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INTRODUCTION 

Computer systems, in all their diversity, often share certain common properties: they 

are hierarchically organised into levels of abstraction and, at each level, they pos­

sess a certain architecture based on their construction from basic subsystems. Of 

especial interest are the hierarchical and modular structures of concurrent computer 

systems. 

In this paper we consider a variety of computer systems and collect a set of in­

formal principles concerning their hierarchical construction. These ideas are readily 

transformed into an elementary formal account of systems in which levels of abstrac­

tion are represented by algebras and the relationships between levels are represented 

by homomorphisms. 

The algebraic approach to systems is then exemplified in an algebraic theory of 

concurrent systems based on a set of axioms called ACP - axioms for concurrent process­

es in part modelled on the calculi of R. Milner. 

1. EXAMPLES OF COMPUTER SYSTEMS 

1.1. Von Neumann Computer Systems. The term computer system usually refers to a confi­

guration of hardware and software such as a computer whose operating system supports 

a number of languages and software tools. But the idea of the computer system is ma­

chine independent and possesses a hierarchical structure organized into levels of ab­

straction. In the case of the von Neumann computer system, this hierarchy is shown in 

the following figure (adapted from Bell and Newell [10]): 

system configuration level 

symbolic programming level 

register-transfer level 

logia Zevel 

ci:r>cuit level 

device leveZ 

Each level is characterized by a medium for processing, basic components for this 

processing, composition methods to build systems from the basic components and rules 



of behaviouri to explain the operation of the systems constructed in terms of their 

components (illustrations may be found in Bell and Newell (10]). 

The structure of a system at various levels is consistent and high levels reflect 

the structure of low levels: it is what we may term a bottom-up system built by a pro­

cess of abstraction. The von Nelimann hierarchy may be termed a bottom-up hierarchy in 

which data stores and data transfer paths are represented at each level of abstraction: 

see Backus [6]. 

1.2. Machines and Languages. A machine defines a programming language in which an in­

struction represents an operation of the machine. Conversely, the language defines a 

machine by supposing its instructions to specify certain machine operations to be 

available. This observation initiates the idea of the virtuai machine that refines 

the hierarchy of the von Neumann computer system, matching ideas about machine archi­

tecture with ideas about programming languages (see Tanenbaum (25], for instance). 

Actually, virtual machines serve the following purpose: a Level of abstraction is de­

fined by a programming formalism for which an operationai semantics is made based on 

a modei of computation; that these models of computation are called machines reflects 

that the von Neumann systems compose a bottom-up hierarchy. 

1.3. Other Architectures. The processor-channel-store model underlying von Neumann 

computer systems may be replaced by other models of computation that give rise to 

data ftow systems, reduction systems, systoiic systems and vector systems. In each 

case computers, with architectures derived from the models, are under construction 

and bottom-up hierarchies for the systems can be expected to evolve. 

1.4. Distributed Computer Systems. By a distributed computer system we have in mind 

a system based on a network of computers. The hierarchical structure of such a distri­

buted system is unknown and remains a substantial research problem. A notable attempt 

at a solution is made in the ISO-OSI Model which organises into seven levels of ab­

straction the interconnections of a distributed computer system (see Tanenbaum [26]); 

the proper specification of these and other independent layers remains a problem, 

however, and composition principles are unknown. 

1.5. VLSI Systems. A VLSI system is a system specially implemented in silicon using 

VLSI technology. The need for custom VLSI leads to the problem of programming into 

silicon wherein system descriptions are compiled into circuits. Thus, the following 

scientific problem is encountered: 

VLSI System Hierarchy Problem. To analyse and structure VLSI computation as a hierar­

chy of levels of computation; and to develop formal many-level specification langu­

ages which have regard for verifying system logic and predicting system performance. 

The problem asks for a generalisation of the von Neumann and other machine­

language hierarchies; and its answers may be as complex in their organiaation. The 

VLSI Hierarchy Problem is of interest to us: in Dew and Tucker (15] the complexity 



theory of the composition principles is investigated experimentally. 

1.6. Software Systems. Within the symbolic level of the von Neumann hierarchy of l.l 

reside softlJJat'e systems of considerable complexity. Ideas that determine a hierarchi­

cal structure for software systems are emerging from researches into programming lan­

guages that support the hierarchical and modular decomposition of programs: the sub­

jects of stepwise-refinement and top-down design of programs, data type specification, 

data type modules, generic data types.immediately come to mind through their populari­

sation in ADA. (A very useful survey is Wulf [27] and many early research articles are 

collected in Gries [17].) 

Of particular importance is the concept of the aLgebraic data abstraction with 

which programs may assume a hierarchical structure the levels of which are defined in 

terms of the operations aLLowed on data. There is a mathematical theory for algebraic 

data types that prograxnmers may refer to and that contains many satisfying results: 

see ADJ[2,4], Goguen and Meseguer [16]. 

The algorithmic theory at a fixed level of data abstraction is well understood 

in conventional terms. But the ideas of a data type module as a system component and 

appropriate moduLe composition tooZs are underdeveloped (Back [SJ). And the relation 

between levels is not well understood: for example, the implementation of a data type 

specification by a data type module is plagued by problems to do with partial functions. 

However in the case of specification languages the study of hierarchies and com­

position tools is very well advanced as a result of researches of Burstall and Goguen 

related to CLEAR: see Burstall and Goguen [14]. 

Since an algebraic structure in the syntax and denotational semantics of program­

ming languages was observed (in ADJ [l]), further research has shown that conventional 

programming language definitions can be recast in an algebraic (and therefore composi­

tional) mould. The hierarchical implications of this are seen in compilation: see ADJ 

[ 3]. 

1.7. Concurrent Systems. The parallel execution of tasks has led to special develop­

ments in software for concurrent systems; for example OCCAM [23] which is based on 

CSP, first defined in Hoare [19]. In later studies of CSP the modular structure of 

programs is established by means of composition operators including sequencing, non­

deterministic composition and merge; see Hoare, Brookes and Roscoe [20]. 

Composition operators for concurrent processes have been the subject of long 

standing research by R. Milner, an introduction to which is Milner [21]. An important 

idea is that of a caZcuZus, called ccs, for the composition operators which describes 

their effects by means of Zaws. 

Hierarchical aspects of system construction are treated only through the simple 

algebraic idea of encapsulation where an interconnected set of processes is regarded 

as a single process. 

1.8. Functional Programming. In his critique of von Neumann computer systems, J. Backus 
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identified the need for composition tools for program construction and the requirement 

that such tools constitute a rich set of program forming operators about which a satis­

factory aLgebraic theory can be made. Backus' theory of functionaL programming is in­

tended to satisfy this requirement. In particular, it uses operator laws to support 

algebraic proofs of program equivalence and correctness: see Backus (6,7]. 

1.9. Knowledge-based Systems. Finally, we notice A. Newell's thesis concerning a know­

ledge Level above the symbolic level of the von Neumann hierarchy in 1.1. The new level 

of abstraction achieves a separation of knowledge and knowledge representation: the 

latter belonging to the symbolic level. The knowledge level and its structure is des­

cribed in Newell (22]. 

2. PRINCIPLES FOR SYSTEM ORGANISATION 

From the examples of hierarchically organised systems the following ideas, by no means 

exemplified in all the systems, can be collected: 

2.1. Levels. A system belongs to a well-defined category of systems having an autonomous 

specification; this category we refer to as a Level of abstraction. 

2.2. Composition. Each level of abstraction is characterised by a collection of basic 

systems and a collection of composition tools for system construction. The systems of 

the level are all manufactured by applying the composition tools to basic systems. 

2.3. Architecture. The structure or architecture of each system is defined by the way 

the system is configured from the basic system components by the composition tools. 

2.4. Hierarchy. Two levels of abstraction L1 and L2 may be hierarchically ordered: in 

symbols, L1 <L 2 meaning that L1 is below L2 and that L2 is above L1 . The relationship 

between the systems of levels L1 and L2 is expressed as follows: 

(i) The view from below: the systems of L2 are abstractions or modularisations 

of the systems of L1 . 

(ii) The view from above: the systems of L1 are specialisations, refinements, or 

implementations of the systems of L2 

We imagine mappings 

ab: L1 -+ L2 for abstraction 

sp: L2 -T L1 for specialisation. 

Abstraction and specialisation mechanisms are inverse to one another if ab0 sp spoab 

identity. 

2.5. Hierarchy and system Architecture. A method of abstraction or specialisation must 

respect system structure or architecture at both levels of abstraction. 

2.6. Bottom-up and Top-down Hierarchies. A bottom-up hierarchy is a collection of levels 

of abstraction L1 , ... ,Ln and structure preserving abstraction operations ab1 , ... ,abn-l; 



38 

in symbols: 

ab1 abn-l 
Ll ~ L2 - •• • --+ Ln-1 ___,. Ln 

Thus in a bottom-up hierarchy system architectures at high levels reflect the structure 

of systems at low levels. 

The concept of a top-do!JJn hierarchy is characterised in a similar way using spe­

cialisations. 

3 • ALGEBRAIC MODEL OF SYSTEM ORGANISATION 

The ideas of the last section may be formalised as follows: 

3.1. Levels of Abstraction. A level of abstraction is represented by an algebra A 

whose elements are systems. The composition tools for system construct.ion at the level 

A are the operations of the algebra A. The basic components for system construction at 

the level A are collected in a set G of generators for the algebra A. 

3.2. Architectures. A notation for system architectures for a level of abstraction A 

is made as follows: the components or generators G of A are named by a set of symbols 

X and the composition operators are named from the signature t of A. The algebra T(t,X) 

of all t-terms over X is an algebra of system notations for A that represents the sys­

tem configurations possible by means of applying the composition tools to the basic 

components. The unique semantic homomorphism v: T (I ,X) +A formalises the concept of 

system architecture in these two definitions: An architecture for a system a e A is a 

term t e T(t ,X) such that v(t) = a. TWo architectures t 1 and t 2 are equivalent as A­

systems if v(t1 l = vCt2l. 

3.3. Realisations. Let A1 and A2 be two levels of abstraction. Then the systems of A1 
are :r>ealisable as systems of A2 if there is a homomorphism 4>: A1 + A2 i the map 4> may be 

called a realisation. Abstractions (modularisations) and specialisations (refinements, 

implementations) are instances of system realisations. We do not allow an algebraic 

status to these ideas of abstraction and specialisation. 

3.4. Hierarchy. A hierarchy is a sequence of levels of abstractions and realisations 

Again we notice that it is not an algebraic matter that A1 is the top of a top-down 

hierarchy of specialisations or, alternatively, the bottom of a bottom-up hierarchy 

of abstractions. 

3.5. System Laws. The development of a theory for a class of systems using these ideas 

requires a set of properties of the system composition tools to serve as algebraic 

axioms: an algebraip theory begins with the choice of its basic laws. These laws are 

established by investigating the semantics of the systems and by evaluating the mathe-
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matics the laws support. Ideally, the axioms should be formally elegant and small in 

number, to be easy to memorise and to aid calculation. And the set of axioms allows 

the construction of free objects for the category of all its models to service the con­

cept of system architectures. 

3.6. Concurrent Systems. In the sequel a set of axioms for concurrent processes (ACP) 

is presented. Many general laws for concurrent processes have been found in the course 

of studies by R. Milner and his collaborators and a number of calculi have been formed: 

Milner (21], Hennessy (18]. A search for laws relevant to CSP and OCCAM has also star­

ted as part of the study of semantics of that attractive syntax for concurrency: Hoare, 

Brookes and Roscoe (20], Olderog and Hoare (24]. 

In contrast, the laws of ACP are made to support an exclusively algebraic study 

of concurrency. The axioms are used as a kernel of properties of composition operators 

with which further laws may be employed on occasion to prove a result (see 6.1). 

It is hoped that the theory of ACP will be an interesting instrument to analyse con­

currency and will be of use in the analysis of other calculi. 

Semantically, the models of ACP represent distinct levels of abstraction of con­

current systems implemented in agreement with the specifications represented by the 

axioms of ACP. The homomorphisms of ACP algebras represent the abstractions and speci­

alisations between such levels of abstraction for ACP systems. 

4 . ALGEBRA OF COMMUNICATING PROCESSES 

We will introduce an algebraic system for the analysis of connnunicating systems made 

from given systems by means of the following composition tools: for communicating sys­

tems x and y we allow the operations of 

sequential,, composition 

aiternative composition 

pa:r>aiiei composition 

encapsuiation 

our analysis will also involve a finite collection of atomic systems and their pattern 

of communication. 

4.1. ACP-algebras. Let A be a finite set, called the set of atomic actions. An ACP­

a1,,gebra over A consists of a set P equipped with operators 

All operators are binary, except the constant 6, a distinguished atomic action and the 

unary H-projection (H~A) aH. The set P contains A as a subset on which communication 

' I • restricts as a map I : A x A+ A. 

These operations satisfy the following equational axioms, where a,b,c vary over 

A and x,y,z over P. Often we will write instead of x•y just xy. 
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x + y = y + x 

x + (y + z) {x + y) + z 

x + x = x 

{x + y)•z = x•z + y•z 

{x•y) •z = x• {y•z) 

x + Ii = x 

o•X = o 

a[b = bla 

(albl I c = al (bi c) 

o [a = a 

xl!y = xll_y + yll_x + x)y 

all_x = a•x 

(ax) [Ly= a{x!lyl 

(x + y) ll_ z = x lL z + y ll_ z 

(axllb= (albl•x 

a[(bx) = (a[b)•x 

{ax) I {by)= (aJbl• {x)[yl 

(x + y)Jz = xJz + ylz 

x I (y + zl = x I y + x I z 

aH{a) = a if a¥ H 

aH(a) o if a e H 

aH {X) + aH (y} 

Axioms of ACP 

Al 

A2 

A3 

A4 

AS 

A6 

A7 

Cl 

C2 

C3 

CMl 

CM2 

CM3 

CM4 

CMS 

CM6 

CM7 

CM8 

CM9 

Dl 

D2 

D3 

D4 
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4.2. Commentary. On intuitive grounds x•(y + z) and x•y + x•z present different mecha­

nisms and an axiom x•(y + z) = x•y + x•z is not included in ACP. 

The constant o is to be interpreted as an action which cannot be performed, hence 

ox = o; the law x + o = x postulates that in the context of an alt~rnative it will ne­

ver be chosen. 

The source of intuition for the \\-operation axioms is the arbitrary interleaving 

semantics of parallelism. The operations lL , left-merge, and I , communication merge, 

are auxiliary operations helpful in obtaining a finitary specification of \\. The essen­

tial algebraic properties of LL and \ are the linearity laws CM4, CMB, CM9. Intuitive­

ly, xlL_y is x\\y but takes its initial step from x; and x\y is xl\Y but takes its ini­

tial step as a communication of an initial action of x and an initial action of y. 

4.3. Generators. Let P be a process algebra over A. A subalgebva Q of P is a subset Q 

of P containing A and closed under all the operations. 

Let X = {xi \ i EI} be a subset of a process algebra P over A. The smallest subal­

gebra of P containing X is denoted by <x>. The algebra P is said to be generated by a 

subset x if P = <x>. 

4. 4. Homomorphisms. Let P and Q be process algebras over A. A homomovphism <l>: P ... Q is 

a map which respects all operations and which leaves atoms invariant. The image of a 

homomorphism <I>: P ... Q is an A-subalgebra of Q, denoted by $(P). 

4.5. Syntax and Semantics. Let P be an ACP-algebra with atom set A. We define the com­

munication function yp: Ax A+ A for P by: 

yp(a,b) = a\b. 

Given a function y: Ax A ... A, one defines ACP Y as the class of all ACP-algebras P with 

YP = Y. Clearly for ACPY to be nonempty, y must satisfy the requirements Cl-3. 

Let us now fix a communication function y that satisfies Cl-3. Then ACPY contains 

an initial algebra denoted by Aw. Let x1 , ... ,Xk be a set of formal symbols. Now 

Aw[x1 , ... ,Xkl is the free ACPY-algebra over k generators. 
According to the thesis of ADJ [l,2]one conceives Aw[x1 , ... ,Xkl as an algebra of 

system notations, finding their semantics as homomorphic images. Indeed, if p1 , ... ,pk 

are processes in P, an ACPY-algebra, then there is a unique homomorphism 

$: Aw[X1•·· .,Xk] ... p 

mapping Xi to pi. If we see tll'! pi as realisations of the Xi, then <l> extends these re­

alisations to all system notations in Aw(x1 , ... ,Xk]. 

on Aw one defines projection operators (.) n 

(a) n = a 

(axl 1 = a 

(axl n+l a (x) n 

(x + y) n = (x) n + (y) n • 

A ... A as follows: w w 
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For each n;> 1 a congruence relation =n on Aw is obtained by 

x "n Y <=> (x)n = (y)n. 

The algebras Aw/=n are again ACPY-algebras. We write An for Aw/=n· 

Clearly, (.)n induces a homomorphism 

(.)n: An+l +An' 

The chain A1 ~A2 ~ A3 ~ ... determines a projective Limit which we denote 

by A"". 

5. SOLVING RECURSION EQUATIONS 

Consider the algebra Aw[x1 , ... ,Xk] and let Ebe a system of equations: 

where the terms ti are built from the constants and operations of ACP and the variables 

from X = cx1 , ... ,Xk). This system generates a congruence =Eon Aw[x1 , ... ,Xk]. We will 

consider the quotient algebra Aw[x1 , ... ,Xk]/:E, also denoted as 

A(&)[X]/X=t(X), or Aw (X,E) 

where X = t(X) is short for the system of equations E. This algebra is also in ACPY. 

In Aw(X,E) the Xi are solutions of E. In this way we have a purely algebraic method for 

solving fixed point equations. 

It can be shown that for each system of equations E, there exists a homomorphism 

4': A (X,E) +A"". 
w 

In the case of a single equation this was shown in Bergstra and Klop [11]. The homomor­

phism need not be unique. 
... 

From this observation one concludes that A solves all systems of fixed point equa-

tion~, and that Aw(X,E) is guaranteed to have a nontrivial structure. The algebra Aw(X,E) 

is a countable semicomputable structure, whereas A"' is uncountable. 

ProbLem: Under which circumstances is Aw(X,E) computable? 

6. SOME MATHEMATICAL PROPERTIES OF ACP-ALGEBRAS 

Consider A00 , whose domain consists of terms built from A,+, •, II, 1L, I, aH. 
In fact it can be shown (12) that each term t is equivalent to a term t' built using 

A, + and • only: 

NORMAL FORM THEOREM. For each aLosea term t there is a aLosed term t' not containing 

11 , IL , I , aH such that ACP f- t = t' • 
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6.1. Algebras with Standard Concurrency and Handshaking. A useful intuition about com­

municating processes is to postulate that II is commutative and associative. This leads 

to the following requirements for II, tL and I, called axioms of standa:!'d aoncU:t'~enay: 

cxll y) li..z = xll (y!lzl 

Cxly> lL z = xl Cytlz> 

xly = ylx 

xl!Y = YllX 

xl Cylzl = Cxlyl lz 

xii Cy!lzl = Cxllyl llz 

These axioms are not independent relative to ACP, for instance commutativity and asso­

ciativity of II are derivable from the other axioms. 

In (12] it is shown that A and A• satisfy the axioms of standard concurrency. 
w 

Moreover, matters are greatly simplified by adopting the hands'haking axiom: 

x I y I z a. 

Both CSP and CCS adopt this axiom. The handshaking axiom implies that all proper com­

munications are binary. 

Let P be an ACP-algebra with standard concurrency and handshaking. Let x 1 , •.• ,xk 

be processes in P. We make_t~e following abbreviations: x! is obtained by merging 
l., J x 1 , •.• ,xk except xi' and Xk is obtained by merging x1 , •.• ,xk except xi,xj. Here we 

suppose k~3. Then one easily proves the following generalisation of the ACP-axiom CMl: 

EXPANSION THEOREM. 

6.2. Literature. We will catalogue the principal influences on ACP. In addition to 

work on calculi for concurrency, from Milner's CCS we have adopted the laws Al-5 and 

the idea of the expansion theoremi Milner's restriction operator is here called the 

encapsulation operator. (In (13] Milner's ~-laws have been incorporated in the algebra­

ic framework.) From Hennessy (18] we have adopted laws Cl and C2. 

The left-merge Li_ and projective limit Am first appeared in (11]. The full system 

ACP, including I, was introduced in (12]. Our work on ACP arose from a question in De 

Bakker and Zucker [8] about the existence of solutions for non-guarded fixed point 

equations in their topological model of processes (A• is equivalent to their space of 

uniform processes) • 
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