
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

W.J. SAVITCH & P.M.B. VITANYI

IW 79/77

LINEAR TIME SIMULATlON OF MULTIHEAD TURING MACHINES
WITH HEAD-TO-HEAD JUMPS

Preprint

~
MC

APRIL

2e boerhaavestraat 49 amsterdam

BIBLIOTHEEK MATHEMATISCH ca,JTRU[IJi
-AMSTERDAM--

PJunted at .the Mathema.Uc.al. Cen:tJr.e, 49, 2e Boe1thaa.vu.tJr.a.a.t, Am6.teJr..dam.

The Mathemailc.al. CentJte, 6ou.nded :the 11-.th 06 Febltu.aJty 1946, .l6 a. n.on.
pll.o 6U -<..YIL>.tltt.Ltlo n. a.,i.m,i.n.g at .the pJz.omo:Uo n. o 6 pUILe mathema.UC-6 a.n.d Lu
a.pp.Uca.:Uon6. I.t .l6 .6pon6oJz.ed by .the NetheJci.,a.n.d6 GoveJtn.ment .thll.ough the
NetheJri,an.d6 OJz.ga.ru.za.Uon. 6oJz. the Adva.n.c.emeri.t 06 PU/Le RueMc.h (Z.W.O).

AMS(MOS) subject classification scheme (1970): 94A30, 68A20, 68A25, 68ASS

ACM-Computing Reviews-categories: 5.26, 5.25

*)
Linear time simulation of multihead Turing machines with head-to-head jumps

by

W.J. Savitch & P.M.B. Vitanyi

ABSTRACT

The main result of this paper shows that, given a Turing machine with

several read-write heads per tape and which has the additional one move

shift operation "shift a given head to the position of some other given

head", one can effectively construct a multitape Turing machine with a

single read-write head per tape which simulates it in linear time; i.e.

if the original machine operates in time T(n), then the simulating machine

will operati? in time cT(n), for some constant c.

KEY WORDS & PHRASES: Multihead Tu.:l'ing machines, Head-to-head jumps,

Linear time sinrulation.

This report will be submitted for publication elsewhere,

I • INTRODUCTION

A model frequently used in the analysis of the time complexity of algorithms

is that of a multitape Turing machine. This model allows only serial access to the

information held in storage. Since many algorithms are most naturally stated assuming

immediate access to several locations in memory, it is useful to have models which

allow more flexible memory access and which yield run times which are equivalent to

rnultitape Turing machine run times. A number of such models have been shown to be

equivalent to the basic multitape Turing machine model in this sense. In [3] Fisher

and Rosenberg proved that a multitape Turing machine, which is permitted a single

fixed reset square on each of its tapes and is given the ability to execute a jump

(fast rewind) to the reset square in a single machine step regardless of the distance

of the tape head to that square, can be simulated in real time by an ordinary multi

tape Turing machine. With a similiar motivation of handling files requires several

points of immediate two-way read-write access Fisher, Meyer and Rosenberg [2] showed

that a Turing machine with several multihead tape units can be simulated in real

time by an ordinary rnultitape Turing machine. Leong and Seiferas [6] have recently

improved this simulation so that it can be performed with fewer tape units. Their

simulation requires 4k - 4 tapes to simulate one k-head tape unit. Stoss [7] proved

2

earlier that, given a multihead Turing machine with storage consisting of a 2 head

tape unit,there exists a multitape Turing machine with 2 storage tapes which simulates

it in linear time. Additional motivation for studying these problems can be found in

the cited references. There the question arises whether the real time simulation of

an instantly rewindable tape unit can be generalized to multihead tape units or to

more general reset operations. Here we extend the capabilities of both multitape

Turing machines with fast rewind to a reset square [3] and multihead Turing machines

[2] as follows. We consider k head tape units with the ability to execute a jump from

one head to the position of another head in a single machine step regardless of the

distance between the heads concerned. Our main result shows that a k head tape unit

with the ability to execute such jumps can be simulated in linear time by 8k - 8

ordinary single head tape units.

This main result represents a substantial time savings over the obvious simula

tion algorithmwhich requires square time when the simulated unit has more than two

heads. In the obvious simulation algorithm jumps are simulated by simply moving a

head to its target square one square at a time. This yields a multihead tape unit

without jumps which can, in turn, be simulated in real time by single head units by

means of the results cited above. A brief look at the obvious simulation algorithm

will reveal the problems that arise in attempting to get an efficient simulationu

Consider first the obvious simulation algorithm for the two head case. Since

the heads are assumed to be together at the origin at time O and have moved apart at

most 2t 1 squares at the first time t 1 when a jump from one head to the other is per

formed, it takes the jumping head at most 2t 1 time to run over to the target head in

the simulation. Therefore, altogether less than or equal to 3t 1 time units are con

sumed by the simulating device when the jump 1s executed and both heads are together

again. ~;imilarly, with the next jump at time t 2 it takes at most 2(t2-t 1) time units

to execute the jump and the total time is less then or equal to 3t2 , and so on. Hence,

a two head ordinary tape unit needs at most 3t steps to simulate t steps of a two

head tape unit with head-to-head jumps. A straight forward generalization to the k

head case does not work. E.g., with 3 heads the two outer-most heads may run apart at

full speed while the remaining head keeps jumping between them. The simulation would
2

cost about t steps fort steps of the simulated device. We will show, however, that

a k head tape unit with head-to-head jumps can be simulated with ordinary multihead

tap,' units at at most the cost of increasing the running time by a constant multi

plicative factor.

One sense 1n which our simulation algorithm is weaker than related previous

work 1s that we obtain only a linear time simulation rather than a real time simula

tion. A closer inspection of the proof shows however, that it is not really very much

weaker. To simulate a Turing machine with head-to-head jumps by an ordinary, multi

tape Turing machine we proceed in two steps. First, we simulate a multihead Turing

machine with jumps by a multihead Turing machine without jumps in linear time. Then

3

we appeal to known results for a real time simulation of the multihead machine by a

machine with but one head per tape. This first linear time simulation is accomplished

with only a negligable increase (one symbol) in the tape alphabet. The previous

results concerning real time simulation by multitape Turing machines of tape units

with added capabilities, like in [2], [3] and [6], were obtained by a large increase

in the tape alphabet. This means, that when we keep the alphabet fixed to that of the

simulated machine, all of the above algorithms need be implemented such that they run

in linear and not in real time. So, when viewed in the (more realistic) framework of

machines with a fixed tape alphabet, the linear time result is not really that much

weaker than the "real time" results obtained previously. Of course, since we also use

one of these real time results in our simulation, our simulation can not be any fast

er and indeed is slower by a constant multiplicative factor which is easily computed

from the proofs.

2. PRELIMINARY DEFINITIONS

We assume that the reader is familiar with the definition of a multitape Turing

machine as a given in, for example, Hop croft and Ullman [SJ. All our models will be

variants of this basic model. As in [2], we will assume that our machines have a one

way, read-only input tape and a one-way write-only output tape. Our definition of

simulation is the same as that given in [2], namely "black box" simulation of the

input/output behaviour of the simulated device

We say that a machine M2 sirrrulates a machine M1 if the input/output (I/O) beha

viour of both machines is identical for all words in the input alphabet of M1; that

is , for a given input string, the ouput strings are the same for M1 and M2 , and for

each i, the output strings produced by the time the i-th input symbol is read are

also the same :Eor both machines. The simulation is said to be a linear time simula

tion provided there is a- fixed constant c such that: if M1 performs an I/O operation

at time t, then M2 will perform the same occurrence of thatI/O operation at time ct

or sooner. Using Hartmanis-Stearns speedup[4] we can frequently show that linear time

simulations can be improved to simulations "without delay". The simulation is said to

be without delay provided it satisfies the definition of linear time simulation with

c set equal to one. The notion of simulation without delay is slightly weaker than the

notion of real time simulation given in [3]. For real time simulation we require that

if M1 performs an I/O operation at time t then M2 performs the same occurrence of that

I/O operation at time exactly t. For simulation without delay, we merely require that

M2 perform the I/O operation at time tor sooner. In most contexts, the distinction

between real time simulation and simulation without delay is unimportant.

We also apply the concept of real time to computations of an individual machine.

A machine runs Ln real time if it reads a new input symbol in every step (until the

input, if any, 1s exhausted) and writes an output symbol in every step of the compu

tation. To accept a language in real time the machine must run in real time and must

4

indicate acceptance (when appropriate) as soon as the input has been read. Unless

specifically stated to the contrary, all machines are detenninistic and have a stor

age tape alphabet of at least two symbols. In order to establish out tenninology, we

repeat the following infonnal definition taken from [2].

A Turing machine (TM) consists of a finite state control unit, special one-way

(one-head) read-only and write-only devices for input and output, and storage. For a

multihead TM the latter consists of a two-way linear tape, unbounded at both ends and

divided into an infinite number of discrete squares and a fixed number k ~ of read-

write heads. The tenn tape will always refer to the storage tape of the TM and never

to an 1/0 device. Initially all heads on a tape are scanning the same tape square. A

step in a computation of a multihead TM is uniquely determined by the state of the

control unit, the ordered set of symbols scanned by the storage tape heads and the

input head, and a partition of the set of heads into classes of heads which are

scanning the same tape square. (In other words, the control unit can detect which

heads are coincident). In one step the control unit may cause each head to write a

symbol on the tape square scanned (several heads scanning the same tape-square must

write the same symbol), independently shift each head at most one square in either

direction, and enter a new state. As part of this single step it also has the

options to advance the input head and/or output a symbol. The extension to a multi

tape- multihead TM is straight forward, and a multitape TM is such a device with but

one head per tape. Note that each multitape-multihead TM can always be simulated by a

multihead TM in real time by dividing the single tape 1.n tracks, one for each tape,

on which the appropriate heads compute. Now we introduce a device, called a jump TI1,

which is a TM with head-to-head jumps.

DEFINITION A jump TM is a multihead TM which at each instant of time can perform a

move of the following form.

(i) A regular move as described above for a multihead TM followed by

(ii) A redistribution of the tape heads over a nonempty subset of the currently

scanned tape squares.

All this constitutes a single one step move of the jump TM. The moves are uniquely

determined as in the case of the ordinary multihead TM's.

3. MAIN THEOREM

The key result of this paper is the following:

THEOREM I • Let M be a jump TM 11n: th k heads and s tape symbols. Then M can be si,mu

lated by an oPdinar>y multihead TM M' with s + l tape symbols" k tapes with two heads

apiece and one tape 1Jith k - I heads such that M' needs at most (2k - I) t steps to

simulate t steps of a enmputation by M.

The proof of Theorem I proceeds by a series of Lemmas. First we introduce the

5

notion of a RJTM ("restricted jump Turing machine"). This device is the same as a

jump TM except that when it redistributes heads, it must leave at least one head at

each scanned tape square.

LEMMA 2. A k head RJTM M withs tape symbols can be simulated in real time by an

ordinary multihead TM M' withs+ I tape symbols and k tapes with two heads per tape.

PROOF Indicate the leftmost and rightmost tape squares ever visited during the

previous computation of M by a marker$. Let M' beak tape TM with two heads per

tape. On k - I tapes of M' we maintain the k - I tape segments between two consecu

tive heads of M. On the remaining tape of M' we maintain the tape segments between

the rightmost head and the right marker, and the leftmost head and the left marker of

M. The situation is depicted in Figure I.

M M'

Tape I

Tape 2

Always, s.
J

s. ors.
J J

s.'
J

l:5j:5k

Tape 3

hk-1 ~

I ~:-11 .. -1 ·k
Tape k

Figure I. RJTM simulation

A move to the right of a head hl' I :5 l < k, in Mis simulated in M' by moving

both copies of hl to the right. The copy of hl which is leftmost (i.e. the one on the

l + 1 -th tape simulating the tape segment (hl' hl+I)) leaves a blank square, and the

copy of hl which is rightmost (i.e. the one on the l-th tape simulating the tape

segment (hl-l ,hl) or ($,hl) for l = I) leaves the symbol it ought to have printed in

the just scanned square. Similarly, for left moves of hf, I < l :5 k. Tape I of M'
simulates both the left- and the rightmost tape segments of M and when a head reads $

the finite control remembers whether this was a left- or rightmost head and for all further

6

moves to the left or right, respectively, of this head assumes that it reads blank

symbols and keeps the head copy on tape I immobile. Hence, at all times one head copy of

ht in M' is scanning the symbol ht scannes in M. We leave it to the reader to verify

that heads passing each other present no difficulties. It is also clear that if i

heads coincide we have i - I tapes in M' on which the heads coincide, and a redistri

bution of the heads of M over the scanned tape squares just means a renaming of the

heads in the simulating M'. This manipulation of head identities is performed by M'
's finite control unit. D

Suppose we want to simulate a jump TM M by an RJTM M'. To simulate a jump of

h. to head h. in M all M' has to do is to have head h. run to one of its neighbors,
i J i

and then, disappear and reappear in one step at the position of head h .. All this
J

costs the least time if the head which wants to jump runs to its nearest neighbor.

To be able to do so, we equip our RJTM with a k - I head tape unit which keeps track

of the lengths of the k - I tape segments induced by the k heads on M's tape. Each of

these k - I heads keeps track of the length of one segment by positioning itself d

squares to the right of an origin to record the fact that the segment has length d.

In order to be able to tell which of two segments are shorter, the finite control

keeps track of the left to right order of the k - heads. The fact that the lengths

of tape segments might be increased or decreased by two in one step is accomodated by

giving each square a value of two and using the finite control to remember the

remainder for odd lengths. All this can be done with but two tape symbols. (With the

aid of the other tapes used in the simulation, it can even be done with just one tape

symbol). By using this tape unit, the control unit can decide which head is a head's

nearest neighbor, the right or the left one. By Lemma 2 we have therefore:

LEMMA 3 A k head RJTH M capable of deciding whether the nearest neighbor of a head

-is the left or the right one can be sirrrulated in real time by an ordina11y multihead

TM M' 1»i th k hJJo head tape uni ts and one k - I head tape unit. Fw0 thermore ~ if M has

s tape symbols, then M' need have only s + tape symbols.

LEMMA 4 Given a k head jump TM M3 we can construct a k head RJTM M' of the type des

cribed in Lemma 3 such that M' simulates Min at most (2k - 1) times the time used by

M. Further>more 3 M' may be taken to have the same tape alphabet as M.

PROOF We will make a few simplifying assumptions about M, without losing any gene

rality. We assume that the heads of M are numbered I ,2, ... ,k. If in a single move head i

jumps to the square occupied by head j, then for this move, i is called a jump head

and j is called a tar>get head. By modifying the finite control of M so that it re

names heads in a judicious manner, we can assume that, in every move, no head is both

a jump head and a target head. Furthermore, we can assume that each jump head has a

unique target head.

M' performs a step by step simulation of M. That is, if an M computation passes

7

through a certain sequence of storage configurations, then the simulating M' computa

tion will pass through exactly the same storage configurations. M' will, however,

require a number of steps to change its .storage configuration in a way corresponding

to a single step of M. In order to simulate a single step of M, M' first performs a

a direct simulation of the regular multihead TM part of M's move (clause (i) in the

definition of a move) and then M' redistributes the tape heads. To redistribute the

tape heads M' moves the heads in numerical order, first repositioning head I if

necessary, then repositioning head 2 and so forth. A jump head is repositioned by

having it run to its nearest neighbor and then appear again at the position on the

tape of the target head. Hence, to simulate t steps of M, M' needs a number of steps

equal tot plus the combined distances to nearest neighbors involved in simulating

jumps M executed during its t step computation. We formalize this by defining for a

particular t step computation of M, the functions jump and cost. The domain of jump

is the set integer time instances T, $ T $ t. If I $ T $ t, then jumpT denotes the

value of jump at T; jumpT is itself a partial function from K to K, where K = {I,

2, ... ,k}. If head i is a jump head at time T then jump (i) = j where j is the target
T

head for i; otherwise jump (i) is undefined. The function cost has two arguements: a
T

time instance T and a head number i. If i is a jump head at time T, then cost(T,i)

is the distance from head i (of M') to its nearest neighbor at the time M' simulates

the jump by head i; otherwise cost(T,i) = 0. So in this notation, M' simulates at

· f ., 1.·n t1.·me t' -- t + .. t "k (·) d h h ' step computation o m ~T=I ~i=I cost T,1. an we musts ow tat t $

(2k-l)t. So it will suffice to show.

CLAIM t k
L L cost (T,i) $ 2(k-l)t

T=l i=I

PROOF OF CLAIM We depict the jumping pattern of M by a tree-like diagram. Each arc

of the tree is labeled by some i, 1 $ i $ k, identifying the arc as corresponding to

head i. The vertical T-coordinate measures elapsed run time starting at T = I above

and ending with T = t + 1 below. For each integer coordinate T there will be exactly

k arcs, labelled 1,2, ... ,k, innnediately above (T > I) and innnediately below coordi

nate T, The diagram is constructed as follows. The root is at T = I; k arcs eminate

from the root and are labeled 1,2, ... ,k. Suppose we have constructed the diagram up

to some integer coordinate T, It is extended to T + I as follows.

(i) If at time T head i is neither a jump nor a target head, then the arc labelled

i is extended to T + I.

(ii) If j is a target head and i 1,i2 , ... ,il are all i such that jumpT(i) = j, then

the arcs labeled ih(I $ h $ l) are terminated by a node at level T, The arc

labelled with j is terminated at level T by a node from which emanate l + 1

arcs labelled i 1,i2 , ..• ,il,j which are extended to level T + I.

Hence the diagram depicts the jumping history of M up to time t + I. A sample

diagram is given in Figure 2.

T

I

's

t+l

Figure 2. Tree-like Diagram

jumps

jump (j) i
'1

jump (2)
'2

jump (i)
'2

jump (1)
'3

jump (i)
'3

jump (I)
'4

jump (2)
'4

jump (j)
'4

jump (k)
's

jump (I)
's

jump (j)
'6

jump (i)
'7

jump (j)
'7

jump (i)
'8

jump (1)
'8

jump (j)
'8

j

2

2

k

k

k

i

2

i

k

2

2

2

k

8

We now describe a pruning procedure for the diagram that associates with each

terminal node an ancestor splitting node. If a terminal node represents a jump by

head i at time, and the ancestor node associated with it is at level,', then, at the

time M' simulates this jump, head i will have a neighbor head at a distance of at

most 2(, - ,') squares away. So cost (,,i) $ 2(, - ,'). Thus the pruning procedure

will allow us to estimate the values of the cost (,,i) and ultimately the value of

t'. The terminal nodes are pruned off for levels T = I ,2, ... ,t in that order and

within each level Tin the numerical order of labels on arcs terminating at these

nodes. In other words, each terminal node represents a jump in Mand these jumps are

pruned off in the order in which they are simulated by M'. To prune a node, simply

remove the node and the branch leading up to its nearest splitting ancestor. This

nearest splitting ancestor is the ancestor node associated with the terminal node.

If a terminal node represents a jump by head i at time T and the associated split

ting node is at level 1 1 , then define f(1,i) = 1'. Note that the act of pruning may

change some splitting nodes to nonsplitting nodes. After each pruning the tree is

changed and thepruningprocedure for the next node to be pruned is performed on this

changed tree. The pruning for the diagram in Figure 2 is illustrated in Figure 3.

v

I

fj

' ' 'I
I
I

L -------- ,,,,.,,,.

v--------r~ v/
I

L

Figure 3. Pruned Tree-like Diagram

9

If a terminal node represents a jump by head i at time 1 and the associated splitting

node is at level 1', then the splitting node indicates that head i and some other

head were together at time 1'. Because of the order of the pruning, it also follows

that this other head did not jump between times 1' and 1. So when M' wishes to simu

late this jump by head i at time 1, head i and the head which was coincident with i

at time 1' can be at must 2(1 - 1') 2(1 - f(1,i))squares apart. So cost(1,i) ~

2(1 - f(1,i))as promised. Noting that (1 - f(1,i))is equal to the length of the cor

responding pruned off branch, we can easily estimate the sum mentioned in the claim.

Let T be the sum of the (1-coordinate) lengths of all arcs in the original

tree. Let R be the sum of the (1-coordinat~ lengths of all the arcs after the tree

10

has been pruned .. Since the tree has width at most k at each point, T ~ kt. Since the

heads end up some place after t time units, there must be a path of length t left in

the tree after pruning. so R 2: t. Now,

t k t k

Z: Z: cost (T,i) ~ L L 2(T - f(T,i» ~ 2(T - R) ~ 2(k - l)t
T=I i=l T=I i=I

and the claim is proven. D

From the proof we see that in fact the order in which the jumps are simulated

at each level does not matter, and neither does it matter if they are all simulated

in parallel. This follows since T - R is fixed. The maximum value in cost of 2(k-l)t

can only be reached if all heads jump together at time t and only if, on the physical

tape, each head is able to aquire certain distances to all other heads which is

impossible except for 2 heads on a linear tape.

PROOF OF THEOREM I Immediate from Lemmas 3 and 4. □

4. EASY COROLLARIES

By using Hartmanis-Stearns speedup we can reduce the "cost" factor in the claim

in the proof of Lemma 4 to less than or equal to Et, for an arbitrary small constant

£. Therefore the run time of (2k - l)t in Theorem I can be reduced to (I + E)t,

provided we are willing to expand the tape alphabet. In [6] it is shown that a k head

tape unit (without jumps) can be simulated in real time by 4k - 4 tape units with one

read-write head per tape. Combining these two observations we get,

THEOREM 5 Let M be a jump TM with k heads. Then M can be simulated by an ordinary

multitape TM M" with 8k - 8 single head tapes such that M' need at most (I + E)t

steps to simulate t steps of a computation by M. Here£ is an arbitrary small~ non

zey,o constant.

If the machine to be simulated does not run too slowly then the above linear

time simulations can be improved to simulations without delay.

DEFINITION A machine Mis said to operate in at least linear' time if there is a

constant c > I such that, in every computation M takes en or more steps before read

ing then-th input symbol.

All aspects of the above simulations, except for one move per input symbol rea~

can be modified so that the run time is multiplied by an arbitrarily small constant.

This is accomplished by a standard application of Hartmanis-Stearns speedup. For

machines that run in at least linear time, this speedup converts linear time simula

tions to simulations without delay. So, we get

BIBLIOTHEEK M.L,THEr\/11'\TISCH CENTRUM
--A!VISTERDAM--

I 1

THEOREM 6 Let M be a jump TM with k heads and which operates in at least linear

time. Then M can be simulated without delay by an ordinary multitape TM with Bk - 8

single head tapes.

5. NONDETERMINISTIC COMPUTATIONS

A nondeterministic machine M2 is said to simulate a nondeterministic machine M1

if the possible I/0 behaviours of M1 and M2 are the same. For time bounded simula

tions, we also require that, for every M1 computation, there is an M2 computation on

the same input such that: the M2 computation simulates the M1 computation within the

same time constraints as those given for deterministic machines. All the Turing

machines discussed so far were deterministic. Everything above stays valid if we ass

ume that the devices were all of the corresponding nondeterministic varities. More

over, we can delete the extra k - 1 head tape unit from the RJTM in Lemma 3 because

the nondeterministic variety of the RJTI1 can "guess" whether a head's nearest neigh

bor is the left or right one. Therefore, we have,

THEOREM 7 Let M be a nondeterministic jump TM with k heads and let E > O. Then M

can be simulated by a nondeterministic, rrrultitape TM M' with 4k single head tapes

such that M' needs at most (I + E)t steps to simulate t .steps of a computation by M.
FuPthermore, if M operates 1,n at least linear time, then M' can simulate M without

delay.

6. ACCEPTING DEVICES

The above constructions were for on-line devices with an output tape. Clearly,

the same constructions go through for the corresponding off-line devices viewed as

acceptors. Hence, among other obvious corollaries, we get

THEOREM 8 If a language A is accepted by a deterministic (respectively nondetermin

istic) jump TM Min time T(n), then A is accepted by an ordinary deterministic

(respectively nondeterministic) multitape TM M' in time n + ET(n), for an arbitrarily

small constant E > 0.

The term n in the run time of M', given in the last theorem, is truly important

only if M runs in real time. Since for acceptors nondeterministic real time and non

deterministic linear time are equivalent [I], M' (in Theorem 8) can be taken to run

in time T(n) in the nondeterministic case. This is true even if T(n) = n.

REFERENCES

[J] BOOK, R.V. & S.A. GRElBACH, Quas-i-realtime languages, Math. Systems Theory_ii_

(1970), 97-111.

[2] FISHER, P. C., A. R. MEYER & A. L. ROSENBERG, Real time simulation of multihead

tape units, JACM ..!.2_ (1972) 590-607.

12

[3] FISHER, M.J. & A.L. ROSENBERG, Limited random access Turing machines, In: Proc.

9-th SWAT, IEEE, (1968) 356-367.

[4] HARTMANIS, J. & R.E. STEARNS, On the computational complexity of algorithms,

Transactions of the AMS l.!..l. (1965), 285-306.

[5] HOPCROFT, J.E. & J.D. ULLMAN, FoY'mal languages and their relation to automata,

(1969), Addison- Wesley, Reading,Mass.

[6] LEONG, B. & J. SEIFERAS, New real-time simulations of multihead tape units, Proc.

9th ACM Symposium on Theory of Computing (1977), (to appear).

[7] STOSS, H.J., k-Band Simulation van k-Kopf Turing Maschinen, Computing 6 (1970)

309-317.

