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ABSTRACT 

In many distributed computing environments, processes are con
currently executed by nodes in a store-and-forward network. Distri
buted control issues as diverse as name-server, mutual exclusion and 
replicated data management, involve making matches between 
processes. The generic paradigm is a formal problem called "distri
buted match-making''. The applications require solutions to weighted 
versions of the problem. We define new multi-dimensional and 
weighted versions, and the relations between the two, and develop a 
very general method to prove lower bounds on the complexity as a 
trade-off between number of messages and "distributedness". The 
resulting lower bounds are tight in all cases we have examined. 

1. Introduction 

A distributed system consists of computers (nodes) connected by a communication 
network. Each node can communicate with each other node through the network. 
There is no other communication between nodes. Distributed computation entails 
the concurrent execution of more than one process, each process being identified 
with the execution of a program on a computing node. Communication networks 
come in two types: broadcast networks and store-and-forward networks. In a 
broadcast network a message by the sender is broadcasted and received by all 
nodes, including the addressee. In such networks the communication medium is 
usually suited for this, like ether for radio. An example is Ethernet. Here we are 
interested in the latter type, store-and-forward networks, where a message is routed 
from node to node to its destination. Such networks occur in the form of wide area 
networks like Arpa net, but also as the communication network of a single multi
computer. The necessary coordination of the separate processes in various ways 
constitutes distributed control. The situation gets more complicated by assuming 
that processes can migrate from host to host, e.g., to balance the load in the system. 
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We focus on a common aspect of seemingly unrelated issues in this area, such as 
name server, mutual exclusion and replicated data management. Namely, processes 
residing in different nodes need to find each other, without knowing the host 
addresses of each other in advance. E.g., in a name-server a client process wants to 
know the host address of a server process providing a particular service; in distri
buted mutual exclusion a process that wants to enter the critical section needs to 
know whether some other process wants to do so as well (see [7] for a general over
view). This aspect is formalized in [4] as the paradigm "Distributed Match
Making." Roughly speaking, the problem consists in associating with each node v 
in the network two sets of network nodes, P(v) and Q(v), such that the intersection 
P(v)nQ(v') for each ordered node pair (v,v') is nonempty. We want to minimize 
the average of IP(v)I + jQ(v')I, the average taken over all pairs (v,v'). This 
average is related to the amount of communication (number of messages) involved 
in implementations of the distributed control issues mentioned. In the application 
to name-server: vis a server that posts its whereabouts in all nodes P(v), and v' is a 
client that looks for a particular service (as provided by v) in all nodes in the query 
set Q(v'). Nodes in P(v)nQ(v') can establish contact between v and v' by e.g. 
sending a message to v with the address of v'. In distributed mutual exclusion the 
interpretation is about the same, except that there is no difference between client 
and server, i.e. P(v)=Q(v), see e.g. [3], [4]. For application to replicated data 
management see [4], final version. We make the simplifying assumption that the 
involved processes do not migrate during execution of a match-making instance. 

Previously, for instance in name servers in distributed operating systems, only 
ad hoe solutions were proposed, e.g, [5] and references in [4]. Lack of any theoreti
cal foundation necessarily entailed that comparisons of the relative merit of 
different solutions could only be conducted on a haphazard basis. The question 
about how to distribute the name-server in a distributed operating system that is 
currently being implemented [6], prompted our initial investigation in distributed 
match-making [4]. Our analysis leads to a natural quantification of the distributed
ness of a match-making algorithm, and trade-offs between number of messages and 
distributedness. Thus, the complexity results hold for the full range from central
ized via hierarchical to totally distributed algorithms for match-making. As pointed 
out in [4], in many applications we are actually interested in weighted versions, i.e., 
we want to minimize the average of jP(v') I +a(v',v) I Q(v) I- It turns out that to do 
so we have to look at multi-dimensional versions first. We develop a very general 
argument to obtain lower bounds on both versions that include as special case the 
ones in [ 4]. The structure of the paper is as follows. First we formally define the 
multidimensional version and the weighted version of the problem. In the next sec
tion we derive the lower bound trade-off (Theorem 1) on the multidimensional case. 
We then show that the lower bound is tight for the binary n-cube topology and 
projective n-space topology, by exhibiting distributed algorithms that match the 
lower bound. In the final section, we derive the promised lower bound on the 
weighted version of distributed match-making (Theorem 2). This development 
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enhances applicability of the theory of distributed match-making in practical situa
tions. 

1.1. Formal Framework 

To simplify notation from now on let the set N of network nodes be equal to 
{1, ... ,n }. Let P = (Pa, ... ,Ps) be a communication strategy in a given network as 
follows. (For convenience, with some abuse of notation, we use letters a through s 
to denote both node variables and the numbers 1 through s.) For each j = a, ... ,s, 
P1: N ~ 2N is a total function, and for each s-tuple (a',b', ... ,s') of nodes 
Pa(a')nPb(b')n ... nPs(s')=f:.0. For any s-tuple (a',b', ... ,s') of nodes let 
m[P](a', ... ,s') = IP a(a') I + ... + I Ps(s') I be the number of messages required for the 
match-making instance (a, ... ,s) following strategy P. The average number M[P] of 
point-to-point messages necessary for match-making is (deleting here and elsewhere 
[P] because P is understood): 

M - -s""' (I ') - n ""m a , ... ,s , (1) 

with the sum taken over (a', ... , s') E Ns. Let us interpret the case s = 2 in terms of 
the name-server, in order to give the intuitive background for considering weighted 
versions. Since a server i posts its whereabouts at all the nodes in P(i), by sending 
messages to all these nodes, and a client j queries each node in Q(j), we have 
P=(P,Q). The number m(i,j) of point-to-point messages in the match-making 
instance (i,j) must be at least I P(i) I + I QU) I . Another more general situation 
arises when the average call for a service i by a client j occurs a(i,j)-times more 
often than the average posting of a service available at i. Here one wants to minim
ize (1), with m(i,j) = jP(i)I + a(i,J)IQ(J)I. A similar case arises when in the 
match-making instance (i,j) the server i is allowed to post p (i,j)-many times to the 
nodes in P(i) and the customer j is allowed to query q(i,j)-many times the nodes 
in Q(j) in order to increase reliability of the network. In this case the number 
m(i,j) of point-to-point messages is equal top (i,j) I P (i) I + q (i,j) IQ (j) I · 

In contrast to the post-query case (s =2), which is best visualized in two 
dimensions, the more general case (s > 2) is best visualized in s dimensions. (Each 
axis is marked with a node from 1, .. .,n and at the vertex (a, ... ,s) a point of the 
intersection nPr is located.) To obtain lower bounds on the complexity of the 
weighted versions and the versions with retransmission, it turns out that it is advan
tageous to analyse the generals-dimensional case first. 

2. The s-Dimensional Lower Bounds 

In this section the main lower bound results are derived. In order to be able to 
prove the most general results possible it will be necessary to formulate the 
required concepts with a higher level of abstraction than in the introduction. The 
motivation however is derived from the previous section, and the results are neces
sary to resolve weighted match-making in the next section. 
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Let N,N0 , ••• ,N5 be nonempty sets, and n=INI, na=INal.···· ns=INsl· 
For convenience we set N = { 1, ... ,n }. lt is important to note that, in this general 
setting, N 0 , ••• , Ns are arbitrary finite sets (of integers), in particular, they can have 
more elements than N. Consider a strategy P = {P0 (a'), ... ,Ps(s'): 
a'EN0 , ••• ,s'EN5 }, with total mappings Pr:N,~2N, and Pr(x) = IP,(x)I, for 
r E{a, ... ,s}. Let Kibe the set of s-tuples (a', ... ,s') such that i EP0 (a')n · · · nPs(s') 
and let ki = I K; I · (lt is clear that if each of these intersections is nonempty then 
k 1 + · · · + kn ;;;;;:: na · · · n9 , and equality holds if all intersections are singleton 
sets.) For the given strategy P define the product II and the sum M associated with 
P by the following formulas: 

II = (n 0 • • • n9 )- 1 Da(a') · · · p5 (s') , 

M = (n0 • • • n5)- 1 ~[p0(a')+ · · · +ps(s')], 

with the sums taken over (d, ... ,s')EN0 X ... XN5 • Further, for r E{a, ... ,s} define 

M, = n; 1 »,(r') 

(with summation over r' ENr), so that 

II = Ma · · · M5 and M = Ma+ · · · +Ms . 

The main result of the section is the following 

Theorem 1. For any strategy P the following inequalities hold: 

(2) 

II;;;;;:: (na · · · n5 )- 1 [ ~ k} 15]
5 

and M;;;;;:: s(na · · · n5 )- 115 [ ~ k} 15 ]. 

i EN i EN 

Remark If na = · · · = n5 = n then 

II;;;;;:: [n- 1 _,f k} 15]
5 

and M;;;;;:: sn- 1 [.fkf 15 ]. 

r=l 1=! 

Additionally considering the symmetric case where all k;'s are equal, viz., 
k; =n 5 - 1, i = 1, ... ,n. Then Theorem 1 specializes to the important "truly distri
buted" case: II ;;;;;:: n 5 - 1 and M ;;;;;:: sn (s - I) / s. We will find matching upper bounds 
below. 

Remark. M equals the right-hand side of the inequality in which it occurs, 
exactly when Ma '= · · · = M5 , i.e. the strategy P is optimal exactly when the 
average number of messages is equally balanced in all directions. 

Proof: The following inequality, also known as inequali~y of the arithmetic and 
geometric means, holds for s-many nonnegative real numbers a, ... , o, 

a + · · · + o;;;;;:: s(a · · · 0) 115. (3) 

In fact, equality holds exactly when all the surnmands are equal [2]. Thus, the ine
quality in the Theorem concerning the sum M follows immediately from the 
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inequality concerning product II, identities (2), and inequality (3). It is only left to 
prove the inequality concerning II. For each rE{a, ... ,s} and each i EN, define the 
set Hr,i r;;,.Nr such that r' EHr,i iff for some s-tuple (a', .. /, .,s') holds 

i EPa(a') n ... nPr(r') n ... n Ps(s'). 

Set hr,i = I Hr,i I· Clearly, for all i = 1, ... ,n, 

h .... h . = IH x XH I a,1 s,1 a,i · · · s,i 

;;.. I {(a', ... ,s'): i EPa(a')n ... nPs(s')} I = k;. (4) 

Now, for all rE{a, ... ,s}, 

~ hr,i ~ L I {r' : i EPr(r')} I 
iEN iEN 

= L L I {(i,r') : i EPr(r')} I 
i EN r'EN, 

= 2: j{i: iEPr(r')}I 
r'EN, 

= L Pr(r') = nr Mr . 
r'EN, 

To obtain the lower bound on II, we now proceed as follows. 

II = Mi · ··Ms (by (2)) 

· "' (na · · · n,)- 1 [.~}'·· l · · · [,~}'·'] 
=(na···n5 )-l 2: ha,0t.···hs,<J 

0t., .. .,<JEN 

(5) 

(by (5)) 

Set S(a, ... ,p,a) =ha.a··· hr,phs,a· By cyclically rotating the indices o:, ... ,p,a of 
S(a,. . .,p,a) one obtains the followings-many summands: 

a 1 = S(a, ... ,p,a) = ha a · · · h5 (J 

' ' 

a1 = S(/3,. .. ,a,a) = ha,{3 · · · hs,0t. 

(6) 

as = S(a,. . .,7T,p) = ha,<J · · · hs,p. 

Using inequalities (3) and (4) and regrouping terms in the resulting product 
a 1 · · · a5 it is easy to see that 
a1 + · · · + a5 ~s(a1 · ··a5 ) 115 ~s(ka ···k0 ) 115 . After adding the s-many 
summands of (6), each one summed with respect to a,. .. ,a, dividing again by s to 
eliminates-multiple copies, and taking into account the last inequality, we obtain: 

0t., ... ,aEN 0t., ... ,<JEN 
[ 2: k} Is] s 
iEN 



366 

This completes the proof of the lower bound of II, and hence the proof of the 

theorem is complete. 0 

Corollary. Both propositions 1 and 2 of [4] are immediate consequences of 

Theorem 1. 

3. Optimality 

We show that Theorem I is optimal in some special cases (which are of sufficient 

generality), by exhibiting matching strategies. 

(Multidimensional Cube Network) Let the number of nodes be n = 2d and 
suppose that s is a divisor of d. Addresses of nodes consist of d bits, like 
u 1 u 2 · · · ud. Nodes are connected by an edge exactly when they differ by a single 
bit. Let P = (P 1, ... ,P5 ) be a strategy, and, for each r E{l, ... ,s}, let Pr(u1 · · · ud) 

be the set 

{x1 ···x(r-J)d/sU(r-l)d!s+l ···urd/sXrdls.,..1 ···xd:x;E{0,1}}. 

Clearly, each of the above sets has size 2(s - 1)d1 s and k; = 2Cs -- 1 )d = n s - 1 . Th us, 

one easily obtains that M:,.;; sn(s-l)ls, i.e. the average number of point-to-point 

message transmissions is at most sn (s - I)/ s. In view of Theorem I this strategy is 

also optimal. 

(Multidimensional Projective Plane). Consider generalized mutual exclusion in 

a distributed setting, where s -1 processors are allowed to be in the critical section 
simultaneously, but not s or more processors. For background and nondistributed 
solutions we refer to [1]. In [3], Maekawa considers the distributed version of 
mutual exclusion for s =2, the commonly studied variant. In our terminology, for 

mutual exclusion with s = 2 we can set P 1(i)=P2 (i), which is some sort of sym
metry condition. Each instance of mutual exclusion contains a match-making 
instance [4]. For the truly distributed case, with k 1 = ... =kn =n and s =2 we find 
that on the average each match-making instance takes at least 2Vn messages [4]. 
Maekawa obtains a similar lower bound, and exhibits an algorithm that achieves 
5 Vn [3]. Theorem l gives a lower bound of sn (s - I)/ s for the generalized version. 

We exhibit an algorithm that achieves this. The s-dimensional projective plane 
PG (s, k) has k5 + ks - l + · · · + 1 = n nodes, each node is incident to 

k 5 - I + k 5 - 2 + · · · + 1 hyperplanes, and each hyperplane contains 
k 5 - I + k5 - 2 + · · · + 1 nodes. Each s-element set of hyperplanes intersects in 

precisely one node. Let P=(P 1,. .. ,P5 ) be a symmetric strategy with each query set 
S (i) = P 1 (i) = · · · = Ps(i) of a node i consists of the set of 
e- 1 + ks - 2 + · · · + 1 nodes incident to a hyperplane containing node i. It 

does not matter which hyperplane we pick, because any s hyperplanes intersect in a 
single node. The average cost M of point-to-point messages associated with a par
ticular mutual exclusion instance is therefore (generalizing Maekawa's method for 
s =2 [3]) O(s(k5- 1 + e- 2 + · · · + 1)) ~ O(snCs-l)ls). In view of Theorem 
1 this strategy is also optimal. 
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4. Weighted Distributed Match-Making 
We can now examine weighted distributed match-making. This can be formulated 
as communication strategies with multiple transmissions allowed. We use Theorem 
l to derive significant lower bounds on the average number of message transmis
sions in distributed networks when multiple transmissions are allowed. Consider a 
strategy P=(Pai ... ,P5 ), with all parameters as above, and define a weighted version 
of m. I.e., define the number of messages for the match-making instance 
S =(a', ... ,s') as m[P](S) = la(S)pa(a') + · · · + l5(S)ps(s'), where each 
la(S), ... ,ls(S) is a positive integer. Then, with S as above, define Nr,r'' for all 
r E { a, .. ,s} and r' ENr so that it satisfies: 

SEN0 X ... XN, 

~ [ ~ / 0 (S)]pa(a') + · · · + ~ [ ~ ls(S)lp5 (s') 
dE~ SE~ ~E~ SE~ 

= ~ Na,a'Pa(a') + · · · + ~ Ns,s'Ps(s') , (7) 
s'EN, 

where Na,d = "LsES)a(S), etc. Define N'r=~r'EN N,,r. Consider the following 
r 

related strategy Q for the set of nodes N. 
Q = {Q0 (a'), ... ,Q5 (s'): a'EN'a, ... ,s1 EN1

5 }, such that, for each r E{a, ... ,s} and 
each y ENr there are Nr,y distinct x's, with Qr(x)=Pr(y). I.e., Q is formed from 
the strategy P by repeating each set Piy), Nr,y·times. Let qr(x) = I Qr(x) I· Note 
that we have chosen the definitions such that 

~ q,(r') = ~ Nr,r'Pr(r') , 
r'EN', r'EN, 

for all r from a through s. Then we can relate M[P] with II[Q]: 

M[P] = (na · · · n5 )- 1 [ ~ qa(a') + · · · + ~ %(s')] (by (7)) 
a'EN'0 s'EN', 

;,,, s(na · · · n5 )- 1 [ [ }: %(a')] · · · [ }: q5 (s')] ] 11 s (by (3)) 
dEN'0 s'EN', 

= s(na · · · n5 )- 1(N'a · · · N'5 ) 115II[Q] 115 (by definition) 

~ s(na · · · n5 )- 1 ~ k;[Q] 115 . (by Theorem 1) 
iEN 

It remains to compare the quantities k;[P], k;[Q]. This can be done by comparing 
the sizes of the sets K;[P], K;[Q]. Now, for each s-tuple (a', ... ,s') such that 
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i EPa(a')n ... nPs(s') there are at least Na,d · · · Ns,s' s-tuples (a", ... ,s") such that 
i EQa(a") n ... n Qs(s"). Namely, there are N,,r copies of P,(r'), for r,r' from a,a' 
through s,s', in Q. Therefore, each (a', ... ,s') E K;[P] corresponds to a disjoint sub
set of at least Na a' · · · Ns rmany s-tuples in the set K;[Q]'s. Hence, it has been , , 
proved that 

-1 [ . ' ' Jl/s M[P] ;;;;-. s(n1 · · ·ns) ~ ~{Na,a'-··Ns,s'. (a, ... ,s)EK;[P]} . 
iEN 

(8) 

In particular, with some computation we can specialize the general result (8) 
to: 

Theorem 2. For a~y strategy P, if there are positive integers A.0 , ••• ,A.5 such that 
for all (a', ... ,s') holds m(a', ... ,s') = A.0p0 (a') + · · · + AsPs(s'), thm 

s(A.1 ... A )1 Is n 
M ;;;,-. s 2: kJ1s. 

n ; =I 
(9) 

Moreover, the quantity M equals the right-hand side of the inequality above, exact{y 
when AaM a = · · · = As Ms. D 

Corollary. Routine calculation shows that Theorem 2 also holds for rational 
A's. (Hint: for A.,=p,I q, apply Theorem 2 for µ,,=cA., with c =%···% (r E{a, ... ,s}). 
This gives an inequality for cM. Substituting the A.'s for the µ,'s, we can cancel con 
both sides of the inequality.) 
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