
Approximating Rate-Distortion Graphs
of Individual Data: Experiments in Lossy

Compression and Denoising
Steven de Rooij and Paul M.B. Vitányi

Abstract—Classical rate-distortion theory requires specifying a source distribution. Instead, we analyze rate-distortion properties of

individual objects using the recently developed algorithmic rate-distortion theory. The latter is based on the noncomputable notion of

Kolmogorov complexity. To apply the theory we approximate the Kolmogorov complexity by standard data compression techniques,

and perform a number of experiments with lossy compression and denoising of objects from different domains. We also introduce a

natural generalization to lossy compression with side information. To maintain full generality we need to address a difficult searching

problem. While our solutions are therefore not time efficient, we do observe good denoising and compression performance.

Index Terms—Compression, denoising, rate-distortion, structure function, Kolmogorov complexity.

Ç

1 INTRODUCTION

RATE-DISTORTION theory analyzes communication over a
channel under a constraint on the number of trans-

mitted bits, the “rate.” It currently serves as the theoretical
frame of reference for many important applications such as
lossy compression; it can also be applied to denoising, and
more generally, applications that require a separation of
structure and noise in the input data.

Classical rate-distortion theory evolved from Shannon’s
theory of communication [1]. It describes the trade-off
between the rate and the achievable fidelity of the
transmitted representation under some distortion function,
where the analysis is carried out in expectation under some
source distribution. Therefore the theory can only be
meaningfully applied if we have some inkling as to the
distribution on objects that we want to compress lossily.
While lossy compression is ubiquitous, propositions with
regard to the underlying distribution tend to be ad hoc,
because the assumption that the objects of interest are
drawn from a single distribution is questionable. Moreover,
even if a true source distribution is known to exist, it is
typically hard to determine what it is like, and objects that
occur in practice all too often exhibit more structure than
expected under the source model of choice.

For large outcome spaces then, it becomes important to
consider structural properties of individual objects. For
example, if the rate is low, then we may still be able to
transmit objects that have a very regular structure without
introducing any distortion, but this becomes impossible for
objects with high information density. In his 1980 paper [2],
Ziv shows that there is a universal algorithm that

asymptotically performs as well as the optimal finite state
method for a fixed but infinite individual sequence. As such
it is not necessary to specify a source distribution. For more
modern (and practically useful) research along those lines
see, e.g., [3], [4].

In order to define a nonasymptotic rate-distortion theory
that allows analysis of individual finite objects, the notion of
Kolmogorov complexity is required. Donoho made the first
foray in this direction [5]; the present work is inspired by [6],
which lays down the foundations for an algorithmic
analogue of Shannon’s probabilistic rate-distortion theory.
There is a problem: although this theory allows for an elegant
formalization of rate-distortion for individual objects, it
cannot be applied directly, as Kolmogorov complexity is
uncomputable.

Our aim is to test this new theory in practice. We
approximate Kolmogorov complexity by the compressed
size of the object using a (lossless) general purpose data
compression algorithm, and conduct a number of experi-
ments in two distinct applications of the theory, namely
lossy compression and denoising. A number of studies have
pointed out the relationship between lossy compression and
denoising; see, e.g., [7], but the present framework makes it
particularly easy to explain the connection.

In Section 2, we briefly introduce algorithmic rate-
distortion theory. We also generalize the theory to settings
with side information. A practical version of the theory is
outlined in Section 3. Finding the approximate rate-distortion
function is a difficult search problem. We motivate and
outline the genetic algorithm we used to approximate the
rate-distortion function. Then, in Section 4, we describe five
experiments in lossy compression and denoising. The results
are presented and discussed in Section 5. In Section 6, we take
a step back and discuss to what extent our practical approach
yields a faithful approximation of the theoretical algorithmic
rate-distortion function. In Section 7, we relate our framework
to a Minimum Description Length approach. Our findings are
summarized in Section 8.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 3, MARCH 2012 395

. The authors are with the Centrum Wiskunde & Informatica (CWI),
Kruislaan 413, PO Box 94079, Amsterdam 1090 GB, The Netherlands.
E-mail: {s.de.rooij, S.de.Rooij}@cwi.nl.

Manuscript received 1 Sept. 2010; accepted 5 Dec. 2010; published online 1
Feb. 2010.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2010-09-0485.
Digital Object Identifier no. 10.1109/TC.2011.25.

0018-9340/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301633794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 ALGORITHMIC RATE-DISTORTION THEORY

This section very briefly summarizes the relevant theory in
[6]. Suppose we want to communicate objects x from a
countable set of source words X using at most r bits per
object. We call r the rate. We locate a good representation of x
within a finite set Y, which may be different from X in
general (but we usually have X ¼ Y in this text). The lack of
fidelity of a representation y is quantified by a distortion
function d : X � Y ! ½0;1Þ.

The Kolmogorov complexity of y, denoted KðyÞ, is the
length of the shortest program that constructs y. More
precisely, it is the length of the shortest input to a fixed
universal binary prefix machine that will output y and then
halt; also see the textbook [8]. We can transmit that shortest
program for any representation y that has KðyÞ � r; the
receiver can then run the program to obtain y and is thus able
to reconstruct x up to distortion dðx; yÞ. Define the rate-
distortion profile Px of the source word x as the set of pairs r; ah i
such that there is a representation y 2 Y with dðx; yÞ � a and
KðyÞ � r. The possible combinations of r and a can also be
characterized by the rate-distortion function of the source word
x, which is defined as rxðaÞ ¼ minfr j r; ah i 2 Pxg, or by the
distortion-rate function of the source word x, which is defined as
dxðrÞ ¼ minfa j r; ah i 2 Pxg. These two functions are some-
what like inverses of each other; although strictly speaking
they are not since they are monotonic but not strictly
monotonic. Also note that, unlike in classical rate-distortion
theory, each source word has associated rate-distortion and
distortion-rate functions. A representation y is said to witness
the rate-distortion function of x if rxðdðx; yÞÞ ¼ KðyÞ. These
definitions are illustrated in Fig. 1.

Algorithmic rate-distortion theory is a generalization of
Kolmogorov’s structure function theory. It is developed and
treated in much more detail in [6].

2.1 Side Information

Suppose we want to transmit a source word x 2 X and we
have chosen a representation y 2 Y as before. The encoder
and decoder often share a lot of information: both might
know that grass is green and the sky is blue, they might
share a common language, and so on. They would not need
to transmit such information. It seems reasonable to allow
the program to compute a representation y, transmitted
from an encoder to a decoder, to use any side information z

they might share. Such programs may be shorter than they
could be otherwise. This can be formalized by switching to
the conditional Kolmogorov complexity KðyjzÞ, which is the
length of the shortest Turing machine program that
constructs y on input z. We redefine KðyÞ ¼ Kðyj�Þ, where
� is the empty sequence, so that KðyjzÞ � KðyÞ up to an
independent constant: the length of the shortest program
for y can never significantly increase when side information
is provided, but it might certainly decrease when y and z

share a lot of information [8]. We change the definitions as
follows: the rate-distortion profile of the source word x with side

information z is the set of pairs r; ah i such that there is a
representation y 2 Y with dðx; yÞ � a and KðyjzÞ � r. The
definitions of the rate-distortion function and the distortion-
rate function are similarly changed. In Section 5, we will
demonstrate an application: removal of errors in short text
documents. Henceforth, we will omit mention of the side
information z unless it is relevant to the discussion.

2.2 Distortion Spheres, the Minimal Sufficient
Statistic

A representation y that witnesses the rate-distortion
function is the best possible rendering of the source object
x because it achieves a distortion of dðx; yÞ at the lowest
possible rate, but if the rate is lower than KðxÞ, then some
information is necessarily lost. As we want to find the best
possible separation between structure and noise in the data,
it is important to determine to what extent the discarded
information is noise.

Together, a representation y and the distortion a ¼
dðx; yÞ conveys the information that the source object x
can be found somewhere on the list of all x0 2 X that
satisfy dðx0; yÞ ¼ a. We call such a list a distortion sphere. A
distortion sphere of radius a, centered around y is
defined as follows:

SyðaÞ ¼ fx0 2 X : dðx0; yÞ ¼ ag: ð1Þ

If x is a completely random element of this list, then the
discarded information is pure “white noise”: it contains no
meaningful information. Conversely, all random elements
in the list share all “simply described” (in the sense of
having low Kolmogorov complexity) properties that x

satisfies. Hence, with respect to the “simply described”
properties, every such random element is as good as x, see
[6] for more details. In such cases, given that x is in SyðaÞ, a
literal specification of the index of x in the list is the most
efficient code for x. A fixed-length, literal code requires
log jSyðaÞj bits. (Here and in the following, all logarithms are
taken to base 2.) On the other hand, if the discarded
information is structured, then the Kolmogorov complexity
of the index of x in SyðaÞ will be significantly lower than the
logarithm of the size of the sphere. The difference between
these two code lengths can be used as an indicator of the
amount of structural information that is discarded by the
representation y. Vereshchagin and Vitányi [6] call this
quantity the randomness deficiency of the source object x in
the set SyðaÞ, and they show that if y witnesses the rate-
distortion function of x, then it minimizes the randomness
deficiency at rate KðyÞ; thus the rate-distortion function

396 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 3, MARCH 2012

Fig. 1. Rate-distortion profile and distortion-rate function.

identifies those representations that account for as much
structure as possible at the given rate.

To assess how much structure is being discarded at a
given rate, consider a code for the source object x in which
we first transmit the shortest possible program that
constructs y, then the shortest possible program that
constructs the radius of the distortion sphere, and finally
a literal, fixed-length index of x in the distortion sphere
SyðaÞ. Such a code has the following length function:

LyðxÞ ¼ KðyÞ þKðdðx; yÞjyÞ þ log jSyðdðx; yÞÞj: ð2Þ

It is possible that dðx; yÞ is fully determined by y, for
example if Y is the set of all finite subsets of X and list
decoding distortion is used, as described in [6]. In such
cases, Kðdðx; yÞjyÞ never exceeds a fixed constant. How-
ever, this does not apply in our experiments; we actually
need to encode dðx; yÞ separately. However, the number of
bits required is negligible compared to the total three part
code length.

If the rate is very low then the representation y models
only very basic structure and the randomness deficiency in
the distortion sphere around y is high. Borrowing terminol-
ogy from statistics, we may say that y is a representation
that “underfits” the data: y does not capture all relevant
features of the data. In such cases, we should find that
LyðxÞ > KðxÞ, because the fixed-length code for the index of
x within the distortion sphere is suboptimal in this case. But
suppose that y is complex enough that it satisfies LyðxÞ �
KðxÞ (making this definition more precise is outside the
scope of this paper). In [6], such representations are called
(algorithmic) sufficient statistics for the data x. A sufficient
statistic has close to zero randomness deficiency, which
means that it represents all structure that can be detected in
the data. However, sufficient statistics might contain not
only structure, but noise as well. Such a representation
would be overly complex, an example of overfitting. A
minimal sufficient statistic balances between underfitting
and overfitting. It is defined as the lowest complexity
sufficient statistic, which is the same as the lowest complex-
ity representation y that minimizes the code length LyðxÞ.
As such it can also be regarded as the “model” that should
be selected on the basis of the Minimum Description Length
(MDL) principle; also see Section 7. To be able to relate the
distortion-rate function to this code length we define the
code length function �xðrÞ ¼ LyðxÞ where y is the representa-
tion that minimizes the distortion at rate r.

2.3 Applications: Denoising and Lossy
Compression

Representations that witness the rate-distortion function
provide optimal separation between structure that can be
expressed at the given rate and residual information that is
perceived as noise. Therefore, these representations can be
interpreted as denoised versions of the original. Since the
minimal sufficient statistic discards as much noise as
possible, without losing any structure, it is the best candidate
for applications of denoising.

While the minimal sufficient statistic is a denoised
representation of the original signal, it is not necessarily
given in a directly usable form. For instance, Y could consist
of subsets of X , but a set of source words is not always

acceptable as a denoising result. So in general, one may
need to apply some function f : Y ! X to the sufficient
statistic to construct a usable object. But if X ¼ Y and the
distortion function is a metric, as in our case, then the
representations are already in an acceptable format, so here
we use the identity function for the transformation f .

In applications of lossy compression, one may be willing
to accept a rate which is lower than the complexityKðyÞ for a
minimal sufficient statistic y, thereby losing some structural
information. However, theory does tell us that it is not
worthwhile to set the rate to a value higher than KðyÞ. The
original object x is a random element of Syðdðx; yÞÞ, and it
cannot be distinguished from any other random z 2
Syðdðx; yÞÞ using only “simply described” properties. So we
have no “simply described” test to discredit the hypothesis
that any such z is the original object, given y and dðx; yÞ. But
increasing the rate, yielding a model y0 and dðx; y0Þ < dðx; yÞ,
we commonly obtain a sphere Sy0 of smaller cardinality than
Sy, with some random elements of Sy not being random
elements of Sy0 . Since these excluded elements were perfectly
good candidates of being the original object, if the rate is
higher than KðyÞ, the resulting representation y0 models
irrelevant features (“noise”) that are specific to x: the
representation starts to “overfit.”

In lossy compression, as in denoising, the representa-
tions themselves may be unsuitable for presentation to the
user. For example, when decompressing a lossily com-
pressed image, in most applications a set of images would
not be an acceptable result. So again a transformation from
representations to objects of a usable form has to be
specified. There are two obvious ways of doing this. First,
if a representation y witnesses the rate-distortion function
for a source word x 2 X , then any two random objects in
Syðdðx; yÞÞ cannot be distinguished from one another at rate
KðyÞ. Therefore, we might choose not to use a deterministic
transformation, but rather report the uniform distribution
on the objects in Syðdðx; yÞÞ as the lossily compressed
version of x. This method has the advantage that it is
applicable whether or not X ¼ Y. Second, if X ¼ Y and the
distortion function is a metric, then it makes sense to use the
identity transformation again, although here the motivation
is different. Suppose we select some x0 2 Syðdðx; yÞÞ other
than y. Then the best upper bound we can give on the
distortion is dðx; x0Þ � dðx; yÞ þ dðy; x0Þ ¼ 2dðx; yÞ (by the
triangle inequality and symmetry). Thus, the distortion for y
is only half of the upper bound on the distortion we
obtained for x0. Therefore, using y is more suitable from a
worst-case perspective. This method has as an additional
advantage that the decoder does not need to know the
distortion dðx; yÞ which often cannot be computed from y
without knowledge of x.

Of these two approaches, if the rate is high enough to
transmit a sufficient statistic, the first seems preferable. We
have nevertheless chosen to always report y directly in our
analysis, which has the advantage that this way, all
reported results are of the same type.

3 COMPUTING INDIVIDUAL OBJECT RATE

DISTORTION

The rate-distortion function for an object x with side
information z and a distortion function d is found by
simultaneously minimizing two objective functions

DE ROOIJ AND VIT�ANYI: APPROXIMATING RATE-DISTORTION GRAPHS OF INDIVIDUAL... 397

g1ðyÞ ¼ KðyjzÞ and g2ðyÞ ¼ dðx; yÞ:

We impose a partial order on representations

y � y0; iff g1ðyÞ � g1ðy0Þ and g2ðyÞ � g2ðy0Þ: ð3Þ

Our goal is to find the set of representations that are
minimal under �. Such an optimization problem cannot be
implemented because of the uncomputability of K. To make
the idea practical, we need to approximate the conditional
Kolmogorov complexity. As observed in [9], it follows
directly from symmetry of information for Kolmogorov
complexity (see [8, p. 233]) that

KðyjzÞ ¼ KðzyÞ �KðzÞ þOðlognÞ; ð4Þ

where n is the length of zy. To approximate conditional
complexity, we will ignore the logarithmic term, and
replace K by ~K, the length of the compressed representa-
tion under a general purpose compression algorithm.1 The
approximate conditional complexity thus becomes

~KðyjzÞ ¼ ~KðzyÞ � ~KðzÞ � KðyjzÞ; ð5Þ

and the definition of g1 is changed to use ~K rather than K.
This may be a poor approximation: ~KðyÞ may be quite high
even for objects y that have KðyÞ close to zero. Our results
show evidence that some of the theoretical properties of the
distortion-rate function nevertheless carry over to the
practical setting; we also explain how some observations
that are not predicted by theory are in fact related to the
(unavoidable) inefficiencies of the used compressor.

Compressor (rate function). One can use any general-
purpose compressor in (5); in our experiments we used a
block sorting compression algorithm with a move-to-front
scheme as described in [10]. The algorithm is very similar to
a number of common general purpose compressors, such as
bzip2 and zzip [11], but it is simpler and faster for small
inputs; the source code (in C) is available from the authors.

Of course, domain specific compressors might yield
better compression for some object types (such as sound
wave files), and therefore a better approximation of the
Kolmogorov complexity. However, we could find no
standard algorithms that substantially outperform ours on
the very small inputs that we experimented with.

Code length function. In Section 2.2, we introduced the
code length function �xðrÞ. Its definition makes use of (2),
for which we have not yet provided a computable
alternative. We use the following approximation:

~LyðxÞ ¼ ~KðyÞ þ LDðdðx; yÞjyÞ þ log jSyðdðx; yÞÞj: ð6Þ

In this paper we use an Elias code [12] for LD, with code
length LDðdÞ ¼ logðdþ 1Þ þ 2 log logðdþ 2Þ þOð1Þ.

Distortion functions. In all our experiments (Section 4), we
have X ¼ Y and the used distortion functions are metrics.
We use the following three common metrics:

1. Hamming distortion. Hamming distortion is perhaps
the simplest distortion function that could be used.
Let x and y be two objects of equal length n. The
Hamming distortion dðx; yÞ is equal to the number of

symbols in x that do not match those in the
corresponding positions in y.

2. Euclidean distortion. As before, let x ¼ x1; . . . ; xn and
y ¼ y1; . . . ; yn be two objects of equal length, but the
symbols now have a numerical interpretation.
Euclidean distortion is

dðx; yÞ ¼
ffiXn
i¼1

ðxi � yiÞ2
s

:

the distance between x and y when they are
interpreted as vectors in an n-dimensional euclidean
space. In other words, this distortion is the root of
the summed squared error. Note that this definition
of euclidean distortion differs from the one in [6].

3. Edit distortion. The edit distortion, or Levenshtein
distortion, is a well-known criterion for approximate
string matching [13]. The edit distortion of two
strings x and y, possibly of different lengths, is the
minimum number of symbols that have to be deleted
from, inserted into, or changed in x in order to
obtain y (or vice versa).

3.1 Searching for the Rate-Distortion Function

The search problem that we have to address is hard for
three reasons. First, the search space is very large: for an
object of n bits there are 2n candidate representations of the
same size, and objects that are typically subjected to lossy
compression are often millions or billions of bits long. Thus,
an exhaustive search algorithm is not practical. Second, we
found on the other hand that a greedy search procedure
tends to terminate quickly in some local optimum that is
very bad globally. Third, we want to avoid making too
many assumptions about the two objective functions, so
that we are free to change the compression algorithm and
the distortion function.

Since the structure of the search landscape is at present
poorly understood and we do not want to make any
unjustifiable assumptions, we use a genetic search algo-
rithm which performs well enough that interesting results
can be obtained. More specialized Monte Carlo algorithms
may yield faster performance; one such approach is
described in [4].

We need a number of definitions for the subsequent
discussion. A finite subset of Y is called a pool. A pool P
induces a trade-off profile pðPÞ ¼ f g1ðyÞ; g2ðyÞh i j y 2 Y;
y0 � y for some y0 in Pg. The weakness wPðyÞ of an object y 2
P is defined as the number of elements of the pool that are
smaller according to �. The (transitive) reduction trdðPÞ of a
pool P is the subset of all elements with zero weakness.
Elements of trdðPÞ are also called models.

The search algorithm initializes a pool P0, which is then
subjected to a process of selection through survival of the
fittest: the pool is iteratively updated by replacing elements
with low fitness by new ones, which are created through
either mutation (random modifications of elements) or
crossover (“genetic” recombination of pairs of other candi-
dates). We write Pi to denote the pool after i iterations.
When the algorithm terminates after n iterations it outputs
the reduction of Pn. Implementation details are in the online
appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TC.2011.25.

398 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 3, MARCH 2012

1. The logarithmic overhead can be avoided by approximating
conditional complexity directly using a sequential compressor; see the
end of Section 4.

4 EXPERIMENTS

We subjected five objects to our program. The following
considerations have guided our choice of objects:

1. Objects should not be too complex, allowing our
program to find a good approximation of the
distortion-rate curve. We found that the running
time of the program seems to depend mostly on the
complexity of the original object; a compressed size
of 20,000 bits seemed to be about the maximum our
program could handle within a reasonable amount
of time, requiring a running time of the order of
weeks on a desktop computer.

2. To check that our method really is general, as much as
possible we selected objects from different domains,
for which different distortion functions are appro-
priate. Preferably, the objects contain structure at
different levels of complexity.

3. Objects should contain primary structure and
regularities that are distinguishable and compressi-
ble by a block sorting compressor such as the one we
use. Otherwise, the assumption that compressor
implements a reasonable approximation of Kolmo-
gorov complexity becomes very strained. For in-
stance, we would not expect our program to do well
on a sequence of digits from the binary expansion of
the number �.

With this in mind, we have selected the objects shown
in Fig. 2.

In each experiment, as time progressed the program
found less and less improvements per iteration, but the pool
never stabilized completely. Therefore we interrupted each
experiment when 1) after at least one night of computation,
the pool did not improve a lot, and 2) for all intuitively
good models y 2 Y that we could conceive of a priori, the
algorithm had found an y0 in the pool with y0 � y according
to (3). In each denoising experiment, this test included the
original, noiseless object. In the experiment, on the mouse
without added noise, we also included the images that can
be obtained by reducing the number of gray levels in the
original with an image manipulation program. Finally, for
the grayscale images we included a number of objects that
can be obtained by subjecting the original object to JPEG
compression at various quality levels.

The first experiment illustrates how algorithmic rate-
distortion theory may be applied to lossy compression
problems, and it illustrates how for a given rate, some
features of the image are preserved while others can no longer
be retained. We compare the performance of our method to
the performance of JPEG (the 2000 standard). JPEG images
were encoded to jpc format with three quality levels using
NetPBM version 10.33.0; all other options are default. For
more information about this software refer to [14].

The other four experiments are concerned with denois-
ing. Any model that is output by the program can be
interpreted as a denoised version of the input object. We
measure the denoising success of a model y as dðx0; yÞ,
where x0 is the original version of the input object x, before
noise was added. We also compare the denoising results to
those of other denoising algorithms:

1. Blurring (convolution with a Gaussian kernel).
Blurring works like a low-pass filter, eliminating all
high frequency information including noise. Other
high frequency features of the image, such as sharp
contours, are also discarded.

2. Naive denoising. We applied a naive denoising
algorithm to the noisy cross, in which each pixel was
inverted if five or more out of the eight neighboring
pixels were of different color.

3. Denoising based on JPEG. Here we subjected the
noisy input image to JPEG compression at various
quality levels. We then selected the result for which
the distortion to the original image was lowest.

We have also tried BayesShrink [15], a more sophisti-

cated, wavelet-based denoising algorithm. However it turns

out that BayesShrink hardly affects the input image at all,

probably because it is so small.

4.1 Names of Objects

To facilitate description and discussion of the experiments we

will adopt the following naming convention. Objects related

to the experiments with the mouse, the noisy cross, the noisy

mouse, the sine wave, and the Wilde fragment, are denoted

by the symbols IM, CC, IN, SS, and WW, respectively. A number

of important objects in each experiment are identified by a

subscript as follows: for OO 2 fIM;CC; IN; SS;WWg, the input

DE ROOIJ AND VIT�ANYI: APPROXIMATING RATE-DISTORTION GRAPHS OF INDIVIDUAL... 399

Fig. 2. Objects of experimentation.

object, for which the rate-distortion function is approximated
by the program, is called OOIN, which is sometimes abbre-
viated to OO. In the denoising experiments, the input object is
always constructed by adding noise to an original object. The
original object and the noise are called OOORIG and OONOISE,
respectively. If Hamming distortion is used, addition is
carried out modulo 2, which means that CCIN equals CCORIG

XOR CCNOISE. As mentioned before, the search program
outputs the reduction of the gene pool, which is the set of
considered models. Two important models are also given
special names: the model within the gene pool that minimizes
the distortion to OOORIG constitutes the best denoising of the
input object and is therefore called OOBEST, and the minimal
sufficient statistic as described in Section 2.2 is called OOMSS.
Finally, in the denoising experiments we also give names to
the results of the alternative denoising algorithms. Namely,
CCNAIVE is the result of the naive denoising algorithm applied
to the noisy cross, INBLUR is the convolution of IN with a
Gaussian kernel with � ¼ 0:458 (which was found to be
optimal), and INJPEG is the image produced by subjecting IN
to JPEG compression at the quality level for which the
distortion to INORIG is minimized.

5 RESULTS AND DISCUSSION

After running for some time on each input object, our
program outputs the reduction of a pool P, which is
interpreted as a set of models. For each experiment, we
report a number of different properties of these sets.
Since we are interested in the rate-distortion properties of
the input object x ¼ OOIN, we plot the approximation of the
distortion-rate function of each input object: ~dxðrÞ¼
minfdðx; yÞ j y 2 trdðPÞ; ~KðyÞ � rg. Such approximations of
the distortion-rate function are provided for all experi-
ments. For the grayscale images we also plot the distortion-
rate approximation that is achieved by JPEG at different
quality levels. Here, the rate is the code length achieved by
JPEG, and the distortion is the euclidean distortion to OOIN.
We also plot an approximation of the code length function
discussed in Section 2.2

~�xðrÞ ¼ min
y2Pj ~KðyÞ�r

~LyðxÞ; ð7Þ

minimal sufficient statistics can be identified by locating the
minimum of this graph.

5.1 Lossy Compression

5.1.1 Experiment 1: IMouse (Euclidean Distortion)

Our first experiment involved the lossy compression of IM,
a grayscale image of a mouse. A number of elements of the
gene pool are shown in Fig. 3. The pictures show how at
low rates, the models capture the most important global
structures of the image; at higher rates more subtle
properties of the image can be represented. Image (a)
shows a rough rendering of the distribution of bright and
dark areas in IMIN. These shapes are rectangular, which is
probably an artifact of the compression algorithm we used:
it is better able to compress images with rectangular
structure than with circular structure. There is no real
reason why a circular structure should be in any way more
complex than a rectangular structure, but most general
purpose data compression software is similarly biased. In
(b), the rate is high enough that the oval shape of the mouse

can be accommodated, and two areas of different overall
brightness are identified. After the number of gray shades
has been increased a little further in (c), the first hint of the
mouse’s eyes becomes visible. The eyes are improved and
the mouse is given paws in (d). At higher rates, the image
becomes more and more refined, but the improvements are
subtle and seem of a less qualitative nature.

The code length function (Fig. 4) shows that the only
sufficient statistic in the set of models is IMIN itself,
indicating that the image hardly contains any noise. It also
shows the rates that correspond to the models that are
shown in Fig. 3. By comparing these figures it can be clearly
seen that the image quality only starts to deteriorate
significantly after more than half of the information in
IMIN has been discarded. Note that this is not a statement
about the compression ratio, where the size is related to the
size of the uncompressed object. For example, IMIN has an
uncompressed size of 64 � 40 � 8 ¼ 20;480 bits, and the
representation in Fig. 3b has a compressed size of
3190.6 bits. This representation therefore constitutes com-
pression by a factor of 20,480/3190.6 = 6.42, which is
substantial for an image of such small size. At the same

400 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 3, MARCH 2012

Fig. 3. Lossy image compression results for the mouse (h). The numbers

below each image denote its compressed size ~Kð�Þ, total code length
~Lð�ÞðIMINÞ and euclidean distortion dð�; IMINÞ, respectively. (a) 163.0/

19220.9/2210.0. (b) 437.8/17013.6/1080.0. (c) 976.6/15779.7/668.9.

(d) 1242.9/15297.9/546.4. (e) 1676.6/14641.9/406.9. (f) 2324.5/

14150.1/298.9. (g) 3190.6/13601.4/203.9. (h) 7995.1/7996.1/0.

time, the amount of information is reduced by a factor of
7995:0=3190:6 ¼ 2:51.

5.2 Denoising

For each denoising experiment, we report a number of
important objects, a graph that shows the approximate
distortion-rate function and a graph that shows the approx-
imate code length function. In the distortion-rate graph, we
plot not only the distortion to OOIN but also the distortion to
OOORIG, to visualize the denoising success at each rate.

It is important to realize that only the reported minimal
sufficient statistic and the results of the naive denoising
methods can be obtained without knowledge of the original
object—the other objects OOBEST, OOJPEG, and OOBLUR involve
minimizing the distortion to OOORIG, which cannot be done
in practical situations where OOORIG is not known.

5.2.1 Experiment 2: Noisy CCross (Hamming Distortion)

In the first denoising experiment, we approximated the
distortion-rate function of a monochrome cross CCORIG of
very low complexity, to which artificial noise was added to
obtain CCIN (the rightmost image in Fig. 5). The best
denoising CCBEST (leftmost image) has a distortion of only
three to the original CCORIG, which shows that the distortion-
rate function indeed separates structure and noise extre-
mely well in this example. The bottom graph shows the
approximate code length function; the minimum on this
graph is the minimal sufficient statistic CCMSS. In this low
complexity example, we have CCMSS ¼ CCBEST, so the best
denoising is not only very good in this simple example, but
it can also be identified.

We did not subject CC to blurring because it is mono-

chrome. Instead we used the extremely simple, “naive”

denoising method that is described in Section 4 on this

specific image instead. The result is the middle image of Fig. 5;

while most of the noise has indeed been removed, 40 errors

remain which is a lot more than those incurred by the minimal

sufficient statistic. All errors except one are close to the

contours of the cross. This illustrates how the naive algorithm

is limited by its property that it takes only the local

neighborhood of each pixel into account, it cannot represent

larger structures such as straight lines.

5.2.2 Experiment 3: INoisy Mouse (Euclidean Distortion)

The noisy mouse poses a significantly harder denoising
problem, where the total complexity of the input ININ is
more than five times as high as for the noisy cross. The
results are in Fig. 6. The top-left image (a) is the input object
ININ; it was constructed by adding noise to the original

DE ROOIJ AND VIT�ANYI: APPROXIMATING RATE-DISTORTION GRAPHS OF INDIVIDUAL... 401

Fig. 4. Approximate distortion-rate and code length functions for the
mouse.

Fig. 5. Denoising a noisy cross. Highlighted objects, from left to right:
CCBEST, CCNAIVE, and CCIN. Exact values are in the bottom table.

noiseless image INORIG ¼ IMIN (top-right). We display three

different denoising results. Image (g) shows INBEST, the best

denoised object from the gene pool. Visually, it appears to

resemble INORIG quite well, but it might be the case that

there is structure in INORIG that is lost in the denoising

process. Because human perception is perhaps the most

sensitive detector of structure in image data, we show the

difference between INBEST and INORIG in (h). We would

expect any significant structure in the original image that is

lost in the denoising process, as well as structure that is not

present in the original image, but is somehow introduced as

an artifact of the denoising procedure, to become visible in

this residual image. In the case of INBEST, we cannot make
out any particular features in the residual.

We have done the same for the minimal sufficient
statistic (c). The result also appears to be a quite successful
denoising, although it is clearly of lower complexity than
the best one. This is also visible in the residual, which still
does not appear to contain much structure, but darker and
lighter patches are definitely discernible. Apparently ININ

does contain some structure beyond what is captured by
INMSS, but this cannot be exploited by the compression
algorithm. We think that the fact that the minimal sufficient
statistic is of lower complexity than the best possible
denoising result should therefore again be attributed to
inefficiencies of the compressor.

For comparison, we have also denoised IN using the
methods based on blurring and JPEG as described in
Section 4. Blurring-based denoising does not actually
perform that badly, as shown in (i). The distortion from
INBLUR to INORIG lies in-between the distortions for INMSS

and INBEST, but it differs from those objects in two respects.
First, INBLUR remains much closer to ININ, at a distortion of
260.4 instead of 368 or more, and second, INBLUR is much
less compressible by ~K. These observations are at present
not well understood. The contours of the mouse contain
high frequency information which is discarded by blurring,
creating artifacts that are clearly visible in the residual
image (j). Finally, the performance of JPEG is clearly inferior
to our method visually as well as in terms of rate and
distortion. The result seems to have undergone a smoothing
process similar to blurring which introduces similar
artifacts in the residual. As before, the comparison may be
somewhat unfair because JPEG was not designed for the
purpose of denoising, might optimize a different distortion
measure and is much faster.

5.2.3 Experiment 4: Regression

In the fourth experiment, we consider a simple regression
problem. We start with SSORIG, a discretization of a sine
wave: it is a sequence of 256 bytes, where the ith byte is set
to b100 sinð�i=256Þc (negative values are represented by
byte values 128 through 255). We added mean zero
normally distributed noise with variance 142 to obtain
SSIN, with a euclidean distortion of 209.2.

While block sorting compressors provide an acceptable
model for naturally occurring images, they cannot normally
compress even the simplest functions very well. For
example, a representation of the identity function (in which
byte i has value i) cannot be compressed at all. This is
because the compressor cannot detect patterns in the input
if they have been translated up or down, so a sequence 1, 2,
3, 4 is not matched to a sequence 11,12,13,14 that occurs
later in the input. To remedy this, all representations are
subjected to a filter before being compressed: from each
byte except the first one, the value of the preceding byte is
subtracted. Clearly this operation is reversible and thus
does not change the information content of a representation.
Our example from before, the identity function, is trans-
formed into a sequence of one zero and 255 ones, which can
be compressed very well. But in fact any straight line with a
“simple” slope (a slope with an easy fraction) can now be
compressed quite well. In this manner, the used compressor
becomes an interesting model for the description of discrete
functions.

402 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 3, MARCH 2012

Fig. 6. Denoising results for the noisy mouse (a). The numbers
below each image denote its compressed size ~Kð�Þ, total code
length ~Lð�ÞðININÞ, distortion to ININ and distortion to INORIG,
respectively. (a) ININ, 16699:7=16700:7=0=392:1. (b) INORIG ¼ IMIN.
(c) INMSS, 1969:8=15504:9=474:7=337:0. (d) INMSS � INORIG. (e) INJPEG,
3104=16395:4=444:4=379:8. (f) INJPEG � INORIG. (g) INBEST, 3354:5=
15952:8=368:4=272:2. (h) INBEST � INORIG. (i) INBLURð� ¼ 0:458Þ,
14117:0=25732:4=260:4=291:2. (j) INBLUR � INORIG.

The results of the genetic search are given in Fig. 8. In the
two graphs on the left hand side, the curved line indicates
the original sine wave SSORIG and the open circles show SSIN.
The small black dots represent the model as found by the
program. The top left figure shows that a rate of 40.6 bits
suffices to represent the best horizontal straight line, for a
distortion to SSORIG of 493.4. This is even higher than the
distortion for SSIN; thus, naive linear regression does not seem
to be a very good approach to this problem! However, the
bottom left figure shows the minimal sufficient statistic,
which approximates the sine wave with three straight lines.
This reduces the distortion to only 60.0 while the rate is still
less than 100 bits (compared to a total code length of about
1,600 bits). (We have not plotted SSBEST as it is very similar to
SSMSS, achieving a distortion of 55.5.)

This experiment shows that the used method is a general
approach to denoising that does not require many domain
specific assumptions, but it also illustrates the impact of
approximating the Kolmogorov complexity: in the ideal
setting with real Kolmogorov complexity, and given enough
data of sufficient precision, a sine wave would be recovered
as the best model for the data, because there obviously exists
a simple program to compute the sine function. A data
compressor cannot compute the sine function, so its use will
necessarily result in an approximation, even though with
more data that approximation might become more accurate
(e.g., consist of more line segments).

5.2.4 Experiment 5: Oscar WWilde Fragment (Edit

Distortion)

In the fifth experiment we analyze WWIN, a corrupted
quotation from Oscar Wilde. In this case, we have trained
the compression algorithm by supplying it with the rest of
Chapters 1 and 2 of the same novel as side information, to
make it more efficient at compressing fragments of English
text. The results are in Fig. 9. We make the following
observations regarding the minimal sufficient statistic:

1. In this experiment, WWMSS ¼WWBEST so the minimal
sufficient statistic separates structure from noise
extremely well here.

2. The distortion is reduced from 68 errors to only 46
errors. 26 errors are corrected (4), four are introduced
(5), 20 are unchanged (�), and 22 are changed
incorrectly (?).

3. The errors that are newly introduced (5) and the
incorrect changes (?) typically simplify the fragment
a lot, in the sense that the compressed size drops
significantly. Not surprisingly therefore, many of the
symbols marked 5 or ? are deletions, or modifica-
tions that create a word which is different from the
original, but still correct English:

Since it would be hard for any general-purpose
mechanical method (that does not incorporate a
sophisticated English language model) to determine

that these changes are incorrect, we should not be
surprised to find errors of this kind.

Similar experiments on denoising text are also reported in
[3]. The described DUDE algorithm does not use side
information, but as it can process much larger inputs this
becomes less crucial. It would be interesting to see to what
extent their results could be improved by taking it into
account.

5.2.5 Side Information

The following table shows the compressed size of a number
of models for different amounts of side information:

Here, WWORIG is never included in the side information;
also, we do not let WWMSS vary with side information but keep
it fixed at the object reported in Fig. 9c. Clearly, providing
side information yields a substantially improved compres-
sion performance, and the improvement is typically larger
if 1) the amount of side information is larger, or 2) if the
compressed object is more similar to the side information.
Thus, by giving side information, correct English prose is
recognized as “structure” sooner and a better separation
between structure and noise is to be expected. The table also
shows that if the compressed object is in some way different
from the side information, then adding more side informa-
tion will at some point become counterproductive, presum-
ably because the side information will then cause the
compression algorithm to build up false expectations about
the object to be compressed, which can be costly.

5.2.6 Sequential Compressors

While denoising performance probably increases if the
amount of side information is increased, it was infeasible to
do so with our current implementation. Recall from Section 3,
that the conditional Kolmogorov complexity KðyjzÞ is
approximated by ~KðzyÞ � ~KðzÞ. The time required to
compute this is dominated by the length of z if the amount
of side information is much larger than the size of the object to
be compressed. This could be remedied by using a compres-
sion algorithm that operates sequentially from left to right,
because the state of such an algorithm can be cached after
processing the side information z; the conditional complexity
could then be approximated directly by recalling the state
that was cached after processing z, and processing y from
there. This also avoids the logarithmic overhead in (4). Many
compression algorithms, among which Lempel-Ziv com-
pressors and statistical compressors such as PPM [16] and
CTW [17] have this property; our approach could thus be
made to work with much more side information by switching
to a sequential compressor.

6 QUALITY OF THE APPROXIMATION

As is clear from the definition, the distortion rate must be a
nonincreasing function, and our approximation is also
nonincreasing. In every experiment, the gene pool is
initialized with OOIN, which always has zero weakness and

DE ROOIJ AND VIT�ANYI: APPROXIMATING RATE-DISTORTION GRAPHS OF INDIVIDUAL... 403

must therefore remain in the pool. Therefore, at rate high
enough to specify x, the distortion must reach zero.

The shape of the code length function for an object x is
more complicated. Let y be the representation for which
dðx; yÞ ¼ 0, i.e., y ¼ x. In theory, the code length can never
become less than the complexity of y, and the minimal
sufficient statistic witnesses the code length function at the
lowest rate at which the code length is equal to the
complexity of y. Practically, we found in all denoising
experiments that the total code length using the minimal
sufficient statistic, ~LOOMSS

ðOOINÞ, is less than the code length
~KðOOINÞ that is obtained by compressing the input object

directly. This can be observed in the code length graphs in
Figs. 5, 7, 8, and 9. The effect is most clearly visible for the
cross, where the separation between structure and noise is
most pronounced.

Our hypothesis is that this departure from the theoretical
shape of the code length function must be explained by
inefficiency of the compression algorithm in dealing with
noise. This is evidenced by the fact that it needs 2735.7 bits
to encode the noise CCNOISE that was added to the cross,
while only log 4096

377

� �
� 1810 bits would suffice if the noise

were specified with a uniform code on the set of indices of
all binary sequences with exactly 377 ones out of 64 � 64.
Similarly, ~KðINNOISEÞ ¼ 14;093, whereas a literal encoding
requires 12,829 or fewer bits (using the bound from the
online appendix, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TC.2011.25).

Another strange effect occurs in Figs. 7 and 8: in both, the
code length function displays a strange “bump”: as the rate
is increased beyond the level required to specify the
minimal sufficient statistic, the code length goes up as

before, but here at very high rates the code length starts
dropping again.

It is theoretically possible that the code length function
should exhibit such behavior to a limited extent. It can be
seen in [6] that a temporary increase in the code length
function can occur up to a number of bits that depends on
the so-called covering coefficient. Loosely speaking this is the
density of small distortion balls that is required in order to
completely cover a larger distortion ball. The covering
coefficient in turn depends on the used distortion function
and the number of dimensions. It is quite hard to analyze in
the case of euclidean distortion, so we cannot at present say
if theory admits such a large increase in the code length
function. However, we believe that the explanation is more
mundane in this case: we fear that this bump may simply
indicate that we interrupted our search procedure too soon.
Possibly the bump would disappear altogether if we let our
program run for a much longer period of time.

Fig. 4 shows that our approximation of the distortion-
rate function is somewhat better than the approximations
provided by JPEG, although the difference is not extremely
large for higher rates. The probable reason is twofold: on
the one hand, we do not know for which distortion function
JPEG is optimized, but it might well be something other
than euclidean distortion. In that case, the comparison is
unfair because our method might perform worse on JPEG’s
own distortion measure. On the other hand, JPEG is very
time efficient: it took only a matter of seconds to compute
models at various different quality levels, while it took our
own algorithm days or weeks to compute its distortion-rate
approximation. Two conclusions can be drawn. On the one
hand, if the performance of existing image compression
software had been better than the performance of our own
method in our experiments, this would have been evidence
to suggest that our algorithm does not compute a good
approximation to the rate-distortion function. The fact that
this is not the case is thus reassuring. Vice versa, if we
assume that we have computed a good approximation to
the algorithmic rate-distortion function, then our results
give a measure of how close JPEG comes to the theoretical
optimum; our program can thus be used to provide a basis
for the evaluation of the performance of lossy compressors.

7 AN MDL PERSPECTIVE

It is natural to ask how the practical method we described
above fits within the established Minimum Description
Length theory [18], [19]. After all, MDL was originally
developed to obtain a practical version of universal learning
based on Kolmogorov complexity, which can even be
interpreted as a special case (“ideal MDL,” see, e.g., [20], [21]).

We compare the code length function used in MDL to the
one we used for algorithmic rate distortion. As stated earlier
in (6), the total code length of the source object x 2 X using
a representation y 2 Y equals

~KðyÞ þ LDðdðx; yÞjyÞ þ log jSyðdðx; yÞÞj: ð8Þ

In this three part code, the first term counts the number of bits
required to specify the representation, or hypothesis, for the
data and the last term counts the number of bits required to
specify the noise. Whether the distortion level of the source

404 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 3, MARCH 2012

Fig. 7. Approximate distortion-rate and code length functions for the
noisy mouse.

object given a representation should be interpreted as part of
the hypothesis or as noise is debatable; earlier we found it
convenient to treat the distortion level as part of the
hypothesis, as in (2). But to match algorithmic rate distortion
to MDL it is better to think of the distortion level as part of the
noise and identify Y with the available hypotheses.

In the usual description of MDL, see, e.g., [18], the total
code length of x 2 X with the help of a hypothesis y 2 Y is

LðyÞ þ LðxjyÞ: ð9Þ

To explain how algorithmic rate-distortion theory gener-
alizes MDL we will match (8) to (9). Starting with an
instance of MDL, specified by the code length functions
LðyÞ and LðxjyÞ, define the probability mass function
P ðxjyÞ ¼ 2�LðxjyÞ. Now, the model selected by MDL is equal
to a sufficient statistic as found by the rate-distortion
algorithm that is obtained by setting ~KðyÞ ¼ LðyÞ, dðx; yÞ ¼
LðxjyÞ, and LDðdjyÞ ¼ � logP ðdðX; yÞ ¼ djyÞ. Then

P ðxjyÞ ¼ P ðX ¼ x; LðXjyÞ ¼ LðxjyÞjyÞ
¼ P ðX ¼ xjy; LðXjyÞ ¼ LðxjyÞÞ�P ðLðXjyÞ ¼ LðxjyÞjyÞ

¼ P ðLðXjyÞ ¼ LðxjyÞjyÞ
jfx0 j Lðx0jyÞ ¼ LðxjyÞgj ¼ 2�LDðdðx;yÞjyÞ

jSyðdðx; yÞÞj
;

and taking the� log we find that LðxjyÞmatches the last two
terms of (8): MDL selects a representation that minimizes (8),
in other words it selects some sufficient statistic. Note that
the only requirement on the distortion function is that for all
y 2 Y and all x; x0 2 X it should satisfy dðx; yÞ ¼ dðx0; yÞ iff
LðxjyÞ ¼ Lðx0jyÞ. We chose dðx; yÞ ¼ LðxjyÞ for simplicity,

and because it allows an interpretation of the distortion as the
incurred logarithmic loss.

The correspondence works both ways: starting with a
rate-distortion problem specified by some ~K, code LD
and distortion function d, we can also construct the MDL
problem by defining LðyÞ ¼ ~KðyÞ and LðxjyÞ ¼ LDðdðx;
yÞjyÞ þ log jSyðdðx; yÞÞj.

Many descriptions of MDL learning are somewhat
unspecific as to which hypothesis should be selected if
more than one minimize the code length; the issue becomes
much clearer in a rate-distortion analysis where one can
easily express a preference for the minimal sufficient statistic
as the best hypothesis for the data. If a thorough analysis of
the data is required, it also seems sensible to look at the
whole rate-distortion function rather than just at the
minimal sufficient statistic, since it provides additional
information about the structure that is present in the data at
each level of complexity.

8 CONCLUSION

Algorithmic rate distortion provides a good framework for
analysis of large and structured objects. It is based on
Kolmogorov complexity, which is not computable. We
nevertheless attempted to put this theory into practice by
approximating the Kolmogorov complexity of an object by
its compressed size. We also generalized the theory to allow
side information, which is interpreted as being available to
both the sender and the receiver in a transmission over a
rate restricted channel. We then described how algorithmic

DE ROOIJ AND VIT�ANYI: APPROXIMATING RATE-DISTORTION GRAPHS OF INDIVIDUAL... 405

Fig. 8. Regression results. The open circles show the input, closely packed dots show the result. The numbers denote compressed size ~Kð�Þ, total
code length ~Lð�ÞðSSINÞ, distortion to SSIN and distortion to SSORIG, respectively. (a) 40:6=1878:2=522:0=493:4. (b) 99:8=1592:0=206:6=60:0.

rate-distortion theory may be applied to lossy compression

and denoising problems.
Finding the approximate rate-distortion function of an

individual object is a difficult search problem. We describe
a genetic algorithm that is very slow, but has the important
advantage that it requires only few assumptions about the
problem at hand. Judging from our experimental results,
our algorithm provides a good approximation, as long as its
input object is of reasonably low complexity and is
compressible by the used data compressor. The shape of
the approximate rate-distortion function, and especially
that of the associated three part code length function, is
reasonably similar to the shape that we would expect on the

basis of theory, but there is a striking difference as well: at
rates higher than the complexity of the minimal sufficient
statistic, the approximated code length tends to increase
with the rate, where theory suggests it should remain
constant. We expect that this effect can be attributed to
inefficiencies in the compressor.

We find that the algorithm performs quite well in lossy
compression, with apparently somewhat better image
quality than that achieved by JPEG, although the compar-
ison may not be altogether fair. When applied to denoising,
the minimal sufficient statistic tends to slightly under-
estimate the complexity of the best possible denoising (an
example of underfitting). This is presumably again due to
inefficiencies in the used compression algorithm.

406 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 3, MARCH 2012

Fig. 9. A fragment of The Picture of Dorian Gray, by Oscar WWilde.

REFERENCES

[1] C.E. Shannon, “A Mathematical Theory of Communication,” Bell
Systems Technical J., vol. 27, pp. 379-423, 623-656, 1948.

[2] J. Ziv, “Distortion-Rate Theory for Individual Sequences,” IEEE
Trans. Information Theory, vol. 26, no. 2, pp. 137-143, Mar. 1980.

[3] T. Weissman, E. Ordentlich, G. Seroussi, S. Verdú, and M.
Weinberger, “Universal Discrete Denoising: Known Channel,”
IEEE Trans. Information Theory, vol. 51, no. 1, pp. 5-28, Jan. 2005.

[4] S. Jalali and T. Weissman, “Rate-Distortion via Markov Chain
Monte Carlo,” Proc. IEEE Int’l Symp. Information Theory (ISIT), July
2008.

[5] D.L. Donoho, “The Kolmogorov Sampler,” technical report,
Stanford Univ., Jan. 2002.

[6] N. Vereshchagin and P. Vitanyi, “Rate Distortion and Denoising
of Individual Data Using Kolmogorov Complexity,” IEEE Trans.
Information Theory, vol. 56, no. 7, pp. 3438-3454, July 2010.

[7] B.K. Natarajan, “Filtering Random Noise from Deterministic
Simals via Data Compression,” IEEE Trans. Signal Processing,
vol. 43, no. 11, pp. 2595-2605, Nov. 1995.

[8] M. Li and P. Vitányi, An Introduction to Kolmogorov Complexity and
Its Applications, third ed. Springer-Verlag, 2008.

[9] R. Cilibrasi and P. Vitányi, “Clustering by Compression,” IEEE
Trans. Information Theory., vol. 51, no. 4, pp. 1523-1545, Apr. 2005.

[10] M. Burrows and D.J. Wheeler, “A Block-Sorting Lossless Data
Compression Algorithm,” Digital Equipment Corporation, tech-
nical report, Systems Research Center, vol. 124, May 1994.

[11] “Bzip2 and Zzip,” www.bzip2.org, debin.net/zzip, lossless
Compression Software, 2011.

[12] P. Elias, “Universal Codeword Sets and Representations of the
Integers,” IEEE Trans. Information Theory, vol. IT-21, no. 2, pp. 194-
203, Mar. 1975.

[13] V.I. Levenshtein, “Binary Codes Capable of Correcting Deletions,
Insertions, and Reversals,” Soviet Physics Doklady, vol. 10, no. 8,
pp. 707-710, 1966.

[14] “Netpbm,” www.netpbm.sourceforge.net, open source graphics
software, 2011.

[15] G. Chang, B. Yu, and M. Vetterli, “Adaptive Wavelet Threshold-
ing for Image Denoising and Compression,” IEEE Trans. Image
Processing, vol. 9, no. 9, pp. 1532-1546, Sept. 2000.

[16] J.G. Cleary and I.H. Witten, “Data Compression Using Adaptive
Coding and Partial String Matching,” IEEE Trans. Comm., vol. 32,
no. 4, pp. 396-402, Apr. 1984.

[17] F. Willems, Y. Shtarkov, and T. Tjalkens, “The Context-Tree
Weighting Method: Basic Properties,” IEEE Trans. Inform. Theory,
vol. 41, no. 3, pp. 653-664, May 1995.

[18] P. Grünwald, The Minimum Description Length Principle. MIT Press,
June 2007.

[19] J. Rissanen, Information and Complexity In Statistical Modeling.
Springer, 2009.

[20] P. Vitányi and M. Li, “Minimum Description Length Induction,
Bayesianism, and Kolmogorov Complexity,” IEEE Trans. Informa-
tion Theory, vol. 46, no. 2, pp. 446-464, Mar. 2000.

[21] S. de Rooij and P.D. Grünwald, “Luckiness and Regret in
Minimum Description Length inference,” Handbook for the
Philosophy of Statistics, vol. 7, Chapter VII, 2010.

Steven de Rooij received the PhD degree in
2008 from the University of Amsterdam. Re-
search was done under supervision of Professor
Paul Vitányi and Professor Peter Grünwald at
CWI, the national research institute for mathe-
matics and computer science in the Nether-
lands. From 2008 to 2010, he was a research
associate in the Statistical Laboratory at the
University of Cambridge, before returning to
CWI as a postdoctoral researcher. His work

focuses on the Minimum Description Length principle, Bayesian
inference, model selection, and sequential prediction.

Paul M.B. Vitányi received the PhD degree from
the Free University of Amsterdam in 1978. He is
a CWI fellow at the national research institute for
mathematics and computer science in the
Netherlands, and professor of computer science
at the University of Amsterdam. He has worked
on cellular automata, computational complexity,
distributed and parallel computing, machine
learning and prediction, physics of computation,
Kolmogorov complexity, information theory,

quantum computing, publishing about 200 research papers and some
books. Together with Ming Li he pioneered applications of Kolmogorov
complexity and coauthored An Introduction to Kolmogorov Complexity
and its Applications, Springer-Verlag, New York, 1993 (3rd edition 2008).

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

DE ROOIJ AND VIT�ANYI: APPROXIMATING RATE-DISTORTION GRAPHS OF INDIVIDUAL... 407

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

