
Operations Research Techniques

in Constraint Programming

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301633886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ILLC Dissertation Series DS-2005-02

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam
Plantage Muidergracht 24

1018 TV Amsterdam
phone: +31-20-525 6051
fax: +31-20-525 5206

e-mail: illc@wins.uva.nl
homepage: http://www.illc.uva.nl/

Operations Research Techniques

in Constraint Programming

Academisch Proefschrift

ter verkrijging van de graad van doctor aan de

Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof.mr. P.F. van der Heijden

ten overstaan van een door het college voor

promoties ingestelde commissie, in het openbaar

te verdedigen in de Aula der Universiteit

op dinsdag 19 april 2005, te 12.00 uur

door

Willem-Jan van Hoeve

geboren te Noordoostpolder

Promotiecommissie:

Promotor:
prof.dr. K.R. Apt

Overige leden:
prof.dr. P. van Emde Boas
prof.dr.ir. A.M.H. Gerards
prof.dr. M. de Rijke
prof.dr. A. Schrijver
dr. M. Laurent
dr. M. Milano
dr. L. Torenvliet

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The research reported in this thesis has been carried out at the Centrum voor
Wiskunde en Informatica.

Copyright c© 2005 by Willem-Jan van Hoeve

Printed and bound by PrintPartners Ipskamp, Enschede.

ISBN 90–6196–529–2

Preface

The past four and a half years I have been a PhD student at the CWI in
Amsterdam, with great pleasure. I have carried out my research in the group
PNA1, which contains researchers from operations research as well as con-
straint programming. This turned out to be a fertile basis for my investiga-
tions on the combination of the two fields. My supervisor, Krzysztof Apt, was
working on a somewhat different research topic. To illustrate this, we have
not written a single joint paper in all those years, although this is probably
also due to his ethical views on science. As a result, I have performed my
research rather independently, which I have appreciated very much. Never-
theless, Krzysztof has supported and advised me in many different ways. I
want to thank him for his guidance and, perhaps as important, confidence.

Krzysztof realized that a background in constraint programming and op-
erations research alone is not necessarily sufficient to perform interesting re-
search on their combination. Hence, I was sent to Bologna, to collaborate with
an expert in the field: Michela Milano. I have visited Bologna several times,
and these visits turned out to be very fruitful. Apart from the papers we have
written together, Michela has also acted as a mentor in the research process.
I believe that her influence has been very important for my development. For
all this I am very grateful to her.

Another pleasant aspect of my visits to Bologna has been the “working
environment”. I am very thankful to Andrea Lodi, Andrea Roli, Paolo Torroni,
and all other members of the Drunk Brain Band for their hospitality, company,
and (in some cases) interesting discussions about research issues.

During the past year I have also successfully collaborated with Gilles Pe-
sant and Louis-Martin Rousseau. I want to thank them for this experience
and for hosting me for a month in Montreal. Further, I am thankful to Eric
Monfroy for interesting discussions and a very enjoyable visit to Nantes. Many
of the above visits would not have been possible without the support of the
CWI, which I have very much appreciated.

At the CWI, I have benefited enormously from the seminars and the knowl-
edge of the members of PNA1. I want to thank all of them, in particular Bert

vi Preface

Gerards, Monique Laurent and Lex Schrijver, for their support. There are
many other people that have made the CWI a stimulating and pleasant envi-
ronment. Among them are Peter Zoeteweij, the members of PIMB (the CWI
Christmas band), Pieter Jan ’t Hoen, and last, but not least, Sebastian Brand,
who has been an exemplary roommate.

Finally, I am very grateful to Aafke for her patience and support.

Amsterdam, March 2005 Willem-Jan van Hoeve

Table of Contents

1 Introduction . 1
1.1 Motivation . 1
1.2 Contributions and Outline . 4

2 Foundation . 7
2.1 Operations Research . 7

2.1.1 Graph Theory . 7
2.1.2 Linear Programming . 12
2.1.3 Semidefinite Programming . 14

2.2 Constraint Programming . 15
2.2.1 Basic Notions . 15
2.2.2 Propagation . 16
2.2.3 Search . 17

Part I: Propagation 25

3 A Systematic Overview of the Alldifferent Constraint 27
3.1 Introduction . 27
3.2 Combinatorial Background . 29

3.2.1 Alldifferent and Bipartite Matching 29
3.2.2 Hall’s Marriage Theorem . 30

3.3 Local Consistency Notions . 31
3.4 Propagation for Local Consistency Notions 33

3.4.1 Local Consistency of a Decomposed CSP 33
3.4.2 Bounds Consistency . 36
3.4.3 Range Consistency . 38
3.4.4 Hyper-arc Consistency . 39
3.4.5 Complexity Survey and Discussion 42

3.5 Variants of the Alldifferent Constraint . 43
3.5.1 The Symmetric Alldifferent Constraint 43

viii Table of Contents

3.5.2 The Weighted Alldifferent Constraint 46
3.6 The Alldifferent Polytope . 50
3.7 Conclusion . 52

4 Soft Global Constraints . 53
4.1 Introduction . 53
4.2 Related Literature . 55
4.3 Outline of Method . 56

4.3.1 Constraint Softening and Violation Measures 56
4.3.2 Propagation of Soft Constraints . 58

4.4 Soft Alldifferent Constraint . 60
4.4.1 Definitions . 60
4.4.2 Graph Representation . 61
4.4.3 Variable-Based Violation Measure 62
4.4.4 Decomposition-Based Violation Measure 63

4.5 Soft Global Cardinality Constraint . 65
4.5.1 Definitions . 65
4.5.2 Graph Representation . 68
4.5.3 Variable-Based Violation Measure 69
4.5.4 Value-Based Violation Measure . 70

4.6 Soft Regular Constraint . 72
4.6.1 Definitions . 72
4.6.2 Graph Representation . 74
4.6.3 Variable-Based Violation Measure 75
4.6.4 Edit-Based Violation Measure . 76

4.7 Soft Same Constraint . 78
4.7.1 Definitions . 78
4.7.2 Graph Representation . 79
4.7.3 Variable-Based Violation Measure 80

4.8 Aggregating Soft Constraints . 81
4.9 Conclusion . 82

Part II: Search 85

5 Postponing Branching Decisions . 87
5.1 Introduction . 87
5.2 Outline of Method . 88
5.3 Theoretical Analysis . 90
5.4 Computational Results . 93

5.4.1 Travelling Salesman Problem . 95
5.4.2 Partial Latin Square Completion Problem 96

5.5 Discussion and Conclusion . 98

Table of Contents ix

6 Reduced Costs as Branching Heuristic . 99
6.1 Introduction . 99
6.2 Solution Framework . 101

6.2.1 Building a Linear Programming Relaxation 101
6.2.2 Domain Partitioning using Reduced Costs 102
6.2.3 Discrepancy Constraint . 104

6.3 Discrepancy-Based Bound Improvement . 105
6.4 The Travelling Salesman Problem . 107

6.4.1 Constraint Programming Model . 107
6.4.2 Integer Linear Programming Model 109
6.4.3 Linear Programming Relaxation . 110

6.5 Computational Results . 111
6.5.1 Implementation . 111
6.5.2 Quality of Heuristic . 111
6.5.3 Symmetric TSP Instances . 114
6.5.4 Asymmetric TSP with Time Windows Instances 116

6.6 Discussion and Conclusion . 117

7 Semidefinite Relaxation as Branching Heuristic 119
7.1 Introduction . 119
7.2 Motivation . 120
7.3 Solution Framework . 120

7.3.1 Building a Semidefinite Relaxation 120
7.3.2 Applying the Semidefinite Relaxation 122

7.4 The Stable Set Problem . 123
7.4.1 Integer Programming Models . 123
7.4.2 Semidefinite Programming Relaxation 124

7.5 Computational Results . 126
7.5.1 Implementation . 126
7.5.2 Characterization of Problem Instances 126
7.5.3 Random Weighted and Unweighted Graphs 128
7.5.4 Graphs Arising from Coding Theory 128
7.5.5 Graphs from the DIMACS Benchmarks Set 130

7.6 Discussion and Conclusion . 133

Perspectives . 135

References . 137

Index . 149

Samenvatting . 153

Chapter 1

Introduction

1.1 Motivation

A combinatorial problem is the problem of finding an object with some desired
property among a finite set of possible alternatives.

Many problems from industry exhibit a combinatorial nature. An example
is the optimal routing of trucks to deliver goods from a depot to customers.
There are many alternatives to distribute the goods among the trucks, and for
each such distribution there are many alternative routes for each individual
truck. Moreover, often we are restricted to deliver goods only within a certain
time frame for each customer. This makes the search for an optimal solution
even harder, because there may only be a few optimal solutions, respecting
the time frames, among a huge set of possible alternatives. To solve combi-
natorial problems, we cannot simply consider all exponentially many possible
alternatives.

Some combinatorial problems are solvable by an algorithm whose running
time is bounded by a polynomial in the size of the representation of the
problem. These problems are considered to be efficiently solvable, and are
said to belong to the class P. For other problems such method is not known
to exist and they are classified as follows. If we can determine in polynomial-
time whether or not a particular alternative is a solution to a certain problem,
the problem is said to be in the class NP. Note that all problems in P are also
in NP. If a problem is in NP and moreover every other problem in NP can
be transformed to this problem in polynomial time, the problem is said to be
NP-complete. NP-complete problems are the hardest problems in NP. In this
thesis we focus on solution methods for NP-complete combinatorial problems.

Several solution methods have been proposed to solve combinatorial prob-
lems faster. However, many real-life problems are still (yet) unsolvable, even
when such techniques are applied, so further research is necessary. In this
thesis we consider techniques from operations research and constraint pro-
gramming to model and solve combinatorial problems.

2 Chapter 1. Introduction

Operations Research

The field of operations research, sometimes also called management science,
became an independent discipline in the late 1930’s, although its foundations
were laid earlier. The emergence of this discipline was motivated by the need
to efficiently plan military operations during world war II. Hence the name
“operations” research. A proper definition for this field, including all of its still
growing branches, is hard to provide. According to the Institute for Operations
Research and the Management Sciences1:

“Operations Research and the Management Sciences are the profes-
sional disciplines that deal with the application of information tech-
nology for informed decision-making.”

However, this definition may not be sufficiently specific to distinguish it from
related fields. In particular, constraint programming could also be viewed as a
part of operations research, while we wish to distinguish the two in this thesis.

Instead of following a definition, we will use the term “operations research”
to specify a particular set of methods and solution techniques for combina-
torial problems. This set includes for example techniques from graph theory,
(integer) linear programming and semidefinite programming. Many of these
methods can be characterized by the fact that they provide efficient solution
techniques for specific problems. Another common feature of these methods is
that they are particularly useful for optimization problems.

Consider for example linear programming. In linear programming, a prob-
lem needs to be represented by linear equations (or inequalities) on continuous
variables. Given such representation, linear programming can solve the prob-
lem in polynomial time. If the problem cannot be expressed by linear equa-
tions or inequalities on continuous variables, we cannot apply the efficient
linear programming algorithms. This is often the case, for example because
some of the problem variables should be integral.

Many operations research techniques have proven to be very useful in
practice. For many real-life problems, operations research provides the method
of choice, in particular those problems that match the above characterizations.

Constraint Programming

The field of constraint programming is relatively new; the first international
workshop on “Principles and Practice of Constraint Programming” was held in
1993, while it became a conference in 1995. The basic concepts of constraint
reasoning were developed in the field of artificial intelligence in the 1970s.
Further development took place after the introduction of constraints in logic
programming in the 1980s.

A constraint can be viewed as a restriction on the space of possible al-
ternatives. For example, a constraint of the above truck routing problem is:

1 See http://www.informs.org/.

Section 1.1. Motivation 3

“visit each customer within its time frame”. Often one can formulate a combi-
natorial problem by means of a number of constraints. The idea of constraint
programming is to systematically search through a set of possible alternatives,
and to use each constraint individually to detect whether a certain set of al-
ternatives may be omitted because it contains no solution. The latter process
is called constraint propagation.

Because the constraints are verified individually, constraint programming
can be characterized as being flexible and generic. For example, if a problem
changes, we may simply add a new constraint without affecting the previous
model. Another characterization is that constraint programming is particu-
larly suitable for feasibility problems rather than optimization problems.

The generality of constraint programming may seem to limit its practi-
cal usage. However, it has been applied successfully to a number of real-life
problem instances, for example scheduling problems.

A Combined Approach

When we want to solve a problem, we need to choose which method is most
appropriate to apply. The differences between constraint programming and
operations research should be taken into account when making this choice.
For each problem, we should first identify its characteristics, and then apply
the method that matches the problem’s characteristics best.

Unfortunately, many practical problems are not characterized to exclu-
sively match either constraint programming or operations research. Instead,
they fit in the format of both fields. Consider for example again the problem
of optimally routing trucks to deliver goods from a depot to customers, where
we must visit each customer within its time frame. The optimization compo-
nent of this problem typically asks for an operations research approach, while
the scheduling component, arising from the time frames, is most suitable for
constraint programming. This motivates the need for a combined approach.

Fortunately, the generality and flexibility of constraint programming allows
the combination of the two fields. This leads to the topic of this thesis:

In this thesis we investigate the application of operations
research techniques in constraint programming.

We propose to apply operations research techniques both during the search
phase and the propagation phase of constraint programming. During the prop-
agation process we use techniques from graph theory. During search, we apply
linear and semidefinite relaxations to guide the direction of search and to im-
prove the optimization component.

The combination of operations research and constraint programming is a
natural idea, because both methods can be used to solve the same problems,
and they have complementary strengths and weaknesses. Many different com-
binations have been studied in the past. They range from specialized hybrid

4 Chapter 1. Introduction

algorithms for specific problems up to the complete integration of the two
fields. The successful results have led to an annual international workshop on
“the integration of artificial intelligence and operations research techniques
in constraint programming for combinatorial optimisation problems” (CP-
AI-OR), starting in 1999, which became a conference in 2004. We refer to
Chandru and Hooker [1999], Hooker [2000] and Milano [2003] for a collection
of successful combinations. More detailed references will be presented when
appropriate in each following chapter.

1.2 Contributions and Outline

As described above, the solution method of constraint programming consists of
search combined with constraint propagation. We propose to exploit operations
research techniques in both components. The first part of the thesis is devoted
to constraint propagation, and will mainly describe theoretical results. The
second part considers search techniques. That part also contains a considerable
amount of experimental results. Below we list the contributions of the thesis
by chapter.

Part I: Propagation

A Systematic Overview of the Alldifferent Constraint. This chapter
gives an overview of existing propagation algorithms for the alldifferent
constraint. The contribution of this chapter is the presentation of previous
results in a systematic way, based on the same combinatorial principles.
Furthermore, several of the propagation algorithms are based on tech-
niques from operations research. Hence, this chapter provides a basis for
further application of such methods in constraint programming via prop-
agation algorithms.

This chapter is an extended and revised version of the paper [van Hoeve,
2001].

Soft Global Constraints. In this chapter we consider over-constrained prob-
lems, for which no solution exists. In order to handle such problems some
constraints are softened. Soft constraints induce a cost of violation and
the aim is to minimize the total violation cost.
For many soft global constraints no efficient propagation algorithm was
previously available. In this chapter we introduce a generic method for
softening global constraints that can be represented by a flow in a graph.
We represent the cost of violation by additional violation arcs and compute
a minimum-cost flow in the extended graph. This can be done efficiently
with an operations research method, i.e. flow theory. We apply our method

Section 1.2. Contributions and Outline 5

to a number of global constraints, and obtain efficient propagation algo-
rithms.

Parts of this chapter are based on the papers [van Hoeve, 2004] and [van
Hoeve, Pesant, and Rousseau, 2004]. It should be mentioned that the de-
fendant made significant contributions to the latter (co-authored) paper.

Part II: Search

Postponing Branching Decisions. Constraint programming uses a search
tree to find a solution to a problem. We propose to postpone a branching
decision in case two or more branches are equally likely to be successful.
We provide a theoretical and experimental analysis of this method. The
framework will prove to be very useful in the next chapter, when we use
information from a linear relaxation to guide the search.

This chapter is based on the papers [van Hoeve and Milano, 2003] and
[van Hoeve and Milano, 2004]. It should be mentioned that the defendant
made significant contributions to these papers and was responsible for the
implementation of the method.

Reduced Costs as Branching Heuristic. In this chapter we propose to
use reduced costs as branching heuristic in the constraint programming
search tree. Reduced costs are obtained by solving a linear relaxation of
the problem. By applying the “decision postponement” framework (see
above) and limited discrepancy search, we also show how to improve the
bound of this linear relaxation during search. Experimental results indi-
cate the usefulness of our method.

This chapter is a revised version of the papers [Milano and van Hoeve,
2002a] and [Milano and van Hoeve, 2002b]. It should be mentioned that
the defendant made significant contributions to these papers and was re-
sponsible for the implementation of the method.

Semidefinite Relaxation as Branching Heuristic. In this chapter we in-
vestigate the usage of a semidefinite relaxation in constraint programming.
We apply the solution to the relaxation as a branching heuristic in the
constraint programming search tree. Additionally, the solution yields a
bound on the objective value. Computational results show that constraint
programming can indeed benefit from semidefinite relaxations.

This chapter is based on the papers [van Hoeve, 2003b], [van Hoeve, 2003a]
and [van Hoeve, 2005].

Chapter 2

Foundation

This chapter presents the fundaments on which we base our work. From
operations research we introduce concepts from graph theory, linear
programming and semidefinite programming. Constraint programming
will be presented in more depth, because it is the skeleton of our solution
method.

2.1 Operations Research

2.1.1 Graph Theory

This section is for a large part based on the book [Schrijver, 2003].

Basic Notions

A graph or undirected graph is a pair G = (V,E), where V is a finite set of
vertices and E is a family1 of unordered pairs from V , called edges. An edge
between u ∈ V and v ∈ V is denoted as uv.

Given a graph G = (V,E), the complement graph of G is G = (V,E) where
E = {uv | u, v ∈ V, uv /∈ E, u 6= v}.

We say that sets S1, S2, . . . , Sk are (pairwise) disjoint if Si ∩ Sj = ∅ for
all distinct i, j ∈ {1, . . . , k}. A partition of a set S is a collection of disjoint
subsets of S with union S. A graph G = (V,E) is bipartite if there exists a
partition S, T of V such that E ⊆ {st | s ∈ S, t ∈ T}.

A walk in a graph G = (V,E) is a sequence P = v0, e1, v1, . . . , ek, vk where
k ≥ 0, v0, v1, . . . , vk ∈ V , e1, e2, . . . , ek ∈ E and ei = (vi−1, vi) for i = 1, . . . , k.
If there is no confusion, P may be denoted as v0, v1, . . . , vk or e1, e2, . . . , ek.
A walk is called a path if v0, . . . , vk are distinct. A closed walk, i.e. v0 = vk,
is called a circuit if v1, . . . , vk are distinct.

A graph G = (V,E) is connected if for any two vertices u, v ∈ V there is a
path connecting u and v. A graph is a tree if it is connected and contains no
circuits.

A directed graph, or a digraph, is a pair G = (V,A) where V is a finite
set of vertices and A is a family of ordered pairs from V , called arcs. A pair
occurring more than once in A is called a multiple arc. An arc from u ∈ V

1 A family is a set in which elements may occur more than once. In the literature
it is also referred to as multiset .

8 Chapter 2. Foundation

to v ∈ V is denoted as (u, v). For v ∈ V , let δin(v) and δout(v) denote the
family of arcs entering and leaving v, respectively. A vertex v with δin(v) = 0
is called a source. A vertex v with δout(v) = 0 is called a sink .

A digraph G = (V,A) is called a rooted tree if it has exactly one source
and the underlying undirected graph is a tree. The source is called the root .

A directed walk in a digraph G = (V,A) is a sequence P = v0, a1, v1, . . . , ak,
vk where k ≥ 0, v0, v1, . . . , vk ∈ V , a1, a2, . . . , ak ∈ A and ai = (vi−1, vi) for
i = 1, . . . , k. Again, if there is no confusion, P may be denoted as v0, v1, . . . , vk

or a1, a2, . . . , ak. A directed walk is called a directed path if v0, . . . , vk are
distinct. A closed directed walk, i.e. v0 = vk, is called a directed circuit if
v1, . . . , vk are distinct.

A digraph G′ = (V ′, A′) is a subgraph of a digraph G = (V,A) if V ′ ⊆ V
and A′ ⊆ A.

A digraph G = (V,E) is strongly connected if for any two vertices u, v ∈ V
there is a directed path from u to v. A maximally strongly connected nonempty
subgraph of a digraph G is called a strongly connected component , or SCC, of
G. Here ‘maximal’ is taken with respect to subgraphs. We sometimes identify
an SCC with its vertices.

Matching Theory

We present only those concepts of matching theory that are necessary for
this thesis. For more information on matching theory we refer to Lovász and
Plummer [1986], Gerards [1995] and Schrijver [2003, Chapter 16–38].

Given a graph G = (V,E), a matching in G is a set M ⊆ E of disjoint
edges, i.e. no two edges in M share a vertex. A matching is said to cover a
set S ⊆ V if all vertices in S are an endpoint of an edge in M . A vertex
v ∈ V is called M -free if M does not cover v. The size of a matching M is
|M |. The maximum matching problem is the problem of finding a matching
of maximum size in a graph.

Given a matching M in G, an M -augmenting path is a sequence v0, v1, . . . ,
vk, with vi ∈ V distinct, k is odd, and the edges (vi, vi+1) are alternatingly
not in M (for i ∈ {0, 2, 4, . . . , k − 1}) and in M (for i ∈ {1, 3, 5, . . . , k − 2}).
For k odd or even, we call the path M -alternating. An M -alternating circuit
is a sequence v0, v1, . . . , vk with vi ∈ V , v1, . . . , vk distinct, v0 = vk, k is
even, and the edges (vi, vi+1) are alternatingly in M and not in M . On an
M -augmenting path, we can exchange edges in M and not in M , to obtain
a matching M ′ with |M ′| = |M | + 1. The following result is due to Petersen
[1891].

Theorem 2.1. Let G = (V,E) be a graph, and let M be a matching in G.
Then either M is a maximum-size matching, or there exists an M -augmenting
path.

Section 2.1. Operations Research 9

Proof. If M is a maximum-size matching, then there exists no M -augmenting
path, because otherwise exchangement of edges on this path gives a larger
matching.

If M ′ is a matching larger than M , consider the graph G′ = (V,M ∪M ′).
In G′, each vertex is connected to at most two edges. Hence, each component
of G′ is either a circuit or a path (possibly of length zero). As |M ′| > |M |
there is at least one component containing more edges of M ′ than of M . This
component forms an M -augmenting path. ¤

Hence, a maximum-size matching can be found by iteratively computing
M -augmenting paths in G and extending M . If G is bipartite, say with par-
tition V1, V2 of V , we can compute a maximum-size matching in O(|E|

√
V1)

time, where we assume |V1| ≤ |V2|, following Hopcroft and Karp [1973]. In
general graphs a maximum-size matching can be computed in O(|V | |E|) time
[Edmonds, 1965] or even O(|E|

√

|V |) time [Micali and Vazirani, 1980].

Flow Theory

We present only those concepts of flow theory that are necessary for this the-
sis. For more information on flow theory we refer to Ahuja, Magnanti, and
Orlin [1993] and Schrijver [2003, Chapter 6–15].

Let G = (V,A) be a directed graph and let s, t ∈ V . A function f : A → R

is called a flow from s to t, or an s − t flow, if

(i) f(a) ≥ 0 for each a ∈ A,
(ii) f(δout(v)) = f(δin(v)) for each v ∈ V \ {s, t}. (2.1)

Here f(S) =
∑

a∈S f(a) for all S ⊆ A. Property (2.1)(ii) ensures flow conser-
vation, i.e. for a vertex v 6= s, t, the amount of flow entering v is equal to the
amount of flow leaving v.

The value of an s − t flow f is defined as

value(f) = f(δout(s)) − f(δin(s)).

In other words, the value of a flow is the net amount of flow leaving s. This
is equal to the net amount of flow entering t.

Let d : A → R+ and c : A → R+ be a “demand” function and a “capacity”
function, respectively. We say that a flow f is feasible if

d(a) ≤ f(a) ≤ c(a) for each a ∈ A.

Let w : A → R be a “weight” function. We often also refer to such function
as a “cost” function. For a directed path P in G we define w(P) =

∑

a∈P w(a).
Similarly for a directed circuit. The weight of any function f : A → R is defined
as

10 Chapter 2. Foundation

weight(f) =
∑

a∈A

w(a)f(a).

A feasible flow is called a minimum-weight flow if it has minimum weight
among all feasible flows with the same value. Given a graph G = (V,A) with
s, t ∈ V and a number φ ∈ R+, the minimum-weight flow problem is: find a
minimum-weight s − t flow with value φ.

Let f be an s− t flow in G. The residual graph of f (with respect to d and
c) is defined as Gf = (V,Af) where

Af = {a | a ∈ A, f(a) < c(a)} ∪ {a−1 | a ∈ A, f(a) > d(a)}.

Here a−1 = (v, u) if a = (u, v). We extend w to A−1 = {a−1 | a ∈ A} by
defining

w(a−1) = −w(a)

for each a ∈ A.
In order to compute a minimum-weight s − t flow of a given value we use

the following notation. Any directed path P in Gf gives an undirected path
in G = (V,A). We define χP ∈ RA by

χP (a) =

1 if P traverses a,
−1 if P traverses a−1,

0 if P traverses neither a nor a−1,

for a ∈ A. We define χC ∈ RA similarly for a directed circuit C in Gf .
Using the above notation, a feasible s − t flow in G with value φ and

minimum weight can be found using Algorithm 1. It is sometimes referred
to as the successive shortest path algorithm. The algorithm consists of two
phases. The first phase tries to find a feasible flow of minimum weight that
respects the demand for all arcs. This is done by adding the arc (t, s) to G,
whereafter we successively update the flow for each arc whose demand is not
yet respected. Then we remove the arc (t, s) and continue with the second
phase, if necessary. In the second phase we extend the flow of phase one, until
its value is φ. It can be proved that for integer demand and capacity functions
Algorithm 1 finds an integer s− t flow with minimum weight; see for example
Schrijver [2003, p. 175–176].

The time complexity of Algorithm 1 is O(φ · SP), where SP is the time to
compute a shortest directed path in G. Although faster algorithms exist for
general minimum-weight flow problems, this algorithm suffices when applied
to our problems. This is because in our case the value of all flows is bounded
by the number of variables of our application.

Given a minimum-weight s − t flow, we want to compute the additional
weight when an unused arc is forced to be used.

Theorem 2.2. Let f be a minimum-weight s−t flow of value φ in G = (V,A)
with f(a) = 0 for some a ∈ A. Let C be a directed circuit in Gf with a ∈ C,

Section 2.1. Operations Research 11

Algorithm 1 Minimum-weight s − t flow of value φ in G = (V,A)

set f = 0

if d(a) > 0 for some a ∈ A then

add the arc (t, s) with d(t, s) = 0, c(t, s) = φ, w(t, s) = 0 and f(t, s) = 0 to G

while there exists an arc (u, v) with f(u, v) < d(u, v) do

compute a directed v − u path P in Gf minimizing w(P)
if P does not exist then

stop
else

define the directed circuit C = P, u, v

end if

reset f = f + εχC , where ε is maximal subject to f + εχP ≤ c and
f(u, v) + ε ≤ d(u, v)

end while

remove the arc (t, s) from G

end if

if value(f) ≥ φ then

stop
else

while value(f) < φ do

compute a directed s − t path P in Gf minimizing w(P)
if P does not exist then

stop
end if

reset f = f + εχP , where ε is maximal subject to d ≤ f + εχP ≤ c and
value(f) + ε ≤ φ

end while

end if

minimizing w(C). Then f ′ = f + εχC , where ε is subject to d ≤ f + εχC ≤ c,
has minimum weight among all s − t flows g in G with value(g) = φ and
g(a) = ε. If C does not exist, f ′ does not exist. Otherwise, weight(f ′) =
weight(f) + ε · w(C).

The proof of Theorem 2.2 relies on the fact that for a minimum-weight flow
f in G, the residual graph Gf does not contain cycles with negative weight.

Other Graph Problems

Given a digraph G = (V,A), a directed Hamiltonian path is a directed path
P such that v ∈ P for all v ∈ V . The directed Hamiltonian path problem is:
given a digraph G = (V,A) and s, t ∈ V , is there a directed Hamiltonian s− t
path in G? This problem is NP-complete; see problem GT39 in [Garey and
Johnson, 1979].

Given a digraph G = (V,A), a directed Hamiltonian circuit is a directed
circuit C such that v ∈ C for all v ∈ V . The Asymmetric Travelling Salesman

12 Chapter 2. Foundation

Problem, or ATSP, is: given a digraph G = (V,A) and a “cost” function
w : A → R+, find a directed Hamiltonian circuit of minimum cost.

If c(u, v) = c(v, u) for all distinct u, v ∈ V , the ATSP is called the Sym-
metric Travelling Salesman Problem, or TSP. Both the TSP and the ATSP
are NP-hard problems; see problem ND22 in [Garey and Johnson, 1979].

Given a graph G = (V,E), a stable set is a set S ⊆ V such that no two
vertices in S are joined by an edge in E. The (weighted) stable set problem
is: given a graph G = (V,E) and a “weight” function w : E → R, find a
stable set with maximum total weight. Here “total weight” means the sum
of the weights of the vertices in the stable set. The value of a stable set
with maximum weight in a graph G is called the weighted stable set number
and denoted by α(G)2. In the unweighted case (when all weights are equal
to 1), this problem amounts to the maximum cardinality stable set problem.
Determining the weighted stable set number of a graph is an NP-complete
problem; see problem GT20 in [Garey and Johnson, 1979].

Given a graph G = (V,E), a clique is a set S ⊆ V such that every two
vertices in S are joined by an edge in E. The maximum clique problem is: given
a graph G = (V,E) and a “weight” function w : E → R, find a clique with
maximum total weight. Again, “total weight” means the sum of the weights of
the vertices in the clique. The value of a maximum weight clique in a graph G
is called the weighted clique number and is denoted by ω(G)3. Determining the
weighted clique number of a graph is an NP-complete problem; see problem
GT19 in [Garey and Johnson, 1979].

The weighted stable set number of a graph G is equal to the weighted clique
number in the complement graph of G, i.e. α(G) = ω(G). Hence, a maximum
clique problem can be translated into a weighted stable set problem in the
complement graph.

2.1.2 Linear Programming

In linear programming, a model is called a “program”. It consists of continu-
ous variables and linear constraints (inequalities or equalities). The aim is to
optimize a linear cost function. There exist many textbooks on linear program-
ming. A good introduction is given by Chvátal [1983]. A thorough theoretical
overview is presented by Schrijver [1986]. In this section we mainly follow
Nemhauser and Wolsey [1988].

One of the standard forms of a linear program is

2 In the literature α(G) usually denotes the unweighted stable set number. The
weighted stable set number is then denoted as αw(G). In this thesis, it is not
necessary to make this distinction.

3 Similar to α(G) and αw(G), we do not distinguish the usual notation for the
weighted clique number ωw(G) and ω(G).

Section 2.1. Operations Research 13

min c1x1 + c2x2 + . . . + cnxn

subject to a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2

...
...

am1x1 + am2x2 + . . . + amnxn = bm

x1, . . . , xn ≥ 0

or, using matrix notation,

min {cTx | Ax = b, x ≥ 0} (2.2)

where c ∈ Rn, b ∈ Rn, A ∈ Rm×n and x ∈ Rn. Here c represents the “cost”
vector and x is the vector of variables. Every linear program can be represented
by a linear program in the form of (2.2); see for example Schrijver [1986,
Section 7.4].

Recall that the rank of a matrix is the number of linearly independent
rows or columns of the matrix. For simplicity, we assume in the following that
the rank of A is m, i.e. there are no redundant equations in (2.2).

Let A = (a1, a2, . . . , an) where aj is the j-th column of A. For some “index
set” I ⊆ {1, . . . , n} we denote by AI the submatrix of A consisting of the
columns ai with i ∈ I.

Because the rank of A is m, there exists an index set B = {B1, . . . , Bm}
such that the m × m submatrix AB = (aB1

, . . . , aBm
) is nonsingular. We call

AB a basis of A. Note that AB is invertible because it is nonsingular. Let
N = {1, . . . , n}\B. If we permute the columns of A such that A = (AB , AN),
we can write Ax = b as

ABxB + ANxN = b,

where x = (xB , xN). Then a solution to Ax = b is given by xB = A−1
B b and

xN = 0. This solution is called a basic solution. A basic solution is feasible
if A−1

B b ≥ 0. The vector xB contains the basic variables and the vector xN

contains the nonbasic variables.
Let AB be a basis of A. Then we define the reduced cost vector c ∈ Rn as

cT = cT − cT
BA−1

B A.

We have the following result (cf. Nemhauser and Wolsey [1988, page 31]):

Theorem 2.3. (xB , xN) is an optimal solution if and only if c ≥ 0.

To solve linear programs one often uses the simplex method , invented by
Dantzig [1951], which applies Theorem 2.3. Roughly, the simplex method
moves from one basis to another by replacing a column in AB by a column in
AN , until it finds a basic feasible solution for which all reduced costs are non-
negative. The method is very fast in practice, although it has an exponential
worst-case time complexity.

14 Chapter 2. Foundation

Despite the exponential worst-case time complexity of the simplex method,
linear programs have been shown to be solvable in polynomial time. This was
first proved theoretically by Khachiyan [1979] using the so-called ellipsoid
method. A more practical polynomial-time algorithm for solving linear pro-
grams was presented by Karmarkar [1984a,b]. The latter is characterized as
an “interior-point” method.

2.1.3 Semidefinite Programming

In this section we briefly introduce semidefinite programming. A general
overview of semidefinite programming, covering many aspects, is given by
Wolkowicz, Saigal, and Vandenberghe [2000]. An overview of semidefinite pro-
gramming applied to combinatorial optimization is given by Goemans and
Rendl [2000] and Laurent and Rendl [2004]. Further references can also be
found on the web pages maintained by C. Helmberg4 and F. Alizadeh5.

A matrix X ∈ Rn×n where n > 0 is said to be positive semidefinite
(denoted by X º 0) when yTXy ≥ 0 for all vectors y ∈ Rn. Semidefinite pro-
gramming makes use of positive semidefinite matrices of variables. Semidefi-
nite programs have the form

max tr(WX)
s.t. tr(AjX) ≤ bj (j = 1, . . . ,m)

X º 0.
(2.3)

Here tr(X) denotes the trace of X, which is the sum of its diagonal elements,
i.e. tr(X) =

∑n
i=1 Xii. The matrix X, the cost matrix W ∈ Rn×n and the

constraint matrices Aj ∈ Rn×n are supposed to be symmetric. The m reals bj

and the m matrices Aj define m constraints.
We can view semidefinite programming as an extension of linear program-

ming. Namely, when the matrices W and Aj (j = 1, . . . ,m) are all supposed
to be diagonal matrices6, the resulting semidefinite program is equal to a
linear program, where the matrix X is replaced by a non-negative vector of
variables x ∈ Rn. In particular, then a semidefinite programming constraint
tr(AjX) ≤ bj corresponds to a linear programming constraint aT

j x ≤ bj , where
aj represents the diagonal of Aj .

Theoretically, semidefinite programs have been proved to be polynomi-
ally solvable to any fixed precision using the ellipsoid method; see Grötschel,
Lovász, and Schrijver [1988]. In practice, nowadays fast interior point meth-
ods, which also run in polynomial time, are being used for this purpose; see Al-
izadeh [1995] for an overview.

4 See http://www-user.tu-chemnitz.de/~helmberg/semidef.html.
5 See http://new-rutcor.rutgers.edu/~alizadeh/sdp.html.
6 A diagonal matrix is a matrix with nonnegative values on its diagonal entries

only.

Section 2.2. Constraint Programming 15

2.2 Constraint Programming

This section is for a large part based on the book [Apt, 2003].

2.2.1 Basic Notions

Let x be a variable. The domain of x is a set of values that can be assigned
to x. In this thesis we only consider variables with finite domains.

Consider a finite sequence of variables Y = y1, y2, . . . , yk where k > 0,
with respective domains D = D1, D2, . . . , Dk such that yi ∈ Di for all i.
A constraint C on Y is defined as a subset of the Cartesian product of the
domains of the variables in Y, i.e. C ⊆ D1 ×D2 × · · · ×Dk. A constraint C is
called a binary constraint if it is defined on two variables. If C is defined on
more than two variables, we call C a global constraint .

A constraint satisfaction problem, or a CSP, is defined by a finite sequence
of variables X = x1, x2, . . . , xn with respective domains D = D1, D2, . . . , Dn,
together with a finite set of constraints C, each on a subsequence of X . To
simplify notation, we often omit the braces “{ }” when presenting a specific
set of constraints. A CSP P is also denoted as P = (X ,D, C).

Consider a CSP P = (X ,D, C) with X = x1, x2, . . . , xn and D =
D1, D2, . . . , Dn. A tuple (d1, . . . , dn) ∈ D1 × · · · × Dn satisfies a constraint
C ∈ C on the variables xi1 , xi2 , . . . , xim

if (di1 , di2 , . . . , dim
) ∈ C. A tuple

(d1, . . . , dn) ∈ D1 × · · · × Dn is a solution to a CSP if it satisfies every con-
straint C ∈ C.

A consistent CSP is a CSP for which a solution exists. An inconsistent
CSP is a CSP for which no solution exists. A failed CSP is a CSP with an
empty domain or with only singleton domains that together are not a solution
to the CSP. A solved CSP is a CSP with only singleton domains that together
are a solution to the CSP. Note that a failed CSP is also inconsistent, but not
all inconsistent CSPs are failed.

Consider the CSPs P = (X ,D, C) and P ′ = (X ,D′, C′). P and P ′ are
called equivalent if they have the same solution set. P is said to be smaller
than P ′ if they are equivalent and Di ⊆ D′

i for all i. This relation is written as
P ¹ P ′. P is strictly smaller than P ′, if P ¹ P ′ and Di ⊂ D′

i for at least one
i. This is written as P ≺ P ′. When both P ¹ P ′ and P ′ ¹ P we write P ≡ P ′.

We fix the following notation. For a sequence of variables K = x1, x2, . . . , xn

we denote DK =
⋃

xi∈K Di. When the domain D of a variable x is a singleton,
say D = {d}, we also write x = d.

Example 2.1. Let x1, x2, x3 be variables with respective domains D1 =
{2, 3}, D2 = {1, 2, 3, 4}, D3 = {1, 2}. On these variables we impose the binary
constraint x1 + x2 ≤ 4 and the global constraint alldifferent(x1, x2, x3).
The latter states that the variables x1, x2 and x3 should be pairwise different7.

7 A formal definition of the alldifferent constraint is given in Chapter 3.

16 Chapter 2. Foundation

We denote the resulting CSP as

x1 ∈ {2, 3}, x2 ∈ {1, 2, 3, 4}, x3 ∈ {1, 2},
x1 + x2 ≤ 4,
alldifferent(x1, x2, x3).

A solution to this CSP is x1 = 3, x2 = 1 and x3 = 2. ¤

Often we want to find a solution to a CSP that is optimal with respect
to certain criteria. A constraint optimization problem, or a COP, is a CSP
(X ,D, C) where D = D1, . . . , Dn, together with an objective function

f : D1 × · · · × Dn → Q

to be optimized. An optimal solution to a COP is a solution to P that is
optimal with respect to f . The objective function value is often represented
by a variable z, together with the “constraint” maximize z or minimize z for
a maximization or a minimization problem, respectively.

In constraint programming, the goal is to find a solution (or all solutions)
to a given CSP, or an optimal solution (or all optimal solutions) to a given
COP. The solution process interleaves constraint propagation, or propagation
in short, and search.

2.2.2 Propagation

Constraint propagation removes (some) inconsistent values from the domains,
based on considerations of the individual constraints. Doing so, the search
space can be significantly reduced. Hence, constraint propagation is essential
to make constraint programming solvers efficient.

Let C be a constraint on the variables x1, . . . , xm with respective domains
D1, . . . , Dm. A propagation algorithm for C removes values from D1, . . . , Dm

that do not participate in a solution to C. A propagation algorithm does not
need to remove all such values, as this may lead to an exponential running
time due to the nature of some constraints.

Let P = (X ,D, C) be a CSP. We transform P into a smaller CSP P ′

by repeatedly applying the propagation algorithms for all constraints in C
until there is no more domain reduction. This process is called constraint
propagation. When the process terminates, we say that each constraint, and
the CSP, is locally consistent and that we have achieved a notion of local
consistency on the constraints and the CSP. The term “local consistency”
reflects that we do not obtain a globally consistent CSP, but a CSP in which all
constraints are “locally”, i.e. individually, consistent. A thorough description
of the process of constraint propagation is given by Apt [1999, 2003].

The strongest local consistency notion for a constraint is to demand that
every domain value of every variable in the constraint belongs to a solution to

Section 2.2. Constraint Programming 17

the constraint. For historic reasons, it is referred to as hyper-arc consistency .
It does not guarantee a solution to the whole CSP though, because of other
constraints that need to be satisfied.

Example 2.2. Consider again the CSP of Example 2.1, i.e. x1 ∈ D1 = {2, 3},
x2 ∈ D2 = {1, 2, 3, 4}, x3 ∈ D3 = {1, 2}, and

x1 + x2 ≤ 4, (2.4)

alldifferent(x1, x2, x3). (2.5)

We apply constraint propagation until both constraints are hyper-arc consis-
tent:

x1 ∈ {2, 3}
x2 ∈ {1, 2, 3, 4}

x3 ∈ {1, 2}
(2.4)−→

x1 ∈ {2, 3}
x2 ∈ {1, 2}
x3 ∈ {1, 2}

(2.5)−→
x1 ∈ {3}

x2 ∈ {1, 2}
x3 ∈ {1, 2}

(2.4)−→
x1 ∈ {3}
x2 ∈ {1}

x3 ∈ {1, 2}
(2.5)−→

x1 ∈ {3}
x2 ∈ {1}
x3 ∈ {2}

The two constraints are examined sequentially, as indicated above the arcs.
We first examine constraint (2.4), and deduce that values 3 and 4 in D2 do
not appear in a solution to it. Then we examine constraint (2.5), and remove
value 2 from D1. This is because x2 and x3 saturate values 1 and 2. Next we
need to re-examine constraint (2.4) and remove value 2 from D2. Then we
consider constraint (2.5) again and remove value 1 from D3.

The resulting CSP is hyper-arc consistent. In fact, we found a solution to
the CSP. ¤

Constraint propagation is usually applied each time a domain has been
changed, which happens very often during the solution process. Consequently,
the method that we apply to make a CSP locally consistent should be as ef-
ficient as possible. The efficiency of constraint propagation is influenced by
the order in which the propagation algorithms are applied, and by the effi-
ciency of the propagation algorithms themselves. In this thesis we investigate
the latter: efficient propagation algorithms to achieve a given notion of local
consistency.

2.2.3 Search

Search Tree

The solution process of constraint programming uses a search tree, which is
a particular rooted tree. The vertices of search trees are often referred to as
nodes. The arcs of search trees are often referred to as branches. Further, if
(u, v) is an arc of a search tree, we say that v is a direct descendant of u and
u is the parent of v.

Definition 2.4 (Search tree). Let P be a CSP. A search tree for P is a
rooted tree such that

18 Chapter 2. Foundation

• its nodes are CSPs,
• its root is P ,
• if P1, . . . , Pm where m > 0 are all direct descendants of P0, then the union

of the solution sets of P1, . . . , Pm is equal to the solution set of P0 for every
node P0.

We say that a node P of a search tree is at depth d if the length of the
path from the root to P is d.

Definition 2.4 is a very general notion. In constraint programming, a search
tree is dynamically built by splitting a CSP into smaller CSPs, until we reach
a failed or a solved CSP. A CSP is split into smaller CSPs either by splitting a
constraint (for example a disjunction) or by splitting the domain of a variable.
In this thesis we only apply the latter.

At each node in the search tree we apply constraint propagation to the
corresponding CSP. As a result, we may detect that the CSP is inconsistent,
or we may reduce some domains of the CSP. In both cases less nodes need to
be generated and traversed, so propagation can speed up the solution process.
However, in order to be effective, constraint propagation must be efficient, i.e.
the time spent on propagation should be less than the time that is gained by
it.

Variable and Value Ordering Heuristics

To split the domain of a variable, we first select a variable and then decide
how to split its domain. This process is guided by variable and value ordering
heuristics. They impose an ordering on the variables and values, respectively.
The order in which variables and values are selected has a great impact on
the search process.

In order to introduce variable and value ordering heuristics, we need the
following definitions. A relation ¹ on a set S is called a partial order if it is
reflexive (s ¹ s for all s ∈ S), transitive (s ¹ t and t ¹ u implies s ¹ u), and
antisymmetric (s ¹ t and t ¹ s implies s = t). A partial order ¹ is a total
order if s ¹ t or t ¹ s for all s, t ∈ S. Given a partial order ¹ on a set S, an
element s ∈ S is called a least element if s ¹ t for all t ∈ S. Two elements
s, t ∈ S are incomparable with respect to ¹ if s 6¹ t and t 6¹ s.

A variable ordering heuristic imposes a partial order on the variables with
non-singleton domains. An example is the most constrained first variable or-
dering heuristic. It orders the variables with respect to their appearance in
the constraints. A variable that appears the most often, is ordered least. It is
likely that changing the domains of such variables will cause more values to be
removed by constraint propagation. Another variable ordering heuristic is the
smallest domain first heuristic. It is also referred to as the first fail heuristic.
This heuristic orders the variables with respect to the size of their domains.
A variable that has the smallest domain is ordered least. Advantages of this
heuristic are that less nodes need to be generated in the search tree, and

Section 2.2. Constraint Programming 19

that inconsistent CSPs are detected earlier. In case two or more variables are
incomparable, we can for example apply the lexicographic ordering to these
variables and obtain a total order.

A value ordering heuristic induces a partial order on the domain of a vari-
able. It orders the values in the domain according to a certain criterion, such
that values that are ordered least are selected first. An example is the lexico-
graphic value ordering heuristic, which orders the values with respect to the
lexicographic ordering. Another example is the random value ordering heuris-
tic, which orders the variables randomly. In case a value ordering heuristic
imposes a partial order on a domain, we can apply the lexicographic or ran-
dom value ordering heuristic to incomparable values, to create a total order.
A value ordering heuristic is also referred to as a branching heuristic because
it decides the order of the branches in the search tree.

Domain Splitting Procedures

When we have selected a variable and a value ordering heuristic imposing a
total order on its domain, we apply a domain splitting procedure. Given a
domain, a domain splitting procedure generates a partition of the the domain.
Examples of domain splitting procedures are labelling and bisection. Consider
a domain D = {d1, d2, . . . , dm} and a total order ¹ such that d1 ¹ d2 ¹ · · · ¹
dm. Then labelling splits D into

{d1}, {d2}, . . . , {dm}.

In practice the labelling procedure is often implemented to split a domain D
into

{d1}, {d2, . . . , dm}.
In the literature this procedure is also called enumeration.

Let k = bm/2c. Then bisection splits the above domain D into

{d1, . . . , dk}, {dk+1, . . . , dm}.

Consider a CSP P0 = (X ,D, C) and variable x ∈ X whose domain has been
split into the partition D1, . . . , Dk. Then we define the directs descendants of
P0 as Pi = (X ,D, C ∪ {x ∈ Di}) for i = 1, . . . , k. In practice, we adjust the
domain a variable instead of adding a constraint to define a descendant. If
the partition “respects” the value ordering heuristic that was applied to the
domain, i.e. di ¹ dj for all di ∈ Di, dj ∈ Dj , i < j and i = 1, . . . k − 1, the
corresponding descendants inherit the ordering of the value ordering heuristic,
i.e. P1 ¹ · · · ¹ Pk.

Search Strategies

A search strategy defines the traversal of the search tree. In this thesis we
apply the search strategies depth-first search and limited discrepancy search.

20 Chapter 2. Foundation

We assume that all direct descendants of a node in a search tree are totally
ordered, for example based on the value ordering heuristic. Then the least
element corresponds to the first descendant.

First we describe depth-first search, or DFS:

Start at the root node and proceed by descending to its first descen-
dant. This process continues until we reach a leaf. Then we backtrack
to the parent of the leaf and descend to its next descendant, if it ex-
ists. This process continues until we are back at the root node and all
its descendants have been visited.

Next we describe limited discrepancy search, or LDS, introduced by Harvey
and Ginsberg [1995]. LDS is motivated by the following idea. Suppose we have
“good” heuristics to build the search tree, i.e. the first leaf that we visit is
likely to be a solution. If this leaf is not a solution, it is likely that we only
made a small number of mistakes along the path from the root to this leaf.
Hence, we visit next the leaf nodes whose paths from the root differ only in
one choice from the initial path. We continue this process by gradually visiting
leaves with a higher discrepancy from the initial path. Formally, let P0 be a
node with ordered descendants P1, P2, . . . , Pm. The discrepancy of Pi is the
discrepancy of P0 + i−1 for i = 1, 2, . . . ,m. The discrepancy of the root node
is 0. LDS can now be described as:

Set the level of discrepancy k = 0. Start at the root node and proceed
by descending to its first descendant provided that its discrepancy
is not higher than k. This process continues until we reach a leaf.
Then we backtrack to the parent of the leaf and descend to its next
descendant, provided that it exists and its discrepancy is not higher
than k. This process continues until we are back at the root node and
all its descendants whose discrepancy is not higher than k have been
visited. Set k = k + 1 and repeat this process until we are back at the
root node and all its descendants have been visited.

Note that for a certain discrepancy k > 0, LDS also visits leaves with discrep-
ancy less than k. So leaves are visited several times. In practice however, this
is avoided by keeping track of the remaining depth to be searched. Let the
discrepancy of a node P be d, and let the length of a path from P to a leaf be
l, then we only consider descendants whose discrepancy is between k − l and
k. This search strategy is called improved limited discrepancy search [Korf,
1996]. An illustration of LDS is given in Figure 2.1.

It should be noted that both DFS and ILDS are complete (sometimes re-
ferred to as exact) search strategies, that are not redundant. In other words,
they explore all paths from the root to a leaf exactly once. It has been shown
by Harvey and Ginsberg [1995] that LDS almost always outperforms DFS,
even when the value ordering heuristic is less informative.

Section 2.2. Constraint Programming 21

a. discrepancy 0 b. discrepancy 1

c. discrepancy 2 d. discrepancy 3

Figure 2.1. Limited discrepancy search. For each discrepancy the top node of the
tree indicates the root, visited nodes are filled, and bold arcs indicate the parts of
the tree that are traversed newly.

The two search strategies DFS and LDS have in common that backtracking
to a previous node only takes place after we have visited a leaf. This leads
us to a more general notion which we call depth-first based search strategies,
described as:

Start at the root node and proceed by descending to its first descen-
dant. This process continues until we reach a leaf. Then we backtrack
to some previously visited node and descend to its next descendant, if
it exists and if it is allowed. This process continues until all leafs have
been visited.

As stated above, DFS and LDS are examples of depth-first based search
strategies. Other examples are depth-bounded discrepancy search or DDS, and
discrepancy-bounded depth-first search, or DBDFS [Beck and Perron, 2000].

DDS, introduced by Walsh [1997], is based on the assumption that a heuris-
tic is more likely to make a mistake near the root node. A motivation for this
assumption is the removal of domain values due to propagation along a path
from the root to a leaf. Hence, DDS allows discrepancies only above a certain
depth-bound, which is gradually increased. At iteration i, the depth-bound is
i− 1. Below this depth, only descendants are allowed that do not increase the
discrepancy. Experiments in [Walsh, 1997] show that DDS is competitive to,
or even more efficient than, ILDS.

DBDFS is a variant of ILDS that performs depth-first search on all nodes
on paths from the root that have up to some bounded number of discrepancies.
Given a width k, the i-th iteration visits nodes with discrepancies between

22 Chapter 2. Foundation

1P 2P

0P

1x ∋{2} 1x ∋{3}

= 9z = 7z

Figure 2.2. The search tree of Example 2.3.

(i−1)k and ik−1. Experiments presented by Beck and Perron [2000] indicate
that DBDFS has a competitive performance compared to LDS and DDS.

Optimization

The search for an optimal solution (or all optimal solutions) to a COP is
performed similar to the search for a solution to a CSP. Recall that a COP
consists of a CSP together with an objective function f to be optimized.
Assume (without loss of generality) that we want to minimize f . The objective
function value is represented by a variable z. When we find a solution to the
CSP, the corresponding value of z, say z = β, serves as an upper bound for
the optimal value of f . We then add the constraint z < β to all CSPs in the
search tree and continue. In practice, we replace the maximum value of the
domain of z by β.

Example 2.3. We present the solution process of constraint programming,
using the following CSP P0:

x1 ∈ {1, 2, 3}, x2 ∈ {2, 3}, x3 ∈ {1, 2, 3}, z ∈ {6, . . . , 12},
minimize z,
z = x1 + 2x2 + x3,
x1 + x2 ≥ 5,
alldifferent(x1, x2, x3).

To build a search tree, we apply the lexicographic variable and value ordering
heuristics and use labelling as domain splitting procedure. As search strategy
we use DFS. At each node we apply hyper-arc consistency constraint propa-
gation. The CSP P0 is the root. The search tree is depicted in Figure 2.2.

We first apply constraint propagation to P0. It follows that

x1 ∈ {2, 3}, x2 ∈ {2, 3}, x3 ∈ {1}, z ∈ {7, . . . , 10}.

We select the lexicographically least variable, x1, split its domain into {2} and
{3}, and generate the descendants P1 and P2 where P1 = P0 with x1 ∈ {2}
and P2 = P0 with x1 ∈ {3}.

We descend to node P1 and apply constraint propagation. It follows that

Section 2.2. Constraint Programming 23

x1 ∈ {2}, x2 ∈ {3}, x3 ∈ {1}, z ∈ {9}.

We have found a solution with z = 9. Hence we add to all CSPs the constraint
z < 9.

Next we backtrack to P0, descend to P2, and apply constraint propagation.
It follows that

x1 ∈ {3}, x2 ∈ {2}, x3 ∈ {1}, z ∈ {7}.
We have found a solution with z = 7. Hence we add to all CSPs the constraint
z < 7. Next we backtrack to P0 and stop because all its descendants have been
visited.

We return the optimal solution we found in leaf P2. ¤

Part I

Propagation

Chapter 3

A Systematic Overview of the Alldifferent

Constraint

This chapter surveys the most important developments over the
years regarding the alldifferent constraint. First we introduce
the underlying concepts from combinatorial theory. Then we give
an overview and a comparison of different propagation algorithms
achieving arc, range, bounds and hyper-arc consistency, respectively. In
addition, two variants of the alldifferent constraint are discussed:
the symmetric alldifferent constraint and the minimum weight
alldifferent constraint. Finally, the convex hull representation of the
alldifferent constraint in integer linear programming is considered.

3.1 Introduction

One of the constraints that is present in practically all constraint program-
ming systems, is the famous alldifferent constraint, which states that all
variables in this constraint must be pairwise different.

Already in the early days of constraint programming the importance of
such “disequality constraints” was recognized. For example, in the 1970s Lau-
riere [1978] introduced Alice, “A language and a program for stating and
solving combinatorial problems”. In this system the keyword “DIS”, applied
to a set of variables, is used to state that the variables must take different
values. It defines a global structure (i.e. the set of variables form a “clique of
disjunctions”), that is exploited during the search for a solution.

After the introduction of constraints in logic programming, for example
in the system Chip [Dincbas, Van Hentenryck, Simonis, Aggoun, Graf, and
Berthier, 1988], it was also possible to express the constraint of difference as
the well-known alldifferent constraint. In the system Eclipse [Wallace,
Novello, and Schimpf, 1997] this constraint was introduced as alldistinct.
However, in the early constraint (logic) programming systems the alldiff-

erent constraint was treated internally as a sequence of disequalities; see for
example Van Hentenryck [1989]. Unfortunately, the global information is lost
in that way. The global view was retrieved with the propagation algorithm
introduced by Régin [1994], that considers all disequalities simultaneously.

Throughout the history of constraint programming, the alldifferent

constraint has played a special role. Various papers and books make use of
this special constraint to show the benefits of constraint programming, either

28 Chapter 3. A Systematic Overview of the Alldifferent Constraint

to show its modelling power, or to show that problems can be solved faster
using this constraint. From a modelling point of view, the alldifferent con-
straint arises naturally in problems that are based upon a permutation or
when a directed graph has to be covered with disjoint circuits. Numerous ap-
plications exist in which the alldifferent constraint is of vital importance,
for example quasi-group completion problems [Gomes and Shmoys, 2002], air
traffic management [Barnier and Brisset, 2002; Grönkvist, 2004] and rostering
problems [Tsang, Ford, Mills, Bradwell, Williams, and Scott, 2004]. Finally,
many other global constraints can be viewed as an extension of the alldiff-

erent constraint, for example the sort constraint [Older, Swinkels, and van
Emden, 1995; Zhou, 1997], the cycle constraint [Beldiceanu and Contejean,
1994], the diffn constraint [Beldiceanu and Contejean, 1994] and the global
cardinality constraint [Régin, 1996].

Over the years, the alldifferent constraint has been well-studied in con-
straint programming. As we will see, for the alldifferent constraint at least
six different propagation algorithms exist, each achieving a different kind of
local consistency, or achieving it faster. Many of these algorithms rely on tech-
niques from operations research, i.e. flow theory and matching theory. Such
propagation algorithms are of particular interest concerning the scope of this
thesis.

The propagation algorithms often make use of the same underlying princi-
ples. To make them more understandable, accessible and coherent, this chapter
presents a systematic overview of the alldifferent constraint, which may
probably be regarded as the most well-known, most influential and most stud-
ied constraint in the field of constraint programming.

This chapter is organized as follows. In Section 3.2 we present results from
combinatorial theory with respect to the alldifferent constraint. Many of
the considered propagation algorithms rely on these results. In Section 3.3 we
formally define different notions of local consistency that are applied to the
alldifferent constraint.

Each of the Sections 3.4.1 up to 3.4.4 treats a different notion of local
consistency. The sections are ordered in increasing strength of the considered
local consistency. The treatment consists of a description of the particular
notion of local consistency with respect to the alldifferent constraint, to-
gether with a description of an algorithm that achieves that local consistency.
Section 3.4 ends with a time complexity survey and a discussion.

Section 3.5 gathers two variants of the alldifferent constraint. First
a symmetric version of the alldifferent constraint is considered. Then the
weighted alldifferent constraint is presented, where a linear objective func-
tion in conjunction with the alldifferent constraint is exploited.

In Section 3.6 considers the alldifferent polytope, which is a particular
description of the solution set of the alldifferent constraint, using linear

Section 3.2. Combinatorial Background 29

constraints. This description can be applied in integer linear programming
models.

Finally, in Section 3.7 we end this chapter with some concluding remarks.

3.2 Combinatorial Background

3.2.1 Alldifferent and Bipartite Matching

This section shows the equivalence of a solution to the alldifferent con-
straint and a matching in a bipartite graph.

Definition 3.1 (Alldifferent constraint). Let x1, x2, . . . , xn be variables
with respective finite domains D1, D2, . . . , Dn. Then

alldifferent(x1, . . . , xn) = {(d1, . . . , dn) | di ∈ Di, di 6= dj for i 6= j}.

Definition 3.2 (Value graph). Let X = x1, x2, . . . , xn be a sequence of
variables with respective finite domains D1, D2, . . . , Dn. The bipartite graph
G = (X ∪ DX , E) with E = {xid | d ∈ Di} is called the value graph of X.

Theorem 3.3. Let X = x1, x2, . . . , xn be a sequence of variables with re-
spective finite domains D1, D2, . . . , Dn. Let G be the value graph of X. Then
(d1, . . . , dn) ∈ alldifferent(x1, . . . , xn) if and only if M = {x1d1, . . . , xndn}
is a matching in G.

Proof. An edge xidi (for some i ∈ {1, . . . , n}) in M corresponds to the as-
signment xi = di. As no edges in M share a vertex, xi 6= xj for all i 6= j. ¤

Note that the matching M in Theorem 3.3 covers X, and is therefore a
maximum-size matching.

Example 3.1. We want to assign four tasks (1, 2, 3 and 4) to five machines
(A, B, C, D and E). To each machine at most one task can be assigned.
However, not every task can be assigned to every machine. Table 3.1 below
presents the possible combinations. For example, task 2 can be assigned to
machines B and C.

Task Machines

1 B, C, D, E

2 B, C

3 A, B, C, D

4 B, C

Table 3.1. Possible task - machine combinations.

30 Chapter 3. A Systematic Overview of the Alldifferent Constraint

C D

321

E

Tasks

Machines

A B

4

Figure 3.1. The value graph for the task assignment problem of Example 3.1. Bold
edges form a matching covering all tasks.

This problem is modelled as follows. We introduce a variable xi for task
i = 1, . . . , 4, whose value represents the machine to which task i is assigned.
The initial domains of the variables are defined by the possible combinations
in Table 3.1. Since the tasks have to be assigned to different machines, we
introduce an alldifferent constraint. The problem is thus modelled as the
CSP

x1 ∈ {B,C,D,E}, x2 ∈ {B,C}, x3 ∈ {A,B,C,D}, x4 ∈ {B,C},
alldifferent(x1, x2, x3, x4).

The value graph of X = x1, . . . , xn is presented in Figure 3.1. The bold edges
in the value graph denote a matching covering X. It corresponds to a solution
to the CSP, i.e. x1 = D, x2 = B, x3 = A and x4 = C. ¤

3.2.2 Hall’s Marriage Theorem

A useful theorem to derive constraint propagation algorithms for the all-

different constraint is Hall’s Marriage Theorem1 [Hall, 1935]:

If a group of men and women marry only if they have been introduced
to each other previously, then a complete set of marriages is possible
if and only if every subset of men has collectively been introduced to
at least as many women, and vice versa2.

The following formulation is stated in terms of the alldifferent constraint.

Theorem 3.4. Let x1, x2, . . . , xn be variables with respective finite domains
D1, D2, . . . , Dn. The constraint alldifferent(x1, . . . , xn) has a solution if
and only if

|K| ≤ |DK | (3.1)

for all K ⊆ {x1, . . . , xn}.
1 As noted by Schrijver [2003, p. 392], the name ‘marriage theorem’ was introduced

by H. Weyl in 1949.
2 Here we assume that marriage is restricted to two persons of different sex.

Section 3.3. Local Consistency Notions 31

Proof. The direct proof presented here is adapted from Schrijver [2003,
p. 379], and originally due to Easterfield [1946]. Call a set K tight if equality
holds in (3.1). Necessity of the condition being obvious, we prove sufficiency.
We use induction, with the hypothesis that Theorem 3.4 holds for k variables
with k < n.

If there is a d ∈ Dn such that

x1 ∈ D1 \ {d}, . . . , xn−1 ∈ Dn−1 \ {d},
alldifferent(x1, . . . , xn−1)

(3.2)

has a solution, then we are done. Hence, we may assume the opposite, i.e.
in (3.2), for each d ∈ Dn, there exists a subset K ⊆ {1, . . . , n − 1} with
|K| > |DK \ {d}|. Then, by induction, alldifferent(x1, . . . , xn−1), with
x1 ∈ D1, . . . , xn−1 ∈ Dn−1, has a solution if and only if for each d ∈ Dn

there is a tight subset K ⊆ {1, . . . , n − 1} with d ∈ DK . Choose any such
tight subset K. Without loss of generality, K = {1, . . . , k}. By induction,
alldifferent(x1, . . . , xk) has a solution, using all values in DK . Moreover,

xk+1 ∈ Dk+1 \ DK , . . . , xn ∈ Dn \ DK ,
alldifferent(xk+1, . . . , xn)

has a solution. This follows inductively, since for each L ⊆ {k + 1, . . . , n},
∣

∣

∣

∣

∣

⋃

i∈L

(Di \ DK)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

⋃

i∈K∪L

Di

∣

∣

∣

∣

∣

−|DK | ≥ |K ∪ L|−|DK | = |K|+|L|−|DK | = |L| ,

where the “≥” relation is obtained by applying condition (3.1). Then all-

different(x1, . . . , xn) has a solution, using all values in DK ∪ DL. ¤

The following example shows an application of Theorem 3.4.

Example 3.2. Consider the following CSP

x1 ∈ {2, 3}, x2 ∈ {2, 3}, x3 ∈ {1, 2, 3}, x4 ∈ {1, 2, 3},
alldifferent(x1, x2, x3, x4).

For any K ⊆ {x1, x2, x3, x4} with |K| ≤ 3, we have |K| ≤ |DK |. For K =
{x1, x2, x3, x4} however, |K| > |DK |, and by Theorem 3.4 this CSP has no
solution. ¤

3.3 Local Consistency Notions

We now introduce four notions of local consistency of a constraint. In Sec-
tion 3.4 we present propagation algorithms for each of them, when applied to
the alldifferent constraint.

32 Chapter 3. A Systematic Overview of the Alldifferent Constraint

Definition 3.5 (Arc consistency). A binary constraint C on the variables
x1 and x2 with respective domains D1 and D2 is called arc consistent if for
all values d1 ∈ D1 there exists a value d2 ∈ D2 such that (d1, d2) ∈ C, and
for all values d2 ∈ D2 there exists a value d1 ∈ D1 such that (d1, d2) ∈ C.

Definition 3.6 (Hyper-arc consistency). A constraint C on the variables
x1, . . . , xm with respective domains D1, . . . , Dm is called hyper-arc consistent
if for each variable xi and each value di ∈ Di, there exist a value dj ∈ Dj for
all j 6= i such that (d1, . . . , dm) ∈ C.

Note that arc consistency is equal to hyper-arc consistency applied to binary
constraints. Both arc consistency and hyper-arc consistency ensure that all
values in every domain belong to a tuple that satisfies the constraint, with
respect to the current variable domains.

For a finite, linearly ordered domain Di, we define min Di and max Di to
be its minimum value and its maximum value, respectively. We use braces
“{ }” and brackets “[]” to indicate a set and an interval of domain values,
respectively. Thus, the set {1, 3} contains the values 1 and 3 whereas the
interval [1, 3] ⊂ N contains 1, 2 and 3.

Definition 3.7 (Bounds consistency). A constraint C on the variables
x1, . . . , xm with respective domains D1, . . . , Dm is called bounds consistent
if for each variable xi and each value di ∈ {min Di,max Di}, there exist a
value dj ∈ [min Dj ,max Dj] for all j 6= i such that (d1, . . . , dm) ∈ C.

Definition 3.8 (Range consistency). A constraint C on the variables
x1, . . . , xm with respective domains D1, . . . , Dm is called range consistent
if for each variable xi and each value di ∈ Di, there exist a value dj ∈
[min Dj ,max Dj] for all j 6= i such that (d1, . . . , dm) ∈ C.

Range consistency does not ensure the feasibility of the constraint with re-
spect to the domains, but with respect to intervals that include the domains.
It can be regarded as a relaxation of hyper-arc consistency. Bounds consis-
tency can be in turn regarded as a relaxation of range consistency. It does
not even ensure feasibility of the constraint for all values in the domains, but
only for the minimum and the maximum value, while still verifying the con-
straint with respect to intervals that include the domains. This is formalized
in Theorem 3.10.

Definition 3.9 (Locally consistent CSP). A CSP is arc consistent, re-
spectively range consistent, bounds consistent or hyper-arc consistent if all its
constraints are.

If we apply to a CSP P a propagation algorithm that achieves range con-
sistency on P , we denote the result by ΦR(P). Analogously, ΦB(P), ΦA(P)
and ΦHA(P) denote the application of bounds consistency, arc consistency
and hyper-arc consistency on P , respectively.

Section 3.4. Propagation for Local Consistency Notions 33

Theorem 3.10. Let P be CSP. Then ΦHA(P) ¹ ΦR(P) ¹ ΦB(P) and all
relations may be strict.

Proof. Both hyper-arc consistency and range consistency verify all values of
all domains. But hyper-arc consistency verifies the constraints with respect
to the exact domains Di, while range consistency verifies the constraints with
respect to intervals that include the domains: [min Di,max Di]. A constraint
that holds on a domain Di also holds on the interval [min Di,max Di] since
Di ⊆ [min Di,max Di]. The converse is not true, see Example 3.3. Hence
ΦHA(P) ¹ ΦR(P), possibly strict.

Both range consistency and bounds consistency verify the constraints with
respect to intervals that include the domains. But bounds consistency only
considers min Di and max Di for a domain Di, while range consistency con-
siders all values in Di. Since {min Di,max Di} ⊆ Di, ΦR(P) ¹ ΦB(P). Exam-
ple 3.3 shows that ΦR(P) ≺ ΦB(P) cannot be discarded. ¤

Example 3.3. Consider the following CSP

P =

{

x1 ∈ {1, 3}, x2 ∈ {2}, x3 ∈ {1, 2, 3},
alldifferent(x1, x2, x3).

Then ΦB(P) ≡ P , while

ΦR(P) =

{

x1 ∈ {1, 3}, x2 ∈ {2}, x3 ∈ {1, 3},
alldifferent(x1, x2, x3)

and ΦHA(P) ≡ ΦR(P). Next, consider the CSP

P ′ =

{

x1 ∈ {1, 3}, x2 ∈ {1, 3}, x3 ∈ {1, 3},
alldifferent(x1, x2, x3).

This CSP is obviously inconsistent, since there are only two values available,
namely 1 and 3, for three variables that must be pairwise different. Indeed,
ΦHA(P ′) is a failed CSP, while ΦR(P ′) ≡ P ′. ¤

3.4 Propagation for Local Consistency Notions

This section analyzes four notions of local consistency when applied to the
alldifferent constraint: arc consistency of a decomposed CSP, bounds con-
sistency, range consistency and hyper-arc consistency. For each local consis-
tency notion a corresponding constraint propagation algorithm is presented.

3.4.1 Local Consistency of a Decomposed CSP

In order to apply arc consistency, we decompose the alldifferent constraint
into a set of binary constraints that preserves the solution set.

34 Chapter 3. A Systematic Overview of the Alldifferent Constraint

Definition 3.11 (Binary decomposition). Let C be a constraint on the
variables x1, . . . , xn. A binary decomposition of C is a minimal set of binary
constraints Cdec = {C1, . . . , Ck} (for integer k > 0) on the variables x1, . . . , xn

such that the solution set of C equals the solution set of
∧k

i=1 Ci.

Note that we can extend the definition of binary decomposition by defining
the constraints in Cdec on arbitrary variables, such that the solution set of
∧k

i=1 Ci is mapped to the solution set of C and vice versa, as proposed by
Rossi, Petrie, and Dhar [1990]. In this thesis this extension is not necessary,
however.

The binary decomposition of alldifferent(x1, x2, . . . , xn) is

⋃

1≤i<j≤n

{xi 6= xj}. (3.3)

A constraint propagation algorithm that achieves arc consistency on this bi-
nary decomposition (3.3) has the following behaviour:

Whenever the domain of a variable contains only one value, remove
this value from the domains of the other variables that occur in the
alldifferent constraint. Repeat this procedure as long as no more
changes occur or a domain becomes empty.

One of the drawbacks of this method is that one needs 1
2 (n2 −n) disequalities

to express an n-ary alldifferent constraint. Moreover, the worst-case time
complexity of this method is O(n2), as shown by the following example.

Example 3.4. For some integer n > 1, consider the CSP

P =

{

x1 ∈ {1}, xi ∈ {1, 2, . . . , i} for i = 2, 3, . . . , n,
⋃

1≤i<j≤n{xi 6= xj}

If we make P arc consistent, we start by removing {1} from all domains other
than D1. Next we need to remove value {i} from all domains other than Di,
for i = 2, . . . , n. This procedure takes in total n(n − 1) steps. ¤

Another, even more important, drawback of the above method is the loss of
information. When the set of binary constraints is being made arc consistent,
only two variables are compared at a time. However, when the alldifferent

constraint is being made hyper-arc consistent, all variables are considered at
the same time, which allows a much stronger local consistency. This is shown
in Theorem 3.12; see also Stergiou and Walsh [1999].

Theorem 3.12. Let P be a CSP and Pdec the same CSP in which all all-

different constraints have been replaced by their binary decomposition. Then
ΦHA(P) ¹ ΦA(Pdec).

Proof. To show that ΦHA(P) ¹ ΦA(Pdec), consider a value d ∈ Di for some
i that is removed after making Pdec arc consistent. This removal must be due

Section 3.4. Propagation for Local Consistency Notions 35

to the fact that xj = d for some j 6= i. But then d ∈ Di is also removed
when making P hyper-arc consistent. The converse is not true, as illustrated
in Example 3.5. ¤

Example 3.5. For some integer n ≥ 3 consider the CSPs

P =

xi ∈ {1, 2, . . . , n − 1} for i = 1, 2, . . . , n − 1,
xn ∈ {1, 2, . . . , n},
alldifferent(x1, x2, . . . , xn),

Pdec =

xi ∈ {1, 2, . . . , n − 1} for i = 1, 2, . . . , n − 1,
xn ∈ {1, 2, . . . , n},
⋃

1≤i<j≤n{xi 6= xj}.

Then ΦA(Pdec) ≡ Pdec, while

ΦHA(P) =

xi ∈ {1, 2, . . . , n − 1} for i = 1, 2, . . . , n − 1,
xn ∈ {n},
alldifferent(x1, x2, . . . , xn).

¤

Our next goal is to find a local consistency notion for the set of disequalities
that is equivalent to the hyper-arc consistency notion for the alldifferent

constraint. Relational consistency [Dechter and van Beek, 1997] is used for
this.

Definition 3.13 (Relational (1,m)-consistency). A set of constraints
S = {C1, C2, . . . , Cm} is relationally (1,m)-consistent if all domain values
d ∈ Di of variables appearing in S, appear in a solution to the m con-
straints, evaluated simultaneously. A CSP P = (X , D,C) is relationally
(1,m)-consistent if every set of m constraints S ⊆ C is relationally (1,m)-
consistent.

Note that arc consistency is equivalent to relational (1, 1)-consistency.
Let ΦRC(1,m)(P) denote the CSP after achieving relational (1,m)-consis-

tency on a CSP P .

Theorem 3.14. Let X = x1, x2, . . . , xn be a sequence of variables with re-
spective finite domains D = D1, D2, . . . , Dn. Let P = (X,D,C) be the CSP
with C = {alldifferent(x1, . . . , xn)} and let Pdec = (X,D,Cdec) be the CSP
with C =

⋃

1≤i<j≤n{xi 6= xj}. Then

ΦHA(P) ≡ ΦRC(1, 1
2
(n2−n))(Pdec).

36 Chapter 3. A Systematic Overview of the Alldifferent Constraint

Proof. By construction, the alldifferent constraint is equivalent to the si-
multaneous consideration of the sequence of corresponding disequalities. The
number of disequalities is precisely 1

2 (n2−n). If we consider only 1
2 (n2−n)− i

disequalities simultaneously (1 ≤ i ≤ 1
2 (n2−n)−1), there are i unconstrained

relations between variables, and the corresponding variables could take the
same value when a certain instantiation is considered. Therefore, we really
need to take all 1

2 (n2 − n) constraints into consideration, which corresponds
to relational (1, 1

2 (n2 − n))-consistency. ¤

As suggested before, the pruning performance of ΦA(Pdec) is rather poor.
Moreover, the time complexity is relatively high, namely O(n2), as shown in
Example 3.4. Nevertheless, this propagation algorithm applies quite well to
several problems, such as the n-queens problem (n < 200), as indicated by
Leconte [1996] and Puget [1998].

Further comparison of non-binary constraints and their corresponding de-
compositions are given by Stergiou and Walsh [1999] and Gent, Stergiou, and
Walsh [2000]. In particular the alldifferent constraint and its binary de-
composition are extensively studied.

3.4.2 Bounds Consistency

A bounds consistency propagation algorithm for the alldifferent constraint
was first introduced by Puget [1998]. We summarize his method in this section.
The idea is to use Hall’s Marriage Theorem to construct an algorithm that
achieves bounds consistency.

Definition 3.15 (Hall interval). Let x1, x2, . . . , xn be variables with respec-
tive finite domains D1, D2, . . . , Dn. Given an interval I, define KI = {xi |
Di ⊆ I}. I is a Hall interval if |I| = |KI |.

Theorem 3.16. The constraint alldifferent(x1, . . . , xn) is bounds consis-
tent if and only if |Di| ≥ 1 (i = 1, . . . , n) and

i) for each interval I: |KI | ≤ |I|,
ii) for each Hall interval I: {min Di,max Di} ∩ I = ∅ for all xi /∈ KI .

Proof. Let I be a Hall interval and xi /∈ KI . If alldifferent(x1, . . . , xn)
is bounds consistent, it has a solution when xi = min Di, by Definition 3.7.
From Theorem 3.4 immediately follows that min Di /∈ I. Similarly for max Di.

Conversely, suppose alldifferent(x1, . . . , xn) is not bounds consistent.
Thus, there exist a variable xi and a value di ∈ {min Di,max Di} for some
i ∈ {1, . . . , n}, such that alldifferent(x1, . . . , xi−1, xi+1, . . . , xn) has no so-
lution, where xj ∈ D′

j = [min(Dj \ {di}),max(Dj \ {di})] for all j 6= i. By
Theorem 3.4, there exists some K ⊆ {x1, . . . , xn}\{xi} such that |K| > |D′

K |.
Choose I = D′

K and consider KI with respect to alldifferent(x1, . . . , xn).
Then either I is a Hall interval and di ∈ KI , or |K| > |KI |. ¤

Section 3.4. Propagation for Local Consistency Notions 37

Example 3.6. Consider the following CSP

x1 ∈ {1, 2}, x2 ∈ {1, 2}, x3 ∈ {2, 3},
alldifferent(x1, x2, x3).

Observe that the variables x1 and x2 both have domain {1, 2}, Hence, values
1 and 2 cannot be assigned to any other variable and therefore, value 2 should
be removed from D3.

The algorithm detects this when the interval I is set to I = [1, 2]. Then the
number of variables for which Di ⊆ I is 2. Since |I| = 2, I is a Hall interval.
The domain of x3 is not in this interval, and {min D3,max D3}∩I = {min D3}.
In order to obtain the empty set in the right hand side of the last equation,
we need to remove min Di. The resulting CSP is bounds consistent. ¤

Theorem 3.16 is used to construct an algorithm that achieves bounds con-
sistency on the alldifferent constraint. Consider all intervals I = [l, u]
where l ranges over all minimum domain values and u over all maximum do-
main values. There are maximally n2 such intervals, as there are n variables.
Count the number of variables that are contained in I. If a Hall interval is
detected, update the bounds of the appropriate variables. This can be done
in O(n) steps. Hence the time complexity of this algorithm is O(n3).

However, it is more efficient to first sort the variables. To update the
minimum domain values, we sort the variables in increasing order of their
maximum domain value. Then we maintain an interval by the minimum and
maximum bounds of the variables, which are inserted in the above order.
Whenever we detect a maximum-length Hall interval, we update the bounds
of the appropriate variables, reset the interval and continue with the next
variable. To update the maximum domain values, we can apply the same
method after interchanging [min Di,max Di] with [−max Di,−min Di] for
all i.

The sorting of the variables can be done in O(n log n) time. As shown by
Puget [1998], we can use a balanced binary tree to keep track of the number
of variables within an interval, which allows updates in O(log n) per variable.
Hence the total time complexity reduces to O(n log n).

An improvement on top of this was suggested and implemented by Lopez-
Ortiz, Quimper, Tromp, and van Beek [2003]. They noticed that while keeping
track of the number of variables within an interval, some of the used counters
are irrelevant. They give two implementations, one with a linear running time
plus the time needed to sort the variables, and one with an O(n log n) running
time. Their experiments show that the latter algorithm is faster in practice.

A different algorithm for achieving bounds consistency of the alldiff-

erent constraint was presented by Mehlhorn and Thiel [2000]. Instead of Hall
intervals, they exploit the correspondence with finding a matching in a bipar-
tite graph, similar to the algorithm presented in Section 3.4.4. Their algorithm
runs in O(n) time plus the time needed to sort the variables according to the
bounds of the domains.

38 Chapter 3. A Systematic Overview of the Alldifferent Constraint

Although the worst-case time complexity of the above algorithms is always
O(n log n), under certain conditions the sorting can be performed in linear
time, which makes the algorithms by Lopez-Ortiz et al. [2003] and Mehlhorn
and Thiel [2000] run in linear time. This is the case in many practical instances,
for example when the variables encode a permutation.

3.4.3 Range Consistency

Leconte [1996] introduced an algorithm that achieves range consistency for the
alldifferent constraint. To explain this algorithm we follow the same pro-
cedure as in the previous subsection. Again we use Hall’s Marriage Theorem
to construct the algorithm.

Definition 3.17 (Hall set). Let x1, x2, . . . , xn be variables with respective
finite domains D1, D2, . . . , Dn. Given K ⊆ {x1, . . . , xn}, define the interval
IK = [min DK ,max DK]. K is a Hall set if |K| = |IK |.

Note that in the above definition IK does not necessarily need to be a Hall
interval, because KIK

= {xi | Di ⊆ IK} ⊇ K (see Definition 3.15).

Theorem 3.18. The constraint alldifferent(x1, . . . , xn) is range consis-
tent if and only if |Di| ≥ 1 (i = 1, . . . , n) and Di ∩ IK = ∅ for each Hall set
K ⊆ {x1, . . . xn} and each xi /∈ K.

Proof. Let K be a Hall set and xi /∈ K. If alldifferent(x1, . . . , xn) is range
consistent, it has a solution when xi = d for all d ∈ Di, by Definition 3.8.
From Theorem 3.4 immediately follows that Di ∩ IK = ∅.

Conversely, suppose alldifferent(x1, . . . , xn) is not range consistent.
Thus, there exist a variable xi and a value di ∈ Di for some i ∈ {1, . . . , n},
such that alldifferent(x1, . . . , xi−1, xi+1, . . . , xn) has no solution, where
xj ∈ D′

j = [min Dj \ {di},max Dj \ {di}] for all j 6= i. By Theorem 3.4,
there is some K ⊆ {x1, . . . , xn} \ {xi} with |K| > |D′

K |. Note that D′
K = IK .

Consider IK with respect to alldifferent(x1, . . . , xn). If K is a Hall set,
then di ∈ IK . Otherwise, |K| > |IK |. Then either some domain is empty, or
K contains a Hall set K ′, and Dj ∩ IK′ 6= ∅ for some xj ∈ K \ K ′. ¤

We can deduce a first propagation algorithm from Theorem 3.18 in a
similar way as we did for bounds consistency. Namely, consider all intervals
I = [l, u] where l ranges over all minimum domain values and u over all
maximum domain values. Then we count again the number of variables that
are contained in I. If a Hall set is detected, we update the domains of the
appropriate variables. This is one in O(n) steps. Hence the time complexity of
this algorithm is O(n3), as there are again maximally n2 intervals to consider.

A faster algorithm is presented by Leconte [1996]. We first sort (and store)
the variables twice, according to their minimum and maximum domain value,
respectively. The main loop considers the variables ordered by their maximum

Section 3.4. Propagation for Local Consistency Notions 39

domain value. For each such variable, we maintain the interval IK and start
adding variables to K. For this we consider all variables (inner loop), now
sorted by their minimum domain value. When we detect a Hall set, updating
the domains can be done in O(1) time, either within or after the inner loop,
and we proceed with the next variable. As sorting the variables can be done
in O(n log n) time, the total time complexity of this algorithm is O(n2). This
time complexity is optimal, as is illustrated in the following example, taken
from Leconte [1996].

Example 3.7. Consider the following CSP

xi ∈ {2i + 1} for i = 0, 1, . . . , n,
xi ∈ {0, 1, . . . , 2n + 2} for i = n + 1, n + 2, . . . , 2n,
alldifferent(x0, x1, . . . , x2n).

In order to make this CSP range consistent, we have to remove the n+1 first
odd integers from the domains of the n variables whose domain is not yet a
singleton. This takes O(n2) time. ¤

Observe that this algorithm has an opposite viewpoint from the algorithm
for bounds consistency, although it looks similar. Where the algorithm for
bounds consistency takes the domains (or intervals) as a starting point, the
algorithm for range consistency takes the variables instead. But they both
attempt to reach a situation in which the cardinality of a set of variables is
equal to the cardinality of the union of the corresponding domains.

3.4.4 Hyper-arc Consistency

A hyper-arc consistency propagation algorithm for the alldifferent con-
straint was proposed by Régin [1994]. The algorithm is based on matching
theory (see Section 2.1.1 and Section 3.2.1). We first give a characterization
in terms of Hall’s Marriage Theorem.

Definition 3.19 (Tight set). Let x1, x2, . . . , xn be variables with respective
finite domains D1, D2, . . . , Dn. K ⊆ {x1, . . . , xn} is a tight set if |K| = |DK |.

Theorem 3.20. The constraint alldifferent(x1, . . . , xn) is hyper-arc con-
sistent if and only if |Di| ≥ 1 (i = 1, . . . , n) and Di ∩ DK = ∅ for each tight
set K ⊆ {x1, . . . xn} and each xi /∈ K.

Proof. Let K be a tight set and xi /∈ K. If alldifferent(x1, . . . , xn) is hyper-
arc consistent, it has a solution when xi = d for all d ∈ Di, by Definition 3.6.
From Theorem 3.4 immediately follows that Di ∩ DK = ∅.

Conversely, suppose alldifferent(x1, . . . , xn) is not hyper-arc consistent.
Thus, there exist a variable xi and a value di ∈ Di for some i ∈ {1, . . . , n},
such that alldifferent(x1, . . . , xi−1, xi+1, . . . , xn) has no solution, where
xj ∈ D′

j = Dj \ {di} for all j 6= i. By Theorem 3.4, |K| > |D′
K | for some

40 Chapter 3. A Systematic Overview of the Alldifferent Constraint

K ⊆ {x1, . . . , xn} \ {xi}. If K is a tight set with respect to alldiff-

erent(x1, . . . , xn), then di ∈ DK . Otherwise, |K| > |DK |. Then either some
domain is empty, or K contains a tight set K ′, and Dj ∩ DK′ 6= ∅ for some
xj ∈ K \ K ′. ¤

Following Theorem 3.20, the alldifferent constraint can be made hyper-
arc consistent by generating all tight sets K and updating Di = Di \ DK for
all xi /∈ K. This approach is similar to the algorithms for achieving bounds
consistency and range consistency. For bounds consistency and range con-
sistency we could generate the respective Hall intervals and Hall sets rather
easily because we were dealing with intervals containing the domains. In or-
der to generate tight sets similarly we should consider all possible subsets
K ⊆ {x1, . . . , xn}. As the number of subsets is exponential in n, this ap-
proach is not practical. A different, more constructive, approach makes use of
matching theory to update the domains, and was introduced by Régin [1994].

Theorem 3.21. Let G be the value graph of a sequence of variables X =
x1, x2, . . . , xn with respective finite domains D1, D2, . . . , Dn. The constraint
alldifferent(x1, . . . , xn) is hyper-arc consistent if and only if every edge in
G belongs to a matching in G covering X.

Proof. Immediate from Definition 3.6 and Theorem 3.3. ¤

The following Theorem identifies edges that belong to a maximum-size
matching. The proof follows from Petersen [1891]; see also Schrijver [2003,
Theorem 16.1].

Theorem 3.22. Let G be a graph and M a maximum-size matching in G. An
edge belongs to a maximum-size matching in G if and only if it either belongs
to M , or to an even M -alternating path starting at an M -free vertex, or to
an M -alternating circuit.

Proof. Let M be a maximum-size matching in G = (V,E). Suppose edge
e belongs to a maximum-size matching N , and e /∈ M . The graph G′ =
(V,M ∪ N) consists of even paths (possibly of length 0) and circuits with
edges alternatingly in M and N . If the paths are not of even length, M or
N can be made larger by interchanging edges in M and N along this path (a
contradiction because they are of maximum size).

Conversely, let M be a maximum-size matching in G. By interchanging
edges in M and not in M along even M -alternating paths starting at an M -
free vertex and M -alternating circuits we obtain matchings of maximum size
again. ¤

To establish a connection between Theorem 3.20 and Theorem 3.22, con-
sider a tight set K ⊂ {x1, . . . , xn} of minimum size. The edges between vertices
in K and in DK form M -alternating circuits in the value graph. By apply-
ing Theorem 3.22 we remove those edges xid with xi /∈ K and d ∈ DK , i.e.
Di ∩ DK = ∅. This corresponds to applying Theorem 3.20.

Section 3.4. Propagation for Local Consistency Notions 41

C D

321

E

Tasks

Machines

A B

4 4

E

Tasks

Machines

1 2 3

A B DC

a. A matching covering all tasks. b. The bipartite graph after propagation.

Figure 3.2. The bipartite graph for the task assignment problem of Example 3.8.

Example 3.8. Consider again the task assignment problem of Example 3.1.
A solution to this problem is given in Figure 3.2.a, where bold edges denote
the corresponding matching M covering the tasks. Machine E is the only
M -free vertex. All even M -alternating paths starting from E belong to a so-
lution, by Theorem 3.22. Thus, all edges on the path E, 1,D, 3,A belong to a
solution. The only M -alternating circuit in the graph is 2,B, 4,C, 2, and by
Theorem 3.22 all edges in this circuit belong to a solution. The other edges,
i.e. (1,B), (1,C), (3,B) and (3,C), should be removed to make the alldiff-

erent constraint hyper-arc consistent. The result is depicted in Figure 3.2.b.
which corresponds to the CSP

x1 ∈ {D,E}, x2 ∈ {B,C}, x3 ∈ {A,D}, x4 ∈ {B,C},
alldifferent(x1, x2, x3, x4).

¤

Using Theorem 3.22, we construct a hyper-arc consistency propagation
algorithm. First we compute a maximum-size matching M in the value graph
G = (X ∪DX , E). This can be done in O(m

√
n) time, using the algorithm by

Hopcroft and Karp [1973], where m =
∑n

i=1 |Di|. Next we identify the even
M -alternating paths starting at an M -free vertex, and the even M -alternating
circuits in the following way.

Define the directed graph GM = (X ∪ DX , A) with arc set A = {(v1, v2) |
(v1, v2) ∈ M}∪{(v2, v1) | (v1, v2) 6∈ M}. In other words, edges in M are being
directed from X (the variables) to DX (the domain values). Edges not in M are
being directed reversely. We first compute the strongly connected components
in GM , i.e. maximal subsets of vertices S such that there exists a directed
path between every two vertices in S. This can be done in O(n + m) time,
following Tarjan [1972]. Arcs between vertices in the same strongly connected
component belong to an even M -alternating circuit in G, and are marked as
“consistent”. Next we search for the arcs that belong to a directed path in
GM , starting at an M -free vertex. This takes O(m) time, using breadth-first
search. Arcs belonging to such a path belong to an M -alternating path in G

42 Chapter 3. A Systematic Overview of the Alldifferent Constraint

starting at an M -free vertex, and are marked as “consistent”. For all edges
xid that are not marked “consistent” and do not belong to M , we update
Di = Di \ {d}. Then, by Theorem 3.22, the corresponding alldifferent

constraint is hyper-arc consistent.
From the above follows that the alldifferent constraint is checked for

consistency, i.e. checked to contain a solution, in O(m
√

n) time and made
hyper-arc consistent in O(m) time. We could also have applied a general algo-
rithm to achieve hyper-arc consistency on an n-ary constraint. Such algorithm
was presented by Mohr and Masini [1988]. For an alldifferent constraint
on n variables, the time complexity of their general algorithm is O(d!

(d−n)!),

where d is the maximum domain size. Clearly, the above specialized algorithm
is much more efficient.

During the whole solution process of the CSP, constraints other than all-

different might also be used to remove values. In such cases, we must update
our alldifferent constraint. As indicated by Régin [1994], this can be done
incrementally, i.e. we can make use of our current value graph and our current
maximum-size matching to compute a new maximum-size matching. This is
less time consuming than restarting the algorithm from scratch. Namely, after
k modifications we need at most O(km) steps to compute a new maximum-
size matching. The same idea has been used by Barták [2001] to make the
alldifferent constraint dynamic with respect to the addition of variables
during the solution process.

3.4.5 Complexity Survey and Discussion

Table 3.2 present a time complexity survey of the algorithms that obtain the
four notions of local consistency that have been applied to the alldifferent

constraint in this section. Here n is again the number of variables inside the
alldifferent constraint and m the sum of the cardinalities of the domains.

arc consistency O(n2) Van Hentenryck [1989]

bounds consistency O(n log n) Puget [1998],

Mehlhorn and Thiel [2000],

Lopez-Ortiz et al. [2003]

O(n) (special cases) Mehlhorn and Thiel [2000],

Lopez-Ortiz et al. [2003]

range consistency O(n2) Leconte [1996]

hyper-arc consistency O(m
√

n) Régin [1994]

Table 3.2. Survey of time complexity of four local consistency notions.

While increasing the strength of the local consistency notions from bounds
consistency to range consistency and hyper-arc consistency, we have seen that

Section 3.5. Variants of the Alldifferent Constraint 43

the underlying principle remains the same. It simply boils down to the refine-
ment of the sets to which we apply Hall’s Marriage Theorem.

In practice, none of these local consistency notions always outperforms all
others. It is strongly problem-dependent which local consistency is suited best.
In general, however, bounds consistency is most suitable when domains are
always closed intervals. As more holes may occur in domains, hyper-arc consis-
tency becomes more useful. Another observation concerns the implementation
of an algorithm that achieves bounds consistency. Although all three variants
in Table 3.2 have the same worst-case complexity, the one proposed by Lopez-
Ortiz, Quimper, Tromp, and van Beek [2003] appears to be most efficient in
practice.

A general comparison of bounds consistency and hyper-arc consistency
with respect to the search space has been made by Schulte and Stuckey [2001].
In particular, attention is also paid to the alldifferent constraint.

3.5 Variants of the Alldifferent Constraint

This section presents two variants of the alldifferent constraint: the sym-
metric alldifferent constraint and the weighted alldifferent constraint.

3.5.1 The Symmetric Alldifferent Constraint

A particular case of the alldifferent constraint, the symmetric alldiff-

erent constraint, was introduced by Régin [1999b]. We assume that the vari-
ables and their domain values represent the same set of elements. The sym-
metric alldifferent constraint states that all variables must take different
values, and if the variable representing element i is assigned to the value
representing element j, then the variable representing the element j must
be assigned to the value representing element i. A more formal definition is
presented below.

The symm alldifferent constraint is particularly suitable for round-robin
tournament problems. In such problems, for example a sports competition,
each team has to be matched with another team. Typically, there are many
more constraints involved than only the symm alldifferent constraint, which
makes the problems often very difficult to solve. The propagation of the all-

different constraint and the symm alldifferent constraint has been ana-
lyzed for practical problem instances by Henz, Müller, and Thiel [2004]. They
show that constraint programming, using the symm alldifferent constraint,
outperforms operations research approaches with several orders of magnitude.

Definition 3.23 (Symmetric alldifferent constraint). Let x1, x2, . . . , xn

be variables with respective finite domains D1, D2, . . . , Dn ⊆ {1, 2, . . . , n}.
Then

44 Chapter 3. A Systematic Overview of the Alldifferent Constraint

symm alldifferent(x1, . . . , xn) =
{(d1, . . . , dn) | di ∈ Di, di 6= dj for i 6= j, di = j ⇔ dj = i for i 6= j} .

In a CSP, the symm alldifferent constraint can also be expressed as an
alldifferent constraint together with one or more constraints that preserve
the symmetry. Another representation can be made that uses the so-called
cycle constraint, where each cycle must contain two vertices; see Beldiceanu
[2000]. In that case, a cycle on two vertices x and y indicates that x is assigned
to y and vice versa. However, the symm alldifferent constraint captures
more global information than the common alldifferent constraint together
with additional constraints. Hence the symm alldifferent constraint can be
used to obtain a stronger propagation algorithm. The following example, taken
from Régin [1999b] shows exactly this.

Example 3.9. Consider a set of three people that have to be grouped in
pairs. Each person can only be paired to one other person. This problem
can be represented as a CSP by introducing a set of people S = {p1, p2, p3}
that are pairwise compatible. These people are represented both by a set of
variables x1, x2 and x3 and by a set of values v1, v2 and v3, where xi and vi

represent pi. Then the CSP

x1 ∈ {v2, v3}, x2 ∈ {v1, v3}, x3 ∈ {v1, v2},
x1 = v2 ⇔ x2 = v1,
x1 = v3 ⇔ x3 = v1,
x2 = v3 ⇔ x3 = v2,
alldifferent(x1, x2, x3)

is hyper-arc consistent. However, the following CSP

x1 ∈ {v2, v3}, x2 ∈ {v1, v3}, x3 ∈ {v1, v2},
symm alldifferent(x1, x2, x3)

is inconsistent. Indeed, there exists no solution to this problem, as the number
of variables is odd. ¤

Suppose there exists a value j ∈ Di, while i 6= Dj . Then we can immedi-
ately remove value j from Di. Hence we assume that such situations do not
occur in the following.

Similar to the common alldifferent constraint, the symm alldifferent

constraint can be expressed by a graph. Given a constraint symm alldiff-

erent(x1, . . . , xn), construct the graph Gsymm = (X,E), with vertex set X =
{x1, x2, . . . , xn} and edge set E = {xixj | xi ∈ Dj , xj ∈ Di, i < j}. Note
that we identify each variable xi with value i for i = 1, . . . , n. We denote the
number of edges in Gsymm by m, i.e. m = (

∑n
i=1 |Di|) /2. An illustration of

Gsymm is given in the next example.

Example 3.10. Consider the following CSP

Section 3.5. Variants of the Alldifferent Constraint 45

xa ∈ {b, c, d, e}, xb ∈ {a, c, d, e}, xc ∈ {a, b, d, e}, xd ∈ {a, b, c, e},
xe ∈ {a, b, c, d, i, j}, xf ∈ {g, h}, xg ∈ {f, h}, xh ∈ {f, g, i, j},
xi ∈ {e, h, j}, xj ∈ {e, h, i},
symm alldifferent(xa, xb, . . . , xj).

In Figure 3.3.a the corresponding graph Gsymm is depicted, where xa, xb, . . . , xj

are abbreviated to a, b, . . . , j. ¤

Similar to Theorem 3.3, we have the following result.

Theorem 3.24. Let x1, x2, . . . , xn be a sequence of variables with respective
finite domains D1, D2, . . . , Dn. Then

(d1, . . . , dn) ∈ symm alldifferent(x1, . . . , xn)

if and only if M = {xidi | i < di} is a matching in G.

Proof. An edge xixj in Gsymm corresponds to the assignments xi = di and
xdi

= i, which are equivalent with xj = dj and xdj
= j, because di = j and

dj = i. As no edges in a matching share a vertex, all endpoints are different.
Finally, as M covers X, to all variables a value is assigned. ¤

We use Theorem 3.24 to make the symm alldifferent constraint hyper-
arc consistent.

Theorem 3.25. The constraint symm alldifferent(x1, . . . , xn) is hyper-arc
consistent if and only if every edge in the corresponding graph Gsymm belongs
to a matching that covers x1, . . . , xn.

Proof. By Definition 3.6 (hyper-arc consistency) and application of Theo-
rem 3.24. ¤

Example 3.11. Consider again the CSP of Example 3.10. Figure 3.3.b shows
the graph of Figure 3.3.a after making the CSP hyper-arc consistent. Consider
for example the subgraph induced by vertices f , g and h. Obviously vertices f
and g have to be paired in order to satisfy the symm alldifferent constraint.
Hence, vertex h cannot be paired to f nor g, and the corresponding edges can
be removed. The same holds for the subgraph induced by a, b, c, d and e,
where the vertices a, b, c and d must form pairs. ¤

A matching in Gsymm that covers x1, . . . , xn is also a maximum-size match-
ing. From Theorem 3.22 we already know how to identify edges that belong to
a maximum-size matching. Namely, given an arbitrary maximum-size match-
ing M , they belong either to M , or to an even M -alternating path starting
at a free vertex, or to an even M -alternating circuit. However, in the cur-
rent case, Gsymm does not need to be bipartite, so we cannot blindly apply
the machinery from Section 3.4.4 to achieve hyper-arc consistency for the
symm alldifferent constraint.

46 Chapter 3. A Systematic Overview of the Alldifferent Constraint

e

b c

f

h

i j

a d

g

e

b c

f

h

i j

a d

g

a. The graph Gsymm. b. The graph Gsymm after propagation.

Figure 3.3. Propagation of the symm alldifferent constraint of Example 3.10.

The following algorithm to achieve hyper-arc consistency was proposed
by Régin [1999b]. First, we compute a maximum-size matching M in the
(possibly non-bipartite) graph Gsymm. This can be done in O(m

√
n) time by

applying the algorithm by [Micali and Vazirani, 1980]. If |M | < n/2, there is
no solution. Otherwise, we need to detect all edges that can never belong to
a maximum-size matching. Since there are no M -free vertices, we only need
to check whether an edge that does not belong to M is part of an even M -
alternating circuit. This can be done as follows. If for an edge uv ∈ M we find
an M -alternating path u, . . . , w, v (with u 6= w), we know that the edge wv
is on an even M -alternating circuit. Moreover, we can compute all possible
M -alternating paths from u to v, that avoid edge uv. All edges wv that are
not on such a path cannot belong to an even M -alternating circuit. Namely,
all M -alternating circuits through wv should also contain the matching edge
uv. Hence, by Theorem 3.22 and Theorem 3.24 we can delete such edges wv.
This procedure should be repeated for all vertices in Gsymm.

The algorithm for computing the M -alternating paths can be implemented
to run in O(m) time, using results of Edmonds [1965] to take care of the non-
bipartiteness, and Tarjan [1972] for the data structure, as was observed by
Régin [1999b]. Hence the total time complexity of the algorithm achieving
hyper-arc consistency for the symm alldifferent constraint is O(nm).

Note that the above algorithm is not incremental, and may not be ef-
fective in all practical cases. For this reason, also an incremental algorithm
was proposed by Régin [1999b], that does not ensure hyper-arc consistency,
however. The algorithm computes once a maximum-size matching, and each
incremental step has a time complexity of O(m).

3.5.2 The Weighted Alldifferent Constraint

In this section we assume that for all variables in the alldifferent constraint
each variable-value pair induces a fixed cost. Eventually (the problem we
want to solve involves also other constraints), the goal is to find a solution

Section 3.5. Variants of the Alldifferent Constraint 47

with minimum3 total cost. In the literature, this combination is known as the
constraint MinWeightAllDiff [Caseau and Laburthe, 1997b], or IlcAllDiff-
Cost [Focacci, Lodi, and Milano, 1999b]. This section shows how to exploit
the alldifferent constraint and the minimization problem together as an
“optimization constraint”. First we give a definition of the weighted alldiff-

erent constraint, and then we show how we to make it hyper-arc consistent.
It should be noted that the weighted alldifferent constraint is a special
case of the weighted global cardinality constraint, which will be introduced in
Section 4.5.

Definition 3.26 (Weighted alldifferent constraint). Let x1, x2, . . . , xn, z
be variables with respective finite domains D1, D2, . . . , Dn, Dz, and let wij ∈
Q+ for i = 1, . . . , n and all j ∈ ⋃i=1,...,n Di be constants. Then

minweight alldifferent(x1, . . . , xn, z, w) =
{

(d1, . . . , dn, d̃) | di ∈ Di, d̃ ∈ Dz, di 6= dj for i 6= j,
∑

i,di=j wij ≤ d̃
}

.

Note that for a pair (xi, j) with j /∈ Di, we may define wij = ∞. The variable
z in Definition 3.26 serves as a “cost” variable, which is minimized during the
solution process. This means that admissible tuples are those instantiations of
variables with total weight not more than the currently best found solution,
represented by max Dz. At the same time, min Dz should not be less than the
currently lowest possible total weight.

In order to make the minweight alldifferent constraint hyper-arc con-
sistent, we introduce the directed graph Gminweight = (V,A) with

V = {s, t} ∪ X ∪ DX and A = As ∪ AX ∪ At

where X = {x1, x2, . . . , xn} and

As = {(s, xi) | i = 1, 2, . . . , n},
AX = {(xi, d) | d ∈ Di},
At = {(d, t) | d ∈ ⋃n

i=1 Di}.

To each arc a ∈ A, we assign a capacity c(a) = 1 and a weight w(a). If
a = xij ∈ AX , then w(a) = wij . If a ∈ As ∪ At then w(a) = 0.

Theorem 3.27. The constraint minweight alldifferent(x1, . . . , xn, z, w) is
hyper-arc consistent if and only if

i) for every arc a ∈ AX there exists a feasible s− t flow f in Gminweight with
f(a) = 1, value(f) = n and weight(f) ≤ max Dz, and

ii) min Dz ≥ weight(f) for a minimum-weight s − t flow f of value n in
Gminweight.

3 A maximization problem can be reformulated as a minimization problem by
negating the objective function.

48 Chapter 3. A Systematic Overview of the Alldifferent Constraint

x2

1x

x3

B

C

D

E

A

x4

ts

(1,0)

(1,0)

(1,5)
(1,

0)

(1,0) (1,9)

(1,4)

(1,0)

(1
,0

)

(1,8)(1
,7)

(1,6)

(1,5)

(1,8)

(1,4)

(1
,8)

(1,3)

(1,6)

(1,0)

(1,0)

(1,0)

Figure 3.4. Graph Gminweight for the minweight alldifferent constraint of Exam-
ple 3.12. For each arc a, (c(a), w(a)) is given. Bold arcs indicate a minimum-weight
s − t flow with weight 21.

Proof. We may assume that every feasible s − t flow f of value n is integer,
because c is integer. In fact, we may assume that f is {0, 1}-valued, because
c(a) = 1 for each arc a ∈ A. As value(f) = n, f uses exactly n arcs in AX . An
arc a = (xi, j) ∈ AX with f(a) = 1 corresponds to assigning xi = j. Because
c(a) = 1 for all a ∈ At, each value is used at most once, which enforces the
alldifferent constraint. Hence, if weight(f) ≤ max Dz, the corresponding
assignment is a solution to the minweight alldifferent constraint. ¤

Example 3.12. Consider again the task assignment problem of Example 3.1.
Suppose in addition that each task-machine combination induces a cost, as
indicated in Table 3.3 below. The goal is to find an assignment with minimum
cost. Denote the cost of assigning task i to machine j as wij . For the cost

Machine

Task A B C D E

1 ∞ 8 5 6 4

2 ∞ 6 9 ∞ ∞
3 8 5 4 3 ∞
4 ∞ 7 8 ∞ ∞

Table 3.3. Cost of task - machine combinations.

variable z we initially set max Dz = 33, being the sum of the maximum
assignment cost for each variable. Then we model the problem as the CSP

Section 3.5. Variants of the Alldifferent Constraint 49

z ∈ {0, 1, . . . , 33},
x1 ∈ {B,C,D,E}, x2 ∈ {B,C}, x3 ∈ {A,B,C,D}, x4 ∈ {B,C},
minweight alldifferent(x1, x2, x3, x4, z, w),
minimize z.

The corresponding graph Gminweight is shown in Figure 3.4. The bold arcs in
the graph denote a minimum-weight s− t flow with weight 21. It corresponds
to a solution to the COP, i.e. x1 = E, x2 = B, x3 = D, x4 = C and z = 21. ¤

Following Theorem 3.27, we can make the minweight alldifferent con-
straint hyper-arc consistent by the following procedure:

For all arcs a = xij ∈ AX , compute a minimum-weight s − t flow f
in Gminweight with f(a) = 1. If value(f) < n or weight(f) > max Dz,
update Di = Di \ {j}.
For a minimum-weight s − t flow f in Gminweight with value(f) = n,
update min Dz = weight(f) if min Dz < weight(f).

The drawback of the above procedure is that we have to compute a minimum-
weight s − t flow for each arc in AX . It is more efficient however, to use the
residual graph (Gminweight)f and apply Theorem 2.2 as follows.

We first compute a minimum-weight flow f in Gminweight. For this we
use the algorithm presented in Section 2.1.1. We need to compute n shortest
s − t paths in the residual graph, each of which takes O(m + d log d) time
where m =

∑n
i=1 |Di| and d = |⋃n

i=1 Di|. Thus the minimum-weight flow
is computed in O(n(m + d log d)) time. If weight(f) > max Dz, the min-

weight alldifferent constraint is inconsistent.
If weight(f) ≤ max Dz, we consider all arcs a = xij ∈ AX with f(a) = 0

(see Theorem 2.2). We compute a minimum-weight j − xi path P in the
residual graph (Gminweight)f , if it exists. If P does not exist, we update

Di = Di \ {j}. Otherwise, P, a, j forms a circuit C of minimum weight, con-
taining a. If weight(f) + weight(C) > max Dz we update Di = Di \ {j}.
Finally, we update min Dz = weight(f) if min Dz < weight(f). Then, by
Theorem 3.27 and Theorem 2.2 the minweight alldifferent constraint is
hyper-arc consistent. These last steps involve m − n shortest path compu-
tations, each taking O(m + d log d) time. Hence the total time complexity
for making the minweight alldifferent constraint hyper-arc consistent is
O(m(m + d log d)). In fact, this can be improved to O(n(m + d log d)), as was
shown by Régin [1999a, 2002] and Sellmann [2002].

Other work concerning the alldifferent constraint in conjunction with
an objective function has been done by Lodi, Milano, and Rousseau [2003].
In that work, the so-called additive bounding procedure [Fischetti and Toth,
1989] and limited discrepancy search are exploited in presence of an alldiff-

erent constraint; see also Section 6.3.

50 Chapter 3. A Systematic Overview of the Alldifferent Constraint

3.6 The Alldifferent Polytope

In this section we consider the description of the alldifferent constraint in
integer linear programming. In this section we suppose that an integer linear
programming model consists of integer variables, a set of linear constraints
(inequalities) and a linear objective function to be optimized, and can be
written as

max {cTx | Ax ≤ b, x integral} (3.4)

for rational matrix A, rational vectors b and c and variable vector x of appro-
priate size. The continuous relaxation of (3.4) is

max {cTx | Ax ≤ b}. (3.5)

Note that (3.5) can be rewritten into the standard form (2.2) of a linear
program.

A problem can usually be modelled as an integer linear program in more
than one way. Each such model leads to a (possibly different) continuous
relaxation. Ideally, one seeks for a model for which the relaxation is precisely
the convex hull of all integer solutions. Namely, for such models the continuous
relaxation has an integral, and hence optimal, solution. Formally, relaxation
(3.5) defines a so-called polytope, i.e. the convex hull of a finite number of
vectors, where the vectors are defined by the linear constraints Ax ≤ b of the
problem. Our goal is to find a tight polytope, i.e. a polytope that describes
the convex hull of all integer solutions to the problem, for the alldifferent

constraint.
Suppose the problem at hand contains the structure

alldifferent(x1, x2, . . . , xn)
x1, x2, . . . , xn ∈ {d1, d2, . . . , dn} (3.6)

for which we would like to find a tight polytope. We assume that the domain
values d1, d2, . . . , dn are numerical values with d1 < d2 < · · · < dn. A convex
hull representation of (3.6) was given by Williams and Yan [2001]. We follow
here the description and the proof of Hooker [2000, p. 232–233]. The idea is
that the sum of any k variables must be at least d1 + · · · + dk.

Theorem 3.28. Let d1, d2, . . . , dn be any sequence of numerical values with
d1 < d2 < · · · < dn. Then the convex hull of all vectors x that satisfy all-

different(x1, x2, . . . , xn) where xi ∈ {d1, d2, . . . , dn} is described by

n
∑

j=1

yj =

n
∑

j=1

dj , (3.7)

∑

j∈J

yj ≥
|J|
∑

j=1

dj , for all J ⊂ {1, . . . , n} with |J | < n. (3.8)

for y ∈ Rn.

Section 3.6. The Alldifferent Polytope 51

Proof. It suffices to show that any valid inequality aTy ≥ α can be obtained
as a linear combination of (3.7) and (3.8) in which the coefficients of (3.8) are
nonnegative. Assume, without loss of generality, that ai1 ≥ ai2 ≥ · · · ≥ ain

for some permutation i1, . . . , in of the indices. Then because aTy ≥ α is valid,
one can set yk = dj if ij = k, so that

n
∑

j=1

aij
dj ≥ α. (3.9)

From (3.7) and (3.8),

n
∑

j=1

yij
= d1 + · · · + dn, (3.10)

k
∑

j=1

yij
≥ d1 + · · · + dk, k = 1, . . . , n − 1. (3.11)

Consider a linear combination in which each inequality of 3.11 has coefficient
aik

− aik+1
, and (3.10) has coefficient ain

. The result is

n
∑

j=1

aij
yij

≥
n
∑

j=1

aij
dj

(3.9)

≥ α

and the theorem follows. ¤

Example 3.13. The convex hull of all vectors x that satisfy

alldifferent(x1, x2, x3)
x1, x2, x3 ∈ {7, 11, 13}

can be given by
y1 + y2 + y3 = 31,
y1 + y2 ≥ 18,
y1 + y3 ≥ 18,
y2 + y3 ≥ 18,
yj ≥ 7, for j = 1, 2, 3,

and is depicted in Figure 3.5. ¤

Unfortunately, the number of inequalities to describe the convex hull grows
exponentially with the number of variables. In practice it may therefore be
profitable to generate these inequalities only when they are violated by the
current relaxation.

Further work on the description of the alldifferent constraint in integer
linear programming has been done by Lee [2002]. That work proposes a repre-
sentation that uses a binary encoding of the solution set. Further, Appa, Ma-
gos, and Mourtos [2004] present linear programming relaxations based upon
multiple alldifferent constraints.

52 Chapter 3. A Systematic Overview of the Alldifferent Constraint

y3

y1

2y

11
13

11 137
7

13

11

Figure 3.5. The polytope of Example 3.13.

3.7 Conclusion

We have presented a survey of the most important results over the years
regarding the alldifferent constraint. To this end, we have first introduced
the underlying combinatorial concepts on which the results are based, i.e.
matchings, flows and Hall’s Theorem. Using these concepts we have provided
a systematic presentation of the different notions of local consistency and
their corresponding propagation algorithms that have been applied to the
alldifferent constraint.

An important observation is the following. To make constraint program-
ming applicable to practical problems one needs propagation algorithms that
are both effective and efficient. The most powerful propagation algorithm for
the alldifferent constraint, i.e. the one obtaining hyper-arc consistency,
is indeed very efficient. The reason is that we can apply matching theory
from operations research. Also for the symmetric alldifferent constraint
and the weighted alldifferent constraint effective and efficient propagation
algorithms exist, again based on techniques from operations research.

These results show that the application of operations research techniques
in constraint propagation algorithms can be very beneficial.

Chapter 4

Soft Global Constraints

In case a CSP is over-constrained, it is natural to allow some
constraints, called soft constraints, to be violated. We propose a generic
method to soften global constraints that can be represented by a flow in
a graph. Such constraints are softened by inserting violation arcs to the
graph. Then we compute a minimum-weight flow in the extended graph
to measure the violation. We present efficient propagation algorithms,
based on different violation measures, achieving hyper-arc consistency
for the alldifferent constraint, the global cardinality constraint, the
regular constraint and the same constraint.

4.1 Introduction

Many real-life problems are over-constrained. In personnel rostering problems
for example, people often have conflicting preferences. To such problems there
does not exist a feasible solution that respects all preferences. However, we still
want to find some solution, preferably one that minimizes the total number of
conflicts. In case of the personnel rostering example, we may want to construct
a roster in which the number of respected preferences is equally spread among
the employees.

In constraint programming, we seek for an (optimal) feasible solution to
a given problem. Hence, we cannot apply constraint programming directly to
over-constrained problems, because it finds no solution. As a remedy there
have been proposed several methods. Most of these methods introduce so-
called soft constraints that are allowed to be violated. Constraints that are
not allowed to be violated are called hard constraints. Most methods then try
to find a solution that minimizes the number of violated constraints, or some
other measure of constraint violation.

Global constraints are often key elements in successfully modelling and
solving real-life applications with constraint programming. For many soft
global constraints, however, no efficient propagation algorithms were avail-
able, up to very recently. Moreover, it was stated that

“Active solving of global constraints is only applicable on the assump-
tion that the constraint must be satisfied in any solution. Soft con-
straints may be violated in an admissible solution, and cannot there-
fore be handled by the usual techniques for global constraints.”

(quoted from Wallace, Caseau, and Puget [2003, p. 335]). In this chapter we
show that “usual techniques for global constraints” can be used to handle

54 Chapter 4. Soft Global Constraints

soft constraints. In particular, we apply techniques that were used earlier to
handle the weighted alldifferent constraint.

We distinguish two main objectives with respect to soft global constraints:
useful violation measures and efficient propagation algorithms. Both issues will
be addressed in this chapter, depending heavily on a technique from opera-
tions research: flow theory.

In many cases we can represent a solution to a global constraint as a prop-
erty in some graph representation of the constraint. For example, a solution
to the alldifferent constraint corresponds to a matching in the associated
value graph, as we have seen in Section 3.2.1. There exists a large class of such
global constraints, see for example Beldiceanu [2000] for a collection. In this
chapter, we focus on global constraints for which a solution can be represent
by a flow in a graph.

Our method adds violation arcs to the graph representation of a global
constraint. To these arcs we assign a cost, corresponding to some violation
measure of the constraint. Each tuple in the constraint has an associated cost
of violation. If the tuple satisfies the constraint, the corresponding flow does
not use any violation arc, and the cost is 0. If the tuple does not satisfy
the constraint, the corresponding flow must use violation arcs, whose costs
represent the cost of violation of this tuple.

This approach allows us to define and implement useful violation measures
for soft global constraints. Moreover, we present an efficient generic propaga-
tion algorithm for soft global constraints, making use of flow theory. We apply
our method to several global constraints that are well-known to the constraint
programming community: the alldifferent constraint, the global cardinal-
ity constraint, the regular constraint and the same constraint, which will be
defined when considered in this chapter. To each of these global constraints
we apply several violation measures, some of which are newly introduced.

This chapter is organized as follows. In Section 4.2 we give an overview of
related literature. Then our method to soften global constraints is presented
in Section 4.3. We first discuss the general concepts of constraint softening
and violation measures. Then we describe the addition of violation arcs to the
graph representation and present the generic hyper-arc consistency propaga-
tion algorithm.

In Section 4.4 we apply our method to the four global constraints men-
tioned above: the alldifferent constraint, the global cardinality constraint,
the same constraint and the regular constraint. For each constraint we intro-
duce useful violation measures and the corresponding graph representations.
We also analyze the corresponding propagation algorithms to achieve hyper-
arc consistency.

In Section 4.8 we propose to use soft global constraints to aggregate the
costs of violation of different soft constraints. Finally, in Section 4.9 a conclu-
sion is given.

Section 4.2. Related Literature 55

4.2 Related Literature

The best-known framework to handle soft constraints is the Partial-CSP
framework by Freuder and Wallace [1992]. This framework includes the Max-
CSP framework that tries to maximize the number of satisfied constraints.
Since in this framework all constraints are either violated or satisfied, the ob-
jective is equivalent to minimizing the number of violated constraints. It has
been extended to the Weighted-CSP framework by Larrosa [2002] and Lar-
rosa and Schiex [2003], associating a degree of violation (not just a boolean
value) to each constraint and minimizing the sum of all weighted violations.
The Possibilistic-CSP framework by Schiex [1992] associates a preference to
each constraint (a real value between 0 and 1) representing its importance.
The objective of the framework is the hierarchical satisfaction of the most
important constraints, i.e. the minimization of the highest preference level
for a violated constraint. The Fuzzy-CSP framework by Dubois, Fargier, and
Prade [1993], Fargier, Lang, and Schiex [1993] and Ruttkay [1994] is some-
what similar to the Possibilistic-CSP but here a preference is associated to
each tuple of each constraint. A preference value of 0 means the constraint is
highly violated and 1 stands for satisfaction. The objective is the maximiza-
tion of the smallest preference value induced by a variable assignment. The
last two frameworks are different from the previous ones since the aggregation
operator is a min/max function instead of addition. Max-CSPs are typically
encoded and solved with one of two generic paradigms: valued-CSPs [Schiex,
Fargier, and Verfaillie, 1995] and semi-rings [Bistarelli, Montanari, and Rossi,
1997].

Another approach to model and solve over-constrained problems was pro-
posed by Régin, Petit, Bessière, and Puget [2000] and refined by Beldiceanu
and Petit [2004]. The idea is to identify with each soft constraint S a “cost”
variable z, and replace the constraint S by the disjunction

(S ∧ (z = 0)) ∨ (S ∧ (z > 0))

where S is a constraint of the type z = µ(S) for some violation measure µ(S)
depending on S. The newly defined problem is not over-constrained anymore.
If we ask to minimize the (weighted) sum of violation costs, we can solve the
problem with a traditional constraint programming solver.

This approach also allows us to design specialized filtering algorithms
for soft global constraints. Namely, if we treat the soft constraints as “op-
timization constraints”, we can apply cost-based propagation algorithms. We
have already seen an example of a cost-based propagation algorithm for the
weighted alldifferent constraint in Section 3.5.2. Constraint propagation
algorithms for soft constraints based on this method were given by Petit,
Régin, and Bessière [2001] and van Hoeve [2004].

Another advantage of this framework is the applicability of “meta-con-
straints”, as proposed by Petit, Régin, and Bessière [2000]. The idea behind
this technique is to aggregate the cost variables by imposing a constraint on

56 Chapter 4. Soft Global Constraints

them, called a meta-constraint. By correctly constraining these variables it is
possible to replicate the previous frameworks for soft constraints, and even to
extend the modeling capability to capture other types of violation measures.

Because of the above advantages, most importantly because it allows the
design of specific cost-based constraint propagation algorithms for soft global
constraints, we follow the scheme proposed by Régin, Petit, Bessière, and
Puget [2000] to handle over-constrained CSPs.

4.3 Outline of Method

In this section we first define how we soften global constraints, and define
several violation measures. Then we present a generic constraint propagation
algorithm for a class of soft global constraints; those that can be represented
by a flow in a graph.

4.3.1 Constraint Softening and Violation Measures

As stated above, the idea of the scheme by Régin, Petit, Bessière, and Puget
[2000] is as follows. To each soft constraint we associate a violation measure
and a cost variable that measures this violation. Then we transform the CSP
into a constraint optimization problem (COP), where all constraints are hard,
and the (weighted) sum of cost variables is minimized. If we impose an upper
bound on the cost variable of each soft constraint, we can remove all domain
values for which no solution exists with a violation cost below this upper
bound. The method is illustrated by the following example.

Example 4.1. Consider the over-constrained CSP

x1 ∈ {a, b}, x2 ∈ {a, b}, x3 ∈ {a, b}, x4 ∈ {b, c},
alldifferent(x1, x2, x3, x4).

We soften the alldifferent constraint as follows. Let µ denote the violation
measure that counts the number of pairs (xi, xj) with xi = xj for all distinct
i, j. We introduce a cost variable z that represents µ. The domain of z is
initially set to {0, . . . , 6}, because at most 6 pairs of variables can be equal. Let
the soft alldifferent be denoted by soft alldifferent(x1, x2, x3, x4, z, µ).
Then we transform the CSP into the following COP:

z ∈ {0, . . . , 6},
x1 ∈ {a, b}, x2 ∈ {a, b}, x3 ∈ {a, b}, x4 ∈ {b, c},
soft alldifferent(x1, x2, x3, x4, z, µ),
minimize z.

This COP is not hyper-arc consistent, as there is no solution with z < 1. If
we remove 0 from Dz, the COP is hyper-arc consistent, because there are at
most 6 simultaneously violated dis-equalities.

Section 4.3. Outline of Method 57

Suppose now that during the search for a solution, we have found the
tuple (x1, x2, x3, x4, z) = (a, a, b, c, 1), that has one violated dis-equality. Then
z ∈ {1} in the remaining search. As the assignment x4 = b always leads to
a solution with z ≥ 2, b can be removed from D4. The resulting COP is
hyper-arc consistent again.

One should take into account that a simplified CSP is considered in this
example. In general, a CSP can consist of many more hard and soft constraints,
and also more cost-variables that together with z form an objective function
to be minimized. ¤

Let X = x1, . . . , xn be a sequence of variables with respective finite do-
mains D1, . . . , Dn. Consider a CSP that contains soft constraints, each on a
subsequence of X. For each soft constraint C(x1, . . . , xk) we define a violation
measure µ : D1 × · · · × Dk → Q and a “cost” variable z that represents the
measure of violation of C.

We first give a general definition of constraint softening .

Definition 4.1 (Constraint softening). Let x1, . . . , xn, z be variables with
respective finite domains D1, . . . , Dn, Dz. Let C(x1, . . . , xn) be a constraint
with a violation measure µ(x1, . . . , xn). Then

soft C(x1, . . . , xn, z, µ) =
{

(d1, . . . , dn, d̃) | di ∈ Di, d̃ ∈ Dz, µ(d1, . . . , dn) ≤ d̃
}

is the soft version of C with respect to µ.

The cost variable z is minimized (possibly together with other cost variables)
during the solution process. Thus, max Dz represents the maximum value of
violation that is allowed, and min Dz represents the lowest possible value of
violation, given the current state of the solution process.

There may be several natural ways to evaluate the degree to which a
global constraint is violated and these are usually not equivalent. Two general
measures are the variable-based violation measure and the decomposition-based
violation measure.

Definition 4.2 (Variable-based violation measure). Let C be a con-
straint on the variables x1, . . . , xn and let d1, . . . , dn be an instantiation of
variables such that di ∈ Di for i = 1, . . . , n. The variable-based violation
measure µvar of C is the minimum number of variables that need to change
their value in order to satisfy C.

For the decomposition-based violation measure we make use of the binary
decomposition of a constraint; see Definition 3.11.

Definition 4.3 (Decomposition-based violation measure). Let C be a
constraint on the variables x1, . . . , xn for which a binary decomposition Cdec

exists and let d1, . . . , dn be an instantiation of variables such that di ∈ Di

for i = 1, . . . , n. The decomposition-based violation measure µdec of C is the
number of violated constraints in Cdec.

58 Chapter 4. Soft Global Constraints

Alternative measures exist for specific constraints. For the soft global cardi-
nality constraint and the soft regular constraint, we introduce new violation
measures, that are likely to be more effective in practical applications.

After we have assigned a violation measure to each soft constraint, the
method proceeds as follows. Consider a CSP of the form P = (X,D,Chard ∪
Csoft), where Chard and Csoft denote the set of hard and soft constraints of P ,
respectively. We soften each constraint Ci ∈ Csoft using the violation measure
it has been assigned, and a cost variable zi with domain Dzi

(i = 1, . . . , |Csoft|)
that represents this measure. We further define a function

h : Dz1
× · · · × Dz|Csoft|

→ Q,

to measure the aggregated cost of violation for all soft constraints. We in-
troduce a variable zagg to represent the value of h. Then we transform P

into the COP P̃ = (X̃, D̃, C̃) where X̃ is the sequence of variables containing
X, z1, . . . , z|Csoft|, zagg, D̃ contains their corresponding domains, and C̃ is the
constraint set containing Chard and the soft version of the constraints in Csoft,
together with the “constraint” minimize zagg.

4.3.2 Propagation of Soft Constraints

Let x1, . . . , xn be variables with respective finite domains D1, . . . , Dn and let
C(x1, . . . , xn) be a constraint. Further, let φ ∈ R+. We assume that C can be
represented by a directed graph G = (V,A) with capacity function c : A → N

that has the following properties:

• a pair (xi, j) is represented by at least one arc a ∈ A for i = 1, . . . , n and
all j ∈ Di, and c(a) = 1,

• a tuple (d1, . . . , dn) ∈ C is represented by a feasible flow f of value φ
in G such that f(a) = 1 for an arc a representing the pair (xi, di) for
i = 1, . . . , n, and f(a) = 0 for all arcs a representing the pair (xi, d) with
d 6= di for i = 1, . . . , n.

In case the constraint C is violated, it is impossible to find a flow with the
above mentioned properties in the corresponding digraph G. We propose to
extend G with certain arcs, such that it becomes possible to find a feasible
flow corresponding to a solution. We call these arcs violation arcs, and they
are denoted by Ã. Violation arcs may appear anywhere in the graph. The
only restriction we impose on them is that after their addition, there exists
a feasible flow in G̃ = (V,A ∪ Ã) that represents a solution to C. In many
cases, however, we require a specific set of solutions to be represented by a
flow in G. For example, we may wish that all variable-value combinations are
possible solutions to C. This should be taken into account when we define the
set of violation arcs Ã.

The next step is to make a connection with the violation measures for a
constraint. This is done by applying a “cost” function w : A∪ Ã → Q to G̃ in

Section 4.3. Outline of Method 59

the following way. For all arcs a ∈ A we define w(a) = 0, while w(a) ≥ 0 for
all arcs a ∈ Ã. Then each flow f in G̃ has an associated cost

∑

a∈A∪Ã

w(a)f(a) =
∑

a∈Ã

w(a)f(a).

After the addition of violation arcs, a solution to C corresponds to a feasible
flow in G̃ with an associated cost. If the flow does not use any violation arcs,
this cost is 0. Otherwise, the cost of the flow depends on the costs we impose on
the violation arcs. Hence we can define a violation measure as follows. For each
solution to C we define its cost of violation as the minimum-weight flow in G̃
that represents this solution. Conversely, for many existing violation measures
it is possible to choose a particular set of violation arcs and associated costs,
such that a minimum-weight flow in G̃ representing a solution is exactly the
cost of violation of that solution. In the following sections we provide several
examples for different constraints and different violation measures. We often
denote the extended digraph G̃ as Gµ to indicate its dependence on some
violation measure µ.

In other words, if C is represented by the digraph G = (V,A) and we
can find violation arcs Ã and a cost function w : A ∪ Ã → Q+ that repre-
sent violation measure µ, then the soft version of C with respect to µ, i.e.
soft C(x1, . . . , xn, z, µ), is represented by the digraph Gµ = (V,A ∪ Ã) with
cost function w. By construction, we have the following result.

Theorem 4.4. The constraint soft C(x1, . . . , xn, z, µ) is hyper-arc consis-
tent if and only if

i) for all i ∈ {1, . . . , n} and all d ∈ Di there is an arc a ∈ A representing
(xi, d), such that there exists a feasible flow f in Gµ that represents a
solution to soft C with f(a) = 1 and cost(f) ≤ max Dz,

ii) the minimum cost of all such flows f is not larger than min Dz.

Theorem 4.4 gives rise to the following propagation algorithm, presented
as Algorithm 2. For a sequence of variables X = x1, . . . , xn, and a constraint
soft C(X, z, µ) the algorithm first builds the digraph Gµ that represents the
constraint. Then, for all variable-value pairs (xi, d) we check whether the pair
belongs to a solution, i.e. whether there exists a flow in Gµ that represents a
solution containing xi = d, with cost smaller than max Dz. If this is not the
case, we can remove d from Di. Finally, we update Dz, if necessary.

The time complexity of this algorithm is O(ndK) where d is the maxi-
mum domain size and K is the time complexity to compute a flow in Gµ

corresponding to a solution to soft C. However, similar to the propagation
algorithm for the weighted alldifferent constraint in Section 3.5.2, we can
improve the efficiency by applying Theorem 2.2.

The resulting, more efficient, algorithm is as follows. We first compute an
initial minimum-weight flow f in Gµ representing a solution. Then for all arcs
a = (xi, d) with f(a) = 0, we compute a minimum-weight directed d − xi

60 Chapter 4. Soft Global Constraints

Algorithm 2 Hyper-arc consistency for soft C(X, z, µ)

set minimum = ∞
construct Gµ = (V, A ∪ Ã)
for xi ∈ X do

for d ∈ Di do

compute a minimum-weight flow f in Gµ that represents a solution to soft C,
with f(a) = 1 for some a ∈ A that represents (xi, d)
if cost(f) > max Dz then

remove d from Di

end if

if cost(f) < minimum then

set minimum = cost(f)
end if

end for

end for

if min Dz < minimum then

set min Dz = minimum
end if

path in the residual graph (Gµ)f . Together with a, P forms a directed circuit.
Provided that c(b) ≥ 1 for all arcs b ∈ P , we reroute the flow over the circuit
and obtain a flow f ′. Then cost(f ′) = cost(f)+cost(P), because w(a) = 0 for
all a ∈ A. If cost(f ′) > max Dz we remove d from the domain of xi.

This reduces the time complexity of the algorithm to O(K+nd ·SP) where
SP denotes the time complexity to compute a minimum-weight directed path
in Gµ.

It should be noted that a similar algorithm was first applied by Régin
[1999a, 2002] to make the weighted global cardinality constraint hyper-arc
consistent.

4.4 Soft Alldifferent Constraint

4.4.1 Definitions

To the alldifferent constraint we apply two measures of violation: the
variable-based violation measure µvar and the decomposition-based violation
measure µdec. Let X = x1, . . . , xn be a sequence of variables with respective
finite domains D1, . . . , Dn. For alldifferent(x1, . . . , xn) we have

µvar(x1, . . . , xn) =
∑

d∈DX
max (|{i | xi = d}| − 1, 0),

µdec(x1, . . . , xn) = |{(i, j) | xi = xj , for i < j}|

Example 4.2. Consider again the over-constrained CSP of Example 4.1:

x1 ∈ {a, b}, x2 ∈ {a, b}, x3 ∈ {a, b}, x4 ∈ {b, c},
alldifferent(x1, x2, x3, x4).

Section 4.4. Soft Alldifferent Constraint 61

We have
µvar(a, a, b, c) = 1, µdec(a, a, b, c) = 1,
µvar(a, a, b, b) = 2, µdec(a, a, b, b) = 2,
µvar(a, a, a, b) = 2, µdec(a, a, a, b) = 3,
µvar(b, b, b, b) = 3, µdec(b, b, b, b) = 6.

¤

If we apply Definition 4.1 to the alldifferent constraint using the mea-
sures µvar and µdec, we obtain soft alldifferent(x1, . . . , xn, z, µvar) and
soft alldifferent(x1, . . . , xn, z, µdec). Each of the violation measures µvar

and µdec gives rise to a different hyper-arc consistency propagation algorithm.
Before we present them, we introduce the graph representation of the all-

different constraint in terms of flows.

4.4.2 Graph Representation

As we have seen in Section 3.2.1, a solution to the alldifferent constraint
corresponds to a matching in the corresponding value graph. We can give an
equivalent representation in terms of flows as follows (see also Régin [1994]).

Theorem 4.5. A solution to alldifferent(x1, . . . , xn) corresponds to an in-
teger feasible s − t flow of value n in the digraph A = (V,A) with vertex set

V = X ∪ DX ∪ {s, t}

and arc set
A = As ∪ AX ∪ At,

where
As = {(s, xi) | i ∈ {1, . . . , n}},

AX = {(xi, d) | d ∈ Di, i ∈ {1, . . . , n}},
At = {(d, t) | d ∈ DX},

with capacity function c(a) = 1 for all a ∈ A.

Proof. With an integer feasible s − t flow f of value n in A we associate
the assignment xi = d for all arcs a = (xi, d) ∈ AX with f(a) = 1. Because
c(a) = 1 for all a ∈ As∪At, this is indeed a solution to the alldifferent con-
straint. As value(f) = n, all variables have been assigned a value. Similarly,
each solution to the alldifferent gives rise to a corresponding appropriate
flow in A. ¤

Example 4.3. Consider again the CSP from Example 4.1. In Figure 4.1 the
corresponding graph representation of the alldifferent constraint is pre-
sented. ¤

62 Chapter 4. Soft Global Constraints

x2

1x

x3

x4

ts

a

b

c

Figure 4.1. Graph representation for the alldifferent constraint. For all arcs the
capacity is 1.

We can recognize the value graph of X in A, being the subgraph on X
and DX . An integer feasible flow f of value n in A corresponds to a matching
M in the value graph as follows:

f(a) = 1 ⇔ a ∈ M for all a ∈ AX .

Similarly, the graph GM in Section 3.4.4 corresponds to the subgraph on X
and DX of the residual graph Af .

4.4.3 Variable-Based Violation Measure

The results in this section are originally due to Petit, Régin, and Bessière
[2001]. We state their result in terms of our method, by adding violation arcs
to the graph representing the alldifferent constraint.

To graph A of Theorem 4.5 we add the violation arcs Ãt = {(d, t) | d ∈
DX}} (in fact, Ãt is a copy of At), with demand d(a) = 0 and capacity c(a) =
n for all arcs a ∈ Ãt. Further, we apply a cost function w : A ∪ Ãt → {0, 1},
where

w(a) =

{

1 if a ∈ Ãt,
0 otherwise.

Let the resulting digraph be denoted by Avar.

Example 4.4. Consider again the CSP from Example 4.1. In Figure 4.2 the
corresponding graph representation of the variable-based soft alldifferent

constraint is presented. ¤

Corollary 4.6. The constraint soft alldifferent(x1, . . . , xn, z, µvar) is hy-
per-arc consistent if and only if

i) for every arc a ∈ AX there exists an integer feasible s − t flow f of value
n in Avar with f(a) = 1 and weight(f) ≤ max Dz, and

Section 4.4. Soft Alldifferent Constraint 63

x2

1x

x3

c=3, =1w

c=1,
=0

w
c=2,

=1
w

c=1, =0w

c=
1,

=0
w

x4

ts

a

b

c

Figure 4.2. Graph representation for the variable-based soft alldifferent con-
straint. For all arcs the capacity c = 1, unless specified otherwise. Dashed arcs
indicate the inserted weighted arcs with weight w = 1.

ii) min Dz ≥ weight(f) for a feasible minimum-weight s− t flow f of value n
in Avar.

Proof. The weights on the arcs in Ãt are chosen such that the weight of a
minimum-weight flow of value n is exactly µvar for the corresponding solution.
The result follows from Theorem 4.4. ¤

The constraint soft alldifferent(x1, . . . , xn, z, µvar) can now be made
hyper-arc consistent in the following way. First we compute a minimum-weight
flow f in Avar in O(m

√
n) time, using the algorithm by Hopcroft and Karp

[1973]. If weight(f) > max Dz or min Dz > weight(f) the constraint is incon-
sistent. Otherwise, we distinguish two situations: either weight(f) < max Dz

or weight(f) = max Dz.
Forcing a flow to use an unused arcs in AX can only increase weight(f) by

1. Hence, if min Dz ≤ weight(f) < max Dz, all arcs in AX are consistent.
If min Dz ≤ weight(f) = max Dz, an unused arc a = (xi, d) in AX is

consistent if and only if there exists a d − xi path in (Avar)f with weight 0.
We can find these paths in O(m) time, where m = |AX |. Finally, we update
min Dz = n−|M | if min Dz < n−|M |. Then, by Corollary 4.6, the soft all-

different(x1, . . . , xn, z, µvar) is hyper-arc consistent.

4.4.4 Decomposition-Based Violation Measure

For the decomposition-based soft alldifferent constraint, we add the fol-
lowing violation arcs to the graph representing the alldifferent constraint.

In the graph A of Theorem 4.5 we replace the arc set At by Ãt = {(d, t) |
d ∈ Di, i = 1, . . . , n}, with demand d(a) = 0 and capacity c(a) = 1 for all arcs
a ∈ Ãt. Note that Ãt contains parallel arcs if two or more variables share a
domain value. If there are k parallel arcs (d, t) between some d ∈ DX and t,

64 Chapter 4. Soft Global Constraints

x2

1x

x3
=0w
=1w
=2w
=3w

=1
w

=0
w

=2
w

=0
w

x4

ts

a

b

c

Figure 4.3. Graph representation for the decomposition-based soft alldifferent

constraint. For all arcs the capacity c = 1. Dashed arcs indicate the inserted weighted
arcs with weight w as specified.

we distinguish them by numbering the arcs as (d, t)0, (d, t)1, . . . , (d, t)k−1 in a
fixed but arbitrary way. One can view the arcs (d, t)0 to be the original arc
set At.

We apply a cost function w : A∪Ãt → N as follows. If a ∈ Ãt, so a = (d, t)i

for some d ∈ DX and integer i, the value of w(a) = i. Otherwise w(a) = 0.
Let the resulting digraph be denoted by Adec.

Example 4.5. Consider again the CSP from Example 4.1. In Figure 4.3 the
corresponding graph representation of the decomposition-based soft all-

different constraint is presented. ¤

Corollary 4.7. The constraint soft alldifferent(x1, . . . , xn, z, µdec) is hy-
per-arc consistent if and only if

i) for every arc a ∈ AX there exists an integer feasible s − t flow f of value
n in Adec with f(a) = 1 and weight(f) ≤ max Dz, and

ii) min Dz ≥ weight(f) for a feasible minimum-weight s− t flow f of value n
in Adec.

Proof. The weights on the arcs in Ãt are chosen such that the weight of a
minimum-weight flow of value n is exactly µdec. Namely, the first arc entering
a value d ∈ DX causes no violation and chooses outgoing arc with weight 0.
The k-th arc that enters d causes k − 1 violations and chooses outgoing arc
with weight k − 1. The result follows from Theorem 4.4. ¤

The constraint soft alldifferent(x1, . . . , xn, z, µdec) can be made hyper-
arc consistent by applying Algorithm 2. We first compute a minimum-weight
flow f in Adec. We do this by computing n shortest s − t paths in the resid-
ual graph. Because there are only weights on arcs in At, each shortest path
takes O(m) time to compute. Hence we can compute f in O(nm) time. If
weight(f) > max Dz we know that the constraint is inconsistent.

Section 4.5. Soft Global Cardinality Constraint 65

To identify the arcs a = (xi, j) ∈ AX that belong to a flow g with
value(g) = n and weight(g) ≤ max Dz we apply Theorem 2.2. Thus, we search
for a shortest j − xi path in (Adec)f that together with a forms a circuit C.
We can compute all such shortest paths in O(m) time, using the following
result.

Theorem 4.8. Let soft alldifferent(x1, . . . , xn, z, µdec) be consistent and
let f be an integer feasible minimum-weight flow in Adec of value n. Then
soft alldifferent(x1, . . . , xn, z, µdec) can be made hyper-arc consistent in
O(m) time.

Proof. The complexity of the filtering algorithm depends on the computation
of the minimum-weight d−xi paths in (Adec)f for arcs (xi, d) ∈ AX . We make

use of the fact that only arcs a ∈ Ãt contribute to the cost of such path.
Consider the strongly connected components of the graph (Ãdec)f which

is a copy of (Adec)f where s and t and all their incident arcs are removed.
Let P be a minimum-weight d − xi path P in Af . If P is equal to d, xi then
f(xi, d) = 1 and cost(P) = 0. Otherwise, either xi and d are in the same
strongly connected component of (Ãdec)f , or not. In case they are in the same
strongly connected component, P can avoid t in Af , and cost(P) = 0. In case
xi and d are in different strongly connected components, P must visit t, and
we do the following.

Split t into two vertices tin and tout such that δin(tin) = δin(t), δout(tin) =
∅, and δin(tout) = ∅, δout(tout) = δout(t). For every vertex v ∈ X ∪ DX we
can compute the minimum-weight path from v to tin and from tout to v in
total O(m) time.

The strongly connected components of (Ãdec)f can be computed in O(n+
m) time, following Tarjan [1972]. Hence the total time complexity of achieving
hyper-arc consistency is O(m), as n < m. ¤

Hence, we update Di = Di \ {j} if weight(f) + weight(C) > max Dz.
Finally, we update min Dz = weight(f) if min Dz < weight(f). Then, by
Corollary 4.7, the soft alldifferent(x1, . . . , xn, z, µdec) is hyper-arc consis-
tent.

4.5 Soft Global Cardinality Constraint

4.5.1 Definitions

A global cardinality constraint (gcc) on a sequence of variables specifies for
each value in the union of their domains an upper and lower bound to the
number of variables that are assigned to this value. A hyper-arc consistency
propagation algorithm for the gcc was developed by Régin [1996], making use
of network flows. A variant of the gcc is the cost gcc, which can be seen as
a weighted version of the gcc Régin [1999a, 2002]. For the cost gcc a fixed

66 Chapter 4. Soft Global Constraints

cost is assigned to each variable-value assignment and the goal is to satisfy
the gcc with minimum total cost.

Throughout this section, we use the following notation. For a sequence
of variables X = x1, . . . , xn with respective finite domains D1, . . . , Dn, let
ld, ud ∈ N with ld ≤ ud for all d ∈ DX .

Definition 4.9 (Global cardinality constraint).

gcc(X, l, u) = {(d1, . . . , dn) | di ∈ Di, ld ≤ |{di | di = d}| ≤ ud ∀ d ∈ DX}.

Note that the gcc is a generalization of the alldifferent constraint. If we
set ld = 0 and ud = 1 for all d ∈ DX , the gcc is equal to the alldifferent

constraint.

Definition 4.10 (Weighted global cardinality constraint). Let z be a
variable with finite domain Dz and let wij ∈ Q for i = 1, . . . , n and all
j ∈ DX . Then

cost gcc(X, l, u, z, w) =
{

(d1, . . . , dn, d̃) | di ∈ Di, d̃ ∈ Dz,

ld ≤ |{di | di = d}| ≤ ud ∀ d ∈ DX ,
∑

i,di=j wij ≤ d̃
}

.

Note that the cost gcc is equal to the minweight alldifferent constraint
if we set ld = 0 and ud = 1 for all d ∈ DX .

Example 4.6. Consider the CSP

x1 ∈ {1, 2, 3}, x2 ∈ {1, 2}, x3 ∈ {2, 3}, x4 ∈ {1, 3},
gcc(x1, x2, x3, x4, [0, 1, 1], [3, 2, 3]).

The gcc states that we should assign

to value 1 between 0 and 3 variables,
to value 2 between 1 and 2 variables,
to value 3 between 1 and 3 variables.

A solution to this CSP is the tuple (1, 2, 3, 1). ¤

In order to define measures of violation for the gcc, it is convenient to
introduce for each domain value a “shortage” function s : D1×· · ·×Dn×DX →
N and an “excess” function e : D1 × · · · × Dn × DX → N as follows:

s(X, d) =

{

ld − |{xi | xi = d}| if |{xi | xi = d}| ≤ ld,
0 otherwise.

e(X, d) =

{

|{xi | xi = d}| − ud if |{xi | xi = d}| ≥ ud,
0 otherwise,

To the gcc we apply two measures of violation: the variable-based violation
measure µvar and the value-based violation measure µval that we will define
in this section. The next lemma expresses µvar in terms of the shortage and
excess functions.

Section 4.5. Soft Global Cardinality Constraint 67

Lemma 4.11. For gcc(X, l, u) we have

µvar(X) = max

(

∑

d∈DX

s(X, d),
∑

d∈DX

e(X, d)

)

provided that
∑

d∈DX

ld ≤ |X| ≤
∑

d∈DX

ud. (4.1)

Proof. Note that if (4.1) does not hold, there is no variable assignment that
satisfies the gcc, and µvar cannot be applied.

Applying µvar corresponds to the minimal number of re-assignments of
variables until both

∑

d∈DX
s(X, d) = 0 and

∑

d∈DX
e(X, d) = 0.

Assume
∑

d∈DX
s(X, d) ≥ ∑

d∈DX
e(X, d). Variables assigned to values

d′ ∈ DX with s(X, d′) > 0 can be assigned to values d′′ ∈ DX with e(X, d′′) >
0, until

∑

d∈DX
e(X, d) = 0. In order to achieve

∑

d∈DX
s(X, d) = 0, we

still need to re-assign the other variables assigned to values d′ ∈ DX with
s(X, d′) > 0. Hence, in total we need to re-assign exactly

∑

d∈DX
s(X, d)

variables.
Similarly when we assume

∑

d∈DX
s(X, d) ≤ ∑

d∈DX
e(X, d). Then we

need to re-assign exactly
∑

d∈DX
e(X, d) variables. ¤

Without assumption (4.1), the variable-based violation measure for the gcc

cannot be applied. Therefore, we introduce the following violation measure
for the gcc, which can also be applied when assumption (4.1) does not hold.

Definition 4.12 (Value-based violation measure). For gcc(X, l, u) the
value-based violation measure is

µval(X) =
∑

d∈DX

(s(X, d) + e(X, d)) .

Example 4.7. Let X = x1, x2, x3, x4 be a sequence of variables. Consider the
over-constrained CSP

x1 ∈ {1, 2}, x2 ∈ {1}, x3 ∈ {1, 2}, x4 ∈ {1},
gcc(x1, x2, x3, x4, [1, 3], [2, 5]).

We have
tuple

∑

s
∑

e µvar µval

(1, 1, 1, 1) 3 2 3 5
(2, 1, 1, 1) 2 1 2 3
(1, 1, 2, 1) 2 1 2 3
(2, 1, 2, 1) 1 0 1 1

where
∑

s denotes
∑

d∈DX
s(X, d) and

∑

e denotes
∑

d∈DX
e(X, d). ¤

68 Chapter 4. Soft Global Constraints

x2

1x

x3

x4

s

2

1

t

(1,
1)

(1,1)

(1,1)

(1,1)

(0,1)

(0,1)

(0,1)

(0,1)

(0
,1)

(0,1)

(1,2)

(3,5)

Figure 4.4. Graph representation for the gcc. Demand and capacity are indicated
between parentheses for each arc a as (d(a), c(a)).

4.5.2 Graph Representation

A graph representation for the gcc was given by Régin [1996].

Theorem 4.13. A solution to gcc(X, l, u) corresponds to an integer feasible
s − t flow of value n in the digraph G = (V,A) with vertex set

V = X ∪ DX ∪ {s, t}

and arc set
A = As ∪ AX ∪ At,

where
As = {(s, xi) | i ∈ {1, . . . , n}},

AX = {(xi, d) | d ∈ Di, i ∈ {1, . . . , n}},
At = {(d, t) | d ∈ DX},

with demand function

d(a) =

1 if a ∈ As,
0 if a ∈ AX ,
ld if a = (d, t) ∈ At,

and capacity function

c(a) =

1 if a ∈ As,
1 if a ∈ AX ,
ud if a = (d, t) ∈ At.

Example 4.8. Consider again the CSP of Example 4.7. In Figure 4.4 the
corresponding graph representation of the gcc is presented. ¤

Section 4.5. Soft Global Cardinality Constraint 69

x2

1x

x3

=1
w

=1w

x4

s

2

1

t

(1,
1)

(1,1)

(1,1)

(1,1)

(0,1)

(0,1)

(0,1)

(0,1)

(0,1)

(0,1)

(0
,1)

(0,1)

(1,2)

(3,5)

Figure 4.5. Graph representation for the variable-based soft gcc. Demand and
capacity are indicated between parentheses for each arc a as (d(a), c(a)). Dashed
arcs indicate the inserted weighted arcs with weight w = 1.

4.5.3 Variable-Based Violation Measure

For the variable-based violation measure, we adapt the graph G of Theo-
rem 4.13 in the following way. We add the violation arcs

ÃX = {(xi, d) | d /∈ Di, i ∈ {1, . . . , n}} ,

with demand d(a) = 0, capacity c(a) = 1 for all arcs a ∈ ÃX . Further, we
apply a cost function w : A ∪ ÃX → {0, 1}, where

w(a) =

{

1 if a ∈ ÃX ,
0 otherwise.

Let the resulting digraph be denoted by Gvar.

Example 4.9. We transform the over-constrained CSP of Example 4.7 into
the following COP by softening the gcc using µvar and cost variable z:

x1 ∈ {1, 2}, x2 ∈ {1}, x3 ∈ {1, 2}, x4 ∈ {1}, z ∈ {0, 1, . . . , 4}
soft gcc(x1, x2, x3, x4, [1, 3], [2, 5], z, µvar),
minimize z.

In Figure 4.5 the corresponding graph representation of the soft gcc is pre-
sented. ¤

Corollary 4.14. The constraint soft gcc(X, l, u, z, µvar) is hyper-arc consis-
tent if and only if

i) for every arc a ∈ AX there exists an integer feasible s − t flow f of value
n in Gvar with f(a) = 1 and weight(f) ≤ max Dz, and

ii) min Dz ≥ weight(f) for a feasible minimum-weight s− t flow f of value n
in Gvar.

70 Chapter 4. Soft Global Constraints

Proof. An assignment xi = d corresponds to the arc a = (xi, d) with f(a) = 1.
By construction, all variables need to be assigned to a value and the cost func-
tion exactly measures the variable-based cost of violation. The result follows
from Theorem 4.4. ¤

The digraph Gvar corresponds to a particular instance of the cost gcc.
Namely, let Di = DX for i = 1, . . . , n and define wij = w(a) for all arcs

a = (xi, j) ∈ AX ∪ ÃX . Then

cost gcc(X, l, u, z, w)

corresponds to soft gcc(X, l, u, z, µvar). Hence, we can apply the propagation
procedures developed for that constraint directly to the soft gcc in this case.
The soft gcc also inherits from the cost gcc the time complexity of achieving
hyper-arc consistency, being O(n(m + n log n)) where m =

∑n
i=1 |Di| and

n = |X|. It should be noted that this algorithm is also based on Theorem 2.2.
Beldiceanu and Petit [2004] also consider the variable-based cost measure

for a different version of the soft gcc. Their version considers the parameters l
and u to be variables too. Hence, the variable-based cost evaluation becomes a
rather poor measure, as we trivially can change l and u to satisfy the gcc. They
fix this by restricting the set of variables to consider to be the set X, which
corresponds to our situation. However, they do not provide a propagation
algorithm for that case.

4.5.4 Value-Based Violation Measure

For the value-based violation measure, we adapt the graph G of Theorem 4.13
in the following way. We add the violation arcs

Ashortage = {(s, d) | d ∈ DX} and Aexcess = {(d, t) | d ∈ DX},

with demand d(a) = 0 for all a ∈ Ashortage ∪ Aexcess and capacity

c(a) =

{

ld if a = (s, d) ∈ Ashortage,
∞ if a ∈ Aexcess.

Further, we again apply a cost function w : A ∪ Ashortage ∪ Aexcess → {0, 1},
where

w(a) =

{

1 if a ∈ Ashortage ∪ Aexcess,
0 otherwise.

Let the resulting digraph be denoted by Gval.

Example 4.10. We transform the over-constrained CSP of Example 4.7 into
the following COP by softening the gcc using µval and cost variable z:

x1 ∈ {1, 2}, x2 ∈ {1}, x3 ∈ {1, 2}, x4 ∈ {1}, z ∈ {0, 1, . . . , 4}
soft gcc(x1, x2, x3, x4, [1, 3], [2, 5], z, µval),
minimize z.

Section 4.5. Soft Global Cardinality Constraint 71

x2

1x

x3

=1
w

=1w

=1w

=1
w

x4

s

2

1

t

(1,
1)

(1,1)

(1,1)

(1,1)

(0,1)

(0,1)

(0,inf)

(0,1)

(0,in
f)

(0,1)

(0,1)

(0,1)

(0
,1)

(1,2)

(3,5)

(0,3)

Figure 4.6. Graph representation for the value-based soft gcc. Demand and ca-
pacity are indicated between parentheses for each arc a as (d(a), c(a)). Dashed arcs
indicate the inserted weighted arcs with weight w = 1.

In Figure 4.6 the corresponding graph representation of the soft gcc is pre-
sented. ¤

Corollary 4.15. The constraint soft gcc(X, l, u, z, µval) is hyper-arc consis-
tent if and only if

i) for every arc a ∈ AX there exists an integer feasible s − t flow f of value
n in Gval with f(a) = 1 and weight(f) ≤ max Dz, and

ii) min Dz ≥ weight(f) for a feasible minimum-weight s− t flow f of value n
in Gval.

Proof. Similar to the proof of Theorem 4.14. ¤

Unfortunately, the graph Gval does not preserve the structure of the
cost gcc because of the arcs Ashortage. Therefore we cannot blindly apply
the same propagation algorithms. However, it is still possible to design an
efficient propagation algorithm for the value-based soft gcc, based on Algo-
rithm 2 and Theorem 2.2.

First, we compute a minimum-weight feasible flow in Gval. For this we first
need to compute n shortest paths to satisfy the demand of the arcs in As.
In order to meet the demand of the arcs in At, we need to compute at most
another k shortest paths, where k = |DX |. Hence the total time complexity
is O((n + k)(m + n log n)), where again m =

∑n
i=1 |Di|.

In order to make the soft gcc with respect to µval hyper-arc consistent,
we need to check m − n arcs for consistency. For this we compute m − n
shortest paths in the residual graph, which takes O((m − n)(m + n log n))
time. Alternatively, we may compute a shortest path from every vertex in DX

to every vertex in X, which takes in total O(k(m + n log n)) time.

72 Chapter 4. Soft Global Constraints

When ld = 0 for all d ∈ DX , the arc set Ashortage is empty. In that case,
Gval has a particular structure, i.e. the costs only appear on arcs from DX to
t. Then, similar to the reasoning for the soft alldifferent constraint with
respect to µdec, we can compute a minimum-weight flow of value n in Gval in
O(mn) time and achieve hyper-arc consistency in O(m) time

4.6 Soft Regular Constraint

4.6.1 Definitions

The regular constraint was introduced by Pesant [2004]. It is defined on a
fixed-length sequence of finite-domain variables and it states that the corre-
sponding sequence of values taken by these variables belong to a given so-
called regular language. A hyper-arc consistency propagation algorithm for
this constraint was also provided by Pesant [2004]. Particular instances of
the regular constraint can for example be applied in rostering problems or
sequencing problems.

Before we introduce the regular constraint we need the following def-
initions, following Hopcroft and Ullman [1979]. An alphabet Σ is a finite,
nonempty set of symbols. A string over an alphabet is a finite sequence of
symbols from that alphabet. We denote the empty string by “ε”. The set of
all strings over an alphabet Σ is denoted by Σ?. Any subset of Σ? is called
a language. The Kleene closure of a language L is defined as the set of all
strings that can be formed by concatenating any number of strings from L.
It is denoted by L?. Note that the empty string is also in L? because we may
“concatenate” zero strings from L.

A regular expression over an alphabet Σ is built from Σ and the symbols
“(”, “)”, “ε”, “+”, and “?”, according to the following recursive definition:

• ε and each member of Σ is a regular expression,
• if α and β are regular expressions, then so is (αβ)
• if α and β are regular expressions, then so is (α + β)
• if α is a regular expression, then so is α?.

We say that every regular expression represents a regular language in Σ?,
according to the interpretation of “+” as set union and “?” as Kleene closure,
respectively.

A deterministic finite automaton (DFA) is described by a 5-tuple M =
(Q,Σ, δ, q0, F) where Q is a finite set of states, Σ is an alphabet, δ : Q×Σ → Q
is a transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of
final (or accepting) states. Given an input string, the automaton starts in
the initial state q0 and processes the string one symbol at the time, applying
the transition function δ at each step to update the current state. The string
is accepted if and only if the last state reached belongs to the set of final
states F . Strings processed by M that are accepted are said to belong to the

Section 4.6. Soft Regular Constraint 73

q0 q2 q3

q4

q1
a b a

c

a b a

c

Figure 4.7. A DFA corresponding to aa?bb?aa? + cc?. A state is represented by a
circle, a final state is represented by a double circle.

language defined by M , denoted by L(M). The languages recognized by DFAs
are precisely regular languages.

Given a sequence of variables X = x1, x2, . . . , xn with respective finite
domains D1, D2, . . . , Dn ⊆ Σ, there is a natural interpretation of the set of
possible instantiations of X, i.e. D1 ×D2 × · · · ×Dn, as a subset of all strings
of length n over Σ.

Definition 4.16 (Regular language membership constraint). Let M =
(Q,Σ, δ, q0, F) denote a DFA and let X = x1, x2, . . . , xn be a sequence of
variables with respective finite domains D1, D2, . . . , Dn ⊆ Σ. Then

regular(X,M) = {(d1, . . . , dn) | di ∈ Di, d1d2 · · · dn ∈ L(M)} .

Example 4.11. Let Σ = {a, b, c} be an alphabet and let aa?bb?aa? +cc? be a
regular expression over Σ. The corresponding DFA is depicted in Figure 4.7.
Let M denote the DFA and let L(M) denote the regular language defined by
M . For example, aaabaa ∈ L(M) and cc ∈ L(M), but aacbba /∈ L(M).

Consider the CSP

x1 ∈ {a, b, c}, x2 ∈ {a, b, c}, x3 ∈ {a, b, c}, x4 ∈ {a, b, c},
regular(x1, x2, x3, x4,M).

A solution to this CSP is for example (a, b, a, a). The CSP is not hyper-arc
consistent. For example, value b can never be assigned to x1. If we make the
CSP hyper-arc consistent we obtain

x1 ∈ {a, c}, x2 ∈ {a, b, c}, x3 ∈ {a, b, c}, x4 ∈ {a, c},
regular(x1, x2, x3, x4,M).

¤

To the regular constraint we apply two measures of violation: the
variable-based violation measure µvar and the edit-based violation measure
µedit that we will define in this section.

Let s1 and s2 be two strings of the same length. The Hamming distance
H(s1, s2) is the number of positions in which they differ. The variable-based
violation measure can be expressed in terms of the Hamming distance. We
associate with a tuple (d1, d2, . . . , dn) the string d1d2 · · · dn.

74 Chapter 4. Soft Global Constraints

Lemma 4.17. For regular(X,M) we have

µvar(X) = min{H(D,X) | D = d1 · · · dn ∈ L(M)}.
Proof. The minimum number of positions in which an assignment differs from
some solution to the regular constraint is exactly µvar. ¤

Another distance function that is often used for two strings is the following.
Let s1 and s2 be two strings of the same length. The edit distance E(s1, s2)
is the smallest number of insertions, deletions, and substitutions required to
change one string into another. It captures the fact that two strings that are
identical except for one extra or missing symbol should be considered close to
one another.

Definition 4.18 (Edit-based violation measure). For regular(X,M)
the edit-based violation measure is

µedit(X) = min{E(D,X) | D = d1 · · · dn ∈ L(M)}.
Example 4.12. Consider again the initial CSP from Example 4.11:

x1 ∈ {a, b, c}, x2 ∈ {a, b, c}, x3 ∈ {a, b, c}, x4 ∈ {a, b, c},
regular(x1, x2, x3, x4,M).

We have µvar(b, a, a, b) = 3, because we have to change at least 3 variables. A
corresponding valid string with Hamming distance 3 is for example abba.

On the other hand, we have µedit(b, a, a, b) = 2, because we can delete the
value b at the front an add the value a at the end, thus obtaining the valid
string aaba. ¤

4.6.2 Graph Representation

A graph representation for the regular constraint was presented by Pesant
[2004]. Recall that M = (Q,Σ, δ, q0, F).

Theorem 4.19. A solution to regular(X,M) corresponds to an integer fea-
sible s − t flow of value 1 in the digraph R = (V,A) with vertex set

V = V1 ∪ V2 ∪ · · · ∪ Vn+1 ∪ {s, t}
and arc set

A = As ∪ A1 ∪ A2 ∪ · · · ∪ An ∪ At,

where
Vi = {qi

k | qk ∈ Q} for i = 1, . . . , n + 1,

and

As = {(s, q1
0},

Ai = {(qi
k, qi+1

l) | δ(qi
k, d) = qi+1

l for d ∈ Di} for i = 1, . . . , n,
At = {(qn+1

k , t) | qk ∈ F},
with capacity function c(a) = 1 for all a ∈ A.

Section 4.6. Soft Regular Constraint 75

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

s

t

q1

x1 x2 x3 x4

V1

a

c

c c c

a

b b

b

a a

a

V5V4V3V2

Figure 4.8. Graph representation for the regular constraint. For all arcs the ca-
pacity is 1.

Proof. Each arc in Ai corresponds to a variable-value pair: there is an arc
from qi

k to qi+1
l if and only if there exists some d ∈ Di such that δ(qk, d) = ql.

If an arc belongs to an integer s− t flow of value 1, it belongs to a path from
q1
0 to a member of F in the last Vn+1. Hence the assignment xi = d belongs

to a solution to the regular constraint. ¤

Example 4.13. Consider again the hyper-arc consistent CSP from Exam-
ple 4.11. In Figure 4.8 the corresponding graph representation of the regular
constraint is presented. ¤

4.6.3 Variable-Based Violation Measure

For the variable-based soft regular constraint, we add the following viola-
tion arcs to the graph representing the regular constraint.

To the graph R of Theorem 4.19 we add the violation arcs Ã = {a | a ∈
Ai, i = 1, . . . , n}} (in fact, Ã is a copy of ∪iAi), with capacity c(a) = 1 for all
arcs a ∈ Ã. With an arc (qi

k, qi+1
l) ∈ Ã we associate the transition δ(qk, d) = ql

for all d ∈ Σ. Further, we apply a cost function w : A ∪ Ã → {0, 1}, where

w(a) =

{

1 if a ∈ Ã,
0 otherwise.

Let the resulting digraph be denoted by Rvar.

Example 4.14. Consider again the hyper-arc consistent CSP from Exam-
ple 4.11. In Figure 4.9 the corresponding graph representation of the variable-
based soft regular constraint is presented. ¤

76 Chapter 4. Soft Global Constraints

q1

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

s

t

q2

x1

V1

c c c

a

a

b

b

a a

a

b

x2 x3 x4

V2 V3 V4 V5

c

Figure 4.9. Graph representation for the variable-based soft regular constraint.
For all arcs the capacity is 1. Dashed arcs indicate the inserted weighted arcs with
weight 1.

Corollary 4.20. The constraint soft regular(X,M, z, µvar) is hyper-arc con-
sistent if and only if

i) for every arc a ∈ A1 ∪ · · · ∪An there exists an integer feasible s− t flow f
of value 1 in Rvar with f(a) = 1 and weight(f) ≤ max Dz, and

ii) min Dz ≥ weight(f) for a minimum-weight s− t flow f of value 1 in Rvar.

Proof. The weight function measures exactly µvar. The result follows from
Theorem 4.4. ¤

Note that a minimum-weight s − t flow of value 1 is in fact a shortest
s− t path with respect to w. The constraint propagation algorithm thus must
ensure that all arcs corresponding to a variable-value assignment are on an
s− t path with cost smaller than max Dz. Computing shortest paths from the
initial state in the first layer to every other node and from every node to a
final state in the last layer can be done in O(n |δ|) time through topological
sorts because of the special structure of the graph, as observed by Pesant
[2004]. Here |δ| denotes the number of transitions in the corresponding DFA.
The computation can also be made incremental in the same way as in Pesant
[2004].

Note that this result has been obtained independently by Beldiceanu,
Carlsson, and Petit [2004a].

4.6.4 Edit-Based Violation Measure

For the edit-based soft regular constraint, we add the following violation
arcs to the graph R representing the regular constraint.

Section 4.6. Soft Regular Constraint 77

q1

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

q0

q3

q4

s

q2

x1

V1

q1

q2

q0

q3

q4

V5

q1

q2

q0

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q3

q4

t

x2 x3 x4

V2 V3 V4 7 V8

a a a a

b b b

a a a

b b

a

c c c

c cc

c

V6 V

a a

Figure 4.10. Graph representation for the edit-based soft regular constraint. For
all arcs the capacity is 1. Dashed arcs indicate the inserted weighted arcs with weight
1.

Similar to the previous section, we add the violation arcs Ã = {a | a ∈
Ai, i = 1, . . . , n}} to allow the substitution of a value. To allow insertions and
deletions, we add vertex sets Vi = {qi

k | qk ∈ Q} for i = n + 2, . . . , 2n+2, and
the arc sets

Adel = {(qi
k, qi+1

k) | i = 1, . . . , n}} \ A,

Ains = {(qi
k, qi+1

l) | δ(qk, d) = ql for d ∈ Σ, k 6= l, qk /∈ F, i = n+1, . . . , 2n+2}},
and

Ãt = {(qi
k, t) | qk ∈ F, i = n + 1, . . . , 2n + 2}.

We set c(a) = 1 for each arc a ∈ Ã∪Adel ∪Ains ∪ Ãt. With an arc (qi
k, qi+1

l) ∈
Ã∪Adel ∪Ains we associate the transition δ(qk, d) = ql for all d ∈ Σ. Further,
we again apply a cost function w : A ∪ Ã ∪ Adel ∪ Ains ∪ Ãt → {0, 1}, where

w(a) =

{

1 if a ∈ Ã ∪ Adel ∪ Ains,
0 otherwise.

Let the resulting digraph be denoted by Redit.

Example 4.15. Consider again the hyper-arc consistent CSP from Exam-
ple 4.11. In Figure 4.10 the corresponding graph representation of the edit-
based soft regular constraint is presented.

For example, consider the tuple (x1, x2, x3, x4) = (b, a, a, b). As we have
seen in Example 4.12, µedit(b, a, a, b) = 2. Indeed, a shortest s − t path in
Figure 4.10 corresponding to this tuple has cost 2, using the directed path
s, q1

0 , q2
0 , q3

1 , q4
1 , q5

2 , q6
3 , t:

78 Chapter 4. Soft Global Constraints

arc (s, q1
0) corresponds to no symbol, at cost 0,

arc (q1
0 , q2

0) corresponds to symbol b, at cost 1,
arc (q2

0 , q3
1) corresponds to symbol a, at cost 0,

arc (q3
1 , q4

1) corresponds to symbol a, at cost 0,
arc (q4

1 , q5
2) corresponds to symbol b, at cost 0,

arc (q5
2 , q6

3) corresponds to no symbol, at cost 1,
arc (q6

3 , t) corresponds to no symbol, at cost 0. ¤

Corollary 4.21. The constraint soft regular(X,M, z, µedit) is hyper-arc
consistent if and only if

i) for every arc a ∈ A1 ∪ · · · ∪An there exists an integer feasible s− t flow f
of value 1 in Redit with f(a) = 1 and weight(f) ≤ max Dz, and

ii) min Dz ≥ weight(f) for a minimum-weight s−t flow f of value 1 in Redit.

Proof. The weight function measures exactly µedit. The result follows from
Theorem 4.4. ¤

The complexity of the corresponding propagation algorithm is equal to the
one for the variable-based soft regular constraint. Namely, the size of Redit

is of the same order as the size of Redit, and it maintains the same structure.

4.7 Soft Same Constraint

4.7.1 Definitions

The same constraint is defined on two sequences of variables and states that
the variables in one sequence use the same values as the variables in the other
sequence. The constraint was introduced by Beldiceanu [2000]. One can also
view the same constraint as demanding that one sequence is a permutation
of the other. A hyper-arc consistency algorithm for the same constraint was
presented by Beldiceanu, Katriel, and Thiel [2004b], making use of flow theory.
The same constraint can be applied to rostering problems where we need to
assign two types of personnel to each other. An example is the assignment of
the same number of doctors and nurses on a particular date.

Definition 4.22 (Same constraint). Let X = x1, . . . , xn and Y = y1, . . . , yn

be sequences of variables with respective finite domains D1, . . . , Dn and D′
1, . . . ,

D′
n. Then

same(X,Y) =

{

(d1, . . . , dn, d′1, . . . , d
′
n) | di ∈ Di, d

′
i ∈ D′

i,
n
⋃

i=1

{di} =
n
⋃

i=1

{d′
i}
}

.

Section 4.7. Soft Same Constraint 79

Note that in the above definition
⋃n

i=1{di} and
⋃n

i=1{d′
i} are families, in which

elements may occur more than once.
To the same constraint we apply the variable-based violation measure µvar.

Denote the symmetric difference of two sets S and T by S∆T , i.e. S∆T =
(S \ T) ∪ (T \ S). For same(X,Y) we have

µvar(X,Y) =

∣

∣

∣

∣

∣

(

n
⋃

i=1

{xi}
)

∆

(

n
⋃

i=1

{yi}
)
∣

∣

∣

∣

∣

/2.

Example 4.16. Consider the following over-constrained CSP:

x1 ∈ {a, b, c}, x2 ∈ {c, d, e}, x3 ∈ {c, d, e},
y1 ∈ {a, b}, y2 ∈ {a, b}, y3 ∈ {c, d},
same(x1, x2, x3, y1, y2, y3).

We have µvar(a, c, c, a, b, c) = 1 because {a, c, c}∆{a, b, c} = {b, c}, and
|{b, c}| /2 = 1. ¤

4.7.2 Graph Representation

A graph representation for the same constraint was given by Beldiceanu, Ka-
triel, and Thiel [2004b].

Theorem 4.23. Beldiceanu et al. [2004b] A solution to same(X,Y) cor-
responds to an integer feasible s− t flow of value n in the digraph S = (V,A)
with vertex set

V = X ∪ (DX ∩ D′
Y) ∪ Y ∪ {s, t}

and arc set
A = As ∪ AX ∪ AY ∪ At,

where
As = {(s, xi) | i ∈ {1, . . . , n}},
AX = {(xi, d) | d ∈ Di ∩ DY , i ∈ {1, . . . , n}},
AY = {(d, yi) | d ∈ D′

i ∩ DX , i ∈ {1, . . . , n}},
At = {(yi, t) | i ∈ {1, . . . , n}},

with capacity function c(a) = 1 for all a ∈ A.

Example 4.17. Consider again the CSP from Example 4.16. In Figure 4.11
the corresponding graph representation of the same constraint is presented.

¤

80 Chapter 4. Soft Global Constraints

x2

1x

x3

s t

a

b

e

d

c

1y

y2

y3

Figure 4.11. Graph representation for the same constraint. For all arcs the capacity
is 1.

4.7.3 Variable-Based Violation Measure

To the graph S of Theorem 4.23 we add the arc sets

ÃX = {(xi, d) | d ∈ DY \ Di, i = 1, . . . , n}, and

ÃY = {(d, yi) | d ∈ DX \ D′
i, i = 1, . . . , n}

with capacity c(a) = n for all arcs a ∈ ÃX ∪ ÃY . As before, we apply a cost
function w : A ∪ ÃX ∪ ÃY → {0, 1}, where

w(a) =

{

1 if a ∈ ÃX ∪ ÃY ,
0 otherwise.

Let the resulting digraph be denoted by Svar.

Example 4.18. Consider again the CSP from Example 4.16. In Figure 4.12
the corresponding graph representation of the variable-based soft same con-
straint is presented. ¤

Corollary 4.24. The constraint soft same(X,Y, z, µvar) is hyper-arc consis-
tent if and only if

i) for every arc a ∈ AX ∪ AY there exists a feasible s − t flow f of value n
in Svar with f(a) = 1 and weight(f) ≤ max Dz, and

ii) min Dz ≥ weight(f) for a minimum-weight s− t flow f of value n in Svar.

Proof. An assignment xi = d corresponds to the arc a = (xi, d) with f(a) = 1.
By construction, all variables need to be assigned to a value and the cost func-
tion exactly measures the variable-based cost of violation. The result follows
from Theorem 4.4. ¤

Section 4.8. Aggregating Soft Constraints 81

x2

1x

x3

s t

=1w a

b

e

d

c

1y

y2

y3

Figure 4.12. Graph representation for the variable-based soft same constraint.
For all arcs the capacity is 1. Dashed arcs indicate the inserted weighted arcs with
weight 1.

The constraint soft same(X,Y, z, µvar) can be made hyper-arc consistent
by applying Algorithm 2. Consistency can again be checked by computing
an initial flow in O(n(m + n log n)) time, and hyper-arc consistency can be
achieved in O(m(m+n log n)) time by applying Theorem 2.2. Here m denotes
the number of arcs in Svar.

4.8 Aggregating Soft Constraints

The previous sections have introduced constraint propagation algorithms
based on different violation measures for several soft global constraints. If
these propagation techniques are to be effective, especially in the presence of
soft constraints of a different nature, they must be able to cooperate and com-
municate. Even though there are many avenues for combining soft constraints,
the objective almost always remains to minimize constraint violations.

To combine soft constraints more effectively, Petit, Régin, and Bessière
[2000] introduced “meta-constraints” on the cost variables of the soft con-
straints. We propose an extension of this approach by stating soft meta-con-
straints on the cost variables. We illustrate our approach with the soft gcc.

Definition 4.25 (Soft global cardinality aggregator). Let C = {C1, . . . ,
Ck} be a set of soft constraints and let Z = z1, . . . , zk be a sequence of variables
with respective domains Dz1

, . . . , Dzk
such that zi represents the violation cost

of Ci for i = 1, . . . , k. Let ld, ud ∈ N with ld ≤ ud for all d ∈ DZ . The soft
global cardinality aggregator (SGCA) is defined as

soft gcc(Z, l, u, zagg, µ)

82 Chapter 4. Soft Global Constraints

where zagg ∈ Dzagg
⊆ N is a cost variable representing some violation mea-

sure µ.

We can use the SGCA to encode existing frameworks. For example, when
all constraints Ci ∈ C are either satisfied (zi = 1) or violated (zi = 0), the
Max-CSP approach1 is obtained by setting

l0 = 0, u0 = 0,
l1 = 0, u1 = k,

and using the violation measure

µmax(Z) =
∑

d∈DZ

e(Z, d) = e(Z, 0),

where e again denotes the “excess” function (see Section 4.5).
Similar to the approach of Petit et al. [2000], the SGCA can also be used

to enforce homogeneity (in a soft manner) among the violation of the soft
constraints. Another possibility is to define violation measures that restrict
the number of “highly violated” constraints. For example, we could wish to
impose that no more than a certain number of constraints are highly violated.
Since we cannot guarantee that this is possible, the use of the SGCA allows
to state this wish without risking to create an inconsistent problem.

Another approach could be to set li, ui = 0 for all Ci ∈ C and define a
violation measure that penalizes higher violation costs more, for example

µhigher(Z) =
∑

d∈DZ

d · e(Z, d).

In the original meta-constraint framework, a similar behaviour can be estab-
lished by applying a cost gcc to Z. We can define a cost wid = d for every
pair (zi, d) where d is in the domain of zi. Then cost gcc(Z, l, u, zagg, w) with
li = 0 and ui = k for all Ci ∈ C, is similar to the SGCA using µhigher.

However, as for this variant of the soft gcc we have l = 0, the soft gcc

is more efficient than the cost gcc, as was discussed at the end of Section 4.5.
In fact, the SGCA can be checked for consistency in O(km) time and made
hyper-arc consistent in O(m) time (where k = |C| and m = ∪i |Dzi

| whenever
l = 0 and µ(Z) =

∑

d∈DZ
F (d) · e(Z, d) for any cost function F : DZ → Q+.

4.9 Conclusion

Many real-life problems are over-constrained and cannot be solved by existing
methods that seek for a feasible solution. In constraint programming, we can

1 Recall that the Max-CSP framework tries to maximize the number of satisfied
constraints.

Section 4.9. Conclusion 83

overcome this problem by softening constraints: for each soft constraint a
violation measure is defined and we seek for a solution with minimum total
violation.

Until recently there were no efficient propagation algorithms for soft global
constraints. In this chapter we have proposed a generic constraint propagation
algorithm for a large class of global constraints; those that can be represented
by a flow in a graph. To allow solutions that were originally infeasible, we
have added violation arcs to the graph, with an associated cost. Hence, a
flow that represents an originally infeasible solution induces a cost. This cost
corresponds to a violation measure of the soft global constraint.

We have applied our method to soften several global constraints that are
well-known to the constraint programming community: the alldifferent

constraint, the global cardinality constraint, the regular constraint, and the
same constraint. For these constraints we have presented the graph represen-
tations corresponding to different violation measures, some of which we have
newly introduced. For all these soft global constraints efficient hyper-arc con-
sistency algorithms have been presented, inferred from our generic algorithm.

In our propagation algorithms we have applied techniques from flow theory
to compute an initial solution and to make the soft global constraints hyper-
arc consistent. The application of these techniques make our algorithms very
efficient. This shows that the application of operations research techniques in
constraint programming is also beneficial for propagation algorithms for soft
global constraints.

Part II

Search

Chapter 5

Postponing Branching Decisions

We present an effective strategy in case a value ordering heuristic
produces a tie: postponing the branching decision. To implement
this strategy, we introduce the search method domain partitioning.
We provide a theoretical and experimental analysis of our method.
In Chapter 6 we show how domain partitioning can improve the
computation of bounds for optimization problems.

5.1 Introduction

In Chapter 2 we presented the general concept of a search tree to solve CSPs
(or COPs), by iteratively splitting a CSP into smaller CSPs. The search tree
is constructed using variable and value ordering heuristics. The efficiency of
the solution process highly depends on these heuristics. In this chapter we
focus on the value ordering heuristic.

A value ordering heuristic ranks domain values in such a way that the
“most promising” value is selected first. If the value ordering heuristic re-
gards two or more domain values equally promising, we say that the heuristic
produces a tie, consisting of equally ranked domain values. The definition of
ties can be extended to the concept of heuristic equivalence [Gomes, Selman,
and Kautz, 1998] that considers equivalent all domain values that receive a
rank within a given percentage from a value taken as reference.

A similar situation occurs when different value ordering heuristics can
be applied simultaneously. Often a problem is composed of different aspects,
for instance optimization of profit, resource balance, or feasibility of some
problem constraints. For each of those aspects a value ordering heuristic may
be available. However, applying only one such heuristic often does not lead to a
globally satisfactory solution. The goal is then to combine these heuristics into
one global value ordering heuristic. Many combinations are used in practice:

(i) to follow the heuristic that is regarded most important, and apply a dif-
ferent heuristic on values belonging to a tie,

(ii) to define a new heuristic (that might still contain ties) as the (weighted)
sum of the ranks that each heuristic assigns to a domain value, or

(iii) to rank the domain values through a multi-criteria heuristic. In this third
case, a domain value has a higher rank than another domain value if it
has a higher rank with respect to all heuristics. With respect to the multi-
criteria heuristic, some values may be incomparable. These incomparable
values together form a tie.

88 Chapter 5. Postponing Branching Decisions

As we already discussed in Chapter 2, there are several possibilities when
we want to select a single domain value from a tie. Traditionally, values are
chosen according to a deterministic rule, for instance lexicographic order. More
recently, randomization has been applied successfully to these choices, see
Gomes, Selman, and Kautz [1998] and Gomes [2003]. Once a single domain
value has been selected, we can for example apply the labelling procedure to
split the domain.

We propose a simple, yet effective method that improves the efficiency of
the search process in case of ties: avoid making a choice and postpone the
branching decision. To this end, we group together values in a tie, branch
on this subdomain, and defer the decision among them to lower levels of
the search tree. We call this method domain partitioning, or partitioning in
short, as we split the domain according to a partition instead of single values.
We show theoretically and experimentally that domain partitioning is to be
preferred over labelling in case of ties. Moreover, as we will see in Chapter 6,
domain partitioning in combination with techniques from operations research
allows us to improve the bound computation for optimization problems.

Partitioning the domain of a variable is a well-known technique when solv-
ing CSPs or COPs. For example, the bisection splitting procedure partitions
a domain in two parts. However, to our knowledge this is the first time that
partitioning is applied to the ties of a value ordering heuristic, and that an
analysis of partitioning with respect to labelling is presented.

The outline of this chapter is as follows. In Section 5.2 we present a detailed
description of our method: domain partitioning in based on ties. A theoretical
analysis of domain partitioning with respect to labelling is given in Section 5.3.
This is followed by an experimental analysis in Section 5.4. We conclude with
a discussion in Section 5.5.

5.2 Outline of Method

This section describes how we postpone a branching decision in a search tree.
We first define the corresponding domain splitting procedure. Then we discuss
the application of search strategies to the resulting search tree.

Consider a domain D and a value ordering heuristic that induces a partial
order ¹ on D. Define the ¹-partition of D as a partition D(1), D(2), . . . , D(m)

of D, such that

• all elements in D(i) are incomparable with respect to ¹ for i = 1, . . . ,m,
• di ¹ di+1 for all di ∈ D(i) and all di+1 ∈ D(i+1), for i = 1, . . . ,m − 1.

In other words, each subdomain D(i) (1 ≤ i ≤ m) corresponds to a tie of the
value ordering heuristic. It contains all values that belong to that tie. Further,

Section 5.2. Outline of Method 89

generation tree
subproblem

. . .

subproblem solution trees

root

Figure 5.1. The structure of the search tree when applying domain partitioning.

D(1) contains all least elements of D with respect to ¹. If a value ordering
heuristic induces a total order, all ties consist of a single value.

We define the search method domain partitioning, or partitioning in short,
as a two-phase procedure: subproblem generation and subproblem solution. The
first phase, the subproblem generation, is defined as follows. For a domain D
and a value ordering heuristic that induces a partial order ¹ on D, we apply
the domain splitting procedure that splits D into

D(1), D(2), . . . , D(m),

where D(1), D(2), . . . , D(m) is the ¹-partition of D. In principle one may apply
any partition of D, but we will only use the ¹-partition in this thesis.

The second phase deals with the subproblem solution. For this we may in
principle apply any available value ordering heuristic and splitting procedure.
In this thesis however, we will restrict ourselves to the lexicographic value
ordering heuristic in combination with labelling to solve the subproblems.
Note that the above domain splitting procedure is equivalent to labelling if
the value ordering heuristic induces a total order.

In fact, partitioning constructs a subproblem generation tree that has sub-
problems as its leaves, and subproblem solution trees. This is depicted in Fig-
ure 5.1.

Next we consider the traversal of the resulting search tree. We may apply
different search strategies to the subproblem generation tree and the subprob-
lem solution trees. When we say that we apply a particular search strategy in
combination with partitioning, we mean that we apply this strategy only to
the subproblem generation tree. In this thesis we will always apply depth-first
search to the subproblem solution trees. This choice is motivated by the fact
that all leafs of a subproblem are heuristically equivalent, i.e. all leaves are
equally likely to be a solution (with respect to the used heuristic). Hence we

90 Chapter 5. Postponing Branching Decisions

choose the most efficient search strategy available, depth-first search, to visit
the leaves.

Finally, we always perform a complete search on the subproblem before we
backtrack to a node in the subproblem generation tree. Again this is motivated
by the fact that all leafs of a subproblem are equally likely to be a solution.

5.3 Theoretical Analysis

This section shows, on a probabilistic basis, that partitioning is more beneficial
than labelling in case the (combined) value ordering heuristic produces ties.
We compare two search trees. One tree is built through labelling, the other
is built through partitioning. Both trees apply the same variable and value
ordering heuristics, that are fixed throughout this section. We assume that
the total order of the descendants of a node is based on the value ordering
heuristic. None of the trees applies constraint propagation.

Let a node P of a search tree have a set of descendant S. The elements
of S arise from P by splitting the domain of a variable x in P . For s, t ∈ S,
we denote by s + t a new descendant that replaces s and t by the CSP that
contains the union of s and t. That is, s+ t contains the same set of variables,
domains and constraints as s and t, and for variable x the domain is the union
of its domain in s and in t.

Similar to the analysis of LDS by Harvey and Ginsberg [1995], we assign a
probability to the value ordering heuristic making a correct choice, based on
a set of values. This defines a probability distribution on the set of values. Let
the search tree consist of good and bad nodes. A node is called good if it is on
a path to a leaf that is an (optimal) solution to the CSP (COP). Otherwise,
the node is called bad. Given that the current node P is a good node and has
a set of descendants S, the heuristic probability distribution of P is a function
hP : S → [0, 1] such that

hP (s) ≥ 0 for all s ∈ S,
hP (s) + hP (t) = hP (s + t) for all s, t ∈ S,
∑

s∈S hP (s) = 1.

For s ∈ S, hP (s) represents the probability that descendant s is also a good
node. For s, t ∈ S, we assume that hP (s) > hP (t) if the value ordering heuristic
prefers s over t. If the heuristic considers s and t equally likely, then hP (s) =
hP (t).

Given a heuristic probability distribution hP for each node P in the search
tree that is not a leaf, we can compute the probability of a node being suc-
cessful as follows. To each node in the search tree leads a unique path from
the root P0. Let this path be denoted as P0, P1, . . . , Pk for a node Pk. Then
the probability of Pk being successful is

prob(Pk) =
∏

i=1,...,k

hPi−1
(Pi).

Section 5.3. Theoretical Analysis 91

a. labelling b. partitioning

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

leafs

labelling
partitioning

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

leafs

labelling
partitioning

c. DFS d. LDS

Figure 5.2. Cumulative probability of success using DFS and LDS for a CSP with
n = 2 variables, both having 3 domain values.

Each node P in the search tree yields a different heuristic probability
distribution hP . For simplicity reasons, Harvey and Ginsberg [1995] assume
that hP remains constant throughout a binary search tree1 with fixed depth
when they analyse LDS. To analyse DDS, Walsh [1997] also uses binary search
trees with fixed depth. As DDS assumes that the performance of the value
ordering heuristic is better at lower parts of the tree, it is assumed that the
probability of the first descendant being successful increases with the depth.

For our analysis of partitioning with respect to labelling, we assume that
for all nodes P at the same depth, hP is constant. Note that because of the
fixed variable ordering heuristic, all nodes at the same depth have the same
number of descendants that are ordered equally because of the fixed value
ordering heuristic. The assumption implies that hP is independent of the
choices made along the path from the root to P .

When we apply a certain search strategy to the trees defined by labelling
and partitioning, leaves are visited in a different order. An example of the

1 In a binary search tree all nodes, except leaves, have exactly two descendants.

92 Chapter 5. Postponing Branching Decisions

probability distribution along the leaves of the different search trees is given
in Figure 5.2. The trees in Figures 5.2.a and 5.2.b correspond to 2 variables,
both having 3 domain values. The descendants are ordered from left to right
following the value ordering heuristic’s choice. The heuristic probability dis-
tribution is shown near the branch leading to each descendant. Note that the
value ordering heuristic produces a tie, consisting of two values, for the first
variable. Labelling follows the heuristic on single values, while partitioning
groups together values in the tie.

For DFS and LDS, the order in which the leaves are visited is given, to-
gether with the cumulative probability of success. The cumulative probability
of success is also visualized in the Figures 5.2.c and 5.2.d for DFS and LDS,
respectively. Observe that for every leaf, partitioning always has a higher (or
equal) cumulative probability of success than labelling. This will be formalized
in Theorem 5.1.

Note that in a subproblem generated by partitioning all leaves have the
same probability of success. This property follows immediately from the con-
struction of the subproblems. As a consequence, any search strategy applied
to this subproblem will be equally likely to be successful. In practice, we will
therefore use DFS to solve the subproblems.

Theorem 5.1. For a fixed variable ordering and a domain value ordering
heuristic, let Tlabel be the search tree defined by labelling, and let Tpartition be
the search tree defined by partitioning. Let the set of the first k leaf nodes
visited by labelling and partitioning be denoted by Lk

label and Lk
partition respec-

tively. If Tlabel and Tpartition are traversed using the same depth-first based
search strategy then

∑

l∈Lk
partition

prob(l) ≥
∑

l∈Lk
label

prob(l). (5.1)

Proof. For k = 1, (5.1) obviously holds. Let k increase until labelling and
partitioning visit a leaf with a different probability of success, say llabel

k and

lpartition
k respectively. If such leaves do not exist, (5.1) holds with equality for
all k.

Assume next that such leaves do exist, and let llabel
k and lpartition

k be the
first leaves with a different probability of success. As the leaves are differ-
ent, there is at least one different branching decision between the two. The
only possibility for this different branching decision is that we have encoun-
tered a tie, because partitioning and labelling both follow the same depth-first
based search strategy. This tie made partitioning create a subproblem S, with
lpartition
k ∈ S, and llabel

k /∈ S. If labelling made a branching decision different
from partitioning, with a higher probability of being successful, then partition-
ing would have made the same decision. Namely, partitioning and labelling
follow the same strategy, and the heuristic prefers values with a higher prob-
ability. So it must be that a different branching decision made by labelling

Section 5.4. Computational Results 93

has a smaller or equal probability of being successful with respect to the cor-
responding decision made by partitioning. However, as we have assumed that
prob(lpartition

k) 6= prob(llabel
k), there must be at least one different branching

decision made by labelling, that has a strictly smaller probability of being
successful. Thus for the current k, (5.1) holds, and the inequality is strict.

As we let k increase further, partitioning will visit first all leaves inside S,
and then continue with llabel

k . On the other hand, labelling will visit leaves l

that are either in S or not, all with prob(l) ≤ prob(lpartition
k). However, as par-

titioning follows the same search strategy as labelling, partitioning will either
visit a leaf of a subproblem, or a leaf that labelling has already visited (pos-
sibly simultaneously). In both cases,

∑

l∈Lk
partition

prob(l) ≥∑l∈Lk
label

prob(l).

¤

Next we measure the effect that the number of ties has on the performance
of partitioning with respect to labelling. This is done by comparing the cumu-
lative probability of success of partitioning and labelling on search trees with
a varying number of ties.

We consider search trees with fixed maximum depth 30 and a branch-
width of 3, i.e. every non-leaf node has exactly 3 descendants. This branch-
width allows ties, and a larger branch-width would make it impractical to
measure effectively the performance of labelling, because then the cumulative
probability of success of labelling remains close to zero for a large number of
visited leaves. Depending on the occurrence of a tie, the heuristic probability
distribution hP (i) of descendant i = 1, 2, 3 of a node P will be chosen either

hP (1) = 0.95, hP (2) = 0.04, hP (3) = 0.01 (no tie), or
hP (1) = 0.495, hP (2) = 0.495, hP (3) = 0.01 (tie).

Our method assumes a fixed variable ordering in the search tree, and uniformly
distributes the ties among them. This is reasonable, since in practice ties can
appear unexpectedly. We have investigated the appearance of 10%, 33% and
50% ties out of the 30 branching decisions that lead to a leaf.

In Figures 5.3 and 5.4, we report the cumulative probability of success for
labelling and partitioning using DFS and LDS until 50000 leaves. Note that
in Figure 5.3 the graphs for labelling with 33% and 50% ties almost coincide
along the x-axis. The figures show that in the presence of ties partitioning
may be much more beneficial than labelling, i.e. the strict gap in (5.1) can be
very large.

5.4 Computational Results

This section presents computational results of two applications for which we
have compared partitioning and labelling. The first is the Travelling Salesman
Problem (TSP), the second is the Partial Latin Square Completion Problem

94 Chapter 5. Postponing Branching Decisions

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
 o

f s
uc

ce
s

number of leafs

labelling, 50% ties
partitioning, 50% ties

labelling, 33% ties
partitioning, 33% ties

labelling, 10% ties
partitioning, 10% ties

Figure 5.3. Partitioning versus labelling on search trees with maximum depth 30
and branch-width 3 using DFS.

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
 o

f s
uc

ce
s

number of leafs

labelling, 50% ties
partitioning, 50% ties

labelling, 33% ties
partitioning, 33% ties

labelling, 10% ties
partitioning, 10% ties

Figure 5.4. Partitioning versus labelling on search trees with maximum depth 30
and branch-width 3 using LDS.

Section 5.4. Computational Results 95

(PLSCP). We first explain the reason why we chose these two problems to
test our method.

The TSP is a constraint optimization problem for which the propagation
is quite poor and the value ordering heuristic used is very informative and
often produces ties. Instead, PLSCP is a constraint satisfaction problem whose
model contains many alldifferent constraints that has an effective and
efficient propagation algorithm. The value ordering heuristic used is fairly
good and sometimes produces ties. Therefore, the two problems have opposite
structure and characteristics.

For the TSP, partitioning is likely to be very suitable since the only draw-
back of the method, i.e., the decreased effect of propagation, does not play
any role. On the contrary, the PLSCP is a problem whose characteristics are
not likely to be suitable for partitioning. Therefore, we also analyze both the
strength and the weakness of our method.

For both applications we state the problem, define the applied value or-
dering heuristic and report the computational results. For both problems we
apply LDS as search strategy. In case of ties, labelling uses lexicographic or-
dering to select a value. As stated before, partitioning uses DFS to solve the
subproblems.

The applications are implemented on a Pentium 1Ghz with 256 MB RAM,
using ILOG Solver 4.4 as constraint programming solver and and ILOG
Cplex 6.5 as linear programming solver.

5.4.1 Travelling Salesman Problem

The Travelling Salesman Problem (TSP) is a well-known NP-hard constraint
optimization problem. Given a set of cities with distances between them, the
problem is to find a closed tour of minimal length visiting each city exactly
once.

For the TSP, we have used a constraint programming model and a value
ordering heuristic similar to the one that is presented in Chapter 6. We refer to
that chapter for details on the model and implementation. The value ordering
heuristic is based on reduced costs that are obtained from the linear relaxation
of the problem. As pointed out in Chapter 6, this heuristic is very accurate.
Furthermore, it is often the case that two or more domain values have the
same reduced cost and a tie is produced.

To compare labelling and partitioning fairly, we stop the search as soon as
an optimal solution has been found. For the considered instances, the optimal
values are known in advance. The proof of optimality should not be taken into
account, because it is not directly related to the probability of a leaf being an
optimal solution.

The results of our comparison are presented in Table 5.1. The instances
are taken from TSPLIB [Reinelt, 1991] and represent symmetric TSPs. For
labelling and partitioning, the table shows the time and the number of fails
(backtracks) needed to find an optimum. For labelling, the discrepancy of the

96 Chapter 5. Postponing Branching Decisions

instance labelling partitioning

name n time (s) fails discr time (s) fails discr

gr17 17 0.08 36 2 0.02 3 0

gr21 21 0.16 52 3 0.01 1 0

gr24 24 0.49 330 5 0.01 4 0

fri26 26 0.16 82 2 0.01 0 0

bayg29 29 8.06 4412 8 0.07 82 1

bays29 29 2.31 1274 5 0.07 43 1

dantzig42 42 0.98 485 1 0.79 1317 1

swiss42 42 6.51 2028 4 0.08 15 0

hk48 48 190.96 35971 11 0.23 175 1

brazil58 58 N.A. 0.72 770 1

Table 5.1. Results for finding optima of TSP instances on n cities (not proving
optimality). N.A. means “not applicable” due to time limit (300 s).

leaf node that represents the optimum is given. For partitioning, the discrep-
ancy of the subproblem that contains the optimum is reported. Observe that
we find an optimal solutions in subproblems corresponding to discrepancy 0
or 1. This indicates the accuracy of reduced costs as branching heuristic.

For all instances but one, partitioning performs much better than labelling.
Both the number of fails and the computation time are substantially less for
partitioning. Observe that for the instance ‘dantzig42’ labelling needs less fails
than partitioning, but uses more time. This is because partitioning solves the
subproblems using DFS. Partitioning can visit almost three times more nodes
in less time, because it lacks the LDS overhead inside the subproblems.

5.4.2 Partial Latin Square Completion Problem

The Partial Latin Square Completion Problem (PLSCP) is a well known NP-
complete constraint satisfaction problem. A Latin square of order n > 0 is
an n × n square in which each row and each column is a permutation of the
numbers {1, . . . , n}. For example

1 3 2 4
3 1 4 2
4 2 1 3
2 4 3 1

is a Latin square of order 4. A partial Latin square is a partially pre-assigned
square. The PLSCP is the problem of extending a partial Latin square to a
feasible (completely filled) Latin square.

We have used the following CSP for the PLSCP of order n, where we
denote a pre-assignment of value v in row i and column j by aij = v:

for all i, j ∈ {1, . . . , n} :

{

xij ∈ {v} if aij = v,
xij ∈ {1, . . . , n} else,

for all i ∈ {1, . . . , n} : alldifferent(xi1, xi2, . . . , xin),
for all j ∈ {1, . . . , n} : alldifferent(x1j , x2j , . . . , xnj).

Section 5.4. Computational Results 97

instance labelling partitioning

time (s) fails discr time (s) fails discr
b.o25.h238 2.36 668 5 1.09 746 5
b.o25.h239 0.49 15 1 0.42 2 1
b.o25.h240 1.17 179 4 0.86 893 4
b.o25.h241 3.31 772 3 4.70 3123 4
b.o25.h242 2.41 537 3 1.80 1753 4
b.o25.h243 4.06 1082 4 3.96 2542 4
b.o25.h244 1.33 214 3 2.99 2072 4
b.o25.h245 9.40 2308 6 10.66 12906 7
b.o25.h246 2.01 401 5 2.22 1029 4
b.o25.h247 258.91 69105 6 11.66 5727 4
b.o25.h248 33.65 6969 5 0.68 125 2
b.o25.h249 212.76 60543 11 101.46 85533 8
b.o25.h250 2.45 338 2 0.83 687 3
u.o30.h328 273.53 32538 4 82.00 14102 3
u.o30.h330 21.79 2756 3 25.15 5019 3
u.o30.h332 235.40 30033 5 56.94 9609 3
u.o30.h334 4.18 256 2 6.09 843 2
u.o30.h336 1.73 69 2 0.76 12 1
u.o30.h338 49.17 5069 3 29.41 8026 3
u.o30.h340 1.68 91 2 0.81 66 2
u.o30.h342 28.40 3152 3 5.41 600 2
u.o30.h344 9.05 605 2 8.35 1103 2
u.o30.h346 2.15 101 2 3.76 482 2
u.o30.h348 43.80 2658 2 32.86 2729 2
u.o30.h350 1.16 46 1 0.80 12 1
u.o30.h352 5.10 288 2 0.95 32 1
sum 1211.45 220793 91 396.62 159773 81
mean 46.59 8492.04 3.50 15.25 6145.12 3.12

Table 5.2. Results for PLS completion problems.

We use the maximal constraint propagation for the alldifferent constraints,
i.e. achieving hyper-arc consistency; see Section 3.4.4. With less powerful prop-
agation, the considered instances are practically unsolvable.

We have used the following value ordering heuristic. We rank the values
according to their occurrence in the partial Latin square. Values that occur
most often are to be considered first, because they are most constrained. This
value ordering heuristic changes as more domains become singletons during
search. A tie consists of all values that are ranked equally. Labelling selects
the value with the highest rank, and uses lexicographic ordering in case of
ties.

In Table 5.2 we report the performance of labelling and partitioning on
a number of partial Latin square completion problems. It follows the same
format as Table 5.1. The instances are generated with the PLS-generator
kindly provided to us by Carla Gomes. Following remarks made by Gomes
and Shmoys [2002], our generated instances are such that they are difficult to
solve, i.e. they appear in the “transition phase” of the problem. The instances
‘b.o25.hm’ are balanced 25 × 25 partial Latin squares, with m unfilled en-
tries (around 38%). Instances ‘u.o30.hm’ are unbalanced 30×30 partial Latin
squares, with m unfilled entries (around 38%).

Although partitioning performs much better than labelling on average,
the results are not homogeneous. For some instances labelling has a better

98 Chapter 5. Postponing Branching Decisions

performance than partitioning. This can be explained by the propagation of
the alldifferent constraint. Since partitioning branches on subdomains of
cardinality larger than one, the alldifferent constraint will remove less
values that are inconsistent compared to branching on single values, as is
the case with labelling. Using partitioning, such values will only be removed
inside the subproblems. However, even in instances where partitioning is less
effective, the difference between the two strategies is not so high, while on
many instances partitioning is much more effective.

As was already mentioned in Section 5.4.1, partitioning effectively applies
DFS inside the subproblems. For a number of instances, partitioning finds a
solution earlier than labelling, although making use of a higher number of
fails.

5.5 Discussion and Conclusion

We have presented an effective method in case a value ordering heuristic
produces ties: postponement of the branching decision. The method has been
described in terms of domain partitioning based on the ties. We have shown
both theoretically and experimentally that partitioning is to be preferred over
labelling in case of ties. The experiments have also exposed a drawback of
our method. Namely, the branching on subdomains instead of single values
decreases the effect of constraint propagation.

There is a connection between our method and the search method iterative
broadening by Ginsberg and Harvey [1992]. Given a branch cut-off k, iterative
broadening applies depth-first search restricted to the first k descendants of
each node. Then it restarts using a larger branch cut-off. If we define k dy-
namically for each node to be the cardinality of the (possible) tie, our first
subproblem corresponds to the first run of iterative broadening. However, it-
erative broadening behaves differently on backtracking.

Domain partitioning can be used in several ways to exploit operations
research methods in constraint programming. For example, the subproblems
that are created by domain partitioning may be subject to any applicable
solution method. In particular one may apply a suitable operations research
method to solve a subproblem more efficiently.

In Chapter 6 we will see another effective combination of domain partition-
ing and operations research techniques. We will see that domain partitioning
in combination with linear programming and limited discrepancy search is
very useful to improve the bound computation of optimization problems.

Chapter 6

Reduced Costs as Branching Heuristic

In Chapter 2 and Chapter 5 we have seen that a search tree depends
on variable ordering and value ordering heuristics. In this chapter
we propose to use a value ordering heuristic based on reduced costs,
obtained from a linear relaxation of the problem at hand. Further, we
apply the method of domain partitioning of Chapter 5, which allows
us to improve the quality of the lower bound using additive bounding
procedures. Experimental results show the effectiveness of our approach.

6.1 Introduction

For many NP-hard1 combinatorial optimization problems, one or more linear
programming relaxations exist. For example, any integer linear program can
be relaxed by removing the integrality constraints on the variables. When we
solve linear programs to optimality, we obtain a (fractional) solution, a bound
on the optimal objective value and reduced costs, as we have seen in Sec-
tion 2.1.2. We recall that the reduced cost of a non-basic variable corresponds
to the additional cost to be paid if this variable is inserted in the basis.

It is rare that the linear programming solution is also a solution to the
original problem we want to solve. However, the reduced costs corresponding
to the linear programming solution give an intuitive indication. Namely, when
the problem at hand is a minimization problem, variables with a low reduced
cost value are more likely to be part of the optimal solution. It should be
noted that the validity of this intuition highly depends on the nature of the
problem at hand. For problems that aim at feasibility rather than optimality
(for example certain scheduling problems), the reduced costs may not be very
informative.

In this chapter we consider COPs for which a linear programming relax-
ation exists. We propose to use the reduced costs obtained from the relaxation
as a value ordering heuristic during the search for a solution to the COP. Fur-
thermore, we use the domain partitioning method of Chapter 5 applied to the
ties of this heuristic to find a solution earlier. Domain partitioning also allows
us to improve the bound of the objective value dramatically during the search
process.

1 A combinatorial optimization problem belongs the class of NP-hard problems if
the corresponding decision problem is NP-complete.

100 Chapter 6. Reduced Costs as Branching Heuristic

Our method is described as follows. Recall that domain partitioning con-
sists of two phases: subproblem generation and subproblem solution. At the
root of our search tree we solve the linear programming relaxation, and we
order the domains of the variables by their corresponding reduced costs. We
define two ties by means of a given threshold. The good tie consists of values
corresponding to reduced costs below the threshold, the bad tie consists of val-
ues corresponding to reduced costs above the threshold. Doing so, partitioning
splits each domain into a good subdomain and a bad subdomain, according to
the ties.

We apply LDS to the subproblem generation tree. Hence, the first leaf
of the subproblem generation tree consists of the subproblem in which all
variables are restricted to their good domains. If the reduced costs provide an
accurate value ordering heuristic, it is likely that an optimal solution will be
found in a subproblem with low discrepancy. This claim is supported by the
experimental results that we provide in Section 6.5. Subproblems at higher
discrepancies are supposed to contain worse candidate solutions. We continue
the search process either until we have proved optimality of a solution or until
we have reached a given limit on the discrepancy of the subproblems.

A surprising aspect of this method is that even by using good subdomains
of low cardinality, we almost always find the optimal solution in the first
generated subproblem. Thus, reduced costs provide very useful information
indicating for each variable which values are the most promising. Solving only
the first subproblem, we obtain an effective incomplete method that finds the
optimal solution in almost all test instances.

In order to be complete, the method should solve all subproblems for all
discrepancies to prove optimality. Clearly, even if each subproblem could be ef-
ficiently solved this approach would not be applicable. We propose to improve
the bound with considerations based on the discrepancy of the subproblems.
This will allow us to prove optimality earlier.

We have applied our method to the Travelling Salesman Problem and its
time-constrained variant. The latter is a typical example of a problem that
is difficult for both constraint programming and integer linear programming.
Namely, the problem is composed of an optimization part and a scheduling
part. Constraint programming is suitable for the scheduling part, but has
problems with optimization. The converse holds for integer linear program-
ming. It has been shown by Focacci, Lodi, and Milano [2002] that a hybrid
approach, combining the strengths of both, is very effective in this case.

This chapter is organized as follows: in Section 6.2 we describe the pro-
posed method in detail. The improvement of the lower bound is presented in
Section 6.3. In Section 6.4 we provide a constraint programming model and
a linear relaxation for the Travelling Salesman Problem with Time Windows.
The computational results on this problem are presented in Section 6.5. We
discuss our results in Section 6.6 and give a conclusion.

Section 6.2. Solution Framework 101

6.2 Solution Framework

The basis of our framework is the constraint programming search tree, using
the domain partitioning splitting procedure of Chapter 5. We use the reduced
costs obtained from the solution of a linear programming relaxation as value
ordering heuristic. In this section we first show how to extract a linear pro-
gramming relaxation from a constraint programming model. Then we describe
the application of reduced costs as value ordering heuristic in more detail. Fi-
nally, we propose to use a discrepancy constraint instead of standard LDS as
a search strategy. Without loss of generality, we assume that we are dealing
with a minimization problem in this chapter.

6.2.1 Building a Linear Programming Relaxation

Consider a COP consisting of a sequence of variables v1, . . . , vn, corresponding
finite domains D1, . . . , Dn, a set of constraints and an objective function to be
optimized. For simplicity, we restrict ourselves to objective functions that are
weighted sums of variable-value pairs. This means that the assignment vi = j
induces a cost cij for i = 1, . . . , n and all j ∈ Di. Then the objective function
has the form

n
∑

i=1

ci vi
.

From this COP we need to extract a linear programming relaxation with the
property that a reduced cost value gives an indication of a variable-value pair
to be in an optimal solution. This can be done in the following way.

We first transform the variables vi and the domains Di into corresponding
binary variables xij for i = 1, . . . , n and all j ∈ Di:

vi = j ⇔ xij = 1,
vi 6= j ⇔ xij = 0.

(6.1)

To ensure that each variable vi is assigned to a single value in its domain we
state the linear constraint

∑

j∈Di

xij = 1 for i = 1, . . . , n.

The objective function is transformed as

n
∑

i=1

ci vi
=

n
∑

i=1

∑

j∈Di

cijxij .

The next, most difficult, task is to transform (some of) the problem constraints
into linear constraints using the binary variables. This is problem dependent,
and no general recipe exists. However, for many problems such descriptions

102 Chapter 6. Reduced Costs as Branching Heuristic

are known and described in the literature. For example, for an alldifferent

constraint we may add the linear constraint

n
∑

i=1

xij ≤ 1 for all j ∈
n
⋃

i=1

Di

to ensure that every domain value is assigned to at most one variable.
Finally, in order to obtain a linear programming relaxation, we remove the

integrality constraint on the binary variables and state

0 ≤ xij ≤ 1 for i = 1, . . . , n and all j ∈ Di.

The above linear programming relaxation has the desired property: the
reduced cost value cij gives an indication of the assignment vi = j to be in
an optimal solution for i = 1, . . . , n and all j ∈ Di. Namely, if we enforce the
assignment vi = j, the objective function value will increase by (at least) cij .
Hence, if cij is small, the assignment vi = j is more likely to be in an optimal
solution of the original problem we want to solve.

6.2.2 Domain Partitioning using Reduced Costs

We consider again the COP of the previous section, containing variables
v1, . . . , vn with corresponding finite domains D1, . . . , Dn. We assume that we
have constructed a linear programming relaxation (LP) of the problem with
variables xij for i = 1, . . . , n and all j ∈ Di according to the transformation
(6.1).

First we solve the LP to optimality. As we have seen in Section 2.1.2, we
can extract a reduced cost cij for all i, j. We define the value ordering heuristic
based on reduced costs as follows. Given variable vi for some i and a threshold
T , we order its domain Di into two ties Dgood

i and Dbad
i such that

Dgood
i = {j | j ∈ Di, cij ≤ T},

Dbad
i = {j | j ∈ Di, cij > T},

and the values in Dgood
i are ordered smaller than the values in Dbad

i . In other

words, we regard all values in Dgood
i heuristically equivalent but more promis-

ing than values in Dbad
i , which are also regarded heuristically equivalent.

Next we apply the reduced cost-based value ordering heuristic to the do-
main partitioning procedure of Chapter 5. Recall that domain partitioning
induces a search tree consisting of two layers: the subproblem generation tree
and subproblem solution trees. As we expect the value ordering heuristic to
be accurate, we apply LDS to the resulting search tree. Note that this means
that we apply LDS to subproblem generation tree only. To the subproblems
we apply DFS, as motivated in Chapter 5.

Section 6.2. Solution Framework 103

(1)
Pi

(2)
Pij

P
(0)

generation tree
subproblem

subproblem solution trees

.

LP

Figure 6.1. The structure of the search tree. The linear programming relaxation
LP is located at the root. The subproblems P(k) correspond to discrepancy k.

The resulting search tree is depicted in Figure 6.1. At the root, we solve
the linear programming relaxation LP which provides us the reduced costs.
Then we generate the first subproblem, P(0), corresponding to discrepancy 0.
For P(0) holds that

vi ∈ Dgood
i for i = 1, . . . , n.

We perform a complete DFS search on P(0). Hopefully, P(0) contains an opti-
mal solution, but it is possibly not yet proven optimal. Then we generate and

search the next n subproblems, P
(1)
1 , . . . , P

(1)
n , corresponding to discrepancy 1.

For P
(1)
i holds that

vi ∈ Dbad
i ,

vj ∈ Dgood
j for all j ∈ {1, . . . , n} \ {i}.

For the next generated n(n−1)/2 subproblems P
(2)
ij corresponding to discrep-

ancy 2 holds that

vi ∈ Dbad
i ,

vj ∈ Dbad
j ,

vk ∈ Dgood
k for all k ∈ {1, . . . , n} \ {i, j},

for distinct i, j. The search is continued until we have reached a given limit
on the discrepancy of the subproblems, or until we have proved optimality of
a solution. The proof of optimality will be discussed in the Section 6.3.

The threshold T will influence the performance of our method. If T is too
small, the optimal solution may not be in the first subproblem. If T is too
large, a complete search on the subproblems may become impractical due to
time restrictions. Hence, the “optimal” threshold should be experimentally
tuned for each problem.

104 Chapter 6. Reduced Costs as Branching Heuristic

6.2.3 Discrepancy Constraint

In this section we propose to use a discrepancy constraint instead of standard
LDS tree search. Then the propagation of this constraint ensures that we visit
only leaves of a given discrepancy. This idea was first introduced by Focacci
[2001, p. 171]. Our motivation to use a constraint is twofold. The most impor-
tant reason is that the discrepancy constraint allows us to improve the bound
of the linear programming relaxation, as we will see in Section 6.3. Further, if
the propagation for this constraint is efficient, a discrepancy constraint may
have a better performance than traditional LDS tree search. We provide ex-
perimental results to compare the performance of both.

The discrepancy constraint takes as input a value of discrepancy k, a se-
quence of variables, and their corresponding “bad” subdomains. The con-
straint holds if exactly k variables take their values in their bad subdomain.
Formally, we define the discrepancy constraint as follows.

Definition 6.1 (Discrepancy constraint). Let v1, v2, . . . , vn be variables
with respective finite domains D1, D2, . . . , Dn and let Dbad

i ⊆ Di for all i.
Further, let k ∈ {0, . . . , n}. Then

discrepancy(v1, . . . , vn, Dbad
1 , . . . , Dbad

n , k) =
{

(d1, . . . , dn) | di ∈ Di,
∣

∣{dj | dj ∈ Dbad
i }

∣

∣ = k
}

.

Operationally, the discrepancy constraint keeps track of the number of
variables that take their value in either the good or the bad domain. If during
the search for a solution in the current subproblem the number of variables
ranging on their bad domain is k, all other variables are forced to range on
their good domain. Equivalently, if the number of variables ranging on their
good domain is n − k, the other variables are forced to range on their bad
domain.

Using the discrepancy constraint, the subproblem generation is defined
as follows (in pseudo-code):

for (k=0..n) {

add(discrepancy(v, D_bad, k));

solve subproblem;

remove(discrepancy(v, D_bad, k));

}

where k is the level of discrepancy, v is the array containing the variables vi,
and D bad is the array containing Dbad

i for i = 1, . . . , n. The command solve

subproblem is shorthand for solving the subproblem.
We have compared the performance of the discrepancy constraint to the

traditional implementation of LDS. Both methods have been applied to solve
Asymmetric Travelling Salesman Problem with Time Windows (ATSPTW)
instances to optimality. The instances are taken from Ascheuer [1995]. We

Section 6.3. Discrepancy-Based Bound Improvement 105

standard discrepancy

instance LDS constraint

time (s) fails time (s) fails

rbg010a 0.06 7 0.03 7

rbg016a 0.08 44 0.04 44

rbg016b 0.15 57 0.10 43

rbg017.2 0.05 14 0.05 14

rbg017 0.10 69 0.09 47

rbg017a 0.09 42 0.09 42

rbg019a 0.06 30 0.06 30

rbg019b 0.12 71 0.12 71

rbg019c 0.20 152 0.19 158

rbg019d 0.06 6 0.06 6

rbg020a 0.07 5 0.06 5

rbg021.2 0.13 66 0.13 66

rbg021.3 0.22 191 0.20 158

rbg021.4 0.11 85 0.09 40

rbg021.5 0.10 45 0.16 125

rbg021.6 0.19 110 0.20 110

rbg021.7 0.23 70 0.22 70

rbg021.8 0.15 88 0.15 88

rbg021.9 0.17 108 0.17 108

rbg021 0.19 152 0.19 158

rbg027a 0.22 53 0.21 53

sum 2.75 1465 2.61 1443

mean 0.13 69.76 0.12 68.71

median 0.12 66 0.12 53

Table 6.1. Comparison of standard tree search implementation of LDS and the
discrepancy constraint on ATSPTW instances.

have used the same models and implementation as for the computational ex-
periments described in Section 6.5. The results are presented in Table 6.1. In
the table, the traditional tree search implementation of LDS is referred to as
“standard LDS”. The discrepancy constraint is referred to as “discrepancy
constraint”. Both time (in seconds) and fails (number of backtracks) are re-
ported for each instance. The results indicate that the discrepancy constraint
and the traditional tree search implementation of LDS have a comparable per-
formance on these instances.

6.3 Discrepancy-Based Bound Improvement

In this section we improve the lower bound provided by the solution of the
linear programming relaxation. This is done by taking into consideration the
discrepancy of a subproblem.

First, we introduce the concept of additive bounding , introduced by Fis-
chetti and Toth [1989, 1992]. The additive bounding scheme is visualized in
Figure 6.2, taken from Lodi and Milano [2003].

Let P be a problem of the form

min {cTx | Ax = b, x ≥ 0} (6.2)

106 Chapter 6. Reduced Costs as Branching Heuristic

R1 R2

1LB

_
c (1) _

c (2)

LB2

Rm

LBm

LBmLB21LB + +

. . .

+

P
c

problem
costs

Pvalid bound for

. . .

Figure 6.2. The additive bounding scheme.

where c ∈ Rn, b ∈ Rn, A ∈ Rm×n and x ∈ Rn.
In many cases, several relaxations for P are available, each exploiting a

different substructure of P . Let R1, . . . , Rm denote the m relaxations available
for P . We suppose that relaxation Ri applied to P and cost vector c returns a
lower bound value LBi as well as a reduced cost vector c(i) ∈ Rn. The result
of Fischetti and Toth [1989] is the following:

Apply R1 to P with cost vector c. Next, apply sequentially R2, . . . , Rm

to P such that Ri+1 uses the cost vector c(i) for i = 1, . . . m−1. Then
∑m

i=1 LBi is a valid lower bound for P .

We will apply the additive bounding procedure using the following relax-
ations of the original problem. Here we follow the notation of the previous
sections, i.e. the original problem is stated on variables v1, . . . , vn with corre-
sponding domains D1, . . . , Dn. The linear programming relaxation is stated
using the variables xij for i = 1, . . . , n and all j ∈ Di.

The first relaxation will be the linear programming relaxation, which in-
deed provides a lower bound and a reduced cost vector. Then, for all subprob-
lems that are generated for discrepancy k = 1, . . . , n, we consider the linear
description of the discrepancy constraint as relaxation Rk:

∑

j∈Dbad
i

xij ≤ 1 for i = 1, . . . , n (6.3)

n
∑

i=1

∑

j∈Dbad
i

xij = k (6.4)

xij ∈ {0, 1} for i = 1, . . . , n and all j ∈ Di. (6.5)

The following result was observed by Focacci [2001, p. 171–172] and Lodi
[2002]. We follow here the proof provided by Lodi and Milano [2003].

Theorem 6.2. Let R be a relaxation for a problem P , providing a lower bound
LB on P and a reduced cost vector c. Then relaxation Rk:

min z(k) =
∑n

i=1

∑

j∈Di
cijxij

subject to (6.3), (6.4), (6.5),

Section 6.4. The Travelling Salesman Problem 107

can be solved to optimality in O(nd) time, where d = maxi=1,...,n |Di|. More-
over, LB + z(k) is a valid lower bound for P when

discrepancy(v1, . . . , vn, Dbad
1 , . . . , Dbad

n , k)

is imposed.

Proof. The optimal solution of Rk is obtained by the following algorithm:

i) compute the smallest reduced cost minj∈Dbad
i

cij for i = 1, . . . , n,

ii) sort the obtained reduced costs non-decreasingly,
iii) select and sum the k smallest reduced costs.

The time complexity of i) is O(nd), while ii) and iii) take O(n log n) time
and O(k) time, respectively.

Concerning the validity of the bound, this is guaranteed by the additive
bounding procedure where we take as first relaxation R and as second relax-
ation Rk for every k ∈ {1, . . . , n}. ¤

Note that we do not need to compute Rk from scratch for every k. In
fact, we compute once a list L that contains the n smallest reduced costs
minj∈Dbad

i
cij for i = 1, . . . , n and is non-decreasingly sorted. Then

z(k) =
k
∑

i=1

L[i] for k = 1, . . . , n.

Hence, we add L[k] to the lower bound whenever the k-discrepancy con-
straint is imposed.

The idea of additive bounding based on discrepancy considerations has
been generalized by Lodi and Milano [2003] and Lodi, Milano, and Rousseau
[2003].

6.4 The Travelling Salesman Problem

In this section we present models of the Travelling Salesman Problem (TSP)
and the Asymmetric Travelling Salesman Problem with Time Windows (AT-
SPTW) on which we have tested our method. We provide a constraint pro-
gramming model for the ATSPTW and an integer linear programming model
for the TSP. From the latter we infer a linear programing relaxation.

6.4.1 Constraint Programming Model

The constraint programming model of the ATSPTW makes use of the nocycle
constraint, introduced by Caseau and Laburthe [1997a]. Before we introduce
this constraint, we need the following definition.

108 Chapter 6. Reduced Costs as Branching Heuristic

Consider an ordered sequence S = s1, . . . , sn with si ∈ {1, . . . , n} for
i = 1, . . . , n. Define the set C with respect to S as follows:

{1} ∈ C,
i ∈ C ⇒ si ∈ C.

We say that S is cyclic if |C| = n.

Definition 6.3 (No cycle constraint). Let X = x1, x2, . . . , xn be a se-
quence of variables with respective finite domains Di ⊆ {1, 2, . . . , n} for
i = 1, 2, . . . , n. Then

nocycle(x1, . . . , xn) = {(d1, . . . , dn) | di ∈ Di, d1, . . . , dn is not cyclic}.

Corresponding to the variables in Definition 6.3 we can define the digraph
G = (X,A) with arc set A = {(xi, xj) | j ∈ Di, i ∈ {1, . . . , n}}. An assignment

x1 = d1, . . . , xn = dn corresponds to the subset of arcs Ã = {(xi, xdi
) | i ∈

{1, . . . , n}}. The nocycle constraint ensures that Ã does not contain a cycle.
Note that hyper-arc consistency for the nocycle constraint has a worst-

case running time that is exponential in the number of variables. Namely,
finding a solution to the nocycle constraint corresponds to finding a Hamil-
tonian path in the corresponding graph, which is an NP-complete problem.
Therefore, we apply a weaker propagation algorithm described by Caseau
and Laburthe [1997a] and Pesant, Gendreau, Potvin, and Rousseau [1998]
that runs in polynomial time. Given a partial assignment of variables, it com-
putes all paths in the corresponding digraph. Based on the starting vertex,
the ending vertex and the length of a path, the algorithm removes values from
unassigned variable domains.

Next we provide the constraint programming model for the ATSPTW,
following Pesant, Gendreau, Potvin, and Rousseau [1998] and Focacci, Lodi,
and Milano [2002].

Let G = (V,A) be a digraph with vertex set V = {0, 1, . . . , n, n + 1}. Ver-
tices 0 and n + 1 represent the origin and destination depots, while vertices
1, . . . , n represent the cities to be visited. In fact, the origin and destination de-
pots are the same. For modeling convenience however, we have split the depot
into two vertices. This transforms the original Travelling Salesman Problem
into the problem of finding a directed Hamiltonian path from 0 to n + 1.
Each vertex i ∈ V \ {0, n + 1} has an associated time window [ai, bi], with
ai, bi ∈ R, during which the service at city i must be executed. The duration
of the service at city i is represented by duri. We also apply a “cost” function
c : A → Q+. For each pair of vertices i, j ∈ V , cij represents the travel cost
from city i to city j.

We model the ATSPTW as a CSP as follows. To each vertex i ∈ V , we
associate the variables

nexti: This variable represents the next city to visit after city i. The initial
domain of nexti is {1, . . . , n+1} for i = 0, . . . , n, while we set nextn+1 = 0.

Section 6.4. The Travelling Salesman Problem 109

costi: This variable represents the travel cost if we go from i to nexti, i.e.
ci nexti

. The initial domain of costi is {0, . . . ,maxi6=j cij} for i = 0, . . . , n,
while we set costn+1 = 0.

starti: This variable represents the time at which the service at city i starts.
The initial domain of starti is {0, . . . ,K}, where K is chosen appropri-
ately large, for i = 1, . . . , n + 1, while we set start0 = 0.

Finally, we introduce a cost variable z that represents the objective function,
i.e. the cost of the tour, to be minimized. The initial domain of z is bounded
from below by 0 and from above by

∑

i∈V maxj∈Di
c(i, j).

With these variables, we model the ATSPTW as

minimize z =
∑

i∈V

costi (6.6)

alldifferent(next0, next1, . . . , nextn+1) (6.7)

nocycle(next0, next1, . . . , nextn) (6.8)

nexti = j ⇒ costi = cij ∀i, j ∈ V (6.9)

nexti = j ⇒ starti + duri + costi ≤ startj ∀i, j ∈ V (6.10)

ai ≤ starti ≤ bi ∀i ∈ V \ {0, n + 1} (6.11)

The alldifferent constraint (6.7) states that we visit and leave each city
exactly once. To forbid subtours, we impose the nocycle constraint (6.8) on
the cities 0, . . . , n. Together, they ensure that we find a Hamiltonian path
from vertex 0 to vertex n+1. The connection between the variables next and
cost is made by constraint (6.9). Thus far we have only considered the TSP
part of the problem. The scheduling part of the problem, represented by the
start variables, is linked to the TSP part by the constraints (6.10). Finally,
constraints (6.11) ensure that the time windows are respected.

6.4.2 Integer Linear Programming Model

Let G = (V,A) be a digraph with vertex set V = {0, 1, . . . , n}. Vertex 0
represents the city from which we start the tour and in which we end. Vertices
1, . . . , n represent the cities to be visited. To G, we apply a cost function
c : A → Q+.

To model the TSP as an integer linear programming model, we make use
of a classical formulation. For each pair of cities i, j ∈ V , we introduce a
variable xij ∈ {0, 1}. If xij = 1, the arc from i to j is included in the tour,
otherwise xij = 0. We also introduce a cost variable z that represents the
objective function, i.e. the cost of the tour, to be minimized.

With these variables, we model the TSP as

min z =
∑

i∈V

∑

j∈V cij xij (6.12)

subject to
∑

i∈V xij = 1 ∀j ∈ V, (6.13)
∑

j∈V xij = 1 ∀i ∈ V, (6.14)
∑

i∈S

∑

j∈V \S xij ≥ 1 ∀S ⊂ V, S 6= ∅. (6.15)

110 Chapter 6. Reduced Costs as Branching Heuristic

The constraints (6.13) and (6.14) ensure that we visit and leave each city
exactly once. They correspond to the alldifferent constraint (6.7) of the
constraint programming model of the ATSPTW. To forbid subtours, we im-
pose the subtour elimination constraints (6.15). For each nonempty subset of
vertices S ⊂ V , a subtour elimination constraint ensures that there is at least
one arc going from S to V \ S. These constraints correspond to the nocycle

constraint (6.8) of the constraint programming model of the ATSPTW. Note
that there exponentially many subtour elimination constraints, which makes
this model impractical to apply.

6.4.3 Linear Programming Relaxation

Let G = (V,A) be the digraph from the previous section, with cost function
c : A → Q+.

A linear programming relaxation for both the ATSPTW and the TSP is ob-
tained from the integer linear programming formulation of the TSP. From this
model, we first remove the subtour elimination constraints (6.15). Secondly,
we relax the integrality constraints on the variables. The resulting model is
called the assignment problem, or AP in short:

min z =
∑

i∈V

∑

j∈V cij xij (6.16)

subject to
∑

i∈V xij = 1 ∀j ∈ V, (6.17)
∑

j∈V xij = 1 ∀i ∈ V, (6.18)

xij ≥ 0 ∀i, j ∈ V. (6.19)

An important aspect of the AP is that an optimal integer solution can be
computed in O(n3) time by the so-called Hungarian method; see for example
Schrijver [2003, p. 188]. This method is also incremental, i.e. each recom-
putation requires at most O(n2) time; see Carpaneto, Martello, and Toth
[1988]. Moreover, the reduced cost values can be obtained without extra com-
putational effort. All together, this makes the AP particularly useful for our
purposes.

Next we establish the mapping between the constraint programming model
for the ATSPTW and the AP:

nexti = j ⇔ xij = 1,
nexti 6= j ⇔ xij = 0,

for all i, j ∈ V . Note that the vertex set V used for the AP model does not
contain the vertex n+1 which does occur in the constraint programming model
for the ATSPTW. This is not a problem, because vertex n + 1 is identified
with vertex 0.

A solution to the AP provides a lower bound for the original problem and
reduced costs c. So this linear programming relaxation as well as its mapping
with the constraint programming model follows the description of our method
as presented in Section 6.2.1.

Section 6.5. Computational Results 111

In general, the AP solution does not provide a tight lower bound. To
improve the bound, we can add linear constraints to the AP that are valid
for the ATSPTW or the TSP, so-called cutting planes. Many different kinds
of cutting planes for these problems have been proposed. Following Focacci,
Lodi, and Milano [2002], we use subtour elimination cuts for the TSP, which
can be found in polynomial time. However, adding linear inequalities to the
AP formulation changes the structure of the relaxation, which is no longer an
AP. Because of the benefits of the AP structure we choose to maintain it by
relaxing the cuts in a Lagrangian way, as done by Focacci, Lodi, and Milano
[2002]. This means that a cut is added to the objective function with an
associated “penalty” cost. The resulting relaxation still has an AP structure,
but provides a tighter lower bound than the initial AP.

6.5 Computational Results

6.5.1 Implementation

We have implemented and tested our method using ILOG Solver 4.4 and ILOG
Scheduler 4.4 as constraint programming solvers, and ILOG Cplex 6.5 as linear
programming solver. Our experiments are performed on a PC Pentium 1GHz
with 256 MB RAM. The test instances are taken from the TSPLIB by Reinelt
[1991]2 and the collection of ATSPTW instances by Ascheuer [1995]3.

Our implementation is built on the work by Focacci, Lodi, and Milano
[2002]. Their code is implemented using the same models and relaxations that
have been described in this chapter. To this code we added the ingredients of
our method:

i) the definition of the good domains based on reduced costs,
ii) the generation of subproblems using the discrepancy constraint, and
iii) the discrepancy-based improved bounding technique.

All subproblems have been solved using the original code of Focacci, Lodi,
and Milano [2002].

The goal of the experiments is to analyze the quality of reduced costs as
value ordering heuristic, and to analyze the efficiency of our solution frame-
work.

6.5.2 Quality of Heuristic

In this section we evaluate the quality of reduced costs as branching heuristic.
In Section 5.4.1 we already observed that reduced costs are indeed very accu-
rate for TSP instances: even when we only included the values corresponding

2 See http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.
3 See http://elib.zib.de/pub/Packages/mp-testdata/tsp/atsptw/.

112 Chapter 6. Reduced Costs as Branching Heuristic

to the lowest reduced costs in the good domain we already found an optimal
solution in subproblems corresponding to discrepancy 0 or 1. However, in Sec-
tion 5.4.1 the optimal objective value was given in advance and we did not
need to prove optimality. In this chapter we do need to take into account the
proof of optimality.

On the one hand, we would like the optimal solution to be in the first sub-
problem, corresponding to discrepancy 0. This subproblem should be as small
as possible, in order to be able to solve it fast. On the other hand, we need
to prove fast the optimality of the solution found. For this we need relatively
large reduced costs in the bad domains, in order to apply Theorem 6.2 effec-
tively. This would typically induce a larger first subproblem. Consequently,
we should make a trade-off between finding a good first solution and proving
optimality. This is done by tuning the size of the good domains.

We tune the size of the good domains by specifying a preferred ratio r
with 0 ≤ r ≤ 1, such that |Dgood

i | ≈ r · n for i = 1, . . . , n. The good domains
are computed at the root node of tree search tree. First we solve the AP relax-
ation, and apply constraint propagation until we have reached the specified
local consistency for each constraint. During this process the AP solution is
updated, if necessary. Then we select, for each domain Di, the values corre-
sponding to smallest reduced costs and insert them in Dgood

i . This is done

until |Dgood
i | ≥ r · n. We add all values corresponding to possible ties, hence

the actual size of Dgood
i may be larger than r · n.

We have tuned the “optimal” value of ratio r for TSP and ATSPTW
instances. For increasing values of r, we have collected various problem char-
acteristics:

• the average relative size of the good domains (after propagation), i.e.
1
n

∑n
i=1 |D

good
i |/|Di|,

• the average discrepancy of the subproblem that contains the optimal so-
lution,

• the average discrepancy of the proof of optimality with respect to Theo-
rem 6.2,

• the average total number of backtracks.

The aim is to find a smallest ratio that has a satisfactory effect on these
characteristics.

For the TSP, we have solved the instances gr17, gr21, gr24, fri26, bayg29
and bays29 from TSPLIB to optimality for r = 0.025, 0.05, 0.015, 0.1. The
average results are reported in Figure 6.3. The average relative size of the good
domains is depicted in the upper-left figure. For example, for r = 0.025, the
average size of a good domain is 17% of the initial domain (after propagation).
The upper-right figure reports the average discrepancy of the subproblem that
contains the optimal solution. For ratio r ≥ 0.05, we always find an optimal
solution in the first subproblem. In the lower-left figure we see that we prove
optimality of this solution in almost all cases immediately (i.e. the discrepancy
is close to 1) for r ≥ 0.05. For r ≥ 0.075 this property holds in all cases. The

Section 6.5. Computational Results 113

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.26

 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

av
er

ag
e

si
ze

 o
f g

oo
d

do
m

ai
ns

ratio

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11av
er

ag
e

di
sc

re
pa

nc
y

of
 o

pt
im

al
 s

ub
pr

ob
le

m

ratio

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11av
er

ag
e

di
sc

re
pa

nc
y

of
 p

ro
of

 o
f o

pt
im

al
ity

ratio

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

av
er

ag
e

nu
m

be
r o

f t
ot

al
 b

ac
kt

ra
ck

s

ratio

Figure 6.3. Quality of reduced costs as branching heuristic with respect to the
ratio for the TSP.

figure in the lower-right corner depicts the average total number of backtracks.
Here we clearly see that a smaller ratio has a negative effect on the solution
process. Namely, for r = 0.025 the average number of total backtracks is much
larger than for r ≥ 0.05. This is mainly due to the weaker proof of optimality.
From these figures we conclude that 0.05 ≤ r ≤ 0.075 is a good ratio for the
TSP.

For the ATSPTW, we have solved the instances rbg010a, rbg016a, rbg016b,
rbg017.2, rbg017, rbg017a, rbg019a, rbg019b, rbg019c, rbg019d, rbg020a,
rbg021.2, rbg021.3, rbg021.4, rbg021.5, rbg021.6, rbg021.7, rbg021.8, rbg021.9,
rbg021 and rbg027a from Ascheuer [1995] to optimality for r = 0.05, 0.1, 0.15,
0.2, 0.25, 0.3, 0.35. The average results are reported in Figure 6.4 which follows
the same format as Figure 6.3. A remarkable difference between ATSPTW and
TSP instances can be observed concerning the average relative size of the good
domains. This difference is due to the addition of scheduling constraints. The
propagation of these constraints often remove a large number of domain val-
ues. Therefore the good domains may be relatively large. For example, for the
ATSPTW the average relative size of the good domains ranges from 0.57 to
0.95 for r = 0.05 to 0.35 as depicted in the upper-left figure of Figure 6.4.
Nevertheless, the resulting subproblems are small enough to solve, using only
a small number of backtracks; see the lower-right figure. From these figures

114 Chapter 6. Reduced Costs as Branching Heuristic

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.05 0.1 0.15 0.2 0.25 0.3 0.35

av
er

ag
e

si
ze

 o
f g

oo
d

do
m

ai
ns

ratio

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.05 0.1 0.15 0.2 0.25 0.3 0.35av
er

ag
e

di
sc

re
pa

nc
y

of
 o

pt
im

al
 s

ub
pr

ob
le

m

ratio

 1

 1.5

 2

 2.5

 3

 3.5

 0.05 0.1 0.15 0.2 0.25 0.3 0.35av
er

ag
e

di
sc

re
pa

nc
y

of
 p

ro
of

 o
f o

pt
im

al
ity

ratio

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0.05 0.1 0.15 0.2 0.25 0.3 0.35

av
er

ag
e

nu
m

be
r o

f t
ot

al
 b

ac
kt

ra
ck

s

ratio

Figure 6.4. Quality of reduced costs as branching heuristic with respect to the
ratio for the ATSPTW.

we conclude that 0.15 ≤ r ≤ 0.2 is a good ratio for the ATSPTW. For this
ratio we find an optimal solution in the first subproblem in almost all cases,
and optimality is proved immediately (discrepancy close to 1) in many cases.

6.5.3 Symmetric TSP Instances

We have tested our method on a set of symmetric TSP instances from
TSPLIB. It should be noted however, that constraint programming is not
the preferred method for these problems. Specific TSP solvers are much faster
than solvers based on constraint programming. However, it is still interesting
to evaluate the performance of different constraint programming methods on
pure TSP instances. Namely, most real-life applications do not consist only of
a “pure” combinatorial structure, but also contain side constraints that make
the problem much more difficult to solve. For example, the ATSPTW can-
not be solved with a pure TSP solver. On the other hand, using a constraint
programming solver, one “just” needs to add the additional side constraints
while the solution process remains the same. Hence, when the problem at hand
contains a TSP structure and is suitable for a constraint programming, one
typically wants to apply the constraint programming approach that performs
well on pure TSP instances.

Section 6.5. Computational Results 115

instance Concorde FLM2002 our method

name n time time fails time fails

gr17 17 0.04 0.12 34 0.12 1

gr21 21 0.01 0.07 19 0.06 1

gr24 24 0.02 0.18 29 0.18 1

fri26 26 0.03 0.17 70 0.17 4

bayg29 29 0.05 0.33 102 0.28 28

bays29 29 0.04 0.30 418 0.20 54

dantzig42? 42 0.09 1.43 524 1.21 366

hk48 48 0.08 12.61 15k 1.91 300

gr48? 48 0.18 21.05 25k 19.10 22k

brazil58 58 0.24 N.A. N.A. 81.19 156k
? ratio r = 0.075.

Table 6.2. Computational results for solving TSP instances on n cities to optimality.
Time is measured in seconds. N.A. means “not applicable” due to time limit (300 s).

We compare our method with the performance of the method by Focacci,
Lodi, and Milano [2002]. This has two reasons. The first reason is that the
method by Focacci, Lodi, and Milano [2002] is the fastest known constraint
programming approach for pure TSP instances, to our knowledge. The second
reason is that our method is an adaption of the method by Focacci, Lodi, and
Milano [2002], which makes it possible to evaluate the results in view of these
adaptations. In other words, all positive or negative observations are due to
our proposed method. The results of Focacci, Lodi, and Milano [2002] were
obtained by executing their code on the same machine as our method.

For completeness, we also compare our method with the state-of-the-art
solver for pure TSP instances, Concorde, by D. Applegate, R. Bixby, W. Cook
and V. Chvátal. The reason is to show the difference between a constraint
programming approach and specialized solvers for the TSP. The results for
Concorde were obtained on a PC Intel Xeon 2.8GHz with 2 GB memory4.

The results are reported in Table 6.2. The three approaches are indicated
by ‘Concorde’ for the pure TSP solver, ‘FLM2002’ for the method by Focacci,
Lodi, and Milano [2002] and ‘our method’ for the method proposed in this
chapter. The results for our method are obtained with ratio r = 0.05, except
for two instances for which ratio r = 0.075 was considerably better. For each
instance, n denotes the number of cities. We report the total solution time in
seconds to find a solution and to prove optimality, while ‘fails’ indicates the
total number of backtracks. The time limit is set to 300 seconds.

The results show that our method improves the method of Focacci, Lodi,
and Milano [2002], both concerning the total number of backtracks and the
time. For larger instances the difference is most obvious. In the next section
we will see whether this improvement extrapolates to ATSPTW instances.

A last remark concerns the comparison with the results of Section 5.4.1,
where we applied a similar method on TSP instances without proving op-
timality. Consider for example instance ‘gr17’ in Table 5.1 and Table 6.2. It

4 See http://www.tsp.gatech.edu/concorde.html.

116 Chapter 6. Reduced Costs as Branching Heuristic

seems strange that we can find a solution and prove optimality in 0.12 seconds
using 1 backtrack (Table 6.2), while we find a single optimal solution with-
out proving optimality in 0.02 seconds using 3 backtracks (Table 5.1). This
difference is caused by the different application of reduced costs as branching
heuristic. In the present case we have applied the reduced cost-based value
ordering statically. It means that the good domains are selected at the root
and fixed throughout the whole search tree. This is necessary to apply the
discrepancy constraint and the discrepancy-based bounding technique, i.e.
Theorem 6.2. In Section 5.4.1 we have applied the reduced cost-based value
ordering dynamically. A dynamic value ordering heuristic takes into consid-
eration the current status of a domain. This explains the difference in results
for instance ‘gr17’.

6.5.4 Asymmetric TSP with Time Windows Instances

For the ATSPTW, we have compared our method with the approaches that
are currently the fastest for these instances, to our knowledge. The first is
the method of Balas and Simonetti [2000], which applies a dynamic program-
ming algorithm. Their results are obtained using a Sun Ultra I Workstation
with 64MB memory. The second is the method of Ascheuer, Fischetti, and
Grötschel [2001], which is a branch-and-cut approach. Their results are ob-
tained using a Sun Sparc Station 10. The third is the method by Focacci,
Lodi, and Milano [2002] on which we have based our method. Their results
are obtained using a PC Pentium III 700MHz with 128MB memory. For our
method, we have applied a ratio r = 0.15 in all cases, following the analysis
in Section 6.5.2.

The results for the ATSPTW instances are shown in Table 6.3. It follows
the same format as Table 6.2. The method of Balas and Simonetti [2000] is
indicated by ‘BS2000’, the method of Ascheuer, Fischetti, and Grötschel [2001]
is indicated by ‘AFG2001’, the method of Focacci, Lodi, and Milano [2002] is
indicated by ‘FLM2002’ while ‘our method’ indicates the method we propose
in this chapter. We have only included instances for which at least one of the
methods could find a provably optimal solution. One should take into account
that the results are obtained on faster machines from left to right. The time
limit for FLM2002 and our method is 1800 seconds, which compares to the
time limit of 5 hours on the machine of AFG2001. The time limit of BS2000
is unknown.

In general, our method behaves quite well. It improves the method of Fo-
cacci, Lodi, and Milano [2002] in almost all cases, both concerning the total
number of backtracks and the total solution time. This indicates that the re-
sults for the pure TSP instances of the previous section indeed do extrapolate
to ATSPTW instances. Our method also outperforms the method by As-
cheuer, Fischetti, and Grötschel [2001] in many cases. However, the method
by Balas and Simonetti [2000] is particularly effective on larger instances.
This is where the dynamic programming algorithm approach pays off. It is

Section 6.6. Discussion and Conclusion 117

instance BS2000 AFG2001 FLM2002 our method

name n time time time fails time fails

rbg010a 12 0.95 0.12 0.0 6 0.03 4

rbg016a 18 1.72 0.20 0.1 21 0.04 8

rbg016b 18 2.71 8.80 0.1 27 0.09 32

rbg017.2 17 9.80 0.03 0.0 17 0.04 2

rbg017 17 2.51 0.82 0.1 27 0.08 11

rbg017a 19 3.23 0.12 0.1 22 0.05 1

rbg019a 21 2.03 0.03 0.0 14 0.05 2

rbg019b 21 3.42 54.67 0.2 80 0.09 22

rbg019c 21 7.64 8.72 0.3 81 0.14 74

rbg019d 21 2.39 0.75 0.0 32 0.07 4

rbg020a 22 3.59 0.20 0.0 9 0.06 3

rbg021.2 21 9.00 0.22 0.2 44 0.08 15

rbg021.3 21 9.60 27.15 0.4 107 0.14 80

rbg021.4 21 11.52 5.82 0.3 121 0.09 32

rbg021.5 21 127.97 6.63 0.2 55 0.12 60

rbg021.6 21 161.66 1.38 0.7 318 0.16 50

rbg021.7 21 N.A. 4.30 0.6 237 0.21 43

rbg021.8 21 N.A. 17.40 0.6 222 0.10 27

rbg021.9 21 N.A. 26.12 0.8 310 0.11 28

rbg021 21 7.82 8.75 0.3 81 0.14 74

rbg027a 29 N.A. 2.25 0.2 50 0.16 23

rbg031a 33 11.13 1.70 2.7 841 0.68 119

rbg033a 35 5.66 1.85 1.0 480 0.73 55

rbg034a 36 18.03 0.98 55.2 13k 0.93 36

rbg035a.2 37 N.A. 64.80 36.8 5k 8.18 4k

rbg035a 37 7.67 1.83 3.5 841 0.83 56

rbg038a 40 8.64 4232.23 0.2 49 0.36 3

rgb040a 42 20.08 751.82 738.1 136k 1200.62 387k

rbg041a 43 24.57 N.A. N.A. N.A.

rbg042a 44 47.38 N.A. 149.8 19k 70.71 24k

rbg050a 52 N.A. 18.62 180.4 19k 4.21 1.5k

rbg055a 57 25.56 6.40 2.5 384 4.50 133

rbg067a 69 29.14 5.95 4.0 493 25.69 128

rbg086a 88 18.70 N.A. N.A. N.A.

rbg092a 94 48.13 N.A. N.A. N.A.

rbg125a 127 31.93 229.82 N.A. N.A.

rbg132 132 1135.49 N.A. N.A. N.A.

rbg152 152 37.90 N.A. N.A. N.A.

Table 6.3. Computational results for solving ATSPTW instances to optimality.
Time is measured in seconds. N.A. means “not applicable” due to time limit.

less sensitive to the increase of the number of cities n while the other three
approaches need to maintain search trees that become too large for larger n.

6.6 Discussion and Conclusion

We have applied reduced costs as branching heuristic in a constraint program-
ming search tree. The reduced costs are obtained from a linear programming
relaxation of the COP. To improve the bound of this relaxation we have used
the domain partitioning framework of Chapter 5 in combination with a dis-
crepancy constraint.

118 Chapter 6. Reduced Costs as Branching Heuristic

Computational results on TSP and asymmetric TSPTW instances have
shown that reduced costs are very accurate. In almost all cases an optimal
solution has been found in the first subproblem of the partitioning framework.
Also the bound improvement has been shown to be effective. In many cases
we were able to proof optimality after generating only a small number of
subproblems.

The method proposed in this chapter is a tight combination of opera-
tions research techniques and constraint programming. It shows that cross-
fertilization of the two fields can be very beneficial. Not only do reduced costs
provide an accurate value ordering heuristic, it is also possible to improve the
bound computations of operations research based using constraint program-
ming, i.e. the discrepancy constraint.

A possible direction for further research is the following. We have explic-
itly focused on reduced costs, and therefore our value ordering heuristic is
optimization-driven. On the other hand, one could also infer relaxations from
the scheduling component of the problem and apply these as a value ordering
heuristic. For several problem instances it is likely that such heuristics would
be more effective.

Chapter 7

Semidefinite Relaxation as Branching Heuristic

In this chapter we investigate the applicability of semidefinite relaxations
in constraint programming. We use the solution of a semidefinite
relaxation of a CSP to guide the traversal of the search tree.
Furthermore, the (often tight) bound of the semidefinite relaxation helps
to prune suboptimal branches. Experimental results on stable set problem
instances and maximum clique problem instances show that constraint
programming can indeed benefit from semidefinite relaxations.

7.1 Introduction

In this chapter we investigate the possibility of using semidefinite relax-
ations in constraint programming. This investigation involves the extraction
of semidefinite relaxations from a constraint programming model, and the
actual use of the relaxation inside the solution scheme. We propose to use
the solution of a semidefinite relaxation to define variable and value ordering
heuristics in combination with limited discrepancy search (LDS). Effectively,
this means that our search starts at the suggestion made by the semidefinite
relaxation, and gradually scans a wider area around this solution. Moreover,
we use the solution value of the semidefinite relaxation as a bound for the
objective function, which results in stronger pruning of suboptimal branches.
By applying a semidefinite relaxation in this way, we hope to speed up the
constraint programming solver significantly.

We implemented our method and provide experimental results on the sta-
ble set problem and the maximum clique problem, two classical combinatorial
optimization problems. We compare our method with a standard constraint
programming solver, and with specialized solvers for maximum clique prob-
lems. As computational results will show, our method obtains far better results
than a standard constraint programming solver. However, on maximum clique
problems, the specialized solvers appear to be much faster than our method.

The outline of this chapter is as follows. The next section gives a moti-
vation for the approach that we propose. Then, in Section 7.3, we present a
description of our solution framework. In Section 7.4 we formulate the stable
set problem as an integer optimization problem and provide a semidefinite
relaxation. Section 7.5 presents the computational results. In Section 7.6 we
discuss our results and give a conclusion.

120 Chapter 7. Semidefinite Relaxation as Branching Heuristic

7.2 Motivation

NP-hard combinatorial optimization problems are often solved with the use of
a polynomially solvable relaxation. Often (continuous) linear relaxations are
chosen for this purpose. Also within constraint programming, linear relax-
ations are widely used, see Focacci, Lodi, and Milano [2003] for an overview.
For example, we have exploited a linear relaxation in a constraint program-
ming framework in Chapter 6.

Let us first motivate why in this paper a semidefinite relaxation is used
rather than a linear relaxation. For some problems, for example for the stable
set problem, standard linear relaxations are not very tight and not informative.
One way to overcome this problem is to identify and add linear constraints
that strengthen the relaxation. But it may be time-consuming to identify such
constraints, and by enlarging the model the solution process may slow down.

On the other hand, several papers on approximation theory, following Goe-
mans and Williamson [1995], have shown the tightness of semidefinite re-
laxations. However, being tighter, semidefinite programs are more time-
consuming to solve than linear programs in practice. Hence one has to trade
strength for computation time. For some (large scale) applications, semidefi-
nite relaxations are well-suited to be used within a branch and bound frame-
work (see for example Karisch, Rendl, and Clausen [2000]). Moreover, our
intention is not to solve a relaxation at every node of the search tree. Instead,
we propose to solve only once a relaxation, before entering the search tree.
Therefore, we are willing to make the trade-off in favour of the semidefinite
relaxation.

Finally, investigating the possibility of using semidefinite relaxations in
constraint programming is worthwhile in itself. To our knowledge the cross-
fertilization of semidefinite programming and constraint programming has
not yet been investigated. Hence, the work in this chapter should be seen as a
first step toward the cooperation of constraint programming and semidefinite
programming.

7.3 Solution Framework

The skeleton of our solution framework is formed by the search tree of the
constraint programming solver. Within this skeleton, we want to use the so-
lution of a semidefinite relaxation to define the variable and value ordering
heuristics. In this section we first show how to extract a semidefinite relax-
ation from a constraint programming model. Then we give a description of
the usage of the relaxation within the enumeration scheme.

7.3.1 Building a Semidefinite Relaxation

Consider a COP consisting of a sequence of variables v1, . . . , vn, corresponding
finite domains D1, . . . , Dn, a set of constraints and an objective function. From

Section 7.3. Solution Framework 121

this model we need to extract a semidefinite relaxation. In general, a relaxation
is obtained by removing or replacing one or more constraints such that all
solutions are preserved. If it is possible to identify a subset of constraints for
which a semidefinite relaxation is known, this relaxation can be used inside
our framework.

Unfortunately, it is not a trivial task to obtain a computationally efficient
semidefinite program that provides a tight solution for a given problem. How-
ever, for a number of combinatorial optimization problems such semidefinite
relaxations do exist, for example the stable set problem, the maximum cut
problem, quadratic programming problems, the maximum satisfiability prob-
lem, and many other problems; see Laurent and Rendl [2004] for an overview.
If such semidefinite relaxations are not available, we need to build up a relax-
ation from scratch. This can be done in the following way.

If all domains D1, . . . , Dn are binary, a semidefinite relaxation can be
extracted using a method proposed by Laurent, Poljak, and Rendl [1997],
which is explained below. In general, however, the domains are non-binary. In
that case, we transform the variables vi and the domains Di into corresponding
binary variables xij for i = 1, . . . , n and j ∈ Di, similar to the mapping defined
in Section 6.2.1:

vi = j ⇔ xij = 1,
vi 6= j ⇔ xij = 0.

(7.1)

We will then use the binary variables xij to construct a semidefinite relaxation.
Of course, the transformation has consequences for the constraints also, which
will be discussed below.

The method to transform a model with binary variables into a semidefinite
relaxation, presented by Laurent, Poljak, and Rendl [1997], is the following.
Let d ∈ {0, 1}N be a vector of binary variables, where N is a positive integer.
Construct the (N + 1) × (N + 1) variable matrix X as

X =

(

1

d

)

(1 dT) =

(

1 dT

d ddT

)

.

Then X can be constrained to satisfy

X º 0 (7.2)

Xii = X0i ∀i ∈ {1, . . . , N} (7.3)

where the rows and columns of X are indexed from 0 to N . Condition (7.3)
expresses the fact that d2

i = di, which is equivalent to di ∈ {0, 1}. Note
however that the latter constraint is relaxed by requiring X to be positive
semidefinite.

The matrix X contains the variables to model our semidefinite relaxation.
Obviously, the diagonal entries (as well as the first row and column) of this
matrix represent the binary variables from which we started. Using these
variables, we need to rewrite (a part of) the original constraints into the form
of program (2.3) in order to build the semidefinite relaxation.

122 Chapter 7. Semidefinite Relaxation as Branching Heuristic

In case the binary variables are obtained from transformation (7.1), not
all constraints may be trivially transformed accordingly. Especially because
the original constraints may be of any form. The same holds for the objective
function. On the other hand, as we are constructing a relaxation, we may
choose among the set of constraints an appropriate subset to include in the
relaxation. Moreover, the constraints itself are allowed to be relaxed. Although
there is no ‘recipe’ to transform any given original constraint into the form of
program (2.3), one may use results from the literature; see for example Laurent
and Rendl [2004]. For example, for linear constraints on binary variables a
straightforward translation is given in Section 2.1.3.

7.3.2 Applying the Semidefinite Relaxation

At this point, we have either identified a subset of constraints for which a
semidefinite relaxation exists, or built up our own relaxation. Now we show
how to apply the solution to the semidefinite relaxation inside the constraint
programming framework, also depicted in Figure 7.1. In general, the solution
to the semidefinite relaxation yields fractional values for its variable matrix.
For example, the diagonal variables Xii of the above matrix will be assigned
to a value between 0 and 1. These fractional values serve as an indication for
the original constraint programming variables. Consider for example again the
above matrix X, and suppose it is obtained from non-binary original variables,
by transformation (7.1). Assume that variable Xii corresponds to the binary
variable xjk (for some integer j and k), which corresponds to vj = k, where
vj is a constraint programming variable and k ∈ Dj . If variable Xii is close to
1, then also xjk is supposed to be close to 1, which corresponds to assigning
vj = k.

Hence, our variable and value ordering heuristics for the constraint pro-
gramming variables are based upon the fractional solution values of the corre-
sponding variables in the semidefinite relaxation. Our variable ordering heuris-
tic is to select first the constraint programming variable for which the corre-
sponding fractional solution is closest to the corresponding integer solution.
Our value ordering heuristic is to select first the corresponding suggested
value. For example, consider again the above matrix X, obtained from non-
binary variables by transformation (7.1). We select first the variable vj for
which Xii, representing the binary variable xjk, is closest to 1, for some k ∈ Dj

and corresponding integer i. Then we assign value k to variable vj . We have
also implemented a randomized variant of the above variable ordering heuris-
tic. In the randomized case, the selected variable is accepted with a probability
proportional to the corresponding fractional value.

We expect the semidefinite relaxation to provide promising values. There-
fore the resulting search tree will be traversed using limited discrepancy
search, defined in Section 2.2.3. A last remark concerns the solution value
of the semidefinite relaxation, which is used as a bound on the objective func-
tion in the constraint programming model. If this bound is tight, which is the

Section 7.4. The Stable Set Problem 123

variables
domains
constraints
objective function

model:

CP

variable ordering

search:

traversal strategy (LDS)
value ordering

SDP

solve relaxation:
solution value

fractional solution

Figure 7.1. Communication between constraint programming (CP) and semidefi-
nite programming (SDP).

case in our experiments, it leads to more propagation and a smaller search
space.

7.4 The Stable Set Problem

We have applied our method to the stable set problem and the maximum
clique problem (these problems are defined in Section 2.1.1). Recall that a
maximum clique problem can be translated into a stable set problem in the
complement graph. We will do exactly this in our implementation, and focus
on the stable set problem, for which tight semidefinite relaxations exist. This
section describes the models and the semidefinite relaxation of the stable set
problem that we have used.

7.4.1 Integer Programming Models

We first consider an integer linear programming formulation of the stable set
problem. Recall that we denote the value of a maximum-weight stable set in
a graph G by α(G).

Consider a graph G = (V,E) where V = {1, . . . , n}, with “weight” function
w : E → Q. Without loss of generality, we can assume all weights to be
nonnegative. We introduce binary variables to indicate whether or not a vertex
belongs to the stable set S in G. So, for n vertices, we have n integer variables
xi indexed by i ∈ V , with initial domains {0, 1}. In this way, xi = 1 if vertex i
is in S, and xi = 0 otherwise. We state the objective function, being the sum
of the weights of vertices that are in S, as

∑n
i=1 wixi. Finally, we define the

124 Chapter 7. Semidefinite Relaxation as Branching Heuristic

constraints that forbid two adjacent vertices to be both inside S as xi+xj ≤ 1,
for all edges (i, j) ∈ E. Hence the integer linear programming model becomes:

α(G) = max
∑n

i=1 wixi

s.t. xi + xj ≤ 1 ∀(i, j) ∈ E
xi ∈ {0, 1} ∀i ∈ V.

(7.4)

Another way of describing the same solution set is presented by the fol-
lowing integer quadratic program

α(G) = max
∑n

i=1 wixi

s.t. xixj = 0 ∀(i, j) ∈ E
x2

i = xi ∀i ∈ V.
(7.5)

Note that here the constraint xi ∈ {0, 1} is replaced by x2
i = xi, similar to

condition (7.3) in Section 7.3. This quadratic formulation will be used below
to infer a semidefinite relaxation of the stable set problem.

In fact, both model (7.4) and model (7.5) can be used as a constraint
programming model. We have chosen the first model, because the quadratic
constraints take more time to propagate than the linear constraints, while the
propagation is the same. To infer the semidefinite relaxation, however, we will
use the equivalent model (7.5).

7.4.2 Semidefinite Programming Relaxation

The integer quadratic program (7.5) gives rise to a well-known semidefinite
relaxation introduced by Lovász [1979]. The value of the objective function of
this relaxation has been named the theta number of a graph G, indicated by
ϑ(G). For its derivation into a form similar to program (2.3), we will follow
the same idea as in Section 7.3 for the general case.

As our constraint programming model uses binary variables already, we
can immediately define the (n+1)×(n+1) matrix variable X of our relaxation
as

X =

(

1 xT

x xxT

)

where the binary vector x again represents the stable set, as in Section 7.4.1.
First we impose the constraints

X º 0 (7.6)

Xii = X0i ∀i ∈ {1, . . . , n} (7.7)

as described in Section 7.3. Next we translate the edge constraints xixj = 0
from program (7.5) into Xij = 0, because Xij represents xixj . In order to
translate the objective function, we first define the (n + 1) × (n + 1) weight
matrix W as

Section 7.4. The Stable Set Problem 125

Wii = wi ∀i ∈ {1, . . . , n},
Wij = 0 ∀i ∈ {0, . . . , n}, j ∈ {0, . . . , n}, i 6= j.

Then the objective function translates into tr(WX). The semidefinite relax-
ation thus becomes

ϑ(G) = max tr(WX)
s.t. Xii = X0i ∀i ∈ V

Xij = 0 ∀(i, j) ∈ E
X º 0.

(7.8)

Note that program (7.8) can easily be rewritten into the general form
of program (2.3). Namely, Xii = X0i is equal to tr(AiX) = 0 where the
(n + 1) × (n + 1) matrix Ai consists of all zeroes, except for (Ai)ii = 1,
(Ai)i0 = − 1

2 and (Ai)0i = − 1
2 , which makes the corresponding right-hand

side (bi entry) equal to 0 (similarly for the edge constraints).
The theta number also arises from other formulations, different from the

above, see Grötschel, Lovász, and Schrijver [1988]. In our implementation
we have used the formulation that has been shown to be computationally
most efficient among those alternatives as shown by Gruber and Rendl [2003].
Let us introduce that particular formulation (called ϑ3 by Grötschel, Lovász,
and Schrijver [1988]). Again, let x ∈ {0, 1}n be a vector of binary variables
representing a stable set. Define the n × n matrix X̃ = ξξT where

ξi =

√
wi

√

∑n
j=1 wjxj

xi.

Furthermore, let the n × n cost matrix U be defined as Uij =
√

wiwj for
i, j ∈ V . Observe that in these definitions we exploit the fact that wi ≥ 0 for
all i ∈ V . The following semidefinite program

max tr(UX̃)

s.t. tr(X̃) = 1

X̃ij = 0 ∀(i, j) ∈ E

X̃ º 0

(7.9)

has been shown to also give the theta number of G, see Grötschel, Lovász,
and Schrijver [1988]. When (7.9) is solved to optimality, the diagonal element
X̃ii serves as an indication for the value of xi (i ∈ V) in a maximum stable
set. Again, it is not difficult to rewrite program (7.9) into the general form of
program (2.3).

Program (7.9) uses matrices of dimension n and m + 1 constraints, while
program (7.8) uses matrices of dimension n + 1 and m + n constraints. This
gives an indication why program (7.9) is computationally more efficient.

126 Chapter 7. Semidefinite Relaxation as Branching Heuristic

7.5 Computational Results

We have tested our method on random and structured instances represent-
ing stable set and maximum clique problems. The goal of our experiments
is to verify whether a semidefinite relaxation is applicable in constraint pro-
gramming. Hence, we first analyze problem characteristics to identify possibly
suitable instances. Then we compare our method with a standard constraint
programming approach and specialized solvers for maximum-clique problems.

7.5.1 Implementation

All our experiments are performed on a Sun Enterprise 450 (4 X UltraSPARC-
II 400MHz) with maximum 2048 Mb memory size, on which our algorithms
only use one processor of 400MHz at a time. As constraint programming
solver we use ILOG Solver 5.1. As semidefinite programming solver, we use
CSDP version 4.1 by Borchers [1999], with the optimized ATLAS 3.4.1 [Wha-
ley, Petitet, and Dongarra, 2001] and LAPACK 3.0 [Anderson, Bai, Bischof,
Blackford, Demmel, Dongarra, Croz, Greenbaum, Hammarling, McKenney,
and Sorensen, 1999] libraries for matrix computations. The reason for our
choices is that both solvers are among the fastest in their field, and because
ILOG Solver is written in C++, and CSDP is written in C, they can be hooked
together relatively easy.

We distinguish two algorithms to perform our experiments. The first al-
gorithm is a sole constraint programming solver, which uses a standard enu-
meration strategy. This means we use a lexicographic variable ordering, and
we select domain value 1 before value 0. The resulting search tree is traversed
using a depth-first search strategy. After each branching decision, its effect
is directly propagated through the constraints. As constraint programming
model we have used model (7.4), as was argued in Section 7.4.1.

The second algorithm is the one proposed in Section 7.3. It first solves the
semidefinite program (7.9), and then calls the constraint programming solver.
In this case, we use the randomized variable ordering heuristic, defined by the
solution of the semidefinite relaxation. The resulting search tree is traversed
using a limited discrepancy search strategy. In fact, in order to improve our
starting solution, we repeat the search for the first solution n times, (where
n is the number of vertices in the graph), and the best solution found is the
heuristic solution to be followed by the limited discrepancy search strategy.

7.5.2 Characterization of Problem Instances

We will first identify general characteristics of the constraint programming
solver and the semidefinite programming solver applied to stable set problems.
It appears that both solvers are highly dependent on the edge density of the
graph, i.e. 2m/(n2−n) for a graph with n vertices and m edges. We therefore
generated random graphs on 30, 40, 50 and 60 vertices, with density ranging

Section 7.5. Computational Results 127

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

lo
g

nu
m

be
r o

f b
ac

kt
ra

ck
s

edge density

n=30
n=40
n=50
n=60

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

lo
g

tim
e

(s
)

edge density

n=30
n=40
n=50
n=60

Figure 7.2. Performance of the constraint programming solver on random instances
with n vertices.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

lo
g

tim
e

(s
)

edge density

n=30
n=40
n=50
n=60

Figure 7.3. Performance of the semidefinite programming solver on random in-
stances with n vertices.

from 0.01 up to 0.95. Our aim is to identify the hardness of the instances for
both solvers, parametrized by the density. Based upon this information, we
can identify the kind of problems our algorithm is suitable for.

We have plotted the performance of both solvers in Figure 7.2 and Fig-
ure 7.3. Here the constraint programming solver solves the problems to opti-
mality, while the semidefinite programming solver only solves the semidefinite
relaxation. For the constraint programming solver, we depict both the number
of backtracks and the time needed to prove optimality. For the semidefinite
programming solver we only plotted the time needed to solve the relaxation.
Namely, this solver does not use a tree search, but a so-called primal-dual
interior point algorithm. Note that we use a log-scale for time and number of
backtracks in these pictures.

From these figures, we can conclude that the constraint programming
solver has the most difficulties with instances up to density around 0.2. Here
we see the effect of constraint propagation. As the number of constraints
increases, the search tree can be heavily pruned. On the other hand, our
semidefinite relaxation suffers from every edge that is added. As the density

128 Chapter 7. Semidefinite Relaxation as Branching Heuristic

increases, the semidefinite program increases accordingly, as well as its compu-
tation time. Fortunately, for the instances up to 0.2, the computation time for
the semidefinite relaxation is very small. Consequently, our algorithm is ex-
pected to behave best for graphs that have edge density up to around 0.2. For
graphs with a higher density, the constraint programming solver is expected
to use less time than the semidefinite programming solver, which makes the
application of our method unnecessary.

7.5.3 Random Weighted and Unweighted Graphs

Our first experiments are performed on random weighted and unweighted
graphs. We generated graphs with 50, 75, 100, 125 and 150 vertices and edge
density from 0.05, 010 and 0.15, corresponding to the interesting problem
area. The results are presented in Table 3.1. Unweighted graphs on n vertices
and edge density r are named ‘gndr’. Weighted graphs are similarly named
‘wgndr’.

The first five columns of the table are dedicated to the instance, reporting
its name, the number of vertices n and edges m, the edge density and the (best
known) value of a stable set, α. The next three columns (CP) present the
performance of the constraint programming solver, reporting the best found
estimate of α, the total time and the total number of backtracks needed to
prove optimality. The last five columns (SDP+CP) present the performance
of our method, where also a column has been added for the discrepancy of
the best found value (best discr), and a column for the time needed by the
semidefinite programming solver (sdp time).

Table 3.1 shows that our approach always finds a better (or equally good)
estimate for α than the standard constraint programming approach. This
becomes more obvious for larger n. However, there are two (out of 30) in-
stances in which our method needs substantially more time to achieve this
result (g75d015 and wg75d010). A final observation concerns the discrepancy
of the best found solutions. Our method appears to find those (often optimal)
solutions at rather low discrepancies.

7.5.4 Graphs Arising from Coding Theory

The next experiments are performed on structured (unweighted) graphs aris-
ing from coding theory, obtained from the website of N.J.A. Sloane1. We have
used those instances that were solvable in reasonable time by the semidefinite
programming solver (here reasonable means within 1000 seconds). For these
instances, the value of α happened to be known already.

The results are reported in Table 3.2, which follows the same format as Ta-
ble 3.1. It shows the same behaviour as the results on random graphs. Namely,

1 See http://www.research.att.com/~njas/doc/graphs.html.

Section 7.5. Computational Results 129

in
s
t
a
n
c
e

C
P

S
D

P
+

C
P

e
d
g
e

to
ta

l
b
a
ck

-
b
e
st

sd
p

to
ta

l
b
a
ck

-

n
a
m

e
n

m
d
e
n
si

ty
α

α
ti

m
e

tr
a
ck

s
α

d
is

c
r

ti
m

e
ti

m
e

tr
a
ck

s

g
5
0
d
0
0
5

5
0

7
0

0
.0

6
2
7

2
7

5
.5

1
5
0
5
6
7

2
7

0
0
.2

6
0
.2

7
0

g
5
0
d
0
1
0

5
0

1
1
4

0
.0

9
2
2

2
2

2
8
.5

4
2
5
6
9
3
2

2
2

0
0
.3

5
0
.3

6
0

g
5
0
d
0
1
5

5
0

1
9
0

0
.1

6
1
7

1
7

5
.8

3
4
8
9
6
9

1
7

0
0
.4

9
0
.4

9
0

g
7
5
d
0
0
5

7
5

1
3
8

0
.0

5
3
6

≥
3
5

N
.A

.
3
6

0
0
.7

2
0
.7

3
0

g
7
5
d
0
1
0

7
5

2
8
2

0
.1

0
≥

2
5

≥
2
5

N
.A

.
≥

2
5

5
1
.4

N
.A

.

g
7
5
d
0
1
5

7
5

4
2
6

0
.1

5
2
1

2
1

1
7
0
.5

6
1
2
0
9
0
1
9

2
1

0
2
.8

1
6
6
4
.9

2
1
6
4
1
6
9
2

g
1
0
0
d
0
0
5

1
0
0

2
5
4

0
.0

5
4
3

≥
4
0

N
.A

.
4
3

0
2
.0

7
2
.1

0

g
1
0
0
d
0
1
0

1
0
0

5
0
8

0
.1

0
≥

3
1

≥
3
0

N
.A

.
≥

3
1

0
4
.9

4
N

.A
.

g
1
0
0
d
0
1
5

1
0
0

7
3
6

0
.1

5
≥

2
4

≥
2
4

N
.A

.
≥

2
4

4
9
.8

1
N

.A
.

g
1
2
5
d
0
0
5

1
2
5

3
9
3

0
.0

5
≥

4
9

≥
4
4

N
.A

.
≥

4
9

1
4
.9

2
N

.A
.

g
1
2
5
d
0
1
0

1
2
5

7
9
1

0
.1

0
≥

3
3

≥
3
0

N
.A

.
≥

3
3

6
1
2
.5

8
N

.A
.

g
1
2
5
d
0
1
5

1
2
5

1
1
6
0

0
.1

5
≥

2
7

≥
2
4

N
.A

.
≥

2
7

1
2
9
.2

9
N

.A
.

g
1
5
0
d
0
0
5

1
5
0

5
4
5

0
.0

5
≥

5
2

≥
4
4

N
.A

.
≥

5
2

3
1
0
.0

9
N

.A
.

g
1
5
0
d
0
1
0

1
5
0

1
1
1
1

0
.1

0
≥

3
8

≥
3
2

N
.A

.
≥

3
8

4
2
7
.4

8
N

.A
.

g
1
5
0
d
0
1
5

1
5
0

1
5
6
6

0
.1

4
≥

2
9

≥
2
6

N
.A

.
≥

2
9

8
5
7
.8

6
N

.A
.

w
g
5
0
d
0
0
5

5
0

7
0

0
.0

6
7
4
0

7
4
0

4
.4

1
3
0
5
2
8

7
4
0

0
0
.2

9
0
.3

0

w
g
5
0
d
0
1
0

5
0

1
2
6

0
.1

0
6
3
6

6
3
6

3
.1

2
1
9
6
0
8

6
3
6

0
0
.4

1
0
.4

1
0

w
g
5
0
d
0
1
5

5
0

1
7
1

0
.1

4
5
6
8

5
6
8

4
.0

9
2
5
5
3
3

5
6
8

0
0
.5

9
4
.9

3
1
3
0
4
2

w
g
7
5
d
0
0
5

7
5

1
2
8

0
.0

5
1
7
6
1

1
7
6
1

7
4
4
.2

9
4
0
3
6
4
5
3

1
7
6
1

0
1
.0

5
1
.0

7
0

w
g
7
5
d
0
1
0

7
5

2
8
4

0
.1

0
1
1
9
8

1
1
9
8

3
2
5
.9

2
1
7
6
4
4
7
8

1
1
9
8

1
3

1
.9

9
2
4
.2

1
9
7
4
9
1
3

w
g
7
5
d
0
1
5

7
5

4
0
9

0
.1

5
9
7
2

9
7
2

4
0
.3

1
2
0
8
1
4
6

9
7
2

0
3
.6

2
5
1
.0

8
8
7
4
9
0

w
g
1
0
0
d
0
0
5

1
0
0

2
3
3

0
.0

5
2
3
0
2

≥
2
1
7
6

N
.A

.
2
3
0
2

0
2
.5

9
2
.6

2
0

w
g
1
0
0
d
0
1
0

1
0
0

4
8
8

0
.1

0
≥

1
7
7
8

≥
1
7
7
8

N
.A

.
≥

1
7
7
8

2
6
.4

N
.A

.

w
g
1
0
0
d
0
1
5

1
0
0

7
5
0

0
.1

5
≥

1
4
1
2

≥
1
4
1
2

N
.A

.
≥

1
4
1
2

2
1
5
.2

1
N

.A
.

w
g
1
2
5
d
0
0
5

1
2
5

3
7
2

0
.0

5
≥

3
7
7
9

≥
3
3
9
0

N
.A

.
≥

3
7
7
9

3
5
.3

9
N

.A
.

w
g
1
2
5
d
0
1
0

1
2
5

7
6
7

0
.1

0
≥

2
7
9
6

≥
2
1
7
5

N
.A

.
≥

2
7
9
6

0
1
8
.5

N
.A

.

w
g
1
2
5
d
0
1
5

1
2
5

1
1
4
4

0
.1

5
≥

1
9
9
1

≥
1
8
9
9

N
.A

.
≥

1
9
9
1

4
3
8
.2

4
N

.A
.

w
g
1
5
0
d
0
0
5

1
5
0

5
8
8

0
.0

5
≥

4
3
8
1

≥
3
7
5
9

N
.A

.
≥

4
3
8
1

3
1
3
.5

7
N

.A
.

w
g
1
5
0
d
0
1
0

1
5
0

1
1
6
7

0
.1

0
≥

3
2
6
5

≥
2
5
3
3

N
.A

.
≥

3
2
6
5

9
4
0
.6

8
N

.A
.

w
g
1
5
0
d
0
1
5

1
5
0

1
6
3
0

0
.1

5
≥

2
8
2
8

≥
2
5
1
8

N
.A

.
≥

2
8
2
8

1
1

8
2
.3

4
N

.A
.

T
a
b
le

3
.1

.
C

o
m

p
u
ta

ti
o
n
a
l
re

su
lt
s

o
n

ra
n
d
o
m

g
ra

p
h
s,

w
it
h

n
v
er

ti
ce

s
a
n
d

m
ed

g
es

.
A

ll

ti
m

es
a
re

in
se

co
n
d
s.

N
.A

.
m

ea
n
s

“
n
o
t

a
p
p
li
ca

b
le

”
d
u
e

to
ti
m

e
li
m

it
(1

0
0
0

s)
.

our method always finds better solutions than the standard constraint pro-
gramming solver, in less time or within the time limit. This is not surprising,
because the edge density of these instances are exactly in the region in which
our method is supposed to behave best (with the exception of 1dc.64 and
1zc.128), as analyzed in Section 7.5.2. Again, our method finds the best solu-
tions at a low discrepancy. Note that the instance 1et.64 shows the strength of
the semidefinite relaxation with respect to standard constraint programming.
The difference in computation time to prove optimality is huge.

130 Chapter 7. Semidefinite Relaxation as Branching Heuristic

in
s
t
a
n
c
e

C
P

S
D

P
+

C
P

e
d
g
e

to
ta

l
b
a
ck

-
b
e
st

sd
p

to
ta

l
b
a
ck

-

n
a
m

e
n

m
d
e
n
si

ty
α

α
ti

m
e

tr
a
ck

s
α

d
is

c
r

ti
m

e
ti

m
e

tr
a
ck

s

1
d
c
.6

4
6
4

5
4
3

0
.2

7
1
0

1
0

1
1
.4

4
7
9
5
1
9

1
0

0
5
.0

8
5
.0

9
0

1
d
c
.1

2
8

1
2
8

1
4
7
1

0
.1

8
1
6

≥
1
6

N
.A

.
1
6

0
4
9
.9

5
4
9
.9

8
0

1
d
c
.2

5
6

2
5
6

3
8
3
9

0
.1

2
3
0

≥
2
6

N
.A

.
3
0

0
8
8
2
.2

1
8
8
2
.3

3
0

1
e
t.

6
4

6
4

2
6
4

0
.1

3
1
8

1
8

2
7
3
.0

6
2
3
1
2
8
3
2

1
8

0
1
.0

7
1
.0

8
0

1
e
t.

1
2
8

1
2
8

6
7
2

0
.0

8
2
8

≥
2
8

N
.A

.
≥

2
8

0
1
1
.2

2
N

.A
.

1
e
t.

2
5
6

2
5
6

1
6
6
4

0
.0

5
5
0

≥
4
6

N
.A

.
≥

5
0

0
1
0
7
.5

8
N

.A
.

1
tc

.6
4

6
4

1
9
2

0
.1

0
2
0

≥
2
0

N
.A

.
2
0

0
0
.7

8
0
.7

9
0

1
tc

.1
2
8

1
2
8

5
1
2

0
.0

6
3
8

≥
3
7

N
.A

.
3
8

0
8
.1

4
8
.1

8
0

1
tc

.2
5
6

2
5
6

1
3
1
2

0
.0

4
6
3

≥
5
8

N
.A

.
≥

6
3

4
7
2
.7

5
N

.A
.

1
tc

.5
1
2

5
1
2

3
2
6
4

0
.0

2
1
1
0

≥
1
0
0

N
.A

.
≥

1
1
0

2
7
1
9
.5

6
N

.A
.

1
z
c
.1

2
8

1
2
8

2
2
4
0

0
.2

8
1
8

≥
1
8

N
.A

.
≥

1
8

4
1
2
9
.8

6
N

.A
.

T
a
b
le

3
.2

.
C

o
m

p
u
ta

ti
o
n
a
l
re

su
lt
s

o
n

g
ra

p
h
s

a
ri

si
n
g

fr
o
m

co
d
in

g
th

eo
ry

,
w

it
h

n

v
er

ti
ce

s
a
n
d

m
ed

g
es

.
A

ll
ti
m

es
a
re

in
se

co
n
d
s.

N
.A

.
m

ea
n
s

“
n
o
t

a
p
p
li
ca

b
le

”
d
u
e

to
ti
m

e
li
m

it
(1

0
0
0

s)
.

7.5.5 Graphs from the DIMACS Benchmarks Set

Our final experiments are performed on a subset of the DIMACS benchmark
set for the maximum clique problem2. Although our method is not intended
to be competitive with the best heuristics and exact methods for maximum
clique problems, it is still interesting to see its performance on this standard
benchmark set. As pointed out in Section 7.4, we have transformed these
maximum clique problems to stable set problems on the complement graph.

The results are reported in Table 3.3, which again follows the same format
as Table 3.1. The choice for this particular subset of instances is made by
the solvability of an instance by a semidefinite programming solver in reason-
able time (again, reasonable means 1000 seconds). For all instances with edge
density smaller than 0.24, our method outperforms the standard constraint

2 See ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique.

Section 7.5. Computational Results 131

in
s
t
a
n
c
e

C
P

S
D

P
+

C
P

e
d
g
e

to
ta

l
b
a
ck

-
b
e
st

sd
p

to
ta

l
b
a
ck

-

n
a
m

e
n

m
d
e
n
si

ty
α

α
ti

m
e

tr
a
ck

s
α

d
is

c
r

ti
m

e
ti

m
e

tr
a
ck

s

h
a
m

m
in

g
6
-2

6
4

1
9
2

0
.0

9
5

3
2

3
2

2
0
.2

2
1
4
0
1
7
2

3
2

0
0
.6

8
0
.6

9
0

h
a
m

m
in

g
6
-4

6
4

1
3
1
2

0
.6

5
1

4
4

0
.2

8
8
0
4

4
0

2
7
.2

9
2
8
.1

0
7
0
6

h
a
m

m
in

g
8
-2

2
5
6

1
0
2
4

0
.0

3
1

1
2
8

≥
1
2
8

N
.A

.
1
2
8

0
4
5
.1

6
4
5
.5

5
0

jo
h
n
so

n
8
-2

-4
2
8

1
6
8

0
.4

4
4

4
4

0
.0

5
2
5
5

4
0

0
.3

5
0
.3

5
0

jo
h
n
so

n
8
-4

-4
7
0

5
6
0

0
.2

3
2

1
4

1
4

1
5
.0

5
1
0
0
1
5
6

1
4

0
4
.8

2
4
.8

3
0

jo
h
n
so

n
1
6
-2

-4
1
2
0

1
6
8
0

0
.2

3
5

8
≥

8
N

.A
.

8
0

4
3
.2

9
4
3
.3

2
0

M
A

N
N

a
9

4
5

7
2

0
.0

7
2

1
6

1
6

1
6
2
.8

1
1
7
3
8
5
0
6

1
6

1
0
.1

7
8
2
.4

6
4
1
1
1
0
4

M
A

N
N

a
2
7

3
7
8

7
0
2

0
.0

1
0

1
2
6

≥
1
0
3

N
.A

.
≥

1
2
5

3
7
0
.2

9
N

.A
.

M
A

N
N

a
4
5

1
0
3
5

1
9
8
0

0
.0

0
4

3
4
5

≥
1
5
6

N
.A

.
≥

3
3
8

1
1
0
4
7
.0

6
N

.A
.

sa
n
2
0
0

0
.9

1
2
0
0

1
9
9
0

0
.1

0
0

7
0

≥
4
5

N
.A

.
7
0

0
1
7
0
.0

1
1
7
0
.1

9
0

sa
n
2
0
0

0
.9

2
2
0
0

1
9
9
0

0
.1

0
0

6
0

≥
3
6

N
.A

.
6
0

0
1
6
9
.3

5
1
6
9
.5

1
0

sa
n
2
0
0

0
.9

3
2
0
0

1
9
9
0

0
.1

0
0

4
4

≥
2
6

N
.A

.
4
4

0
1
5
7
.9

0
1
5
7
.9

9
0

sa
n
r2

0
0

0
.9

2
0
0

2
0
3
7

0
.1

0
2

4
2

≥
3
4

N
.A

.
≥

4
1

4
1
3
1
.5

7
N

.A
.

T
a
b
le

3
.3

.
C

o
m

p
u
ta

ti
o
n
a
l
re

su
lt
s

o
n

g
ra

p
h
s

fr
o
m

th
e

D
IM

A
C

S
b
en

ch
m

a
rk

se
t

fo
r

m
a
x
i-

m
u
m

cl
iq

u
e

p
ro

b
le

m
s,

w
it
h

n
v
er

ti
ce

s
a
n
d

m
ed

g
es

.
A

ll
ti
m

es
a
re

in
se

co
n
d
s.

N
.A

.
m

ea
n
s

“
n
o
t

a
p
p
li
ca

b
le

”
d
u
e

to
ti
m

e
li
m

it
(1

0
0
0

s)
.

programming approach. For higher densities however, the opposite holds. This
is exactly what could be expected from the analysis of Section 7.5.2. A special
treatment has been given to instance MANN a45. We stopped the semidefinite
programming solver at the time limit of 1000 seconds, and used its interme-
diate feasible solution as if it were the optimal fractional solution. We then
proceeded our algorithm for a couple of seconds more, to search for a solution
up to discrepancy 1.

In Table 3.4 we compare our method with two methods that are specialized
for maximum clique problems. The first method was presented by Österg̊ard
[2002], and follows a branch-and-bound approach. The second method is a
constraint programming approach, using a special constraint for the maximum

132 Chapter 7. Semidefinite Relaxation as Branching Heuristic

in
s
t
a
n
c
e

Ö
s
t
e
r
g̊
a
r
d

R
é
g
in

C
P

+
S
D

P

e
d
g
e

to
ta

l
to

ta
l

b
a
ck

-
to

ta
l

b
a
ck

-

n
a
m

e
d
e
n
si

ty
α

α
ti

m
e

α
ti

m
e

tr
a
ck

s
α

ti
m

e
tr

a
ck

s

h
a
m

m
in

g
6
-2

0
.0

9
5

3
2

3
2

0
.0

1
3
2

0
.0

0
1
7

3
2

0
.6

9
0

h
a
m

m
in

g
6
-4

0
.6

5
1

4
4

0
.0

1
4

0
.0

0
4
2

4
2
8
.1

0
7
0
6

h
a
m

m
in

g
8
-2

0
.0

3
1

1
2
8

1
2
8

0
.0

4
1
2
8

0
.0

0
6
5

1
2
8

4
5
.5

5
0

jo
h
n
so

n
8
-2

-4
0
.4

4
4

4
1
6

0
.0

1
4

0
.0

0
1
4

4
0
.3

5
0

jo
h
n
so

n
8
-4

-4
0
.2

3
2

1
4

1
4

0
.0

1
1
4

0
.0

0
1
4
0

1
4

4
.8

3
0

jo
h
n
so

n
1
6
-2

-4
0
.2

3
5

8
8

0
.2

7
8

1
1
.4

0
2
5
0
5
0
5

8
4
3
.3

2
0

M
A

N
N

a
9

0
.0

7
3

1
6

1
6

0
.0

1
1
6

0
.0

0
5
0

1
6

8
2
.4

6
4
1
1
1
0
4

M
A

N
N

a
2
7

0
.0

1
0

1
2
6

>
1
0
0
0
0

1
2
6

5
5
.4

4
1
2
5
8
7
6
8

≥
1
2
5

>
1
0
0
0

M
A

N
N

a
4
5

0
.0

0
4

3
4
5

>
1
0
0
0
0

≥
3
4
5

>
4
3
2
0
0

≥
3
3
8

>
1
0
0
0

sa
n
2
0
0

0
.9

1
0
.1

0
0

7
0

7
0

0
.2

7
7
0

3
.1

2
1
0
4
0

7
0

1
7
0
.1

9
0

sa
n
2
0
0

0
.9

2
0
.1

0
0

6
0

6
0

4
.2

8
6
0

7
.8

6
6
6
3
8

6
0

1
6
9
.5

1
0

sa
n
2
0
0

0
.9

3
0
.1

0
0

4
4

>
1
0
0
0
0

4
4

5
4
8
.1

0
7
5
8
5
4
5

4
4

1
5
7
.9

9
0

sa
n
r2

0
0

0
.9

0
.1

0
2

4
2

>
1
0
0
0
0

4
2

4
5
0
.2

4
5
4
1
4
9
6

≥
4
1

>
1
0
0
0

T
a
b
le

3
.4

.
A

co
m

p
a
ri

so
n

o
f
d
iff

er
en

t
m

et
h
o
d
s

o
n

g
ra

p
h
s

fr
o
m

th
e

D
IM

A
C

S
b
en

ch
-

m
a
rk

se
t

fo
r

m
a
x
im

u
m

cl
iq

u
e

p
ro

b
le

m
s,

w
it
h

n
v
er

ti
ce

s
a
n
d

m
ed

g
es

.
A

ll
ti
m

es
a
re

in
se

co
n
d
s.

clique problem, with a corresponding propagation algorithm. This idea was
introduced by Fahle [2002] and extended and improved by Régin [2003]. Since
all methods are performed on different machines, we identify a time ratio
between them. A machine comparison from SPEC3 shows that our times are
comparable with the times of Österg̊ard. We have multiplied the times of
Régin with 3, following the time comparison made by Régin [2003]. In general,
our method is outperformed by the other two methods, although there is one
instance on which our method performs best (san200 0.9 3).

3 http://www.spec.org/

Section 7.6. Discussion and Conclusion 133

7.6 Discussion and Conclusion

We have presented a method to use semidefinite relaxations within constraint
programming. The fractional solution values of the relaxation have been used
to define variable and value ordering heuristics. Further, the solution value
of the relaxation has been used as a bound for the corresponding constraint
programming objective function.

Computational results on stable set and maximum clique problems have
indicated that a semidefinite relaxation can be of great value in constraint pro-
gramming. Compared to a standard constraint programming approach, our
method obtained far better results. Specialized algorithms for the maximum
clique problem however, generally outperformed our method.

The results in this chapter have shown that semidefinite relaxations are
indeed applicable in constraint programming. The obtained results give rise to
various extensions. First of all, it is interesting to apply our method to prob-
lems that also contain side constraints, apart from the structure for which
a semidefinite relaxation is known. Secondly, the efficiency of our method
may be increased by strengthening the relaxation. For example, for the sta-
ble set problem so-called clique-constraints (among others) can be added to
the semidefinite relaxation. Thirdly, the proof of optimality may be acceler-
ated similar to the method presented in Chapter 6, by adding discrepancy
constraints to the semidefinite relaxation.

Although the solution to a semidefinite relaxation often provides a promis-
ing search direction, in some cases the relaxation is less informative. It is in-
teresting to analyze this behaviour. For example, Leahu and Gomes [2004]
have analyzed the quality of linear relaxations for the Partial Latin Square
Completion Problem. They found that the solution of a linear relaxation is
less informative exactly in a certain phase transition of the problem instances.
A similar analysis could be made for semidefinite relaxations.

Finally, it may be possible to exploit the semidefinite relaxation as a prop-
agation mechanism, based on sub-optimality of certain variable assignments.
Such propagation, also called “variable fixing”, in case of linear relaxations
has been studied by Focacci, Lodi, and Milano [1999a]. For semidefinite re-
laxations Helmberg [2000] introduced a variable fixing procedure, but it is yet
unclear how to exploit this in constraint programming.

Perspectives

In this thesis we have investigated the application of operations research tech-
niques in constraint programming. The main conclusion of our work is that
a wide range of techniques from operations research is effectively applicable
in different aspects of constraint programming. We have already indicated
detailed possible future investigations at the end of each chapter, where ap-
propriate. Next we present a more general perspective of the topic, reflecting
the author’s opinion.

In Chapter 3 and Chapter 4 we have seen that the efficiency of many
propagation algorithms relies on results from graph theory. The essence of
such combinations is the embedding of a graph-theoretical structure inside a
global constraint. In order to be applicable, the graph-theoretical structure
should allow an efficient solution algorithm. For example, the alldifferent

constraint embeds the matching structure, while the soft global constraints
considered in Chapter 4 embed the structure of a flow. We could similarly
embed other efficient graph algorithms in new global constraints. In fact, this
line of research already attracts increasing attention. Every year new global
constraints appear that embed graph-theoretical structures.

The above embedding of efficient algorithms inside global constraints can
be extended to other techniques of operations research. For instance, a sys-
tem of linear constraints can be embedded inside a global constraint, which
applies a linear programming solver; see for example Rodosek, Wallace, and
Hajian [1999]. Hence, virtually every efficient technique from operations re-
search could be embedded inside a global constraint. Doing so, we increase the
modelling power and hopefully the solving power of constraint programming.

A precaution should be made, however. Many authors have argued that
more constraint propagation is not always better. In many cases it is more
efficient to spent less time on propagation while traversing more nodes in
the search tree. To give an intuition, in some cases obtaining hyper-arc con-
sistency for the alldifferent constraint does not pay off, even though the
particular propagation algorithm is very efficient. One way to overcome this

136 Perspectives

problem is to develop propagation algorithms that achieve weaker local con-
sistency notions, but that are much faster. Another direction is to investigate
and improve the actual application and possible incrementality of relatively
expensive propagation algorithms within the search process. For example, it is
not uncommon to apply certain propagation algorithms only below a certain
depth in the search tree.

In Chapter 6 and Chapter 7 we have proposed to use linear and semidefinite
relaxations from operations research to guide the search process of constraint
programming. A successful and promising direction is the use of constraint
programming constructs to improve such relaxations. For example, we have
seen that a linear relaxation based on decision postponement in combina-
tion with a discrepancy constraint can greatly improve the proof of optimal-
ity. More research in this direction could make constraint programming more
suitable for optimization problems.

A drawback of the tight integration of different solution methods is the
induced overhead, which may not always pay off. For example, sometimes a
problem can be solved by integer programming, constraint programming, or
a satisfiability solver. If we build and apply an all-purpose combination of
such solvers, the result may be much slower than if we apply the fastest solver
among them to each particular instance. This leads to the idea of applying a
“portfolio” of algorithms. There exist many possible strategies of combining
algorithms in a portfolio during search; see Gomes [2003, Section 7] for an
overview. Another promising research direction along this line is to identify
problem characteristics to automatically decide the most suitable algorithm,
as for example done by Guerri and Milano [2004].

In conclusion, there are many possibilities to apply operations research
techniques in constraint programming. However, one should keep in mind the
practical consequences, to make such applications actual improvements. Then
this exciting research area may become even more successful.

References

R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows. Prentice Hall,
1993. Cited on page 9.

F. Alizadeh. Interior point methods in semidefinite programming with appli-
cations to combinatorial optimization. SIAM Journal on Optimization, 5
(1):13–51, 1995. Cited on page 14.

E. Anderson, Z. Bai, C. Bischof, L.S. Blackford, J. Demmel, J.J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ Guide. SIAM, third edition, 1999.
http://www.netlib.org/lapack/. Cited on page 126.

G. Appa, D. Magos, and I. Mourtos. LP Relaxations of Multiple all different
Predicates. In J.-C. Régin and M. Rueher, editors, Proceedings of the
First International Conference on the Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimization Prob-
lems (CPAIOR 2004), volume 3011 of LNCS, pages 364–369. Springer, 2004.
Cited on page 51.

K.R. Apt. The essence of constraint propagation. Theoretical Computer Sci-
ence, 221(1–2):179–210, 1999. Cited on page 16.

K.R. Apt. Principles of Constraint Programming. Cambridge University
Press, 2003. Cited on page 15, 16.

N. Ascheuer. Hamiltonian Path Problems in the On-line Optimization of Flex-
ible Manufacturing Problems. PhD thesis, Technische Universität Berlin,
1995. Also available as technical report TR-96-3, Zuse Institute Berlin.
Cited on page 104, 111, 113.

N. Ascheuer, M. Fischetti, and M. Grötschel. Solving the Asymmetric Travel-
ling Salesman Problem with time windows by branch-and-cut. Mathematical
Programming, Series A, 90(3):475–506, 2001. Cited on page 116.

E. Balas and N. Simonetti. Linear Time Dynamic-Programming Algorithms
for New Classes of Restricted TSPs: A Computational Study. INFORMS
Journal on Computing, 13(1):56–75, 2000. Cited on page 116.

N. Barnier and P. Brisset. Graph Coloring for Air Traffic Flow Management.
In Proceedings of the Fourth International Workshop on Integration of AI

138 References

and OR Techniques in Constraint Programming for Combinatorial Opti-
mization Problems (CP-AI-OR 2002), pages 133–147, 2002. Cited on page
28.

R. Barták. Dynamic global constraints: A first view. In Proceedings of the
Sixth Annual Workshop of the ERCIM Working Group on Constraints,
2001.
http://www.arxiv.org/html/cs/0110012. Cited on page 42.

J.C. Beck and L. Perron. Discrepancy-Bounded Depth First Search. In Pro-
ceedings of the Second International Workshop on Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimiza-
tion Problems (CP-AI-OR 2000), 2000. Cited on page 21, 22.

N. Beldiceanu. Global Constraints as Graph Properties on Structured Network
of Elementary Constraints of the Same Type. Technical Report T2000/01,
SICS, 2000. Cited on page 44, 54, 78.

N. Beldiceanu, M. Carlsson, and T. Petit. Deriving Filtering Algorithms from
Constraint Checkers. In M. Wallace, editor, Proceedings of the Tenth Inter-
national Conference on Principles and Practice of Constraint Programming
(CP 2004), volume 3258 of LNCS, pages 107–122. Springer, 2004a. Cited
on page 76.

N. Beldiceanu and E. Contejean. Introducing Global Constraints in CHIP.
Mathematical and Computer Modelling, 20(12):97–123, 1994. Cited on page
28.

N. Beldiceanu, I. Katriel, and S. Thiel. Filtering Algorithms for the Same Con-
straint. In J.-C. Régin and M. Rueher, editors, Proceedings of the First In-
ternational Conference on the Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems (CPAIOR
2004), volume 3011 of LNCS, pages 65–79. Springer, 2004b. Cited on page
78, 79.

N. Beldiceanu and T. Petit. Cost Evaluation of Soft Global Constraints. In
J.-C. Régin and M. Rueher, editors, Proceedings of the First International
Conference on the Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems (CPAIOR 2004), vol-
ume 3011 of LNCS, pages 80–95. Springer, 2004. Cited on page 55, 70.

S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Satis-
faction and Optimization. Journal of the ACM, 44(2):201–236, 1997. Cited
on page 55.

B. Borchers. A C Library for Semidefinite Programming. Optimization Meth-
ods and Software, 11(1):613–623, 1999.
http://www.nmt.edu/~borchers/csdp.html. Cited on page 126.

G. Carpaneto, S. Martello, and P. Toth. Algorithms and codes for the As-
signment Problem. In B. Simeone, P. Toth, G. Gallo, F. Maffioli, and
S. Pallottino, editors, Fortran Codes for Network Optimization, volume 13
of Annals of Operations Research, pages 193–223. J.C. Baltzer AG, 1988.
Cited on page 110.

References 139

Y. Caseau and F. Laburthe. Solving Small TSPs with Constraints. In L. Naish,
editor, Proceedings of the Fourteenth International Conference on Logic
Programming (ICLP’97), pages 316–330. The MIT Press, 1997a. Cited
on page 107, 108.

Y. Caseau and F. Laburthe. Solving Various Weighted Matching Problems
with Constraints. In G. Smolka, editor, Proceedings of the Third Interna-
tional Conference on Principles and Practice of Constraint Programming
(CP’97), volume 1330 of LNCS, pages 17–31. Springer, 1997b. Cited on
page 47.

V. Chandru and J. Hooker. Optimization Methods for Logical Inference. Wiley,
1999. Cited on page 4.

V. Chvátal. Linear programming. Freeman, 1983. Cited on page 12.
G.B. Dantzig. Maximization of a linear function of variables subject to linear

inequalities. In Tj. C. Koopmans, editor, Activity Analysis of Production
and Allocation – Proceedings of a conference. Wiley, 1951. Cited on page
13.

R. Dechter and P. van Beek. Local and global relational consistency. Theo-
retical Computer Science, 173:283–308, 1997. Cited on page 35.

M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and
F. Berthier. The Constraint Logic Programming Language CHIP. In ICOT,
editor, Proceedings of the International Conference on Fifth Generation
Computer Systems (FGCS’88), pages 693–702. Springer, 1988. Cited on
page 27.

D. Dubois, H. Fargier, and H. Prade. The calculus of fuzzy restrictions as a
basis for flexible constraint satisfaction. In Proceedings of the Second IEEE
International Conference on Fuzzy Systems, volume 2, pages 1131–1136,
1993. Cited on page 55.

T.E. Easterfield. A combinatorial algorithm. Journal of the London Mathe-
matical Society, 21:219–226, 1946. Cited on page 31.

J. Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics, 17:
449–467, 1965. Cited on page 9, 46.

T. Fahle. Simple and Fast: Improving a Branch-And-Bound Algorithm for
Maximum Clique. In 10th Annual European Symposium on Algorithms
(ESA 2002), volume 2461 of LNCS, pages 485–498. Springer Verlag, 2002.
Cited on page 132.

H. Fargier, J. Lang, and T. Schiex. Selecting preferred solutions in fuzzy con-
straint satisfaction problems. In Proceedings of the first European Congress
on Fuzzy and Intelligent Technologies, 1993. Cited on page 55.

M. Fischetti and P. Toth. An additive bounding procedure for combinatorial
optimization problems. Operations Research, 37:319–328, 1989. Cited on
page 49, 105, 106.

M. Fischetti and P. Toth. An additive bounding procedure for the asymmetric
travelling salesman problem. Mathematical Programming, 53:173–197, 1992.
Cited on page 105.

140 References

F. Focacci. Solving Combinatorial Optimization Problems in Constraint Pro-
gramming. PhD thesis, University of Ferrara, 2001. Cited on page 104,
106.

F. Focacci, A. Lodi, and M. Milano. Cost-based domain filtering. In J. Jaffar,
editor, Proceedings of the Fifth International Conference on Principles and
Practice of Constraint Programming (CP’99), volume 1713 of LNCS, pages
189–203. Springer, 1999a. Cited on page 133.

F. Focacci, A. Lodi, and M. Milano. Integration of CP and OR methods
for matching problems. In Proceedings of the First International Workshop
on Integration of AI and OR techniques in Constraint Programming for
Combinatorial Optimization Problems (CP-AI-OR’99), 1999b. Cited on
page 47.

F. Focacci, A. Lodi, and M. Milano. A Hybrid Exact Algorithm for the
TSPTW. INFORMS Journal on Computing, 14(4):403–417, 2002. Cited
on page 100, 108, 111, 115, 116.

F. Focacci, A. Lodi, and M. Milano. Exploiting relaxations in CP. In
M. Milano, editor, Constraint and Integer Programming - Toward a Unified
Methodology, volume 27 of Operations Research/Computer Science Inter-
faces, chapter 5. Kluwer Academic Publishers, 2003. Cited on page 120.

E.C. Freuder and R.J. Wallace. Partial constraint satisfaction. Artificial
Intelligence, 58(1-3):21–70, 1992. Cited on page 55.

M.R. Garey and D.S. Johnson. Computers and Intractability - A Guide to the
Theory of NP-Completeness. Freeman, 1979. Cited on page 11, 12.

I. Gent, K. Stergiou, and T. Walsh. Decomposable Constraints. Artificial
Intelligence, 123(1–2):133–156, 2000. Cited on page 36.

A.M.H. Gerards. Matching. In M.O. Ball, T.L. Magnanti, C.L. Monma, and
G.L. Nemhauser, editors, Network Models, volume 7 of Handbooks in Oper-
ations Research and Management Science, pages 135–224. Elsevier Science,
1995. Cited on page 8.

M.L. Ginsberg and W.D. Harvey. Iterative broadening. Artificial Intelligence,
55(2):367–383, 1992. Cited on page 98.

M. Goemans and F. Rendl. Combinatorial Optimization. In H. Wolkowicz,
R. Saigal, and L. Vandenberghe, editors, Handbook of Semidefinite Pro-
gramming, pages 343–360. Kluwer, 2000. Cited on page 14.

M.X. Goemans and D.P. Williamson. Improved Approximation Algorithms
for Maximum Cut and Satisfiability Problems Using Semidefinite Program-
ming. Journal of the ACM, 42(6):1115–1145, 1995. Cited on page 120.

C.P. Gomes. Randomized Backtrack Search. In M. Milano, editor, Constraint
and Integer Programming - Toward a Unified Methodology, volume 27 of
Operations Research/Computer Science Interfaces, chapter 8. Kluwer Aca-
demic Publishers, 2003. Cited on page 88, 136.

C.P. Gomes, B. Selman, and H. Kautz. Boosting Combinatorial Search
Through Randomization. In Proceedings of the Fifteenth National Con-
ference on Artificial Intelligence and Tenth Innovative Applications of Ar-

References 141

tificial Intelligence Conference (AAAI / IAAI), pages 431–437. AAAI Press
/ The MIT Press, 1998. Cited on page 87, 88.

C.P. Gomes and D. Shmoys. Completing Quasigroups or Latin Squares: A
Structured Graph Coloring Problem. In Proceedings of the Computational
Symposium on Graph Coloring and its Generalizations, 2002. Cited on page
28, 97.

M. Grönkvist. A Constraint Programming Model for Tail Assignment. In
J.-C. Régin and M. Rueher, editors, Proceedings of the First International
Conference on the Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems (CPAIOR 2004), vol-
ume 3011 of LNCS, pages 142–156. Springer, 2004. Cited on page 28.

M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Com-
binatorial Optimization. Wiley, 1988. Cited on page 14, 125.

G. Gruber and F. Rendl. Computational experience with stable set relax-
ations. SIAM Journal on Optimization, 13(4):1014–1028, 2003. Cited on
page 125.

A. Guerri and M. Milano. Learning techniques for automatic algorithm port-
folio selection. In Proceedings of the 16th European Conference on Artificial
Intelligence (ECAI), pages 475–479. IOS Press, 2004. Cited on page 136.

P. Hall. On representatives of subsets. Journal of the London Mathematical
Society, 10:26–30, 1935. Cited on page 30.

W.D. Harvey and M.L. Ginsberg. Limited Discrepancy Search. In Proceedings
of the Fourteenth International Joint Conference on Artificial Intelligence
(IJCAI-95), volume 1, pages 607–615, 1995. Cited on page 20, 90, 91.

C. Helmberg. Fixing variables in semidefinite relaxations. SIAM J. Matrix
Anal. Appl., 21(3):952–969, 2000. Cited on page 133.

M. Henz, T. Müller, and S. Thiel. Global constraints for round robin tourna-
ment scheduling. European Journal of Operational Research, 153(1):92–101,
2004. Cited on page 43.

J. Hooker. Logic-Based Methods for Optimization - Combining Optimization
and Constraint Satisfaction. Wiley, 2000. Cited on page 4, 50.

J.E. Hopcroft and R.M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973. Cited
on page 9, 41, 63.

J.E. Hopcroft and J.D. Ullman. Introduction to automata theory, languages,
and computation. Addison-Wesley, 1979. Cited on page 72.

S. E. Karisch, F. Rendl, and J. Clausen. Solving graph bisection problems
with semidefinite programming. INFORMS Journal on Computing, 12(3):
177–191, 2000. Cited on page 120.

N. Karmarkar. A new polynomial-time algorithm for linear programming. In
Proceedings of the Sixteenth Annual ACM Symposium on Theory of Com-
puting, pages 302–311. ACM, 1984a. Cited on page 14.

N. Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4:373–395, 1984b. Cited on page 14.

142 References

L.G. Khachiyan. A polynomial algorithm in linear programming. Soviet
Mathematics Doklady, 20:191–194, 1979. Cited on page 14.

R.E. Korf. Improved Limited Discrepancy Search. In Proceedings of the Thir-
teenth National Conference on Artificial Intelligence and Eighth Innovative
Applications of Artificial Intelligence Conference (AAAI / IAAI), volume 1,
pages 286–291. AAAI Press / The MIT Press, 1996. Cited on page 20.

J. Larrosa. Node and Arc Consistency in Weighted CSP. In Proceedings of the
Eighteenth National Conference on Artificial Intelligence and Fourteenth
Conference on Innovative Applications of Artificial Intelligence (AAAI /
IAAI), pages 48–53. AAAI Press / The MIT Press, 2002. Cited on page
55.

J. Larrosa and T. Schiex. In the quest of the best form of local consistency
for Weighted CSP. In Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence, pages 239–244. Morgan Kaufmann,
2003. Cited on page 55.

M. Laurent, S. Poljak, and F. Rendl. Connections between semidefinite relax-
ations of the max-cut and stable set problems. Mathematical Programming,
77:225–246, 1997. Cited on page 121.

M. Laurent and F. Rendl. Semidefinite Programming and Integer Program-
ming. In K. Aardal, G. Nemhauser, and R. Weismantel, editors, Discrete
Optimization, Handbooks in Operations Research and Management Sci-
ence. Elsevier, 2004. Also available as Technical Report PNA-R0210, CWI,
Amsterdam. Cited on page 14, 121, 122.

J.-L. Lauriere. A language and a program for stating and solving combi-
natorial problems. Artificial Intelligence. An International Journal, 10(1):
29–127, 1978. Cited on page 27.

L. Leahu and C.P. Gomes. Quality of LP-based Approximations for Highly
Combinatorial Problems. In M. Wallace, editor, Proceedings of the Tenth
International Conference on Principles and Practice of Constraint Program-
ming (CP 2004), volume 3258 of LNCS, pages 377–392. Springer, 2004.
Cited on page 133.

M. Leconte. A bounds-based reduction scheme for constraints of difference.
In Proceedings of the Second International Workshop on Constraint-based
Reasoning (Constraint-96), Key West, Florida, 1996. Cited on page 36, 38,
39, 42.

J. Lee. All-Different Polytopes. Journal of Combinatorial Optimization, 6(3):
335–352, 2002. Cited on page 51.

A. Lodi. Personal communication, 2002. Cited on page 106.
A. Lodi and M. Milano. Discrepancy-based additive bounding. In Fifth Inter-

national Workshop on Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (CP-AI-OR’03),
pages 17–23, 2003. Cited on page 105, 106, 107.

A. Lodi, M. Milano, and L.-M. Rousseau. Discrepancy-Based Additive Bound-
ing for the Alldifferent Constraint. In F. Rossi, editor, Proceedings of the
Ninth International Conference on Principles and Practice of Constraint

References 143

Programming (CP 2003), volume 2833 of LNCS, pages 510–524. Springer,
2003. Cited on page 49, 107.

A. Lopez-Ortiz, C.-G. Quimper, J. Tromp, and P. van Beek. A fast and simple
algorithm for bounds consistency of the alldifferent constraint. In Proceed-
ings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI-03), pages 245–250. Morgan Kaufmann, 2003. Cited on page 37,
38, 42, 43.

L. Lovász. On the Shannon capacity of a graph. IEEE Transactions on
Information Theory, 25:1–7, 1979. Cited on page 124.

L. Lovász and M. D. Plummer. Matching Theory. North-Holland, Amsterdam,
1986. Cited on page 8.

K. Mehlhorn and S. Thiel. Faster algorithms for bound-consistency of the
sortedness and the alldifferent constraint. In R. Dechter, editor, Proceed-
ings of the Sixth International Conference on Principles and Practice of
Constraint Programming (CP 2000), volume 1894 of LNCS, pages 306–319.
Springer, 2000. Cited on page 37, 38, 42.

S. Micali and V.V. Vazirani. An O(
√

|v||E|) algorithm for finding maximum
matching in general graphs. In Proceedings of the 21st Annual Symposium
on Foundations of Computer Science, pages 17–27. IEEE, 1980. Cited on
page 9, 46.

M. Milano, editor. Constraint and Integer Programming - Toward a Unified
Methodology, volume 27 of Operations Research/Computer Science Inter-
faces. Kluwer Academic Publishers, 2003. Cited on page 4.

M. Milano and W.J. van Hoeve. Reduced cost-based ranking for generat-
ing promising subproblems. In Proceedings of the Joint ERCIM/CologNet
Workshop on Constraint Solving and Constraint Logic Programming, pages
7–22, 2002a. Cited on page 5.

M. Milano and W.J. van Hoeve. Reduced cost-based ranking for generat-
ing promising subproblems. In P. Van Hentenryck, editor, Eighth Interna-
tional Conference on Principles and Practice of Constraint Programming
(CP 2002), volume 2470 of LNCS, pages 1–16. Springer Verlag, 2002b.
Cited on page 5.

R. Mohr and G. Masini. Good Old Discrete Relaxation. In European Confer-
ence on Artificial Intelligence (ECAI), pages 651–656, 1988. Cited on page
42.

G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization.
Wiley, 1988. Cited on page 12, 13.

W.J. Older, G.M. Swinkels, and M.H. van Emden. Getting to the Real Prob-
lem: Experience with BNR Prolog in OR. In Proceedings of the Third
International Conference on the Practical Applications of Prolog (PAP’95).
Alinmead Software Ltd, 1995. Cited on page 28.

P.R.J. Österg̊ard. A fast algorithm for the maximum clique problem. Discrete
Applied Mathematics, 120:197–207, 2002. Cited on page 131.

G. Pesant. A Regular Language Membership Constraint for Finite Sequences
of Variables. In M. Wallace, editor, Proceedings of the Tenth International

144 References

Conference on Principles and Practice of Constraint Programming (CP
2004), volume 3258 of LNCS, pages 482–495. Springer, 2004. Cited on
page 72, 74, 76.

G. Pesant, M. Gendreau, J.Y. Potvin, and J.M. Rousseau. An exact constraint
logic programming algorithm for the travelling salesman problem with time
windows. Transportation Science, 32(1):12–29, 1998. Cited on page 108.

J. Petersen. Die Theorie der regulären graphs. Acta Mathematica, 15:193–220,
1891. Cited on page 8, 40.

T. Petit, J.-C. Régin, and C. Bessière. Meta constraints on violations for
over constrained problems. In Proceedings of the 12th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI), pages 358–365,
2000. Cited on page 55, 81, 82.

T. Petit, J.-C. Régin, and C. Bessière. Specific Filtering Algorithms for Over-
Constrained Problems. In T. Walsh, editor, Proceedings of the Seventh In-
ternational Conference on Principles and Practice of Constraint Program-
ming (CP 2001), volume 2239 of LNCS, pages 451–463. Springer, 2001.
Cited on page 55, 62.

J.-F. Puget. A fast algorithm for the bound consistency of alldiff constraints.
In Proceedings of the Fifteenth National Conference on Artificial Intelli-
gence and Tenth Innovative Applications of Artificial Intelligence Confer-
ence (AAAI / IAAI), pages 359–366. AAAI Press / The MIT Press, 1998.
Cited on page 36, 37, 42.

J.-C. Régin. A Filtering Algorithm for Constraints of Difference in CSPs.
In Proceedings of the Twelfth National Conference on Artificial Intelligence
(AAAI), volume 1, pages 362–367. AAAI Press, 1994. Cited on page 27,
39, 40, 42, 61.

J.-C. Régin. Generalized Arc Consistency for Global Cardinality Constraint.
In Proceedings of the Thirteenth National Conference on Artificial Intelli-
gence and Eighth Innovative Applications of Artificial Intelligence Confer-
ence (AAAI / IAAI), volume 1, pages 209–215. AAAI Press / The MIT
Press, 1996. Cited on page 28, 65, 68.

J.-C. Régin. Arc Consistency for Global Cardinality Constraints with Costs.
In J. Jaffar, editor, Proceedings of the Fifth International Conference on
Principles and Practice of Constraint Programming (CP’99), volume 1713
of LNCS, pages 390–404. Springer, 1999a. Cited on page 49, 60, 65.

J.-C. Régin. The symmetric alldiff constraint. In Proceedings of the 16th
International Joint Conference on Artificial Intelligence (IJCAI-99), pages
420–425, 1999b. Cited on page 43, 44, 46.

J.-C. Régin. Cost-Based Arc Consistency for Global Cardinality Constraints.
Constraints, 7:387–405, 2002. Cited on page 49, 60, 65.

J.-C. Régin. Using Constraint Programming to Solve the Maximum Clique
Problem. In F. Rossi, editor, Ninth International Conference on Principles
and Practice of Constraint Programming (CP 2003), volume 2833 of LNCS,
pages 634–648. Springer Verlag, 2003. Cited on page 132.

References 145

J.-C. Régin, T. Petit, C. Bessière, and J.-F. Puget. An Original Constraint
Based Approach for Solving over Constrained Problems. In R. Dechter,
editor, Proceedings of the Sixth International Conference on Principles and
Practice of Constraint Programming (CP 2000), volume 1894 of LNCS,
pages 543–548. Springer, 2000. Cited on page 55, 56.

G. Reinelt. TSPLIB - a Traveling Salesman Problem Library. ORSA Journal
on Computing, 3:376–384, 1991. Cited on page 95, 111.

R. Rodosek, M.G. Wallace, and M.T. Hajian. A new approach to integrating
mixed integer programming and constraint logic programming. Annals of
Operations Research, 86:63–87, 1999. Cited on page 135.

F. Rossi, C. Petrie, and V. Dhar. On the equivalence of constraint satisfac-
tion problems. In Proceedings of the 9th European Conference on Artificial
Intelligence (ECAI), pages 550–556, 1990. Cited on page 34.

Z. Ruttkay. Fuzzy constraint satisfaction. In Proceedings of the First IEEE
Conference on Evolutionary Computing, pages 542–547, 1994. Cited on
page 55.

T. Schiex. Possibilistic Constraint Satisfaction Problems or “How to handle
soft constraints ?”. In Proceedings of the 8th Annual Conference on Uncer-
tainty in Artificial Intelligence, pages 268–275. Morgan Kaufmann, 1992.
Cited on page 55.

T. Schiex, H. Fargier, and G. Verfaillie. Valued Constraint Satisfaction Prob-
lems: Hard and Easy Problems. In Proceedings of the Fourteenth Interna-
tional Joint Conference on Artificial Intelligence, pages 631–639. Morgan
Kaufmann, 1995. Cited on page 55.

A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986. Cited
on page 12, 13.

A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Spring-
er, 2003. Cited on page 7, 8, 9, 10, 30, 31, 40, 110.

C. Schulte and P.J. Stuckey. When Do Bounds and Domain Propagation Lead
to the Same Search Space. In H. Søndergaard, editor, Proceedings of the
Third International Conference on Principles and Practice of Declarative
Programming, pages 115–126. ACM Press, 2001. Cited on page 43.

M. Sellmann. An Arc-Consistency Algorithm for the Minimum Weight All Dif-
ferent Constraint. In P. Van Hentenryck, editor, Proceedings of the Eighth
International Conference on Principles and Practice of Constraint Program-
ming (CP 2002), volume 2470 of LNCS, pages 744–749. Springer, 2002.
Cited on page 49.

K. Stergiou and T. Walsh. The difference all-difference makes. In Proceedings
of the 16th International Joint Conference on Artificial Intelligence (IJCAI-
99), pages 414–419, 1999. Cited on page 34, 36.

R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1:146–160, 1972. Cited on page 41, 46, 65.

E. Tsang, J. Ford, P. Mills, R. Bradwell, R. Williams, and P. Scott. ZDC-
Rostering: A Personnel Scheduling System Based On Constraint Program-

146 References

ming. Technical Report 406, University of Essex, Colchester, UK, 2004.
Cited on page 28.

P. Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic
Programming Series. The MIT Press, Cambridge, MA, 1989. Cited on
page 27, 42.

W.J. van Hoeve. The Alldifferent Constraint: A Survey. In Proceedings of
the Sixth Annual Workshop of the ERCIM Working Group on Constraints,
2001.
http://www.arxiv.org/html/cs/0110012. Cited on page 4.

W.J. van Hoeve. A Hybrid Constraint Programming and Semidefinite Pro-
gramming Approach for the Stable Set Problem. In F. Rossi, editor, Ninth
International Conference on Principles and Practice of Constraint Program-
ming (CP 2003), volume 2833 of LNCS, pages 407–421. Springer Verlag,
2003a. Cited on page 5.

W.J. van Hoeve. A hybrid constraint programming and semidefinite program-
ming approach for the stable set problem. In Fifth International Workshop
on Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems (CP-AI-OR’03), pages 3–16, 2003b.
Cited on page 5.

W.J. van Hoeve. A Hyper-Arc Consistency Algorithm for the Soft Alldiffer-
ent Constraint. In M. Wallace, editor, Proceedings of the Tenth Interna-
tional Conference on Principles and Practice of Constraint Programming
(CP 2004), volume 3258 of LNCS, pages 679–689. Springer, 2004. Cited on
page 5, 55.

W.J. van Hoeve. Exploiting Semidefinite Relaxations in Constraint Program-
ming. Computers and Operations Research, 2005. To appear. Cited on page
5.

W.J. van Hoeve and M. Milano. Decomposition Based Search - A theoretical
and experimental evaluation. Technical Report LIA00203, University of
Bologna, 2003. Cited on page 5.

W.J. van Hoeve and M. Milano. Postponing Branching Decisions. In Pro-
ceedings of the 16th European Conference on Artificial Intelligence (ECAI),
pages 1105–1106. IOS Press, 2004. Cited on page 5.

W.J. van Hoeve, G. Pesant, and L.-M. Rousseau. On Global Warming (Soften-
ing Global Constraints). In Proceedings of the 6th International Workshop
on Preferences and Soft Constraints (held in conjunction with CP 2004),
2004. Cited on page 5.

M. Wallace, Y. Caseau, and J.-F. Puget. Open Perspectives. In M. Milano, ed-
itor, Constraint and Integer Programming - Toward a Unified Methodology,
volume 27 of Operations Research/Computer Science Interfaces, chapter 10.
Kluwer Academic Publishers, 2003. Cited on page 53.

M. Wallace, S. Novello, and J. Schimpf. ECLiPSe: A platform for constraint
logic programming. Technical report, IC-Parc, Imperial College, London,
1997. Cited on page 27.

References 147

T. Walsh. Depth-Bounded Discrepancy Search. In Proceedings of the 15th
International Joint Conference on Artificial Intelligence (IJCAI), volume 2,
pages 1388–1393, 1997. Cited on page 21, 91.

R.C. Whaley, A. Petitet, and J.J. Dongarra. Automated empirical optimiza-
tions of software and the ATLAS project. Parallel Computing, 27(1–2):
3–35, 2001.
http://math-atlas.sourceforge.net/. Cited on page 126.

H.P. Williams and Hong Yan. Representations of the all different Predicate
of Constraint Satisfaction in Integer Programming. INFORMS Journal on
Computing, 13(2):96–103, 2001. Cited on page 50.

H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors. Handbook of Semidef-
inite Programming, volume 27 of International series in operations research
and management science. Kluwer, 2000. Cited on page 14.

J. Zhou. A permutation-based approach for solving the job-shop problem.
Constraints, 2(2):185–213, 1997. Cited on page 28.

Index

¹-partition, 88

additive bounding, 105
Alice, 27
alldifferent, 29, 27–52

polytope, 50
alldistinct, 27
alphabet, 72
alternating circuit, 8
alternating path, 8
AP, see assignment problem
arc, 7

multiple, 7
arc consistency, 32
assignment problem, 110
Asymmetric Travelling Salesman

Problem, 12
Asymmetric Travelling Salesman

Problem with Time Windows, 107
ATSP, see Asymmetric Travelling

Salesman Problem
ATSPTW, see Asymmetric Travelling

Salesman Problem with Time
Windows

augmenting path, 8

basic solution, 13
basic variable, 13
binary constraint, 15
binary decomposition, 34
bipartite graph, 7
bisection, 19
bounds consistency, 32
branch, 17

branching heuristic, 19

Chip, 27
circuit, 7
clique, 12
combinatorial problem, 1
complement graph, 7
complete search strategy, 20
connected graph, 7
consistent CSP, 15
constraint, 15

binary, 15
cost gcc, 66
discrepancy, 104
gcc, 66
global, 15
meta-, 55
minweight alldifferent, 47
nocycle, 108
optimization, 47, 55
regular, 73
same, 78
soft meta-, 81
soft alldifferent, 60
soft gcc, 65
soft regular, 72
soft same, 78
symm alldifferent, 43

constraint optimization problem, 16
constraint programming, 2, 15–23
constraint propagation, 16, 16–17
constraint satisfaction problem, 15
constraint softening, 57

150 Index

COP, see constraint optimization
problem

cost gcc, 66
CSP, see constraint satisfaction problem

consistent, 15
equivalent, 15
failed, 15
inconsistent, 15
smaller, 15
solved, 15
strictly smaller, 15

decomposition-based violation measure,
57

depth-bounded discrepancy search, 21
depth-first based search strategies, 21
depth-first search, 20
deterministic finite automaton, 72
DFS, see depth-first search
digraph, 7
direct descendant, 17
directed circuit, 8
directed graph, 7
directed Hamiltonian circuit, 11
directed Hamiltonian path, 11
directed Hamiltonian path problem, 11
directed path, 8
directed walk, 8
discrepancy, 20
discrepancy constraint, 104
discrepancy-bounded depth-first search,

21
domain, 15
domain partitioning, 89, 102
domain splitting procedure, 19

Ecl
i
ps

e, 27
edge, 7
edit distance, 74
edit-based violation measure, 74
enumeration, 19
equivalent CSPs, 15
excess function, 66

failed CSP, 15
feasible flow, 9
first fail, 18
flow, 9

feasible, 9

value, 9
Fuzzy-CSP, 55

gcc, 66
global cardinality constraint, see gcc

global constraint, 15
graph, 7

bipartite, 7
complement, 7
connected, 7
directed, 7
strongly connected, 8
undirected, 7

Hall interval, 36
Hall set, 38
Hamming distance, 73
hard constraints, 53
heuristic equivalence, 87
heuristic probability distribution, 90
hyper-arc consistency, 17, 32

improved limited discrepancy search, 20
inconsistent CSP, 15

Kleene closure, 72

labelling, 19
language, 72
Latin square, 96
LDS, see limited discrepancy search
limited discrepancy search, 20
linear programming, 12–14
local consistency, 16

arc consistency, 32
bounds consistency, 32
hyper-arc consistency, 32
of a CSP, 32
range consistency, 32
relational consistency, 35

Marriage Theorem, 30
matching, 8
Max-CSP, 55
maximize, 16
maximum clique problem, 12, 123
maximum matching problem, 8
meta-constraints, 55

soft, 81
minimize, 16

Index 151

minimum-weight flow, 10, 47, 59
minimum-weight flow problem, 10
minweight alldifferent, 47
most constrained first, 18
multiple arc, 7
multiset, 7

nocycle, 108
node, 17
nonbasic variable, 13
NP, 1
NP-complete, 1
NP-hard, 99

objective function, 16
operations research, 2

P, 1
parent, 17
Partial Latin Square Completion

Problem, 96
partial order, 18
Partial-CSP, 55
¹-partition, 88
partitioning, see domain partitioning
path, 7
polytope, 50
positive semidefinite, 14
Possibilistic-CSP, 55
propagation, see constraint propagation
propagation algorithm, 16

range consistency, 32
reduced costs, 13, 95, 102, 106
regular, 73
regular expression, 72
regular language, 72
relational consistency, 35
residual graph, 10
root, 8
rooted tree, 8

same, 78
SCC, see strongly connected component
search, 17–23
search strategy, 19

depth-bounded discrepancy search,
21

depth-first based, 21

depth-first search, 20
discrepancy-bounded depth-first

search, 21
limited discrepancy search, 20

search tree, 17
semidefinite programming, 14
shortage function, 66
simplex method, 13
sink, 8
smaller CSP, 15
soft constraints, 53
soft global cardinality aggregator, 81
soft meta-constraints, 81
soft alldifferent, 60–65

decomposition-based, 63
variable-based, 62

soft gcc, 65–72
value-based, 70
variable-based, 69

soft regular, 72–78
edit-based, 76
variable-based, 75

soft same, 78–81
variable-based, 80

solved CSP, 15
source, 8
stable set, 12
stable set problem, 12, 123
strictly smaller CSP, 15
string, 72
strongly connected component, 8, 41, 65
strongly connected graph, 8
subgraph, 8
subproblem generation tree, 89
subproblem solution tree, 89
successive shortest path algorithm, 10
symm alldifferent, 43
symmetric difference, 79

theta number, 124
tie, 87
tight set, 39
trace, 14
Travelling Salesman Problem, 12, 95,

107
tree, 7
TSP, see Travelling Salesman Problem

undirected graph, 7

152 Index

value graph, 29
value of a flow, 9
value ordering heuristic, 19

lexicographic, 19
random, 19
reduced cost-based, 102

value-based violation measure, 67
variable ordering heuristic, 18

first fail, 18
most constrained first, 18
smallest domain first, 18

variable-based violation measure, 57
vertex, 7
violation arcs, 58

violation measure, 57

decomposition-based, 57

edit-based, 74

value-based, 67

variable-based, 57

walk, 7

weighted alldifferent, see min-

weight alldifferent

weighted clique number, 12

weighted gcc, see cost gcc

weighted stable set number, 12

Weighted-CSP, 55

Samenvatting

In dit proefschrift onderzoeken we de toepassing van efficiënte technieken uit
de operationele research in constraint programmering voor het oplossen van
NP-moeilijke combinatorische problemen. Onder dergelijke technieken uit de
operationele research verstaan we bijvoorbeeld technieken uit de lineaire en
semidefinite programmering en uit de grafentheorie. Deze technieken worden
gekenmerkt door hun toepassing op specifieke beperkte problemen, en hun
geschiktheid voor optimaliseringsproblemen.

Een combinatorisch probleem wordt gemodelleerd door middel van vari-
abelen waarover eisen gesteld worden. Deze eisen worden “constraints” ge-
noemd. In constraint programmering worden dergelijke problemen opgelost
door systematisch zoeken en propagatie. Het zoeken gebeurt door alle mogeli-
jke combinaties van waarden voor de variabelen te genereren. Dit proces vormt
een zogenaamde zoekboom. Wanneer een combinatie aan alle constraints vol-
doet, is deze een oplossing van het probleem. Helaas is de zoekboom in het
algemeen exponentieel groot. Om het aantal combinaties, en dus de zoekboom,
te beperken, wordt er tijdens het zoekproces propagatie toegepast. Propagatie
houdt in dat voor elke constraint in het model apart wordt nagegaan of deze
nog vervuld kan worden. Bovendien worden bepaalde waarden gëıdentificeerd
die nooit tot een oplossing leiden. Door het verwijderen van deze waarden
wordt het aantal combinaties beperkt.

Het eerste deel van het proefschrift behandelt propagatie-algoritmen. We
beginnen met propagatie-algoritmen voor een van de bekendste constraints:
de alldifferent constraint. In de loop der tijd zijn er verschillende propagatie-
algoritmen voor deze constraint ontworpen. We presenteren deze algoritmen
op een systematische wijze, veelal gebaseerd op technieken uit de operationele
research, in het bijzonder uit de grafentheorie. Deze technieken zorgen ervoor
dat de propagatie-algoritmen efficiënt, en dus praktisch toepasbaar zijn. In het
nu volgende geval passen we deze technieken toe op vergelijkbare constraints.

Voor veel praktische problemen bestaat er geen oplossing, omdat er te
veel eisen zijn gesteld. Om toch een enigszins bevredigende “oplossing” te

154 Samenvatting

verkrijgen, worden deze problemen gemodelleerd met “zachte” constraints.
Deze zachte constraints mogen worden overschreden. Echter, de totale mate
van overschrijding van de zachte constraints moet hierbij worden gemini-
maliseerd. We presenteren een nieuwe, generieke, methode om dergelijke
zachte constraints efficiënt te propageren. Hierbij maken we gebruik van
grafentheoretische technieken voor stromen in netwerken. Onze methode
is toegepast op een aantal bekende constraints. Naast het verkrijgen van
efficiënte propagatie-algoritmen voor bekende “maten van overschrijding”
hebben we tevens een aantal nieuwe maten van overschrijding gedefinieerd,
met bijbehorende propagatie-algoritmen.

Het tweede deel van het proefschrift behandelt zoekmethoden. Hierbij
richten we ons met name op strategieën om een zoekboom te doorlopen. Hier-
voor worden heuristieken gebruikt. Op elk knooppunt in de boom wordt op
grond van een heuristiek bepaald welke tak, corresponderend met een mo-
gelijke waarde voor een variabele, als eerstvolgende wordt bezocht. Dergelijke
heuristieken hebben grote invloed op de efficiëntie van constraint program-
mering.

In sommige gevallen kan een heuristiek tussen twee of meer takken
geen keuze maken. We introduceren een nieuwe zoekmethode voor dergelijke
gevallen: stel de keuze tussen deze takken uit. Middels een theoretische en
experimentele analyse laten we de voordelen van deze methode zien. In speci-
fieke gevallen biedt deze methode bovendien de mogelijkheid om op effectieve
wijze technieken uit de lineaire programmering toe te passen op optimalise-
ringsproblemen, zoals uit het onderstaande blijkt.

Om constraint programmering beter te laten presteren in het geval van
optimalisatie problemen, introduceren we de volgende methode. Voordat we
de zoekboom doorlopen, lossen we een lineaire relaxatie van het probleem op.
Hieruit verkrijgen we onder anderen zogenaamde “gereduceerde kosten”, die
elk corresponderen met een keuze in de zoekboom. Daarop passen we deze
gereduceerde kosten toe als heuristiek. We laten experimenteel zien dat een
op gereduceerde kosten gebaseerde heuristiek zeer effectief is. In het geval twee
of meer takken corresponderen met dezelfde gereduceerde kostwaarde, passen
we bovenstaande methode van keuze-uitstelling toe. Dit stelt ons in staat,
in combinatie met “limited discrepancy search”, eerder optimaliteit van een
oplossing te bewijzen, door middel van technieken uit de lineaire program-
mering. Experimentele resultaten laten de toepasbaarheid en effectiviteit van
onze methode zien.

Tot slot behandelen we de mogelijkheid om een semidefinite relaxatie toe te
passen in constraint programmering. Vergelijkbaar met het voorgaande lossen
we een dergelijke relaxatie op voordat we de zoekboom doorlopen. Vanwege
de aard van de semidefinite relaxatie (er zijn geen gereduceerde kosten) ge-
bruiken we in dit geval echter de oplossing van de relaxatie als heuristiek. We
tonen experimenteel aan dat dergelijke relaxaties inderdaad effectief toegepast
kunnen worden in constraint programmering.

Titles in the ILLC Dissertation Series:

ILLC DS-2001-01: Maria Aloni
Quantification under Conceptual Covers

ILLC DS-2001-02: Alexander van den Bosch
Rationality in Discovery - a study of Logic, Cognition, Computation and
Neuropharmacology

ILLC DS-2001-03: Erik de Haas
Logics For OO Information Systems: a Semantic Study of Object Orien-
tation from a Categorial Substructural Perspective

ILLC DS-2001-04: Rosalie Iemhoff
Provability Logic and Admissible Rules

ILLC DS-2001-05: Eva Hoogland
Definability and Interpolation: Model-theoretic investigations

ILLC DS-2001-06: Ronald de Wolf
Quantum Computing and Communication Complexity

ILLC DS-2001-07: Katsumi Sasaki
Logics and Provability

ILLC DS-2001-08: Allard Tamminga
Belief Dynamics. (Epistemo)logical Investigations

ILLC DS-2001-09: Gwen Kerdiles
Saying It with Pictures: a Logical Landscape of Conceptual Graphs

ILLC DS-2001-10: Marc Pauly
Logic for Social Software

ILLC DS-2002-01: Nikos Massios
Decision-Theoretic Robotic Surveillance

ILLC DS-2002-02: Marco Aiello
Spatial Reasoning: Theory and Practice

ILLC DS-2002-03: Yuri Engelhardt
The Language of Graphics

ILLC DS-2002-04: Willem Klaas van Dam
On Quantum Computation Theory

ILLC DS-2002-05: Rosella Gennari
Mapping Inferences: Constraint Propagation and Diamond Satisfaction

ILLC DS-2002-06: Ivar Vermeulen
A Logical Approach to Competition in Industries

ILLC DS-2003-01: Barteld Kooi
Knowledge, chance, and change

ILLC DS-2003-02: Elisabeth Catherine Brouwer
Imagining Metaphors: Cognitive Representation in Interpretation and Un-
derstanding

ILLC DS-2003-03: Juan Heguiabehere
Building Logic Toolboxes

ILLC DS-2003-04: Christof Monz
From Document Retrieval to Question Answering

ILLC DS-2004-01: Hein Philipp Röhrig
Quantum Query Complexity and Distributed Computing

ILLC DS-2004-02: Sebastian Brand
Rule-based Constraint Propagation: Theory and Applications

ILLC DS-2004-03: Boudewijn de Bruin
Explaining Games. On the Logic of Game Theoretic Explanations

ILLC DS-2005-01: Balder David ten Cate
Model theory for extended modal languages

ILLC DS-2005-02: Willem-Jan van Hoeve
Operations Research Techniques in Constraint Programming

