl't'OW!I'

(a) uR and v are finitely generatable by jinitt' :,·tule gt'1wrators FSu and FSv respec-
tively; and

(b) K(u)>loglu I, K(v) > loglv I andloglog lu I <K(v)/2;

we have that if uvw is the first word in (or in the complement of) L with proper prefix
uv, then K(w) = O(l).

Corollary (KC-DCFL). Above lemma also holds if uv'w is the first word with
proper prefix uv', where v' is obtained from l' with the last (few) bit(s) of v being
changed.

Proof Sketch. Let L be accepted by M with input head h, and pushdown store
head hp. Assume uv, uvw E L and they satisfy the above conditions. (The case uv
or uvw is an element of the complement of L is handled similarly, since the dpda
recognizes both L and its complement.) For each .'{, we denote with c(x) the push
down store contents at the time h, has read all of x, and moves to the right adja
cent input. Consider time t when h, reaches the end of u. There are two cases:

Case 1. Suppose that when h, continues and reaches the end of v, all of the
original c(u) has been popped except the bottom C bits, where C is a constant not
depending on u, v. If at the time the pushJown store first decreased from I c(u) I
to size C the input head h, was at position p in v, then we must have
K(vp :lv I)~ C + IM I + 0(1) (= 0(1)). Namely, no word (lexicographically before)
uv is in L, while uv is in L, and therefore vp : Iv I can be reconstructed from the
pushdown contents and a description of M. This implies that K(c(uv)) = 0 (1).
But, since uvw is the first string in L with proper prefix uv, we must have
K(w) = 0(1), by the standard argument (sin"·e we '-'1.lll reconstruct w easily).

Case 2. Suppose c (uv) still contains the bottom f (u, v) bits of the original
c(u), where/(u, v) is unbounded. We show that this "·ontradicts assumption (b).

First generate a long "easy" u' with sufliJL u, m1ing the same generating process
FSu that finitely generates uR, such that K(lu'l)<lugloglu I, but lu'I > > lu I·
Then, u is a suffix of u' and K (u') < loglog I u I ·I· 0 (1).

Claim. There is such a u' such that M tu.:cepts u'v, and M does not accept any
prefix u'v' of u'v.

- 10 -

Proof Since u is a proper and very short !luflix of u', we can choose u' such

that the top segment of c(u') to be read by M is predsc:ly the same as the top seg

ment of c(u) to be read by Min the v-parts of its '-·omputations on inputs uv and

u'v, for large enough I u I, I u' I· This follows from well-known arguments, related

to the determinacy of both FAu and M. To s~ il, notice that both u and u' are

generated by the same finite state machine. Such u machine must generate the

string of form aR(bRy~ for constant size strings a,h. So u = cbka, where c is a

suffix of b. Clearly, we can choose u' = cbk'a with k'>>k and still

K(u') < loglogj u I + 0 (1). Since Mis deterministic, it must either cycle through a

sequence of stack contents, or increase its stack with repetititions on long enough u
(and u'). Namely, let a triple (q,i,s) mean that Mis in state q, has top stack sym

bol s, and h, is at ith bit of some b. Consider only the triples (q,i,s) at the steps

where M will never go below the current top stack level again while reading u. (I.e.

s will not be popped before going into v.) There are precisely h = I c(u) I such tri

ples. Because the input is repetitious and M deterministic, some triple must start to

repeat within a constant number of steps and with a constant interval (in height of

M's stack) after M starts reading b's. It is easy to show that within a repeating

interval only a constant number of b's are reud. The stack does not cycle through a

finite set of stack contents, since c(u) + IM I ;;;;is K(v) ~log Iv I (because we can

reconstruct v from c(u) and M). So the stack contents grows repetitious and

unbounded. Since the repeating cycle starts in the stack after a constant number of

symbols, and its size is constant in number of b's, il is easy to adjust u' so that M

starts in the same state and reads the same top segments of c(u) and c(u') in the v

part of its computation on uv and u'v. This proves the Claim. 0

By the Claim, we can use u' and FSv to find v. But this implies

K(v)~K(u') + O(l), and since K(u')<logloglul +O(I)<K(v)/2+0(1), we

have a contradiction again. This proves the Lemma. The Corollary follows by

about the same proof. D

We next state the lemma in a more general form, sacrificing clarity. Assume

the conceptual apparatus developed at the oulsct of Section 4, but this time the

'black box' function B is a dpda. This means thal lhc 'indistinguishability' right

invariant equivalence relation ''.._." induced hy JJ divides V* in infinitely many

equivalence classes. However, for many l>CFL languages certain equivalence

classes can be represented by finitely generatuble words of very low complexity

which is the essence of the lemma below. Let l be a DCFL language and B the

accepting dpda. If x E V* belongs to an eyuivulc:nce class induced by B, then we

denote this equivalence class by [x]. If v Jt v2, ... is V"' ordered lexicographically

length increasing, then X: = xix~ · · · is the charuc:teristic sequence of x, such that

the ith element Xi" = 1 if XV; E l and xf :.::. 0 otherwise. We denote xf ... x~ by

xf:n· We need one more notion. We say that x is i-indistinguishable from y, and

write x ,....,;y, if xI: 11 = x'i:n with n = IV I i. (I.e., x ""';Y if for all words z in V*

with I z I ~ i, either both xz, yz in L or both xz, yz not in l.)

Theorem (KC-DCFL). Let L ~ V* ht.• a DCFL, and FSu and FSv be finite state

-]] -
generators. For large enough u and v such that

(a) uR and v are finitely genera/able by finite state processes FSu and FSv, respec
tively;

(b) v = Vn and x~ is the mth one (or the mth zero) in Xu considering only the words

that are finitely generated by FSv; and

(c) K(u) = Q(logl u I), K(v) = Q(logl v I), and loglog I u I + K(m) + 0(1) < K(v);

we have K(x'i:n In) = 0(1).

Proof outline. Same proof as before works. Part (1) is about the same. Part (2):
The crucial part is as follows. The long and 'easy' u' == uy that is finitely generated
by the same process generating u is choosen such that u',k u, with k such that
n ~ IV I k so that xY:n' = xY:m and moreover K(u') < loglog I u I· In fact,
K(xY:n In)~ IM I + min {K(u'): u' is finitely generated by the same process gen
erating u }. But since v = vn is the mth one (or mth zero) in xY;n considering only
the words that are finitely generated by FSv, we <:an reconstruct v using M, u' (in
tum using FSu), m and FSv, so that K(v) <; loglog I u I + K(m) + 0(1). By (b)
this contradicts (c). D

Clearly, the requirements (b) in the Lemma and (c) in the Theorem can be
much weakened. We now give applications. All the following CFL languages were
proved to be not DCFL only with great effort -- see [6].

Example 1. [Exercise 10.5 (a)** in [6) I
Prove {w: w = wR, w E {O, l}*} is not DCFL. Let u = onl and v = On, where

K(n) = logn. So they both satisfy conditions (1) and (2). Given u, uv is the first
word in L with prefix u. But the first word in l with proper prefix uv would be
on 10n 10n. So w = 10n, hence K(w)=logn, so l is not u DCFL by the KC-DCFL
Lemma. Approximately the same proof shows that the CFL language
{wwR : w E V*} and the CSL (context-sensitive) lunguage {ww:w E V*} are not
DCFL languages.

Example 2. [Exercise 10.5 (b)** in 161) Prove {O"lm:m =n, 2n} is not DCFL:
Let u = On and v = 1", where K(n)=logn. The first word in L with proper prefix uv
is on12n . Sow = 1n . So K(w)=logn, contradicting to KC-DCFL Lemma.

Example 3. Prove {O; 1J2k I i,j,k ~O,i :..;. j or j = k} is not DCFL. This is again
easy. Let u = on and v = In' where K (n) = logn. So UV El. Here we apply the Corol
lary. Let v1 = 1n - 12. The first word in L with proper prefix uv' is on1n - I2n. But
then K(w) = logn, contradicting to the KC-DCFL Lemma (Corollary) again.

Example 4. [Pattern Matching) Prove {rt# vu 1~ w} is not DCFL. Let u = 1 n #
and v = in where K(n)~logn. So uv is the flrsl word in L with prefix u. Let
v' = 1n - 10. Then the first word in L with prdlx uv' is I"# 1n- 101n. Sow= ln and
K (w)=f=O (1), contradiction. •

Remark. Obviously, despite of its remarkable usc:fulness, we do not have a
proof that this KC-DCFL lemma can be used to prove that all non-DCFL CFL's
are not DCFL's. Currently we can only claim thut for 1unguages the authors tested

- 12 -

(and knew) so far, all of them can be easi~~' proved using above lemma (or some

variation of it). Our research in this direction has only started.

5. Recursive, Recursively Enumerable, and Beyond

It is immediately obvious how to characterize recursive languages in terms of Kol

mogorov complexity. If L CV*, and V* = { v i. v2, ... } is effectively ordered, then we

define the characteristic sequence A=A1A2 · · · of L by A;= 1 if v; EL and A; =O
otherwise. In terms of the earlier developed terminology, if B is the automaton

accepting L, then A is the characteristic sequence associated with the equivalence

class [£]. By definition, L is recursive if A is a recursive sequence. It then follows

trivially from the definitions:

Theorem (Recursive KC Characterisation). A ,\'el L E V* is recursive, iff there

exists a constant cL (depending on L) such that, for all n, K("A1:n I n)<cL.

L is r.e. if the set { n: "An = I} is r.e. In terms of Kolmogorov complexity, the

following theorem gives not only a qualitative but even a quantitative difference

between recursive and r.e. languages. The following theorem is due to Barz.din' [I]

and Loveland (13].

Theorem (KC-r.e.) (i) If L is r.e., then there is a constant CL (depending on L),

such that for all n, K("A1 :n In)~ logn +cL.

(ii) There exists an r.e. set L such that K(AJ:n In) > Iogn.

Note that, with L as in (ii), V* - L also satisfies (i), so (i) cannot be extended

to a Kolmogorov complexity characterization of r.e. sets.

Example. Fix an effective enumeration of Turing machines. Define

k = k 1k 2 • • · by k; = I if the ith Turing mu.chine started on a blank tape halts, and

k; =O otherwise. Let L be the language su~h thut k is its characteristic sequence.

Clearly, Lis an r.e. set. We can prove thut K(k 1:11 In) > logn.

Example. The probability that the optimul universal Turing machine U halts

on self-delimiting binary input p, randomly Hupplicd by tosses of a perfect coin, is

Il, O<Il< I. Let V be a finite nonempty ulphubet, und v i. v2, • • · an effective

enumeration without repetitions of V*. Define L ~ V"' such that v; EL iff Il; = I. It

is known that K(Ili:n In) = Il(n). Hence L, nor V"' -· l ure r.e. It can be proved

that L E~2 - (~ 1 UI11), in the arithmetic hierarchy (i.e., Lis not recursively enu

merable).

6. Open Problems

(I) It is not difficult to give a KC-unalogue of the uvwxy Pumping Lemma, as

we were informed by Tao Jiang. Just like the Pumping Lemma, this will show that
(anbncn: n ~I}, {xx: x E V* }, (aP:p is prime}, and so on, are not CFL. But it

fails on languages like {aibfck:i=/=j or i=/=k}. Clearly, this hasn't yet captured the

heart of CFL. More in general, can we find a CFL-KC-Characterization?

(2) What about ambiguous CFL languages?

- 13 •

(3) What about context-sensitive languages and deterministic context-sensitive
languages?

(4). Let V be a finite nonempty alphabet, w a word over V, and h a homomor
phism from V* to V*. Then {hn(w): n ;;,.i. O} Is called u DOL language. If L is a
DOL language, then g(L) is called a CDOL hmguage in case g is a homomorphism
from V* to W* such that g(a)=faf (f is the empty string) for all a in V. (Cf. A.
Salomaa, Formal Languages, Academic Press, 1973.)

Theorem. All but finitely many words in " CDOL language are very compressi
ble (very nonrandom).

Proof Let L be a CDOL language. I l is eusy to show that for all x E L of
length n we have K(x) ~ logn + cL with c:1. a constant depending only on L.
(Either L is finite or the number of words of length ~ n in L satisfies
IL E;;n I ~IV In.) 0

What about the remainder of the L-family of languages?

7. Addendum: New Proof of a Result of Yao and Rivest

Multihead finite and pushdown automata were studied in parallel with the field of compu
tational complexity in the years of 1960's and 1970's, One of the major problems on the
interface of the theory of automata and complcdty is to determine whether additional
computational resources (heads, stacks, tapes, etc.) lncreaNc the computational power of the
investigated machine. A k-head deterministic (nondetcrministic) one-way finite automaton,
denoted as k-DFA (k-FA), is similar to a deterministic (nondcterministic) finite automaton
except it has k, rather than 1, input heads . .Each step, depending the current state and the
k symbols read by the k heads, the machine changes its stutc and move some of the heads
one step to the right. It stops when all heads reach the end of input.

We consider the question of whether k + I heads urc better than k for finite auto
mata, and study the power of k-FA's.

Method. If the input is abc#a'b'c', and

(1) a,b,c are mutually random, i.e. K(a lb,c);o. I,, I O(logla I) and similar for band c.

(2) K(a'lb,c)~K(a') - O(logla'I), and similar for b' and c'.

In order to check, say, whether a =a', intuitively the machine must have one head in a and
another in a' simultaneously to do the matching. We will prove a lemma to make this
intuition precise.

Definition. Let A beak-FA or k-DFA. Let x and y are two blocks in the input I of
A. We say that A matched x and y if on input/, there is a time A has one head in x and
one head in y.

Matching Lemma. Let A accepts input I =abc#a'b'c', w~ere a,b,c,a',b',c' E °'2.* .
Assume that A did not match band b'. Then A accepts also input abc#a'b'c' such that

K(bla,c,a',c')~O(k 2 1A llogl/ I).

Actually the proof will imply, and we will use, the following messier corollary to the
Matching Lemma:

Corollary. Above, (1) the order is not important, for instance, b' can appear before b;
(2) b' can appear as constant number of separated pieces.

• 14.

Proof Define a crossing sequence at a position p of the input to be the sequence of !D's

ordered by time, where each ID contains the following information of A

(location of hi. · · · ,location of hk,current state)

at the steps some head enters position p. Each ID needs total description length at most
O(klogll I+ IA I). For A, a crossing sequence contains k /D's. Let lc.s. I denote the
description length of a crossing sequence, then

lc.s. I ~O(k2 IA jlogll I).
Let c.s. 1 and c.s. 2 be the cro~sing sequence at the last bi.!. of a' and the first bit of c',

respecti!ely. We search for a bas follows. For each string b of length I b j, simulate A on
input abc#a'olb'I c' in the following way. Each time a head reaches the first bit of b', we
check if the current status of the machine matches the description in c.s. 1• If not, abort. If
consistent, change the status of A according to c.s. 2 and contgme the simulation. If the
simulation ends, then we know that A mEst also accep_! input abc#a'b'c' and summing up
all the information we used in searching b, we have K(h I a,c,a',c')~ O(k2 IA I log I I I). D

The following theorem was first claimed by Rosenberg (18]. Its proof was found to
be erroneous by Floyd [5]. The case k = 2 was proved by Ibarra and Kim [7]. Finally,
the proof of the general result is due to A.C. Yao and R. Rivest [19], and C.G. Nelson
[15]. We give a new proof using Kolmogorov complexity.

Theorem. (k + 1)-head finite automata are better than k-head finite automata. More
precisely, there is a language L which is accepted by a (k + 1)-DFA but accepted by no k

FA.

Proof Let

Lb={w1# · · · #wb@w1># · · · #w1: w1E{O,l}*}

as defined by Rosenberg and Yao-Rivest. Let h == [~) · l I. So Lb can be accepted by a

(k + 1)-DFA.

Assume that a k-FA M also accepts Lb. Let w be a long enough Kolmogorov ran
dom string and w be equally partitioned into w 1 w2 • • • W1> and construct a acceptable

input to M: I = w 1# · · · #wb@wb# · · · #w 1• But since b> [~].there exists an i such

that the two w;'s in I are not matched. By the matching lemma,
K(w; I w - w;)~O(k 2 IA llogl/l)=O(loglw I>· But then
K(w)~ lwl - lw;l + O(loglwl). We only need to make lw;l>O(loglwl) to reach a
contradiction. •

Acknowledgements.

We thank Peter van Emde Boas, Theo Jansen, and Tao Jiang for reading and commenting
on the manuscript. Tao Jiang also has suggested a KC-analogue for the uvwxy-Iemma.

References

I. Barzdin', Y.M., "Complexity of programs to determine whether natural numbers not
greater than n belong to a recursively ''numcmhlc set," Soviet Math. Dok/. 9,
pp. 1251-1254 (1968).

2. Chaitin, G.J., "On the length of programs for computing finite binary sequences: sta
tistical considerations," J. Assoc. Comp. Mach. 16, pp. 145-159 (1969).

3. Chaitin, G.J., "Information-theoretic characterizations of recursive infinite strings,"

- IS -

Theor. Comput. Sci. 2, pp. 45-48 (1976).

4. Ehrenfeucht, A., R. Parikh, and G. Rozenberg, "Pumping lemmas for regular sets,"

SIAM J. Comp~tting 10, pp. 536-541 (1981).

5. Aoyd, R., ••Review 14," Comput. Rev. 9, p. 280 (1968).

6. Hopcroft, J.E. and J.D. Ullman, Introduction to Automata Theory, Languages, and

Computation, Addison-Wesley (1979).

7. Ibarra, O.H. and C.E. Kim, "On 3-head versus 2 head finite automata," Acta Infoma

tica 4, pp. 193-200 (1975).

8. Kolmogorov, A.N., "Three approaches to the quantitative definition of information,"

Problems in Information Transmission 1(1), pp. 1-7 (1965).

9. Lewis, H.R. and C.H. Papadimitriou, Elements of the Theory of Computation,

Prentice-Hall (1981).

10. Li, M. and P.M.B. Vitiutyi, "Tape versus queue and stacks: The lower bounds,"

Information and Computation 78, pp. 56-85 (1988).

11. Li, M. and P.M.B. Vitanyi, "Two decades of upplicd Kolmogorov complexity: In

memoriam A.N. Kolmogorov 1903 - 1~87," pp. K0-101 in Proc. 3rd IEEE Conference

on Structure in Complexity Theory (1988).

12. Loveland, D.W., "A variant of the Kolmogorov concept of complexity," Information

and Control 15, pp. 510-526 (1969).

13. Loveland, D.W., "On minimal-program complexity measures," pp. 61-65 in Proceed

ings Assoc. Comp. Mach. Symposium on Them:i• <?l Computing (1969).

14. Maass, W., "Combinatorial lower bound arguments for deterministic and nondeter

ministic Turing machines," Trans. Amer. Math. Soc. 292, pp. 675-693 (1985).

15. Nelson, C.G., "One-way automata on bounded languages," TRI4-76, Harvard

University (July 1976).

16. Paul, W., "Kolmogorov's complexity and lower bounds," in Proc. 2nd International

Conference on Fundamentals of Computation Theory, Lecture Notes in Computer Sci

ence, Vol. ??, Springer Verlag, Berlin (September 1979).

17. Paul, W.J., J.I. Seiferas, and J. Simon, "An information theoretic approach to time

bounds for on-line computation," J. Compllll!I' cmd ·~J•stem Sciences 23, pp. 108-126
(1981).

18. Rosenberg, A., "On multihead finite nutomuta," l/IM J. Res. Develop. 10, pp. 388-

394 (1966).

19. Yao, A.C.-C. and R.L. Rivest, "k + 1 heads arc hcttcr than k," J. Assoc. Comput.

Mach. 25, pp. 337-340 (1978).

