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The rye of the understanding is like the rye of 
the sense; for as you m~y see great objects through 
small crannies or levels, so y ou m~y see great axioms 
of nature through small and contemptible instances. 
[Francis Bacon, Sy lva Sylvarum 337, 1627) 

1. A Historical View of Inductive Reasoning 

The Oxford English Dictionary gives as the meaning 
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!098 SJ Amsterdam, The Netherlands (paulv@cwLnl, 
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Complexity Theory Conference, 1989. 

of induction: the process of inferring a general law or 
principle from the observations of particular instances. 
This defines precisely what we would like to call 
inductive inference. On the other hand, we regard 
inductive reasoning as a more general concept than 
inductive inference, namely as a process of re­
assigning a probability (or credibility) to a law or 
proposition from the observation of particular 
instances. In other words, in the way we use the 
notions, inductive inference draws conclusions that 
consist in accepting or rejecting a proposition, while 
inductive reasoning only changes the degree of our 
belief in a proposition. The former is a special case 
of the latter. In this paper we discuss inductive rea­
soning in correspondence with R. Solomonoff's ideas 
as expressed in e.g. [44]. However, Solomonoff's 
procedure is not effective, since it involves the non­
computable Kolmogorov complexity of objects. We 



shall show, however, that there is considerable struc­
ture in many different approaches proposed for 
induction, since they can be variously derived as 
computable approximations to Solomonotrs 
method. 

Tue history of inductive inference, which is as 
old as empirical science itself, dates back at least to 
the Greek philosopher of science Epicurus (342? -
270? B.C). To reason by induction is nothing but to 
learn from experience. As the sun rises day by day, 
our belief in that the sun will rise tomorrow 
increases, and we eventually infer the truth that the 
sun will rise every morning. As human history 
evolves, man tries to understand and explain the 
events that happen around him: this takes th~ fo!'ll 
of different induction methods to formulate scientific 
theories from positive and negative, fortunate and 
unfortunate, lucky and unlucky, happy and miser­
able experiences. Two metaphy~ic~ principle~ stan~ 
out and prevail today: the pnnciple of Epicurus 
multiple explanations (or indifference) and Occam's 
principle of simplest explanation (Occam's razor). 

The Principle of Multiple Explanations: If more 
than one theory is consistent with the data, keep them 
all. 

The source of the following material is [4]. Epi­
curus, in his Letter to Pythocles, explains that: There 
are cases, especially of events in the heavens .such as 
the risings and settings of heavenly b~dies and 
eclipses, where it is sufficient for our happmess that 
several explanations be discovered. In these cases, 
the events "have multiple causes of coming into 
being and a multiple predication of what exists, in 
agreement with the perceptions." ~picurus maint~s 
that, if several explanations are m agreement with 
the (heavenly) phenomena, then we must keep ~. of 
them for two reasons. Firstly, the degree of precision 
achieved by multiple expla.D:ations is suffici~nt ~or 
human happiness. Secondly, 1t would be unscientific 
to prefer one explanation to another when bo~ are 
equally in agreement with the phen?mei;ia. l_'hls, he 
claims, would be to "abandon physical mqwry and 
resort to myth." His follower Lucretius (95 - 55 
B.C.) illustrates the inevitablity of the use of the 
multiple explanation principle by the following 
example: 

There are also some things for which it. is not 
enough to state a single cau~e, but several, of whic~ one, 
however, is the case. Just as if Y?U were to see. the lifeless 
corpse of a man lying far away, it would be fitting to state 
all the causes of de-.ith in order that the single cause of 
this death may be staled. For you would not be able to 
establish conclusively that he died by the sword or of cold 
or of illness or per~ap~ by poison, but we k.no!"' that there 
is something of this kmd that happened lo him. [Lucre­
tius 6. 703- ll) 

Based on the same intuition. :..., the calculus of 
probabilities it h..1.s been customary to postulate the 
"principle of indifference" or th.e "principle ~f 
insufficient reason". When there 1s no other evi­
dence, because of the absolute lack of knowledge 
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concerning the conditions under which a die falls, 
we have no reason to assume that a certain face has 
higher probability of t~g up. Hence w~. assume 
that each side of the die has the probability 116. 
The principle of indifference considers events to be 
equally probable if we have not the slightest 
knowledge of the conditions under which ~eh ~f 
them is going to occur. For the case of a die, this 
actually coincides with the so-called "maximum 
entropy principle", we will discuss later, which states 
that we should choose probabilities p; for face i to 
be the outcome of a trial, i = 1, 2, ... ,6, such that 

- ~~= iJl;lnp; is maximised under the only con­
straint ~6 = iJI; = 1. We obtain precisely p; = 1I6 
for i = I, 2, ... ,6. 

The second and more sophisticated principle is 
the celebrated Occam's razor principle commonly 
attributed to William of Ockham (1290? - 1349?). 
This enters the scene about 1500 years after Epi­
curus. In sharp contrast to the principle of multiple 
explanations, it states: 

Occam's Razor Principle: Entities should not be 
multiplied beyond necessity. 

This is generally interpreted as: Among the 
several theories that are all consistent with the 
observed phenomena, one should pick the simplest 
theory. (According to Bertrand Russell, the actual 
phrase used by Ockham was: "It is vain to do with 
more what can be done with fewer.") Surely 
Occam's razor principle is easily understO<?d from ~ 
'utilitarian' point of view: if both theones explam 
the same set of facts, why not use the simpler 
theory?! However things become more intricate 
when we want to know whether a simpler theory is 
really better than the more complicated one. This 
also raises another question which has been a bone 
of contention in Philosophy ever since the razor's 
inception. For what is the proper measure of sim­
plicity? Is x 100 +I more complicated than 
ax 17 + bx2 +ex+ tf! E.g., the distinguished contem­
porary philosopher K. Popper pronounced that the 
razor is without sense or use on such grounds. How­
ever, it is interesting to notice that the principle can 
be given objective contents, and has recently been 
very successfully applied in many different forms in 
computational learning theory. 

To explain this, let us consider an over­
simplified example of ~nferring ~ finite au_to~ton 
with one-letter input usmg Occam s razor pnnciple. 

Accepted inputs: 0, OOO, 00000, 000000000; 

Rejected inputs: t, 00, 000000; 

For these data, there exist many consistent finite 
automata. The most trivial one would be: 



The smallest automaton is: 

Intuitively, the first machine does not tell us 
anything. We therefore do not expect that machine 
to predict unknown data. On the other hand the 
second machine makes an inference that the 
language accepted consists of strings of an odd 
number of O's, and this can be used for predicting 
future data. However, a too simplistic application 
of Occam's razor principle does not have a very 
good explanatory value, as the following story illus­
trates. 

Once upon a lime, there was a little girl named 
Emma. Emma had never eaten a banana, nor had she 
been on a train. One day she went for a journey from 
New York lo Pillsburgh by train. To relieve Emma's anx­
iety, her mother gave her a large ba~ of bananas. Al 
Emma's first bile of a banana, lfie tram plunged into a 
tunnel. Al the second bite, the train broke into daylight 
again. Al lhe third bile, Lo! into a tunnel; the fourtli bile, 
La! into daylight again. And so on all the way lo Pitts­
burgh and lo the bottom of her hap of bananas. Our 
brignl little Emma (applying Occam s razor principle?) 
told her grandpa: "Every oda bile of a banana makes you 
blind; every even bile puls things right again." [After 
N.R. Hanson, "Perception and Discovery", Freeman, 
Cooper & Co, 1969, p.359.] 

Let us consider how the idea of 'simplicity' 
affects a scientist's thinking. We refer to a beautiful 
study of simplicity by Kemeny [25]. Initially, there 
were no new facts that failed to be explained by the 
Special Theory of relativity. The :,.,centive to invent 
the General Theory of Relativity, by Albert Ein­
stein, was his conviction that the Special Theory was 
not the simplest theory that can explain all the 
observed facts. Reducing the number of independent 
variables obviously simplifies a theory. By the 
requirement of general covariance Einstein suc­
ceeded in replacing the previous independent 'gravi­
tational mass' and 'inertial mass' by a single con­
cept. 

In spite of the apparent universal acceptance 
of Occam's razor, consciously or unconsciously, the 
concept of simplicity remains highly controversial. 
Generally speaking, it has remained a crude non­
precise idea. Things are subtler than they appear. Is 
the following formulation precise? 

Occam's Razor Rule: Select u hypothesis which 
is as well in agreement with the observed value as pos· 
sible; if there is any choice left, choose the simplest 
possible hypothesis. 

Example. Consider the problem of fitting n 
points by a polynomial. The above rule tells us to 
choose the polynomial of lowest degree passing 
through all the n points. But due to measurement 
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precision and possible noise, whatever degree poly­
nomial the points originated from, we will end up a 
polynomial of degree n - 1 which fits the data pre­
cisely. But this polynomial most likely does not help 
us to predict future points. 

Example. Consider another example given by 
Kemeny: Let there be unknown number of white 
balls and black balls in a sealed um. Through an 
opening you randomly pick one ball at a time, note 
its color and replace it, and shake the um 
thoroughly. After n draws you must decide what 
fraction of the balls in the um is white. The possible 
hypotheses state that some rational fraction r of 
balls in the um is white, where QE;;;r~ 1. By the 
above rule, if in n draws, m white balls are selected, 
then we should formulate the hypothesis r =min. 
Let there be 1I3 white and 2/ 3 black balls. However 
the probability of getting the true hypothesis 
m = n I 3 is zero if n is not divisible by 3, and it 
tends to zero, even under the assumption that n is 
divisible by 3. On the other hand we know that to 
obtain a hypothesis l/3 - t:E:;;rE:;;l/3+t:, for any t:, 
has probability tending to 1 exponentially fast, by 
the so-called Chernoff formula. (For Chemoffs for­
mula see e.g. [2]. ) Even when the process con­
verges, n may be too large for practical use. 

Kemeny's Rule. Select the simplest hypothesis 
compatible with the observed values. 

Here 'compatible' is defined as follows. The 
hypothesis H; is compatible with data D if, assuming 
the truth of H;, there was at most one percent 
chance of getting a deviation as great as m(H;,D) 
for some measure function m. This is related to 
Valiant's learning theory to be discussed later. 

But how does one define simplicity? Is 1 I 4 
simpler than 1I10? Is 1I3 simpler than 2/ 3? Say­
ing that an urn contains 1 I 3rd part white balls 
comes down to the sanie thing as sayingthat it con­
tains a 2/ 3rd part black balls. Kemeny warned: "do 
not use more precision in your theories than is 
necessary." But what is necessary and what is not? 
All these issues are very subjective. Does a simple 
theory generate a hypothesis which is good for 
predicting future outcomes? How do we achieve fast 
convergence? How does one trade between 'simpli­
city' and 'truth' ('compatibility')? Kemeny actually 
asked for "a criterion combining an optimum of 
simplicity and compatibility" [crediting Nelson 
Goodman for this suggestion]. 

1.1. Combining Epicurus, Ockham, and Bayes 

The study of inductive reasoning predates artificial 
intelligence or computer science by more than 2000 
years. There is tremendous amount of literature in 
many different fields under diverging terminologies. 
Our goal is to extract a common core of simple 
ideas underlying all these approaches, in the spirit of 
Occam's Razor principle. We will start with Baye­
sian inference theory. 



To apply Bayesian type reasoning one has to 
assign a priori probabilities (prior probability) to 
each possible hypothesis. Since the posthumous 
publication in 1763 of Th. Bayes's (??- 1761) famous 
memoir 'An essay towards solving a problem in the 
doctrine of chances' by his friend Richard Price, (5), 
there has been continuous bitter debate on the 
cqntroversial prior probability in the Bayesian for­
mula. 

The invention of Kolmogorov complexity, by 
its first inventor R. Solomonoff, was as an auxilliary 
notion to resolve this particular problem. Namely, 
using Kolmogorov complexity he found a single 
'universal' prior distf.'.mtion which can be substi­
tuted for any particular actually valid distribution 
(as long as it is computable) in Bayes's formula, and 
obtain approximately as good results as if the actu­
ally valid distribution had been used. It sounds like 
magic, but Solomonoff's approach does give a more 
or less satisfactory solution to this unlikely objective. 

The elegant idea of a universal prior is a com­
bination of Occam's razor and modern computabil­
ity theory. However, the universal prior is uncom­
putable, since it involves Kolmogorov complexity. 
In this paper we develop the thesis that many 
theories, models, and principles for inductive reason­
ing that were formulated both before and after 
Solomonoff's inception, can be rigorously derived as 
particular computable approximations to it. 

In this paper we first describe the basics of 
Bayesian theory and how to apply Kolmogorov 
complexity to obtain the Universal prior probability 
distribution. We then derive the Gold paradigm and 
its principles. Combination with ideas from compu­
tational complexity theory leads to Valiant's model 
of deductive learning. We derive a form of 
Rissanen's Minimum Description Length (MDL) 
principle. From the MDL principle Rissanen derives 
the Fisher's Maximum Likelihood principle and 
Jaynes Maximum Entropy principle. This paper con­
tains a review of all these theories and principles. 
We were not satisfied with the fact that some 
experts say the connections as claimed are obvious, 
while some other experts deny those connections 
exist. Hence, in this paper we explicitly establish 
them. That is, we forge some new links, connections, 
explanations, and provide explicit derivations 
together with the appropriate related theorems. We 
also present a theorem about what can be inferred 
correctly, and what cannot be inferred correctly, in 
terms of Kolmogorov complexity. We describe an 
experiment we have performed in machine learning 
of recognition of handwritten characters using the 
MDL principle. A more extensive treatment of this 
material will be given in our forth-coming textbook 
(34). 
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l. The Universal Prior Distribution 

2.1. Bayesian Inference 
In the following discussion of probability we assume 
the usual so-called Kolmogorov Axioms, see e.g. 
[11). For our purpose we need the following. We 
have a hypothesis space, H = {Hi. H 2•··· }, which 
consists of a countable set of hypotheses, which are 
mutually exclusive (in the sense that at most one of 
them is right), and exhaustive (in the sense that at 
least one of them is right). With each hypothesis H 
we associate a probability P (H) such that 
~p (H) = I. The student is supplied with some 
data D, providing information about which 
hypothesis is correct. We provide the conditional 
probability P(D I H) that the data D arises given 
that H is the correct hypothesis. We assume that 
P (D I H) is computable from D and H. From the 
definition of conditional probability, i.e., 
P(A I B) = P(A n B)I P(B), it is easy to derive 
Bayes's formula (rewrite P (A n B) in two different 
ways): 

P(D I H ·)P(H-) 
P(H· I D) = I I (1) 

I P(D) 

where 

P(D) = ~P(D jH;)P(H;). 
i 

We interprete the different variables in the formula 
as follows. The H;'s represent the possible alterna­
tive hypotheses concerning the phenomenon we wish 
to discover. The term D represents the empirically 
or otherwise known data concerning this 
phenomenon. The term P(D), the probability of 
data D, can be considered as a normalizing factor so 
that ~ .P (H;I D) = I. The term P (H;) is called the 

I 

prior probability or initial probability of hypothesis 
H;, i.e., the probability that H; is true before we 
have seen any evidence. The term P(Hd D) is 
called the final, a posteriori, or inferred probability, 
which reflects the probability of H; modified from 
the prior probability P(H;) after seeing the data D. 
The term P(D I H;), the conditional probability of 
seeing D when H; is true, is assumed to be comput­
able from D and H;. In many learning situations, 
data can only be consistent with an hypothesis H; in 
the sense of being forced by it such that 
P(D I H;) = 1. If the data is inconsistent with 
hypothesis H; then P (D I H;) = 0. In such a situa­
tion, the data either is determined by a hypothesis, 
or disqualifies it. (We assume there is no noise that 
distorts the data.) (For example, the hypothesis is 
datum x EL or x f£ L.) 

The most interesting term is the prior proba­
bility P(H;). In the context of machine learning, 
P(H;) is often considered as the learner's initial 
degree of belief in hypothesis H;. In essence Bayes's 
rule is a mapping from a priori probability P (H;) to 
a posteriori probability P (H; ID), where the 



mapping is determined by d:ita D .. ~ gen~ral, the 
problem is not so much that m the limit the inferred 
probability would not . 'condense' o~ . the. 'true' 
hypothesis, but that the inferred probability giv~ as 
much information as possible about the possible 
hypotheses from only a limited numb~r of dat~ cf. 
example below. In fact, the continuous bitter 
debate between the Bayesian and non-Bayesian 
opinions centered on the prior probability .. The con­
troversy is caused by the fact that Bayesian theory 
does not say how to initially derive the prior proba­
bilities for the hypotheses. Rather, Bayes's rule only 
says how they are to be updated. However, in each 
actual case the prior probabilities may be unknown, 
uncomputable, or conceivably do not exi~t. C\Yhat 
is the prior probability of use ?f words m wntten 
English? There are many . ~~rent. sources of 
different social backgrounds hvmg m different ages.) 
This problem is solved if we can fi~d a ~in~le ~rob~­
bility distribution to use as the pnor distnbuuon m 
each different case, with approximately the same 
result as if we had used the real distribution. 
Surprisingly, this turns out to be possible up to 
some mild restrictions. 

Historical Note. Properly speaking, formula 
(1) is not due to Bayes, but it is due to P.S. Laplace 
(1749 - 1827) who stated the formula ~d 3:ttac~~ 
Bayes's name to it [29]. Actually, Bayes m his ongi­
nal paper [ 5] assumed the uniform distribution. for 
the a priori probability, hence he has essentially 
derived P(H;jD) = P(D IH;)l~/(D IH;). 
Although this formula can be derived from ( 1) by 
simply assuming that all P (H;) are the same, .Bayes 
did not state his result in the general form as m (1), 
nor did he derived his result through a formula simi­
lar to (I). Despite the fact that Bayes's rule is just a 
rewriting of the definition of conditional probability 
and nothing more, it is its interpretation and appli­
cations that are most profound and caused much 
bitter controversy during the past two centuries. 

Example 1. We use an example of von Mises 
(37]. Let an urn contain many dice .with differe~t 
attributes. (For convenience, the attnbute space is 
discrete.) A die with attribute p has probability p 
showing "6" in a random throw. If we ran?o~y 
draw a die from the urn, how can we determme its 
attribute? Let HP be the event of drawin~ a die with 
attribute p from an urn. We draw a die from the 
urn and throw n times independently. Let Dm,n be 
the experimental data such that m successes (6's) 
were observed out of n throws. So 

_ P (Dm.n I Hp) P (Hp) 
P(Hp I D,,,.n) - P(Dm,n) 

where P (D,,, ,n ) = ~ P (Dm.n I Hp) P (Hp). According 
to Chernotrs formufa (see [2] ), for a< I, we have: 

I ' - - anp 
P(m - np > anp I Hp) < e 2 

, 

I 2 - - anp 
P(np - m>anp I Hp) < e 3 

. 
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Hence, if p0 is the attribute of the die we have 
drawn, then P(Dmn I H,,) goes to 0 exponentially 
fast when the number of experiments increases, for 
all terms with p=l=fJo; And P(Hp

0 
IDm,n) goes to 1. 

Hence in polynomial time with respect t? the 
minimum distance between the p's we can denve Po 
with high probability. 

Example 2. We explain a simple version of 
Solomonoff's theory of inductive inference. Con­
sider theory formation in science as the process of 
obtaining a compact description of the past observa­
tions together with predictions of future ones. The 
investigator observes increasingly larger initial seg­
ments of an infinite binary sequence as the outcome 
of an infinite sequence of experiments on some 
aspect X of nature. To desc~be tJ:te unde~lying 
regularity of this sequence, the mvesugator tnes to 
formulate a theory that governs X, on the basis of 
the outcome of past experiments. Candidate theories 
(hypotheses) are identified with computer programs 
that compute binary sequences starting with the 
observed initial segment. 

First assume the existence of prior probability 
distribution P over 0 = {O, l}*. Define the measure 
µ over 0 by µ(x) = ~ {P(xy):y E O}. (Actually, 
because of the Ju ! :additive property below, µ is 
not a proper measure. One may call µ a 'semimeas­
ure' .) Thus, µ(x) is the probability of a sequence 
starting with x. Given a previously observed data 
string S, the inference problem ~s to predict ~e next 
symbol in the output sequence, i.e., extrapolatmg the 
sequence S. In terms of the variables in Formula (1), 
H; is the hypothesis that the sequence under con­
sideration starts with initial segment Sa. The data D 
consist in the assertian that the sequence in fact 
starts with initial segment S. Thus, for P(H;) and 
P(D) in Formula (1) we substitute µ(Sa) and µ.(S), 
respectively, and obtain, a = 0 or a = 1, 

P(Sa IS) = P(S 1 :c~~µ.(Sa)_ 

Here 
µ(S) = P(S I SO)µ(SO) + P(S I s l)µ(S I) + P.<S)., 
When the string S is generated by a detenmrusuc 
process, we must have P(S I Sa) = I for any a, 
hence, 

- ~ P(Sa I S) - µ(S) . (2) 

In terms of inductive inference or machine learning, 
the final probability P (Sa I S) is the probability of 
the next symbol being a, given the initial sequence 
S. The goal of inductive inference in general is to be 
able to infer an underlying effective process (in the 
most general case, a Turing machine, according to 
the Church-Turing thesis) that generated S, and 
hence to be able to predict (extrapolate) the next 
symbol. Obviously we now only need the prior pro­
bability to evaluate P(Sa I S). 

In order to solve the problem for unknown 
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prior probability, Solomonoff proposed what he 
called a universal prior distribution. We now caie­
fully define the universal prior distribution and 
prove several fundamental theorems due to Solo­
monoff and Levin, and afterwards continue this 
example. The definitions and theorems are so funda­
mental that our approach totally rests upon them. 
However since these results have only been pub­
lished either by Solomonoff in a veiled fashion, or 
by Levin in the Russian literature or in a compli­
cated form [50], or are unpublished by Gacs [17], 
they are almost unknown except to a few people 
doing research in this area. First we need the basic 
definitions of Kolmogorov complexity. 

2.2. Kolmogorov Complexity 

Inductive reasoning was the midwife that stood at 
the cradle of Kolmogorov complexity. Nowadays, 
Kolmogorov complexity has been applied in many 
areas of computer science and mathematics (see [32] 
for a general survey), and few realize that Kolmo­
gorov complexity was at first invented for the pur­
pose of inductive inference. In this essay, we go 
back to this origin. 

We are interested in defining the complexity of 
a concrete individual finite string of zeros and ones. 
Unless otherwise specified, all strings will be binary 
and of finite length. All logarithms in this paper are 
base 2, unless it is explicitly noted they are not. If x 
is a string, then I (x) denotes the length (number of 
zeros and ones) of x. We identify throughout the 
xth finite binary string with the natural number x, 
according to the correspondence: 

{t:, 0), (0, I), (I, 2), (00, 3), (01, 4), (10, 5), ... 

Intuitively, we want to call a string simple if it can 
be described in a few words, like "the string of a 
million ones"; A string is considered complex if it 
cannot be so easily described, like a "random" 
string which does not follow any rule and hence we 
do not know how to describe apart from giving it 
literally. A description of a string may depend on 
two things, the decoding method (the machine which 
interprets the description) and outside information 
available (input to the machine). We are interested 
in descriptions which are effective, and restrict the 
decoders to Turing machines. Without loss of gen­
erality, our Turing machines use binary input strings 
which we call programs. More formally, fixing a 
Turing machine T, we would like to say that p is a 
description of x if, on input p, T outputs x. It is also 
convenient to allow T to have some extra informa­
tion y to help to generate x. We write T(p,y) = x to 
mean that Turing machine T with input p and y ter­
minates with output x. 

Definition 1. The descriptional complexity Cr 
of x, relative to Turing machine T and binary string 
y, is defined by 

CT(x jy) = rnin{/(p):p E{O, l} *, T(p,y) = x}, 
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or oo if such p do not exist. 

The complexity measure defined above is use­
ful and makes sense only if the complexity of a 
string does not depend on the choice of T. Therefore 
the following simple theorem is vital. This Invari­
ance Theorem is given by Solomonoff [44], Kolmo­
gorov [26), and Chaitin [8]. 

Theorem 1. There exists a universal Turing 
machine U, such that, for any other Turing machine 
T, there is a constant er such that for all strings x, y, 
Cu(x IY) E;;; Cr(x ly) + cr. 

Proof. Fix some standard enumeration of Tur­
ing machines Ti. T 2, • • • • Let U be the Universal 
Turing machine such that when starting on input 
O" Ip, p E{O, I}*, U simulates the nth Turing 
machine Tn on input p. For convenience in the 
proof, we choose U such that if Tn halts, then U 
first erases everything apart from the halting con­
tents of Tn's tape, and also halts. By construction, 
for each p E {O, I}•, Tn started on p eventually halts 
i.ff U started on O" Ip eventually halts. Choosing 
cr= n + I for Tn finishes the proof. D 

Oearly, the Universal Turing machine U that 
satisfies the Invariance Theorem is optimal in the 
sense that Cu minorizes each Cr up to a fixed addi­
tive constant (depending on U and 7). Moreover, 
for each pair of Universal Turing machines U and 
U', satisfying the Invariance Theorem, the complexi­
ties coincide up to an additive constant (depending 
only on U and U'), for all strings x, y: 

I Cu(x I y) - Cu·(x I y) I oe;; cu, U'· 

Therefore, we set the canonical conditional Kolmo­
gorov complexity C(x I y) of x under condition of y 
equal to Cu(x ly), for some fixed optimal U. We call 
U the reference Turing machine. Hence the Kolmo­
gorov complexity of a string does not depend on the 
choice of encoding method and is well-defined. 
Define the unconditional Kolmogorov complexity of x 
as C(x) = C(x It:), where t: denotes the empty string 
(/{t:) = 0). 

Definition 2. For technical reasons, we need in 
the following the so-called prefix complexity or self­
delimiting complexity, rather than C(x) from 
Definition I. The two complexities are approxi­
mately the same, namely, for each x they coincide to 
within an additive term of 2 log C (x ). We use a spe­
cial model of Turing machine, viz. one with three 
tapes: a one-way input tape, a one-way output tape, 
and a two-way work tape. Initially, the input tape 
contains an indefinitely long sequence of bits. If the 
machine halts, then the initial segment on the input 
tape it has read up till that time is considered the 
input or program, and the contents of the output 
tape is the output. Clearly, the set of programs of 
each such machine is a prefix-code. (Recall that if p 
and q are two code words of a prefix-code, then p is 
not a proper prefix of q.) Such a mchine is called a 
prefix machine. We can give an effective enumeration 
of all prefix machines in the standard way. Then 



the self-delimiting descriptional complexity of 
x E { 0, 1} •, with respect to prefix machine T, and 
binary stringy, is similarly defined as 

KT(x IY) = min{l(p):p E {O,l} *, T(p,y) = x}, 

or oo if such p do not exist. One can prove an 
Invariance Theorem for self-delimiting complexity, 
and define the conditional and unconditional self­
delimiting Kolmogorov complexity, by fixing some 
reference optimal prefix machine, in exactly the 
same way as before, so we do not repeat the con­
struction. 

Remark. The self-delimiting Kolmogorov com­
plexity of string x, is the length of the shortest self­
delimiting program that outputs x . Mathematically, 
self-delimiting Kolmogorov complexity has nicer 
properties. In this exposition, we will use K (x) to 
denote the self-delimiting Kolmogorov complexity of 
x . C(x ) and K(x) differ by at most a 2logK(x) 
additive term. In some applications this does not 
make any difference. But in some other applications, 
for example inductive inference, this is vital. 

Definition 3. A binary string x is incompressi­
ble if K(x) -;;a. l(x). 

Remark. Since Martin-L:•of [36] has shown 
that incompressible strings pass all effective statisti­
cal tests for randomness, we will also call 
incompressible strings random strings. A simple 
counting argument shows that most strings are ran­
dom. The theory of computability shows that the 
function K (x) is noncomputable, but can be approx­
imated to any degree of accuracy by a computable 
function. However, at no point in this approxima­
tion process can we know the error. Cf. also the sur­
veys [33, 50). 

2.3. Semicomputable Functions and Measures 

We consider recursive functions with values consist­
ing of pairs of natural numbers. If < p, q > is such 
a value then we interpret this value as the rational 
number p I q, and say that the recursive function is 
rational valued. 

Definition. A real function f is semi computable 
from below iff there exists a recursive function 
g(x, k) with rational values (or, equivalently, a com­
putable real function g(x, k)), nondecreasing in k, 
with f (x) = limk _, 00g(x, k). A function f is sem­
icomputable from above, if - f is semicomputable 
from below. 

(An equivalent definition: f is a function that 
is semicomputable from below if the set 
{(x, r): r ~f(x), r is rational} is recursively enumer­
able.) 

A real function f is computable iff there is a 
recursive function g(x, k) with rational values, and 
lf(x) - g(x,k) I < I l k. 

Obviously, all recursive functions are comput­
able, and all computable functions are semicomput­
able. However, not all semicomputable functions 
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are computable, and not all computable functions 
are recursive. Nontrivial examples of functions that 
are semicomputable from above but not computable 
are C(x), C(x I y), K(x), and K(x I y). 

The following analysis is a simplified version 
over the discrete space N (or the set of finite binary 
strings), of Zvonkin and Levin [50). We follow to 
some extent [ 17). Functions µ: N -+ (0, 1] that satisfy 
the usual properties of probability distributions 
except that 

~ µ(x) ~ I. 
.x 

we shall call measures. We say that a measure µ 
(multiplicatively) dominates a measure µ.' if there 
exists a constant c such that, for all x in N, we have 
µ'(x).;;;;; c µ(x). It is known from the calculus that no 
measure µ. dominates all measures: for each measure 
µ. there is a measure µ.' such that 
lim µ'(x) I µ(x) = co. However, if we restrict our­
selves to the class of semicomputable measures, then 
it turns out that this class contains an "absorbing" 
element, a measure that dominates all measures in 
the class. We call the measure that dominates all 
other measures in a given class a universal measure 
for that class. This important observation that such 
a measure exists was first made by Levin [50). 

Theorem 2. The class of measures that are 
semicomputable from below contains a wiiversal meas-
ure. 

Proof First we consider the standard 
enumeration of all partial recursive functions 
4>i. lf>i, .... We change each 4> into a partial recursive 
function I/; with the same range as q, but with, for 
each x, the value of 1"( <x, k >) is defined only if 
1"( <x, I>), 1/1( <x, 2> ), ... ,1/1( <x, k - I>) are 
defined. (Assign values to arguments in enumeration 
order.) We use each iii to define a semicomputable 
function s by approXimations sk(x), k = l, 2, ... , 
from below: 

s(x) = sup {sk(x): sk(x) = pi q, 

1/i(<x, k >) = <p, q >, k = 1,2, ... }. 

The resulting s-enumeration contains all semicom­
putable functions. Next we use each semicomput­
able functions to compute a measureµ. from below. 
Initially, set µ(x) = 0 for all x. If s(l) is undefined 
then µ will not change anymore and it is trivially a 
measure. Otherwise, for k = 1, 2, ... , if 
sk(l) + sk(2) + ... + sk(k).;;;;; 1 then set µ.(i): = sk(i) 
for i = 1, 2, ... , k, else the computation of µ is 
finished. 

There are three mutually exclusive ways the 
computation of µ. can go, exhausting all possibilities. 
Firstly, sis already a measure andµ.: = s. Secondly, 
for some x and k with x.;;;;; k the value sk(x) is 
undefined. Then the values of µ. do not change 
anymore from µ.(i) = sk - 1(i) for i = l, 2, ... , k - I, 
and µ.(i) = 0 for i ;;;;. k, even though the computation 
ofµ goes on forever. Thirdly, there is a first k such 



that sk(l)+sk(2)+ ... +sk(k)> I, that is, the new 
approximation of µ. violates the condition of meas­
ure. Then the approximation of µ. is finished as in 
the second case. But in this case the algorithm ter­
minates, and µ. is even computable. 

Thus, the above procedure yields an effective 
enumeration P.i. µ.2, ••• of all semicomputable meas­
ures. Define the function 11-o as: 

JLo(X) = ~ i-n P.n(X). 
n 

It follows that /Lo is a measure since 

~ JLo(X) = ~ 2- n ~ P.n(X) ~ ~ 2- n = 1. 
x n x n 

The function 11-o is also semicomputable from below, 
since P.n(x) is semicomputable from below in n and 
x. (Use the universal partial recursive function 4'o 
and the construction above.) Finally, 11-o dominates 
each µ.,, since JLo(x) > i-n P.n(x). Therefore, /Lo is a 
universal semicomputable measure. 0 

Obviously, there are countably infinite univer­
sal semicomputable measures. We now fix a refer­
ence universal semicomputable measure 11-o(x), and 
denote it by m(x). It will turn out that function 
m(x) adequately captures Solomonotf's envisioned 
universal a priori probability. It represents Levin's 
approach to the great (but technically unsatisfac­
tory) original idea of Solomonoff. 

If a semicomputable measure is also a proba­
bility distribution then it is comP.utable. Namely, if 
we compute an approximation µ.k of the function µ. 
from below for which ~ µ.k (x) > 1 - t:, then we 

x 

have I µ.(x) - µ.k(x) I < t: for all x. 

Any pos1Uve function w(x) such that 
~ w (x) ~ I must converge to zero. Hence m(x) 

x 
converges to zero as well. However, it converges to 
zero slower than any positive computable function 
that converges to zero. That is, m(x) is not comput­
able, and therefore it is not a proper probability dis­
tribution: ~ m(x) < I. There is no analogous result 

x 
to Theorem 2 for computable measures: amongst all 
computable measures there is no universal one. 
This fact is one of the reasons for introducing the 
notion of semicomputable measures. 

2.4. The Solomonoff-Levin Distribution 

The original incentive to develop a theory of algo­
rithmic information content of individual objects 
was Ray Solomonoffs invention of a universal a 
priori probability that can be used instead of the 
actual (but unknown) a priori probability in apply­
ing Bayes's Rule. His original suggestion was to set 
the a e,_iori probability P(x) of a finite binary string 
x to i;2- 11i», the sum taken over all programs p 
with U (p) = x where U is the reference Turing 
machine of Theorem I for the C-complexity. How­
ever, using plain Turing machines this is improper, 
since not only does~ P(x) diverge, but for some x 

x 
even P(x) itself diverges. To counteract this defect, 
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Solomonoff in 1960 and 1964 used nonnaliz:ing 
terms, but the overall result was unconvincing. 
Levin [ 50] succeeded in 1970 to find a proper 
mathematical expression of the a priori probability, 
of which we present the simpler version over the 
discrete domain N. This was elaborated by Levin in 
1973 and 1974 [30, 31), and Levin and Gacs in 1974 
[16) and independently by Chaitin in 1975 [9]. 

Definition. The Solomonoff-Levin distribution 
(actually a measure) on the positive integers is 
defined by Pu(x) = ~i- 1<p>, where the sum is taken 
over all programs p for which the reference prefix­
machine U of Theorem I outputs x. This is a meas­
ure because of the following. 

Kraft's Inequality. If l i.12, ••• is a sequence of 
positive integers such that ~ 2- 1

• ~ 1 then there is 
" a prefix-code c: N ~ {O, I}* (i.e., if n =I= m are posi-

tive integers, then c(n) is not a prefix of c(m)), with 
/(c(n))=ln. Conversely, if c:N~{O, I}* is a 
prefix-code, such that the sequence /i. /2,... with 
ln = l(c(n)), n = 1, 2,... satisfies the inequality 
above. Sec e.g. [12). 

Hence, by the Kraft Inequality, for the prefix­
code formed by the programs p of U we have 
~ i-1(p) ~I. Therefore, the combined probability 

~Pu(x), summed over all x's, sums up to less than 
x 

one, no matter how we choose reference U, because 
for some program q there is no output at all. 

Another way to conceive of P u(x) is as fol­
lows. We think of the input to the reference prefix 
machine U as being provided by indefinite long 
sequences of fair coin flips. Thus, the probability of 
generating a program p for U is P(p) = i- 1<p> where 
P is the standard 'coin-flip' uniform measure. 
(Namely, presented with any infinitely long sequence 
starting with p, the machine U, being a prefix­
machine, will read exactly p and no further.) Due 
to the halting problem, for some q the reference U 
does not halt. Therefore, the halting probability 0 
satisfies 

0 = ~ m(x) <I. 
x 

Now we are ready to state the remarkable and 
powerful fact that Levin's universal semicomputable 
measure m(x ), the Solomonoff-Levin universal a 
priori probability P u(x ), and the simpler expression 
2- KM, all coincide up to an independent fixed mul­
tiplicative constant. It is a consequence of currently 
universally accepted views in mathematical logic 
(Church's Thesis), that the widest possible effective 
notion of simplicity of description of an object x is 
quantified by K(x). 

The Solomonoff-Levin distribution can be 
interpreted as an recursively invariant notion that is 
the formal representation of "Occam's Razor": the 
statement that one object is simpler than the other is 
equivalent to saying that the former object bas 
higher probability than the latter. 



Theorem 3. There is a constant c such that for 
each x, up to additive constant c, we have 
- logm(x) = - logPu(x) = K(x). 

Proof Since 2- K(x) represents the contribu­
tion to P u(x) by a shortest program for x, 
rK<x>.;;;;; Pu(x) for all x. Since Pu(x) is semicom­
putable from below by enumerating all programs for 
x1 we have by the universality of m(x) that there is a 
fixed constant c such that for all x we have 
Pu(x).;;;;; c m(x). 

It remains to show that m(x) = 0(2- K(x>). 
lbis is equivalent to showing that for some constant 
c we have - logm(x) ;;;;. K(x) +c. It suffices to 
exhibit a prefix code such that for some other fixed 
constant c', for each x there is a code word p such 
that /(p) .;;;;; - logm(x) + c', together with a prefix.­
machine T such that T(p) = x. Then, Kr(x).;;;;; l(p) 
and hence by the Invariance Theorem 1 also 
K(x).;;;;; l(p) up to a fixed additive constant. First 
we recall a construction for the Shannon-Fano code. 

Claim. If µ is a measure on the integers, 
~ µ.(x).;;;;; I, then there is a binary prefix-code 

x 
r: N-+ {O, I}* such that the code words r(l), r(2), ... 
are in lexicographical order, such that 
l(r(x)).;;;;; - logµ(x) + 2. This is the Shannon-Fano 
code. 

Proof Let [O, 1) be the half open unit real 
interval. The half open interval [O.x, 0.x + 2- 1<x>) 
corresponding to the set (cylinder) of reals 
f x = { O:Y : y = x z} (x finite and y and z infinite 
binary strings) is called a binary interval. We cut off 
disjoint, consecutive, adjacent (not necessarily 
binary) intervals I,, of length µ.(n) from the left end 
of (0, 1), n = 1, 2, .... Let i,, be the length of the long­
est binary interval contained in/,,. Set r(n) equal to 
the binary word corresponding to the first such 
interval. It is easy to see that /,, is covered by at 
most four binary intervals of length i,,, from which 
the claim follows. 0 

Since m(x) is semicomputable from below, 
there is a partial recursive function cp(t, x) such that 
cp(t,x) o;;;;m(x) for all t, and Iim1 _. 00 cp(t,x) = m(x). 
Let o/(t, x ) = 2 -· k, with k is a positive integer, be the 
greatest partial recursive lower bound of this form 
on cp(t, x ). We can assume that 1/J enumerates its 
range without repetition. Then, 

~ 1/J(t, x) = ~ ~ o/(t, x).;;;;; ~ 2m(x).;;;;; 2. 
X, I X I .X 

(The series ~11/J(t, x) can only converge to precisely 

2 m(x) in case there is a positive integer k such that 
m(x) = i-k.) 

Similar to before, we chop off consecutive, 
adjacent, disjoint half open intervals 11,x of length 
1/J(t, x)/2, in order of computation of o/(t, x), start­
ing from the left side of [O, 1). This is possible by 
the last displayed equation. It is easy to see that we 
can construct a prefix-machine T as follows. If fp is 
the largest binary interval of I,,-' ' then T(p) = x. 
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Otherwise, T(p) is undefined (e.g., T doesn't halt). 

By construction of t/J, for each x there is a 
#..t, x) >m(x) I 2. By the construction in the Claim, 
each interval 11,x has length o/(t, x)/2. Each /­
interval contains a binary interval rP of length at 
least one quarter of that of I. Therefore, there is a p 
with T(p) = x such that i-t(p);;;;. m(x)/16. This 
implies Kr(x).;;;;; - logm(x) + 4. The proof of the 
theorem is finished. 0 

Theorem 3 demonstrates a particularly impor­
tant instance of the two conceptually different, but 
equivalent, definitions of the semicomputable meas­
ures. We analyse this equivalence in some detail. 
Let PI> P 2,.. . be the effective enumeration of all 
semicomputable probability distributions con­
structed in Theorem 2. Let TI> T 2, ••• be the stan­
dard enumeration of prefix-machines. For each 
prefix-machine T, define 

Qr(x) = ~ 2- /(p). 
T(p) = x 

In other words, Qr(x) is the probability that T com­
putes output x if its input p is generated by succes­
sive tosses of a fair coin. In other words, the inputs 
p are uniformly distributed with the probability of p 
occurring equal 2- i<p> . It is easy to see that each Qr 
satisfies 

Equality holds iff T halts for all inputs (proper pro­
grams). Let QI> Q2, ••• (where we do not require 
equality to hold) be the probability distributions 
associated with Ti. T2, •• •• 

Claim. There are recursive functions a, 7T such 
that Q,, = Pa(n) and P,, = 0(Qtr(,,»• for n = 1, 2, .... 

Proof Omitted. 0 

Remark. The Coding Theorem tells us that 
there is a constant c > 0 such that 
- logPu(x) - K(x).;;;;; c. We recall from the 
definition of the Solomonoff-Levin distribution that 
- logPu(x) = - log~U(p} = x2- t(p>, and 

K(x) = min{/(p): U(p) = x}. A priori an outcome 
x may have high probability because it has many 
long descriptions. But these relations show that in 
that case it must have a short description too. In 
other words, the a priori probability of x is governed 
by the shortest program for x. 

Remark. Let P be any probability distribution 
(not necessarily computable). The P-expected value 
of m(x)I P(x) is 

m(x) 
~ ... P(x) P(x) < l. 

We find by Chebychev's first Inequality1) that 

I 
~{P(x): m(x).,.;;; k P(x)} ;;;;. I - J;· (3) 

Since m(x) dominates all semicomputable 

I) Recall that Chebychev's First Inequality says the follow-

- --- -:...._ 



measures multiplicatively, for all x we have 

P(x) .;;;.; cp m(x), (4) 

for a fixed positive constant cp independent of x 
(but depending on the index of P in the effective 
enumeration P.1> µ.2, .•. of semicomputable measures). 

Inequali2:fs (3) and (4) have the following 
consequences: 

(i) If x is a random sample from a simple 
computable distribution P (x ), then m(x) is a good 
estimate of P (x ). 

(ii) If we know or believe that x is random 
with respect to P, and we know P(x), then we can 
use P(x) as an estimate of m(x). 

Example 2, Continued. We continue 
Solomonoff's approach to inductive inference. The 
problem was that the proper a priori probabilities µ. 
in formula (2) are not known. Define 

M(x) = ~{m(xy):y E {O, l}*}, 

i.e., M(x) is the a priori probability that the output 
of the reference prefix-machine U starts with x. 
(This is slightly different from the more sophisti­
cated approach of Levin in, e.g., [50], but it suffices 
for our purposes.) Now instead of using formula (2), 
we estimate the conditional probability P(xy Ix) the 
next segment after x is y by the expression 

M(xy) 
M(x). 

(5) 

Now Jet µ. in Formula (2) be an arbitrary comput­
able measure. This case includes all computable 
sequences, as well as many Bemouilli sequences. If 
the length of y is fixed, and the length of x grows to 
infinity, then we have 

M(x y) I M(x) l 
~' µ.(xy) l µ.(x) 

with µ.-probability one. In other words, the condi­
tional a priori probability is almost always 

ing. Let P be any probability distribution, f any nonnega-
tive function with expected value 
Ep(j ) ="i., P (x)j (x) < oo . For A;;;;. 0 we have 

x 
"J.. (P(x ):f(x ) > A) < A. - 1E,.(j). Here we use it with 
k Ep(j ) substituted for A. 
2l We shortly remark. without further explanation, that in 
both cases the degree of approximation depends on the in­
dex of P, and the randomness of x with respect to P, as 
measured by the randomness deficiency 
6o(x I P) = log(m(x) / P(x)). If 6o(x I P) = 0(1) then x is 
random, otherwise x is not random. For example, for the 
Uniform Distribution 6o(x I P) = n - K (x I n) + 0 (I), 
where n = / (x ). Such a (universal Martin-Lo() test is need­
ed, since otherwise we cannot distinguish, for instance, 
between randomness and nonrandomness of samples from 
the uniform distribution. (Clearly, the word C o n s t a n t 
i n o p I c is not a random 14-letter word. The probability 
of seeing it somewhere written is decidedly greater than 
128 - 14 • say. for a randomly selected fourteen letter ASCII 
word.) 
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asymptotically equal to the conditional probability. 
One can show that convergence is very fast, cf. [45] 
which shows that if we use (S) instead of the real 
value (2), then our inference is almost as good. One 
can also show that: 

- logM(x) = K(x) + O(logK(x)). (6) 

We now come to the punch line: Bayes's rule 
using the universal prior distribution yields Occam's 
razor principle. Namely, if several programs could 
generate SO then the shortest one is used (for the 
prior probability), and further if SO has a shorter 
program than SI then SO is preferred (i.e. predict 0 
with higher probability than predicting 1 after seeing 
S). Bayes's rule via the universal prior distribution 
also gives Epicurus's multiple choice principle in 
case SO and S 1 have roughly equal length shortest 
programs which 'explain' SO and S 1, respectively. 

The universal prior distribution m(x) is not 
computable because the Kolmogorov complexity is 
not computable. However, we can compute approx­
imations to K(x) and m(x). It turns out that using 
Solomonoff's inference principles with such comput­
able approximations yields many other known infer­
ence models or principles. In the next few sections, 
we derive or establish connections with various 
well-known machine learning models and inductive 
inference paradigms or principles. Thus we provide 
an alternative view of these models and principles 
from the lofty perspective of Kolmogorov complex­
ity. 

3. Gold's Inductive Inference Paradigm 

There are many different ways of formulating 
concrete inductive inference problems in the real 
world. We will try to simplify matters as much as 
possible short of losing significance. 

(i) The class of ruies we consider can be vari­
ous classes of languages or functions, where we res­
trict ourselves to classes of recursive sets, context­
free languages, regular sets and sets of finite auto­
mata, and sets of Boolean formulae. We treat a 
language L as a function f using its characteristic 
function, i.e., f (x) = XI,(x) = 1 if x EL, and 0 other­
wise. 

(ii) The hypothesis space or rule space denoted 
by R specifies syntactically how each rule in (i) 
should be represented. We fix a standard enumera­
tion of the representations for a class of rules, 
R = ( R i. R 2 , .•• } , and assume that each rule f has at 
least one description in the corresponding 
hypothesis space. For example, the hypothesis space 
can be a set of standard Turing machine codes of 
halting Turing machines, a set of standard encodings 
of context-free grammars, or a set of standard 
encodings of Finite Automata. In any case, it is 
assumed that the hypothesis space is effectively enu­
merable (so it cannot be the set of all halting Turing 
machine codes). For convenience, this enumeration 
of hypotheses R 1> R 2, •• • consists of codes for 



algorithms to compute recursive functions / 1,/2,. .. 

(languages are represented by their characteristic 
functions). 

(iii) The presentation of examples is vital to 
the inference process. We choose the simplest, and 
yet most general, form of data presentation. For a 
function f to be inferred, there is a fixed infinite 
sequence of examples (s 1,f (s 1)), (s 2,f(s2)), ••• • 

When f = XJ.., we have XJ..(s) = l iff s EL in which 
case we says is a positive example of L. We say s is 
a negative example of L iff s t£ L. For instance, 
O,l,I,2,3,5,8, ... (the fibonacci sequence) can be 
represented by a sequence of pairs 
(0,0), (I , 1), (2, I), (3,2), (4,3), (5,5), (6,8),.... Then, 
(2, I) is a positive instance of the corresponding 
characteristic function f. f (2, I) = l, and (3, l) is a 
negative instance,f (3, 1) = 0. 

A rule (or function) f is said to be consistent 
with the initial segment of examples 

S = (s i, a 1) , • • • ,(s11 ,a11 ), (7) 

if/(s;) = a;, i = 1, .. ,n. We require that all strings 
y;ill eventually appear as first component in a pair 
m S. The last assumption is strong, but is essential 
to the Gold paradigm. 

The prediction problem is now: given Ss, 
where S is the initial segment (7), prt!dict f (s ). In 
other words, our task is to learn f For example, in 
case of inference of language L, given Ss, we must 
predict XJ..(s) (whether or not s EL). Let us fomiu­
late a procedure to infer a rule according to Solo­
monoff. 

By (ii), there is an effective enumeration 
.(i, Ji, ... of partial recursive functions correspond­
ing to the enumeration of hypotheses. The a priori 
probability of f k is m(jk) = m(k). (Actually, 
m(jk) = c m(k), for some constant c depending on 
~e effective enumeration involved, but not depend­
ing on n. To assume that c = l makes no difference 
~ ~e following discusssion.) We are given an 
infirute ~equence of examples representing the rule 
or function f to be learned. Let f (s) = a. (E.g., if 
we want to infer a language L then J = XJ.., and 
a = l for s E L, and a = 0 for s t£ L.) According 
to ~~yes's rule (1), for k = 1, 2, ... , the inferred pro­
bability of fk after the sequence of examples (7) is 
given by: 

P(jk = / I f(s;) = a;, i = 1, .. ,n) (8) 

_ P(j(s;) = a;, i = 1, .. ,n I fk = j)m(k) 

~ {m(i):./j(s;) = a;, i = 1, .. ,n} 

In the numerator of the right-hand term, the first 
factor is zero or one depending on whether fk is 
consistent with S, and the second factor is the a 
priori probability of f k· The denominator is a nor­
~alizing term giving the combined a priori probabil-
1 ty of all rules consistent with S. With increasing n, 
~e d~nominator term is monotonically nonincreas­
mg. Smee all examples eventually appear in S, the 
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denominator converges to a limit, say d ~ I. For 
each k, the inferred probability fk is monotonically 
nondecreasing with increasing n, until fk is incon­
sistent with a new example, in which case it falls to 
zero and stays there henceforth. In the limit, only 
the fk's that are consistent with the sequence of 
presented examples have positive inferred probabil­
ity m(k)/ d. By Theorem 3, since m(k) oe;;; c 2 - K(k) 

with equality for most k, for some positive constant 
c, the highest inferred probability is carried by the 
rule fk with least Kolmogorov complexity among the 
remaining ones. Similar statements hold after each 
initial segment of n examples, n = 1,2, .... 

Reasoning inductively, we transform the a 
priori probability according to Formula (8), inferring 
a new posterior probability by the evidence of each 
initial segment of examples. At each step, we can 
select the rule with the highest inferred probability 
and in the limit we have selected the proper rule'. 
At each step we predict the rule with the highest 
inferred probability. Reformulating, if we want to 
infer a language L using this procedure, then: 

(a) The Bayesian a posteriori wobability for 
~e correct answer conver~es to c 2- Cp) Id, where p 
is the shortest program which the reference machine 
uses to simulate M 0, where M 0 is the smallest TM 
that accepts L. This correct answer will have the 
hi~c:st prc;iba~ility in the limit. That is, inferred pro­
bability distnbuuon over the underlying machines 
converges to a highest probability for M 0 in the 
limit. In other words, after n steps for some n, all 
the machines smaller than M 0 violate some data 
pair in S, and M 0 is the choice forever after step n. 

. .(b) It is. ~teresting to notice lb.at the a pos­
tenon probability decreases monotorucally until it 
co~verges . to c 2 - l(p) Id for p the program with 
which U sunulates M 0• Smaller machines are chosen 
first and then canceled because they violate some 
data. 

. ( c) If we want to infer f (s ), rather than f. 
given the sequence of examples S, then using formu­
las (2) and (5), the inferred probability that f (s) = a 
is (denoting a strings 1s 2 • • • s,, ass 1:11): 

P(j(s) = a I J (s;) = a;, i = 1, .. ,n) (9) 

~ {m(i):./j(s;) = a;, i = 1, .. ,n, Jj(s) = a} 

~ {m(i):jj(s;) = a;, i = 1, .. ,n} 

M(S(s, a)I s 1:11s) 

M(S I S1:11) 

(Here we use that the probability of an initial seg­
men~ of examples S, conditional to the sequence of 
quenes s1 :,,, denoted by M(S I s 1:11 ), is equal (as 
always up to a constant) to the summed probability 
of all functions f that are consistent with S.) 

The well-known Gold paradigm of inductive 
inference [14, 15], can be viewed simply as a com­
putable approximation . to Equation (8). The 



fundamental idea of the Gold paradigm is the idea 
called identification in the limit and a universal 
method of implementing the identification in the 
limit is called "identification by enumeration". 
These are contained in facts (a) and (b), as a com­
putable analogue of Solomonoft's approach. We now 
investigate the correspondence between these two 
basic ideas in some detail. 

Identification in the Limit views inductive 
inference as an infinite process. Formally, let M be 
an inductive inference method in order to derive 
some unknown rule R. If M receives a larger and 
larger set of examples (bigger and bigger initial seg­
ment S), a larger and larger sequence of Ms conjec­
tures is generated, say, f 1,J2,f3, · · · . If there is 
some integer m such that fm is a correct description 
of R and for all n > m 

fm =fn, 

then M identified R in the limit. Two facts deserve 
mentioning: M cannot determine whether it has con­
verged and therefore stop with a correct hypothesis. 
M may be viewed as learning more and more infor­
mation about the unknown rule R and monotoni­
cally increasing its approximation to R until the 
correct identification. Gold gave the best explana­
tion to his definition: 

I wish lo construct a precise model for the intuitive 
notion "able lo speak a language" in order to be able lo 
investigate theoretically how it can be achieved artificially. 
Since we cannot write down the rules of English which we 
r~uire one to know before we say he can "speak 
English", an artificial intelligence which is designed to 
speak English will have to feam its rules from unplicit 
information. Thal is, its information will consist of exam­
ples of the use of English and/ or of an informant who can 
slate whether a given usage satisfies certain rules of 
English, but cannot slate these rules explic."itly. 

· · · A person does not know when he is speaking 
a language correctly; there is always the possibility that he 
will find that his grammar contains an error. But we can 
guarantee that a child will eventually learn a natural 
fanguage, even if it will not know when it is correct. 

Identification by enumeration is a method to 
implement identification in the limit. It refers to the 
following guessing rule: Enumerate the class of rules 
in rule space. At step t, guess the unknown rule to 
be the first rule of the enumeration which agrees 
with data received so far. Formally speaking, in our 
setting, if we have received an initial segment S, 
then, given s, predict as the next example (s, f (s )) 
for f is the first rule that is consistent with S. Now if 
this can be done effectively, identification in the limit 
will be achieved. In fact,· let G and G' be two guess­
ing methods. G will be said to be uniformly faster 
than G' if the following two conditions hold: {l) 
Given any R from the rule space, G will identify R 
correctly at least as soon as G', expressed in the 
number of examples needed, for all sequences of 
examples; and (2) for some R, some sequence of 
examples, G will identify R sooner than G'. It is easy 
to prove that the identification-by-enumeration 
method will identify a hypothesis in the limit if this 
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hypothesis can be identified in the limit at all. 
Further if G0 is an identification-by-enumeration 
guessing rule, then there is no guessing rule uni­
formly faster than G0 • Indeed, 

1beorem 4. Identification-by-enumeration is a 
compuJable approximation to inductive inference 
(Solomonofj's inference) associated with Formula (8). 
Neither method is uniformly faster than the other. 

Proof. An effective enumeration for the 
identification-by-enumeration method, can be 
viewed as a computable approximation to 
Solomonoff's procedure according to formula (8) as 
follows. Let the effective enumeration of the rule 
space be: R.,R 2,R 3 • • •• Convert this to an 
effective prefix-free description of each rule R; in the 
rule space. For instance, if x = x 1>···,xn is a binary 
string, then x = x 10x 20 ... 0xnl is a prefix-code for 
the x's. Similarly, x' = l(x)x is a prefix-code. Note 
that l(x') = l(x) + 2logl(x). We encode each rule 
R; (a binary string) as pi', where p is a (self­
delimiting) program that enumerates the rule space. 
The resulting code for the R;'s is an effective prefix­
code. Denoting the length of the description of R; 
by IR; I, we have: 
(a) if i<j, then IR;! .;;;;; I R1 I; and 
(b) ~2- IR.! o;;;;;l (by Kraft's inequality). 

i 

Assign a priori probability P(R;) = 2- IR,I to rule 
R;, i = 1, 2, .... (This is possible because of (b).) 
Using Formula (8) with P(R;) instead of m(i) yields 
a computable approximation to Solomonoff's induc­
tive inference procedure. Formula (8) chooses the 
shortest encoded consistent rule which coincides 
with the first consistent rule in the effective 
enumeration. This shows that identification by 
enumeration can be formulated as an computable 
approximation to Solomonoff's procedure. It 
remains to show that neither method is uniformly 
faster than the other. 

Let G 1> G2, ••• be an effective enumeration of 
the hypotheses space by a Gold procedure, and let 
Hi. H 2 , ••• be the (noneffective) enumeration of the 
hypotheses space by decreasing a priori probability 
according to Solomonoff. In other words, 
K(H 1) .,;;;; K (H 2) .;;;;; • • • . In both cases we. deal with 
identification-by-enumeration, so it is known that 
there is no guessing rule uniformly faster than either 
of them. D 

Remark. What about non-uniform speed com­
parison? In case the particular rule f to be inferred 
is sufficiently simple (has low Kolmogorov complex­
ity) then Solomonoff's procedure can be much faster 
than Gold's enumeration. Let f be the function we 
want to infer, and let f = fm, with m minimal, in 
Gold's enumeration order. Let also f = fni for n 
with K(n) minimal. To infer the correct/, in Gold's 
approach we must eliminate all fk with k < m. But 
in Solomonoff's approach, we only need to eliminate 
all fk with K(k) < K(n). Now necessarily there are 



many fs that are 'simple' in the sense that 
K(n) << l(m), for which e.g. Solomonotrs pro­
cedure works much (sometimes noncomputably) fas­
ter than Gold's method. 

The following theorem sets limits on the 
number of examples needed to infer a particular 
function/ 

Theorem 5. Let f 1,f2,... be an effective 
enumeration of the rule space. Suppose we want to 
infer f = f;, with i minimal, from a set of n examples 
S as in (7). Let c be an appropriate large enough con­
stant. 
(a) If K(i) > K (( (s 1) •• f (sn) I s 1 ... sn) - c, then it is 
impossible by any effective deterministic procedure to 
infer f correct{v. 
(b) If we can infer f correctly by computable approxi­
mation to Solomonoffs method (8) using only S, and c 
extra bits of information, then K(i I S) ~c. 
(c) If K(i I S) ..;;;; c then we can compute f; from Sand 
c bits extra information. 

Proof (a) Otherwise we would be able to 
compute i from a program of length significantly 
shorter than K(i): contradiction. Items (b) and (c) 
are obvious. D 

There is an enormous amount of research in 
the area under the title of Gold paradigm. We refer 
the readers to the articles [3, 7] and the book [39]. 
We present three examples of reasoning by means of 
Gold's paradigm in order to give a flavor of this 
research direction. 

Example.(Gold, 1967) We can learn a function 
in the set of primitive recursive functions. 

Proof Effectively enumerate the set of all 
primitive recursive functions by .Pi.t/12, • • • • On any 
initial input segment (x 1,y 1) • • • (xk,yk), our infer­
ence machine just prints the least i such that t/11 is 
consistent with the input, i.e., Y,;(xk) = Yk for 
k = 1, · · · ,n. 

Example. [Gold, 1967] We cannot learn in 
general a function in the set of all total recursive 
functions. 

Proof By diagonalization. Suppose M can 
identify all recursive functions. But then one can 
define a recursive function f so that the guesses of 
M will be wrong on f infinitely often. We construct 
f by simply simulating M. Let f (0) = 0, Suppose the 
value of J (O),f(l), · · · ,f (n - 1) have been con­
structed. On input n, simulate M on initial input 
f (O),f (1), · · · ,f (n - 1). Then define f(n) equal 1 
plus the guess of M (modulo 1). So M never guesses 
f correctly. D 

Example. One of the first studied problem was 
extrapolating a sequence. A machine M extrapolates 
a sequence f (1 ),/ (2), · · · as follows. It makes an 
initial guess /'(O). Then it inputs the real f (0). At 
step i, based on previous inputs 
f (1),/ (2), · · · ,j(i - 1), it guesses J'(i). If there is a 
i 0 such that for all i > i0 f'(i) = f(i), then we say M 

---- ---- ----- -----
------
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extrapolates f Bringing everything in our setting, the 
initial segment before step i is a sequence of pairs 
(1,/(1))(2,/(2)) ... (i- l,/(i- l)), and M extrapo­
lates with the pair (i,/'(i)). It is not surprising that 
the class of functions computable by a Turing 
machine running in time t (n ), for any computable 
function t, can be extrapolated (by identification by 
enumeration). 

4. The Valiant Model of Deductive Learning 

In practice, as we have mentioned, the Solomonoff 
paradigm, or the Gold paradigm, do not off er feasi­
ble solutions in two senses. Firstly, both require all 
strings to appear eventually and the learning pro­
gram never knows when to stop. Secondly, in many 
cases even within a single learning step, just finding 
the first rule that is consistent with the data in the 
'identification by enumeration' method may require 
exponential time in terms of the size of data. The 
goal of this section is to do machine learning/as!. 

Obviously, this task is impossible in general if 
we are asked to precisely infer a law of nature, even 
if we assume that this law is a computable function. 
In fact, the infinite behavior for the whole process 
and the exponential behavior for each inference step 
are inherent. However, in practice, learning usually 
appears to be fast. A child recognizes an apple after 
seeing several apples. A kitty learns to avoid skunks 
from only a few bad hunting adventures. After 
several bad experiences, a newcomer to the city of 
Boston finds that his car will get clamped after 
receiving five unpaid parking tickets. 

These examples all bear some common charac­
teristics: (1) The learning process does not depend 
on the number of apples in the world, the number 
of skunks in the jungle, or the number of tickets in 
the Boston police department. (2) The learning pro­
cess is fast. (3) The results usually converge with 
remarkable precision. As Valiant noticed, 

Human learning often shows remarkable properties 
of convergence. In large populations lhere is a high degree 
of agreement on lhe meaning of lhousands of words as 
they. relate to everyday situations. This suggests lhat 
big.Illy reliable program acquisition may be feasible even 
in lhe absence of explicit programming. Hence it is rea­
sonable to insist lhat our study of learning be disciplined 
by insistence on fast convergence. 

Use the same setting as in the last section. 
Again we consider only the case where the function 
f to be learned is deterministic. Let there be an 
arbitrary, fixed, distribution D, according to which 
the examples (s, f (s)) are drawn. That is, D(s) is 
the probability of drawing example (s, f (s)). 
Assume that we want to learn a rule R from an 
effectively enumerated rule space R = { R i. R 2, ••• } 

with corresponding functions {f 1,f2, ... } . Assume 
that, given some sequence S of n examples, as in 
Formula (7), we can compute R (S), defined as a 
minimum length rule R that is consistent with S. 
Using formula (8) we can show: 

Theorem 6. Let f be the function to be learned, 



and let I (R (S)) = m. After drawing a sequence of n 
examples, say S as in Formula (7), from distribution 
D, and n is a polynomial n (m, l I c), then with proba­
bility ~ l - c we have ~ D (s) < f. the sum taken 

over all s such that fk(s) =I= f (s) and k is the index 
that maximizes P<Jk = f I S). (The proof of this 
theorem is similar to that of Occam's Razor theorem 
below.) 

However, computing the minimum representa­
tion is hard in many cases. For example, given 
positive and negative examples, computing the smal­
lest consistent DFA is NP-complete [l, 15,40]. 
Computing the minimum k-DNF (DNF formula 
with each term containing at most k literals) from a 
set of examples is also NP-complete. Do we really 
need to compute the minimum representation? 
What about just approximation? Adding this feature 
to the approach above brings us to the Valiant 
deductive learning model. (A similar model was also 
studied by Vapnik and Chervonenkis [48) ). 

In 1983, Valiant [46) introduced a learning 
model which requires that the computational process 
by which the machine deduces the desired programs 
requires a feasible (i.e., polynomial) number of steps. 
One version of the Valiant model is given here: 
Consider an effectively enumerated class of rules R 
with associated functions, as before. In this context 
we call a rule a concept. For each concept f (associ­
ated with R) in R, if v is a positive example to f we 
write f (v) = 1, else v is a negative example to f and 
denoted by f (v) = O. The learning algorithm has 
available two buttons labeled POS and NEG. If 
POS (NEG) is pushed, a positive (negative) example 
is generated according to some fixed but unknown . 
probability distribution D + (D - ) according to 
nature. We assume nothing about the distributions 
D + and D - except that for each concept f ER we 

have ~f(v) ,-: 1D + (v) = l and ~f(v) =OD - (v)= 1. 

Definition Vt. R is (Valiant) learnable from 
examples iff there exists a polynomial n and a (pos­
sibly randomized) learning algorithm A such that, 
for each R ER and c>O, algorithm A halts in 
n (/(R), l /£.) time and number of examples, and out­
puts a rule R' E R that with probability at least 
l - c has the following properties: the function g 
associated with R ' sausfies ~ D + (v) < c and 

g(v) =O 
~ ( D - (v)<c. 

g v) = I 

Examples for class R are: Set of finite auto­
mata; Set of DNF Boolean formulae; Set of k-DNF 
formulae; 

By Theorem 6, a class of rules R is (Valiant) 
leamable if we can compute fast the shortest rule in 
rule space that is consistent with the given examples. 
As said before, this may be infeasible (in the sense 
of NP-completeness). However, it turns out that it 
suffices to identify a rule of which the length is 
sufficiently near to that of the shortest one. In other 
words, instead of the minimum consistent hypothesis 
we can use a consistent hypothesis that is sufficiently 
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short to let the analogue of Theorem 6 hold. Infor­
mally, we can learn in the sense of Valiant if we can 
find a consistent rule that is sufficiently short in 
terms of the minimal length consistent rule and the 
number of examples. The precise form of this state­
ment is due to Blumer, Ehrenfeucht, Haussler, War­
muth, [6], who called it 'Occam's Razor Theorem'. 

Theorem 7. Let R be an effectively enumerated 
class of rules, and let S as in Formula (7) be a 
sequence of n independent examples of a rule (rather 
the associated function) f to be inferred. Let R (S) be 
a minimum length rule consistent with S, and denote 
s = /(R(S)). The class R is (Valiant) leamab/e, if 
there is an algorithm A which produces a rule R' in R 
consistent with Sand with l(R') E;;scna, where c ;;;l!: l 
and 0 E;; a < l, and the running time of A is polyno· 
mial in n. The sample size n = n (s, l I c) is required 
to be polynomial in the two arguments. 

Proof Fix an error tolerance c. We first prove 
that the probability that a consistent rule has error 
E;; c is large. Precisely, 

Claim. Given any rule f in a class of r 
hypotheses. Let g be any hypothesis in this class, for 
which the probability that it disagrees with f on a 
single example s exceeds c (notation: 
Pr(g(s) =I= f (s) I g, /);;;;. t:). The probability that g is 
consistent with a sample of f of n examples is less 
than (I - c)nr. 

Proof of Claim. Let Eg be the event that 
hypothesis g agrees with all n examples off Also let 
Pr (g(s) =I= f (s) I g, j) ;;;l!: t:, i.e. g and f disagree on 
one example with probability at least c. By indepen­
dence of the examples: 

Pr(Eg) E;; (I - c)n, 

and 

P( U E)E;;(l - c)"r. O 
Pr(g(s),,t=f(s) I g.j) ~ < g 

The rule R' under consideration is given by a 
binary string of length at most s c n a. The number r 
of such rules satisfies: 

n 
logr E;; scna E;; - 2 log(I - c). 

By the claim, the probability of producing a 
hypothesis with error larger than t: is less than 

(1 - c)"r E;; (1 - c) 2 E;; c, 

for large n polynomial in s and I It:. 0 

Put in words, this theorem shows that given a 
set of positive and negative data, any consistent con­
cept of size 'reasonably' shorter than the size of data 
is an 'approximately' correct concept. If one can 
find a shorter representation of data, then one 
learns. The shorter the conjecture is, the more 
efficiently it explains the current data in the learning 
examples. This provide a rigorous support of our use 
of Occam's razor principle. 



1bis theorem turns out to be a very useful tool 
for identifying polynomial time learnable classes in 
the Valiant model. There are many problems for 
which it is actually NP-complete to derive their 
minimum representation, but they can be approxi­
mated so that above theorem can be applied. An 
important special case of this theorem occurs when 
a = O, in which case the theorem says that if one can 
compress the data to length independent of n, then 
one learns a rule to within polynomial length. 

Example [Valiant, 1983). It is known that it is 
NP-complete to find the minimum k-DNF formula 
consistent with the given positive and negative data. 
We now show that the set of k-DNF of r variables 
v i. · · · , vn is (polynomial time) learnable. The learn­
ing algorithm for a k-DNF formula (associated 
function) f is as follows : 

g: = ~ m , Mk is the set of monomials of 
m E M• 

size k ; 

repeat 

(s, f (s)) : = a negative example for f (i.e., 
f (s) = O); 

for each term c; in g delete c; ifs implies c;; 

until satisfied ((2ni + i loops suffice) 

In the beginning, g contains all conjunctive terms of 
k literals. There are at most (2n l + 1 of them, where 
k is considered to be a constant here. We claim that 
by the end of the computation, with high probability 
g will satisfy Definition VI. Fix any t:>O. Initially, 
all positive examples satisfy g, i.e. 
~ D + (v) = l, but also all negative examples 

A:M= I 
sausfy g. After each step, some clauses in g which 
imply some negative examples are necessarily 
deleted. It remains to show that ~ M =OD + (v) = 0, 

that is, no error on the positive siae is introduced. 
The size of g is at most (2n)k + 1• By Occam's Razor 
Theorem, after a polynomial number of, say 
(2n l + 2, steps and examples, with probability 
greater than 1- £, we have Pr(g(s) =r6= f (s) I g, j) .;;;;,. t:. 
0 

For related results, see 
[6, 18, 23, 24, 35, 38, 41 , 43, 46, 47]. 

5. Rissanen's Minimum Description Length Princi­
ple 

Solomonoff's ideas about inductive reasoning 
have explicitly served as guiding principle in 
Rissanen's development of Minimum description 
length (MDL) principle. Let us derive Rissanen's 
MDL principle from Solomonoff's induction princi­
ple. For simplicity, we deal with only non-adaptive 
models. A non-adaptive model is a model P (D I 0) 
where the parameter vector O= ()(D) is estimated 
from n observed data points denoted by D. 

Scientists formulate their theories in two steps: 
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firstly a scientist must, based on scientific observa­
tions or given data, formulate alternative 
hypotheses, and secondly he selects one definite 
hypothesis. lbis is the subject of inference in statis­
tics. Statisticians have developed many different 
principles to do this, like Occam's razor principle, 
the Maximum Likelihood principle, various ways of 
using Bayesian formula with different prior distribu­
tions. No single principle turned out to be satisfac­
tory in all situations. Philosophically speaking, 
Solomonoff's approach presents an ideal way of 
solving induction problems using Bayes's rule with 
the universal prior distribution. However, due to 
the non-computability of the universal prior func­
tion, such a theory cannot be directly used in prac­
tice. Some approximation is needed in the real 
world applications. Further, from theory to induc­
tive inference and statistical practice, there is still a 
big distance, for example, concrete formulae are 
needed. 

Gold's principle was a particularly simple 
approximation to Solomonoff's induction - the 
sophisticated notion of probability distribution is 
replaced by linear enumeration. In Valiant's learn­
ing theory we have added computability require­
ments and the notion of approximate solution to 
this general theory. Now we will closely follow 
Solomonoff's ideas, but substitute a 'good' comput­
able approximation to m(x ). lbis results in 
Rissanen's Minimum Description Length Principle 
(MDL principle). He not only gives the principle, 
more importantly he also gives the detailed formulas 
on how to use this principle. This makes it possible 
to use the MDL principle in real problems. The 
principle can be intuitively stated as follows: 

Minimum Description Length Principle. The 
best theory to explain a set of data is the one which 
minimizes the sum of 

(1) the length, in bits, of the description of the 
theory; 

(2) the length, in bits, of data when encoded with 
the help of the theory. 

We now develop this MDL principle from 
Bayes's rule, Formula (1), using the Universal distri­
bution m(x). Recall Bayes's formula: 

P(H ID) = P(D I H)P(H) 
P(D) . 

Here His an hypothesis, here a probability distribu­
tion, which we assume to be computable or anyway 
semicomputable, nd D the observed data. We must 
choose the hypothesis H such that P(H I D) is max­
imized. First we take the negative logarithm on both 
sides of the formula: 

- logP(H jD)= - logP(D jH)-logP(H)+logP(D). 

Since P (D) can be considered as a normalizing fac­
tor, we ignore it in the following discussion. Since 
we are only concerned with maximizing the term 
P(H ID) or, equivalently, minimizing the term 



- logP (H ID), this is equivalent to minimizing 

- logP(D I H) - logP(H). 

Now to get the minimum description length princi­
ple, we only need to explain the above two terms in 
the sum properly. The term - logP(H) is straight­
forward. Following Solomonoff, we set 
P(H) = m(H) = i-K(1f) ::!::O(I) where K(H) is the 
self-delimiting Kolmogorov complexity of H. That 
is, - logP(H) is the length of a minimum prefix 
code, or program, of the hypothesis H. 

We now consider the term - logP(D I H). 
Since P is computable, using (the conditional ver­
sion of) Theorem 3 and its corollaries, Formulas 3 
and 4, we know that the universal semimeasure m(x) 
has the following properties. 

(a) There is a constant c, such that m(D I H) ;;;a.: 
cP(D I H). 

(b) The P-probability that m(D I H) ~ kP(D I H) 
is at least 1 - 1 I k. 

By a conditional version of Theorem 3, 
m(D I H) = 2 - K(D IH ) ::!::O (I). Hence again i-K<D IH) 

is a reasonable approximation of P(D I H), and 
minimizing - logP (D I H) can be considered as 
minimizing K(D I H), i.e., finding an H such that 
the description length, or the Kolmogorov complex­
ity, of D given H is minimized. The term 
- logP(D I H) can also be thought as the ideal code 
length for describing data D, given hypothesis H. 
Such prefix code length can be achieved by the 
Shannon-Fano code. The term - logP(D !H), also 
known as the self-information, in information theory, 
and the negative log likelihood in statistics, can now 
be regarded as the number of bits it takes to 
redescribe or encode D with an ideal code relative to 
H. 

In the original Solomonoff approach, H in 
general is a Turing machine. In practice we must 
avoid such an overly general approach in order to 
keep things computable. In different applications, 
the hypothesis H can mean many different things. 
For example, if we infer decision trees, H is a deci­
sion tree: In case of learning finite automata, H can 
be a finite automaton: In case we are interested in 
learning Boolean formulae, then H may be a 
Boolean formula: If we are fitting a polynomial to a 
set of points, then H may be a polynomial of some 
degree; In general statistical applications, one 
assumes that H is some model H (0) with a set of 
parameters O= {81t · · ·,Ok}, where the number k 
may vary and influence the (descriptional) complex­
ity of H (0). In such case, from 

- logP (D I 0) - logP ( (}), 

using Taylor expansion at the point of optimal 8 
(for best maximum likelihood estimator), and taking 
only dominant terms, Rissanen has derived a for­
mula for the minimum description length as 

~~n{ - logP (D I fJ) + ~ klogn}, 
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where k is the number of parameters in 
8={9i. ···,Ok}, and n is number of observations 
(or data points) contained in D. At the optimal k 
and 8, the term I 12 k log n is called the optimum 
model cost. 

Since K(H) is not computable and hard to 
approximate, Rissanen suggested the following 
approach. First convert (or encode) H to a positive 
integer in N = { 1,2, · · · }. Then we try to assign 
prior distribution to each integer in N. Jeffreys [22) 
suggested to assign probability 1 In to integer n. 
But this results an improper distribution since the 
series ~ 1 In diverges. We modify Jeffreys distribu­
tion. It is possible, by iterating the idea of encoding 
n (viewed as the corresponding nth binary string) as 
n' = l(n)n, to obtain a prefix-code such that L(n) 
denotes the length of the code for n, with L(n) 
defined by 

I* (n) = logn + loglogn + · · ·, 

all positive terms, and 

L(n) = /*(n) + loge, 

where c = 2.865064 · · · . Viz, it can be proved [42] 
that: 

co 
~ 2 - r(n) = c. 

n = I 

Therefore, the existence of a prefix-code as claimed 
follows from Kraft's Inequality. 

Assign prior probability P(n) = i-L(n) to each 
integer n. We obtain the following desired proper­
ties: (a) ~"°- 2 - L(n) = l; and (b) integers n are 
coded by a npr~fix code. Hence, descriptions of two 
integers, n 1 and n2, can be just concatenated to pro­
duce the code for the pair (n i.n 2)t and so on. The 
decoding process is trivial. 

Using the MDL principle, Wax and Rissanen 
(according to Wax) and Quinlan and Rivest [41] 
have developed procedures to infer decision trees. 
Other work by Wax [49] and by Gao and Li [13] 
applied MDL principle to recognition problems. 

Example. We sketch an initial experiment we 
[13] have performed in on-line handwritten character 
learning using the MDL principle. Inputting 
Chinese characters into computers is a difficult task. 
There are at least 5,000 characters in daily use, all of 
different shapes. Many methods have been invented 
for key-board input. Some have been successful in 
the limited sense that they can be used by highly 
trained typists only. Handwriting input is an alter­
native choice. Many such systems have been built 
with various recognition rates. 

We [13] have implemented such a system that 
learns handwritten characters from examples under 
the guidance of the MDL principle. We now sketch 
a simple experiment we have perlormed. An input 
character is drawn on a digitizer board with 
200/ inch resolution in both horizontal and vertical 



directions. The system learns a character from 
examples. The basic algorithm involves low level 
preprocessing, scaling, forming a prototype of a 
character (for learning), elastic matching (for recog­
nizing), and so on. At the stage of forming a proto­
type of a character, we have to decide on the feature 
extraction intervals. Then we code a character into a 
pi:ototype so that future inputs are classified accord­
ing to their (elastic Hamming) distance to the proto­
types. 

Handwritten characters are usually quite arbi­
trary and prone to lots of noise. If the feature 
extraction interval is very small, then the algorithm 
will be very sensitive to errors and slight changes in 
the recognition phase, causing low recognition rate. 
If the feature extraction interval is very large, then it 
becomes less likely that we extract the essential 
features of a character and hence we get a low 
recognition rate again. We must compromise. The 
compromise is on the basis of minimum description 
length of prototypes. 

We proceeded as follows to establish an 
optimal feature selection interval. A set of 186 char­
acters drawings by one subject, exactly 3 examples 
for each of the 62 alphanumerical characters, were 
recorcted. The character drawings were stored in a 
standardized integer coordinate system ranged from 
0 to 30 in both x and y directions. These character 
drawings were then input to the system to establish 
a knowledge base, which formed the collection of 
prototypes with normalized real coordinates, based 
on some selected feature extraction interval. After 
the construction of knowledge base was finished, the 
system was tested by having it classify the same set 
of character drawings. If a character is misclassified, 
it is encoded using extra bits (i.e., the term 
P(D I H)). The error code length is the sum of the 
total number of points for all the incorrectly 
classified character drawings. The model code length 
is the total number of points in all the prototypes in 
the machine's knowledge base multiplied by 2. The 
factor of 2 comes from the fact that the prototype 
coordinates are stored as real numbers. This takes 
twice as much memory (in C) as the character draw­
ing coordinates which are in integer form. The pro­
totype coordinates are real instead of integer 
numbers, to facilitate the elastic matching process to 
give small resolution for comparisons of 
classification. 

Thus, both the model code length and the 
error code length are directly related to the feature 
extraction interval. The smaller this interval, the 
more complex the prototypes, but the smaller the 
error code length. The effect is reversed if the 
feature extraction interval goes toward larger values. 
Since the total code length is the sum of the two code 
lengths, there should be a value of the feature 
extraction interval gives a minimum for the total 
code length. This feature extraction interval is con­
sidered to be the 'best' one in the spirit of the MDL 
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principle. The corresponding model, or knowledge 
base, is considered to be optimal in the sense that it 
contains enough of the essence of the raw data but 
eliminates most redundancy of the noise component 
from the raw data. This optimal feature extraction 
interval can be found empirically by carrying out 
the above described build-and-test procedure repeat­
edly. That is, build the knowledge base, and then 
test it based on the same set of characters for which 
it was built. Repeat this for a number of different 
extraction intervals. 

In fact, this actual optimization process is 
implemented on the system and is available when­
ever the user wants to call it. For our particular set 
of characters, the results 
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Figure l. Optimization 

of this optimization are given in Figure I, which 
depicts three quantities: the model code length, the 
error code length, and the total code length versus 
feature extraction interval (SAMPLING INTER­
VAL in the Figure). For larger feature extraction 
intervals, the model code length is small but most of 
the character drawings are misclassified, giving a 
very large total code length. On the other hand, 
when the feature extraction interval is at the small 
end of the scale, all the training characters get 
correctly classified, and the error code length is zero. 
However the model code length reaches its largest 
value, resulting in a larger total code length again. 
The minimum code length occurred at extraction 
interval of 8, which gives 98.2 percent correct 
classification. Figure 2 illustrates the fraction of 
correctly classified character drawings for the train­
ing data. 

Whether the resulting 'optimal' model really 
performs better than the models in the same class, 
the knowledge bases established using different 
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feature extraction intervals, is subject to testing it on 
new character drawings. For this purpose, the set of 
62 handwritten characters were drawn again by the 
same person who provided the initial data to build 
the knowledge base. Thus the new data can be con­
sidered to be from the same source as the previous 
data set. The new data were classified by the system 
using the knowledge base built from the former data 
set of 186 character drawings, based on different 
feature extraction intervals. The testing result is 
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Figure 3. Test result 

plotted in Figure 3 in terms of the fraction of 
correct classification (CORRECT RA TIO) versus 
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feature extraction interval (SAMPLING INTER­
VAL). It is interesting to see that 100% correct 
classification occurred at feature extraction intervals 
5, 6 and 7. These values of feature extraction inter­
vals are close to the optimized value 8. At the low 
end of feature extraction interval scale the correct 
classification drops, indicating disturbance caused 
by too much redundancy in the model. The recom­
mended working feature extraction interval is thus 
either 7 or 8 for this particular type of character 
drawings. For more information on this research, see 
(13) (preprint available from the first author). 

6. Fiscber's Maximum Likelihood Principle 

Rissanen [42] has argued that Fisher's maximum 
likelihood principle is a special case of the MDL 
principle. By our treatment of MDL it is therefore a 
more restricted computable approximation to 
Solomonoffs induction. Notice that minimizing the 
first term - logP (D I H) is precisely the Maximum 
Likelihood (ML) principle. ML is sound in statistics, 
subject .to the implicit assumption that each 
hypothesis H consists of a probability distribution 
O= (f}i, ···,Ok) with the same number k of parame­
t~rs, each parameter O; with the same fixed preci­
sion. In other words, in the probability distribution 
P (D I H = ()) the number k of parameters of (), and 
the precision of each of them, is the same for each 
1!· (We use H and 0 interchangeably, statisticians 
like to use ()) Hence, one assumes that the descrip­
tions of all hypotheses (models ()) are of equal length; 
that is, the complexity of the models is considered to 
be fixed. This is, obviously, an objective assumption. 
In contrast, the MDL principle minimizes the sum 
of - logP(D I H) and - logP(H) Intuitively, if one 
~creases the description length of the hypothesis H, 
it may fit the data better and therefore decrease the 
description of data given H. In the extreme case, if 
one encodes all the data information into the model 
H P~a:isely, P(H) is minimized and - logP(H) is 
maxmuzed. In that case, no code is needed to 
describe the data; that is, P (D I H) is maximized 
(equals 1) and - logP(D I H) is minimized (equals 
0). 

On the other hand, if one decreases the 
description length of H, then this may be penalized 
b~ the increasing description length of the data, 
given H. In the extreme case say, H is a trivial 
hypothesis that contains nothing, then one needs 0 
bits to describe H. But then, one gains no insight of 
data and has to "plainly" describe the data without 
help from any hypothesis. 

Hence one may consider the MDL principle as 
a more general principle than the ML principle in 
the sense that it considers the trade-off between the 
complexity of the model H and the power of the 
~odel to describe the data D, whereas the ML prin­
ciple does not take the hypothesis complexity into 
account. 

Yet the rationale behind the ML principle was 



to be objective by avoiding the 'subjective' assump­
tion of the prior probability. The ML principle is 
equivalent with selecting the probabilistic model 
P(D 18) which permits the shortest ideal code 
length for the observed sequence, provided that the 
model used in the encoding, i.e. , the parameter 8 is 
given, too. Thus, the ML principle is just a special 
case of the MDL principle under the assumption 
that hypotheses are equally likely and the number of 
parameters in 8 are fixed and small (so they do not 
make P (D I 8) = l ). The shortcoming of the ML 
principle is that it cannot handle the situation where 
we do not know the number (and precision) of the 
parameters. For example, in the fitting polynomial 
example, the ML principle does not work well when 
the degree of the polynomial is not fixed. On the 
other hand the MDL principle works naturally for 
this example. 

7. Jaynes's Maximum Entropy Principle 

Rissanen (42] and M. Feder [10] have shown 
that Jaynes's Maximum Entropy (ME) principle 
(19-21] can also be considered as a special case of 
the MDL principle. This is interesting since it is 
known in statistics that there are a number of 
important applications where the ML principle fails 
but where the maximum entropy formalism has been 
successful, and vice versa. In order to apply Bayes's 
theorem, we need to decide what the prior probabil­
ity p; = P(H;) is subject to condition 

»; = 1, 
i 

and certain other constraints provided by empirical 
data or considerations of symmetry, probabilistic 
laws, and so on. Usually these constraints are not 
sufficient to determine the p;'s uniquely. Jaynes pro­
posed to use the estimated values p; which satisfy 
said constraints and maximize the entropy function 

H = - ~p;lnp; 
i 

subject to the constraints. This is called the max­
imum entropy (ME) principle. 

We now demonstrate the rationale behind the 
ME principle, its use, and its connection with the 
MDL principle following discussions in [ 10, 20, 42). 
Consider a random experiment with k possible out­
comes in each trial, thus kn possible outcomes in n 
trails. Let n; be the number of times the ith value 
appears in an outcome D of n trials. Let frequency 
f; = n; In, i = 1, 2, ... , k. The entropy of outcome D 
is: 

k 

H<J1> . . . .fk) = - 'I f;lnf;. (10) 
i = I 

Let there be m < k linearly independent constraints 
of the form 

k 

~ ajif; = d1, 1 or;;;.j or;;;. m, and (I I) 
i = l 
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k 

'If;= (12) 
i = l 

where the set D = {d., ... , dm} is related to the 
observed data, measuring as it were m 'physical 
quantities' subject to the matrix A = { aji}. 

Example. Consider a loaded die, k = 6. If we 
do not have any information about the die, then 
using the Epicurus's multiple explanation principle, 
we may assume that p; = 1/6 for i = I, ... ,6. This 
actually coincides with the ME principle, since 

H(p., ... ,p 6) = I~_ 1 p;lnp; subject to (12) achieves 
maximum value lho = I. 7917595 for p; = l / 6 for all 
i. Now suppose some experiments on the die have 
been performed, and it is observed that the die is 
biased and the average throw gives 4.5. That is, 

6 

~ ip; = 4.5. 
i = l 

In terms of Equation (I I), we have m = 1, 
D = {4.5}, and ai 1 = (I,2,3,4,5,6). Maximizing the 
expression in Equation (IO), subject to constraints 
(I I) and ( 12) gives estimates: 

p; = e ->.;(~e ->.;) - 1 , I= 1, ... ,6, 

where 'A= -0.37I05. Hence @1>····P6) = 
(0.0543, 0.0788, 0, I I42, 0.1654, 0.2398, 0.3475). The 
maximized entropy H@" · · · ,p6) equals 1.61358. 
How dependable is the ME principle? Jaynes has 
proven an 'entropy concentration theorem' which, 
for example, implies that in an experiment of 
N = IOOO trails, 99.99% of all outcomes satisfying 
the constraints of Equations (11) and (I2) have 
entropy 

n1 n6 
1.602 ~ H(-, ... ,-) oe;;;; 1.6I4. 

n n 

Now we turn to the MDL principle to deal 
with the same problem. The following argument 
can be derived from probabilistic assumptions. But 
Kolmogorov [27, 28) advocated a purily combina­
torial approach, such as we give below, which does 
not need any such assumptions. Let 
8 = (p 1, • • • ,p k) be the actual prior distribution of a 
random variable. We perform a sequence of n 
independent trials. Kolmogorov observed that the 
real substance of Formula (10) is that we need 
approximately n H (0) bits to record the sequence of 
n outcomes. Namely, it suffices to state that each 
outcome appeared n ., ... ,nk times, respectively, and 
afterwards give the index of which one of the 

n! 
C(ni.···,nk) = 

1 1 n 1 • • • • nk. 

possible sequences D of n outcomes actually took 
place. For this no more than 

klogn + logC(ni. · · · ,n,1) + O(loglogn) 

bits are needed. The first term corresponds to 
- logP(O), the second term corresponds to 



- logP(D I 6), and the third term represents the 
cost of encoding separators between the individual 
items. Using Stirling's approximation for the fac­
torial function, we find that for large n this is 
approximately 

k n; n; n 1 nk 
n( - ~-log-) = nH(-, · · · ,-). 

i = I n n n n 

Since k and n are fixed, the least upper bound on 
the minimum description length for an arbitrary 
sequence of n outcomes under certain given con­
straints D is found by maximizing the term 
log C(n i.··.,nk) subject to said constraints. This is 
equivalent to maximizing the entropy function ( 10) 
under constraints D. (Such constraints may be 
derived, for example, from the laws of large 
numbers: in case of independent experiments with a 
probability distribution 0, we have n; In ,...., p;, and 
we have a certain rate of convergence with certain 
probability.) 
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