
Journal of Computer and System Sciences 78 (2012) 823–852

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository
Contents lists available at SciVerse ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Verification of object-oriented programs: A transformational approach

Krzysztof R. Apt a,b,∗, Frank S. de Boer a,c, Ernst-Rüdiger Olderog d, Stijn de Gouw a,c

a Centre for Mathematics and Computer Science (CWI), Amsterdam, The Netherlands
b University of Amsterdam, Institute of Language, Logic and Computation, Amsterdam, The Netherlands
c Leiden Institute of Advanced Computer Science, University of Leiden, The Netherlands
d Department of Computing Science, University of Oldenburg, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 April 2010
Received in revised form 16 February 2011
Accepted 5 August 2011
Available online 25 August 2011

Keywords:
Object-oriented programs
Null references
Aliasing
Inheritance
Subtyping
Syntax-directed transformation
Recursive programs
Program verification
Strong partial correctness
Relative completeness

We show that verification of object-oriented programs by means of the assertional method
can be achieved in a simple way by exploiting a syntax-directed transformation from
object-oriented programs to recursive programs. This transformation suggests natural
proofs rules and its correctness helps us to establish soundness and relative complete-
ness of the proposed proof system. One of the difficulties is how to properly deal in the
assertion language with the instance variables and aliasing. The discussed programming
language supports arrays, instance variables, failures and recursive methods with param-
eters. We also explain how the transformational approach can be extended to deal with
other features of object-oriented programming, like classes, inheritance, subtyping and dy-
namic binding.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background and motivation

Ever since its introduction in [14] the assertional method has been one of the main approaches to program verification.
Initially proposed for the modest class of while programs, it has been extended to several more realistic classes of programs,
including recursive programs (starting with [15]), programs with nested procedure declarations (see [19]), parallel programs
(starting with [23] and [24]), and distributed programs based on synchronous communication (see [4]). At the same time
research on the theoretical underpinnings of the proposed proof systems resulted in the introduction in [10] of the notion of
relative completeness and in the identification of the inherent incompleteness for a comprehensive ALGOL-like programming
language (see [9]).

However, (relative) completeness of proof systems proposed for current object-oriented programming languages (see
the related work section below) remained largely beyond reach because of the many intricate and complex features of
languages like Java. In this paper we present a transformational approach to the formal justification of proof systems for
object-oriented programming languages. We focus on the following main characteristics of objects:

• objects possess (and encapsulate) their own (so-called instance) variables, and
• objects interact via method calls.

* Corresponding author at: Centre for Mathematics and Computer Science (CWI), Amsterdam, The Netherlands.
E-mail addresses: apt@cwi.nl (K.R. Apt), F.S.de.Boer@cwi.nl (F.S. de Boer), olderog@informatik.uni-oldenburg.de (E.-R. Olderog).
0022-0000/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2011.08.002

https://core.ac.uk/display/301633786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jcss.2011.08.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:apt@cwi.nl
mailto:F.S.de.Boer@cwi.nl
mailto:olderog@informatik.uni-oldenburg.de
http://dx.doi.org/10.1016/j.jcss.2011.08.002

824 K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852
The execution of a method call involves a temporary transfer of control from the local state of the caller object to that of
the called object (also referred to by callee). Upon termination of the method call the control returns to the local state of
the caller. The method calls are the only way to transfer control from one object to another. We illustrate our approach
by a syntax-directed transformation of the considered object-oriented programs to recursive programs. This transformation
naturally suggests the corresponding proof rules. The main result of this paper is that the transformation preserves (relative)
completeness.

To make this approach work a number of subtleties need to be taken care of. To start with, the ‘base’ language needs
to be appropriately chosen. More precisely, to properly deal with the problem of avoiding methods calls on the null object
we need a failure statement. In turn, to deal in a simple way with the call-by-value parameter mechanism we use parallel
assignment and block statement. Further, to take care of the local variables of objects at the level of assertions we need to
appropriately define the assertion language and deal with the substitution and aliasing.

We introduced this approach to the verification of object-oriented programs in our recent book [3] where we proved
soundness. The aim of this paper is to provide a systematic and self-contained presentation which focuses on (relative)
completeness and to explain how to extend this approach to other features of object-oriented programming. Readers inter-
ested in example correctness proofs may consult [3, pp. 226–237].

1.2. Related work

The origins of the proof theory for recursive method calls presented here can be traced back to [12]. However, in [12] the
transformational approach to soundness and relational completeness was absent and failures were not dealt with. In [25]
an extension to the typical object-oriented features of inheritance and subtyping is described. There is a large literature on
assertional proof methods for object-oriented languages, notably for Java. For example, [17] discusses a weakest precondition
calculus for Java programs with annotations in the Java Modeling Language (JML). JML can be used to specify Java classes
and interfaces by adding annotations to Java source files. An overview of its tools and applications is provided in [8]. In [16]
a Hoare logic for Java with abnormal termination caused by failures is described. However, this logic involves a major
extension of the traditional Hoare logic to deal with failures for which the transformational approach breaks down.

Object-oriented programs in general give rise to dynamically evolving pointer structures as they occur in programming
languages like Pascal. This leads to the problem of aliasing. There is a large literature on logics dealing with aliasing. One
of the early approaches, focusing on the linked data structures, is described in [21]. A more recent approach is that of
separation logic described in [28]. In [1] a Hoare logic for object-oriented programs is introduced based on an explicit repre-
sentation of the global store in the assertion language. In [5] restrictions on aliasing are introduced to ensure encapsulation
of classes in an object-oriented programming language with pointers and subtyping.

Recent work on assertional methods for object-oriented programming languages (see for example [6]) focuses on object
invariants and a corresponding methodology for modular verification. In [22] also a class of invariants is introduced which
support modular reasoning about complex object structures.

Formal justification of proof systems for object-oriented programming languages have been restricted to soundness (see
for example [30] and [18]). Because of the many intricate and complex features of current object-oriented programming
languages (relative) completeness remained largely beyond reach. Interestingly, in the above-mentioned [1] the use of the
global store model is identified as a potential source of incompleteness.

1.3. Technical contributions

The proof system for object-oriented programs presented in our paper is based on an assertion language comparable
to JML. This allows for the specification of dynamically evolving object structures at an abstraction level which coincides
with that of the programming language: in this paper the only operations on objects we allow are testing for equality
and dereferencing. Our transformation of the considered object-oriented programs to recursive programs preserves this
abstraction level. As a consequence we have to adapt existing completeness proofs to recursive programs that use variables
ranging over abstract data types, e.g., the type of objects.

In this paper we focus on strong partial correctness which requires absence of failures. Note that absence of failures is
naturally expressed by a corresponding condition on the initial state, that is, by a corresponding notion of weakest precondi-
tion. Similarly, total correctness of recursive programs is also naturally expressed by weakest preconditions, see [2].

To express weakest preconditions over abstract data types in an assertion language [29] use a coding technique that
requires a weak second-order language. In contrast, we introduce here a new state-based coding technique that allows us to
express weakest preconditions over abstract data types in the presence of infinite arrays in a first-order assertion language.

Further, we generalize the original completeness proof of [13] for the partial correctness of recursive programs to weakest
preconditions in order to deal with strong partial correctness. The completeness proof of [13] is based on the expression of
the graph of a procedure call in terms of its strongest postcondition of a precondition which “freezes” the initial state by
some fresh variables. If we use instead weakest preconditions to express the graph of a procedure call these freeze variables
are used to denote the final state. Because of possible divergence or failures however we cannot eliminate in the precondition
these freeze variables by existential quantification. As such the completeness proof of [13] breaks down. We show in this

K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852 825
paper how to restore completeness by the introduction of weakest preconditions which explicitly model divergence and
failures.

1.4. Plan of the paper

In the next section we introduce a kernel language that consists of while programs augmented with the parallel assign-
ment, the failure statement and the block statement, and describe its operational semantics. In Section 3 we extend this
kernel language to a small object-oriented language that forms the subject of our considerations. In Section 4 we define an
operational semantics of this language.

Then, in Section 5 we introduce a class of recursive programs, define a transformation of the object-oriented programs
to recursive programs, and prove correctness of this transformation in an appropriate sense.

Next, in Section 6 we introduce the assertion language for object-oriented programs and extend the substitution opera-
tion to instance variables. In Section 7 we introduce the proof system that allows us to prove correctness of the considered
object-oriented programs. Subsequently, in Section 8 we explain how soundness and relative completeness of this system
can be established by reducing it to the analysis of a corresponding proof system for recursive procedures.

In Section 9 we prove relative completeness of our proof system for object-oriented programs on the basis of the trans-
formation, addressing the issues described above. Finally, in Section 10 explain how this approach can be extended to deal
with other features of object-oriented programming, like classes, inheritance and subtyping, and with total correctness.
In Appendices A–C we list the rules defining the semantics of the kernel language, the introduced proof rules and the
introduced proof systems.

2. Preliminaries

2.1. A kernel language

We assume at least two basic types, integer and Boolean, and for each n � 1 the higher types T1 × · · · × Tn → T ,
where T1, . . . , Tn, T are basic types. T1, . . . , Tn are called argument types and T the value type. Simple variables are of
a basic type and array variables of a higher type. By Var we denote the set of variable declarations. Usually, we omit the
typing information and identify a variable declaration with the variable name. Out of typed variables and typed constants
typed expressions are constructed. To deal with aliasing we use conditional expressions of the form if B then t1 else t2 fi.
A subscripted variable is an expression a[t1, . . . , tn] for a suitably typed array variable a.

In this section we introduce the following small kernel programming language:

S ::= skip | u := t | x̄ := t̄ | S1; S2 | if B then S1 else S2 fi | if B → S1 fi |
while B do S1 od | begin local x̄ := t̄; S1 end

where S stands for a typical statement or program, u for a simple or subscripted variable, t for an expression (of the
same type as u), and B for a Boolean expression. Further, x̄ := t̄ is a parallel assignment, with x̄ = x1, . . . , xn a non-empty
sequence of distinct simple variables and t̄ = t1, . . . , tn a sequence of expressions of the corresponding types. The parallel
assignment plays a crucial role in our modeling of the parameter passing. The failure statement if B → S1 fi is used to
check the condition B during the execution. It raises a failure if B is not satisfied. Thus it differs from the abbreviation
if B then S fi ≡ if B then S else skip fi. To distinguish between local and global variables, we use a block statement
begin local x̄ := t̄; S1 end, where x̄ is a non-empty sequence of simple distinct local variables, all of which are explicitly
initialized by means of a parallel assignment x̄ := t̄ . We assume that the sets of local and global variables are disjoint.

For an expression t , we denote by var(t) the set of all simple and array variables in t . Analogously, for a program S ,
we denote by var(S) the set of all simple and array variables in S , and by change(S) the set of all global simple and array
variables that can be modified by S , i.e., the set of variables that appear on the left-hand side of an assignment in S outside
of a subscript position of a subscripted variable.

2.2. . . . and its semantics

We define the operational semantics of the kernel language in a standard way, using a structural operational semantics
in the sense of Plotkin [27]. A configuration C is a pair 〈S, σ 〉 consisting of a statement S that is to be executed and a
state σ , i.e., a mapping that assigns to each variable (including local variables) of type T a value drawn from the set DT

denoted by type T .
Given a state σ and an expression t , we define in a standard way its semantics σ(t), the value assigned to it by σ .

Further, given a sequence of expressions t̄ (in particular, a sequence of variables x̄), we denote by σ(t̄) the corresponding
sequence of values assigned to t̄ by σ .

We denote the set of states by Σ . Unless stated otherwise, the letters σ , τ range over Σ . We use a special state fail to
represent an abnormal situation in a program execution, a failure in an execution of a program. We stipulate that fail /∈ Σ .
Sometimes to avoid confusion we refer to the elements of Σ as proper states.

826 K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852
We use the notion of a state update of a proper state σ , written as σ [u := d], where u is a simple or subscripted variable
of type T and d is an element of type T . If u is a simple variable then σ [u := d] is the state that agrees with σ except for u
where its value is d. If u is a subscripted variable, say u ≡ a[t1, . . . , tn], then σ [u := d] is the state that agrees with σ except
for the variable a where the value σ(a)(σ (t1), . . . , σ (tn)) is changed to d. For the special state we define the update by
fail[u := d] = fail. Further, the parallel update σ [u1, . . . , un := d1, . . . ,dn] of distinct simple variables is the state that agrees
with σ except for ui where its value is di , for i ∈ {1, . . . ,n}.

A transition is a step C → C ′ between configurations. To express termination we use the empty statement E; a configu-
ration 〈E, σ 〉 denotes termination in the state σ . Transitions are specified by transition axioms and rules. The only transition
axioms that are somewhat non-standard deal with the block statement and the failure statement. We write here σ |	 B to
denote that B is true in the state σ .

• 〈if B → S fi, σ 〉 → 〈S, σ 〉, where σ |	 B ,
• 〈if B → S fi, σ 〉 → 〈E, fail〉, where σ |	 ¬B ,
• 〈begin local x̄ := t̄; S end, σ 〉 → 〈x̄ := t̄; S; x̄ := σ(x̄),σ 〉.

The last axiom ensures that the local variables are initialized as prescribed by the parallel assignment and that upon
termination the local variables are restored to their initial values, held at the beginning of the block statement. This way
we implicitly model a stack discipline for, possibly nested, blocks. The other transition axioms and rules are standard (see
Appendix A).

The partial correctness semantics is a mapping M[[S]] :Σ → P (Σ) defined by

M[[S]](σ) = {
τ ∈ Σ

∣∣ 〈S,σ 〉 →∗ 〈E, τ 〉},
where →∗ denotes the reflexive, transitive closure of →. The strong partial correctness semantics is a mapping Msp[[S]] :Σ →
P (Σ ∪ {fail}) defined by

Msp[[S]](σ) = {
τ ∈ Σ ∪ {fail} ∣∣ 〈S,σ 〉 →∗ 〈E, τ 〉}.

So for all S and σ we have fail /∈ M[[S]](σ), while for some S and σ we can have fail ∈ Msp[[S]](σ). In the latter case we
say that S can fail when started in σ . We extend these semantic mappings to sets of states, X ⊆ Σ , by collecting all results
obtained for the individual states σ ∈ X .

3. Object-oriented programs: syntax

To define the syntax of the considered object-oriented programming language we introduce a new basic type object
which denotes an infinite set of objects Dobject .

3.1. Expressions

An expression of type object denotes an object. Simple variables of type object and array variables with value type
object are called object variables. We distinguish the simple object variable this which in each state denotes the currently
executing object.

Besides the set Var of variable declarations defined in Section 2 we now introduce a new set IVar of instance variable
declarations (so Var ∩ IVar = ∅). An instance variable can be a simple variable or an array variable. Thus we now have two
kinds of variable declarations: the up till now considered declarations of normal variables (Var), which are shared, and the
new declarations of instance variables (IVar), which are owned by objects. As before we identify each variable declaration
with the variable name. Out of instance array variables we construct, as in the case of normal array variables, subscripted
instance variables.

For simplicity we assume that each object owns the same set of instance variables. Each object has its own local state
which assigns values to the instance variables. We stipulate that this is a normal variable, that is, this ∈ Var.

The only operation of a higher type which involves the basic type object (as argument type or as value type) is the
equality =object (abbreviated by =). Finally, we use the constant null of type object to represent the void reference, a special
construct which does not have a local state.

Summarizing, the set of expressions defined in Section 2 is extended by the introduction of the basic type object, the
constant null of type object, and the set IVar of (simple and array) instance variables. Object expressions, i.e., expressions
of type object, can only be compared for equality. A variable is either a normal variable (in Var) or an instance variable
(in IVar). Simple variables (in Var ∪ IVar) can now be of type object. Also the argument and the value types of array variables
(in Var ∪ IVar) can be of type object. Finally, we have the distinguished normal object variable this.

3.2. Programs

For object-oriented programs we extend the syntax of the kernel language introduced in Section 2. Assignments to
instance variables are introduced as follows:

S ::= u := t,

K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852 827
where u ∈ IVar is a simple or subscripted (instance) variable. Method calls are described by the clause

S ::= s.m(t1, . . . , tn),

where n � 0. Here the object expression s denotes the called object, the identifier m denotes a method and t1, . . . , tn are the
actual parameters, which are expressions of a basic type. A method is defined by means of a declaration

m(u1, . . . , un) :: S,

where the formal parameters u1, . . . , un ∈ Var are of a basic type and S is a statement called the method body. Since the
statements now include method calls, we allow for mutually recursive methods. However, the declarations cannot be nested,
so we do not allow for nested methods.

The instance variables appearing in the body S of a method declaration are owned by the executing object, which
is denoted by the variable this. To ensure correct use of the variable this we disallow assignments to the variable this.
However, when describing the semantics of method calls, we do use ‘auxiliary’ block statements in which the variable this
is used as a local variable, so in particular, it is initialized (and hence modified). Further, to ensure that instance variables
are permanent, we require that in each block statement instance variables are not used as local variables.

Apart from denoting the callee of a method call, object expressions can appear in Boolean expressions. Further, we allow
for assignments to object variables.

An object-oriented program consists of a main statement S built according to the syntax of this section and a given set D
of method declarations such that each method used has a unique declaration in D and each method call refers to a method
declared in D . We assume that method calls are well-typed, i.e., the numbers of formal and actual parameters agree and
for each parameter position the types of the corresponding actual and formal parameters coincide. As before, name clashes
between local variables and global variables are resolved by assuming that no local variable of S or D occurs freely (i.e., as
a global variable) in S or D . If D is clear from the context we refer to the main statement as an object-oriented program.

Example 3.1. Consider the object-oriented program

S ≡ this.find(z)

in the context of the recursive method declaration

find(u) :: if u �= this then next.find(u) fi.

We assume that the actual parameter z, the formal parameter u, and the instance variable next are of type object. The idea
is that S checks whether a list of objects linked via the pointer next contains an object stored in the actual parameter z.
The search through the list starts at the object stored in the variable this.

4. Object-oriented programs: semantics

In this section we define the semantics of the introduced object-oriented programs. We first define the semantics of
expressions. It requires an extension of the definition of state. Subsequently we introduce a revised definition of an update
of a state and provide transition axioms concerned with the newly introduced programming constructs.

4.1. Semantics of expressions

The main difficulty in defining the semantics of expressions is of course how to deal properly with the instance variables.
Each instance variable has a different version (‘instance’) in each object. Conceptually, when defining the semantics of an
instance variable u we view it as a variable of the form this.u, where this represents the current object. So, given a proper
state σ and a simple instance variable x we first determine the current object o, which is σ(this). Then we determine the
local state of this object, which is σ(o), or σ(σ (this)), and subsequently apply this local state to the considered instance
variable x. This means that given a proper state σ the value assigned to the instance variable x is σ(o)(x), or, written out
in full, σ(σ (this))(x). This two-step procedure is at the heart of the definition of semantics of an expression given below.

Next, we introduce a value null ∈ Dobject . So in each proper state each variable of type object equals some object
of Dobject , which can be the null object. A proper state σ now additionally assigns to each object o ∈ Dobject its local
state σ(o). In turn, a local state σ(o) of an object o assigns a value of appropriate type to each instance variable. Note that
by definition a proper state also assigns to null a local state. However, by Lemma 4.2 from Section 4.3 below this state is
not reachable in any computation.

Note that the local state of the current object σ(this) is given by σ(σ (this)). Further, note that in particular, if an
instance variable x is of type object, then for each object o ∈ Dobject , σ(o)(x) is either null or an object o′ ∈ Dobject ,
whose local state is σ(o′), i.e., σ(σ (o)(x)). This application of σ can of course be nested, to get local states of the form
σ(σ (σ (o)(x))(x)), etc.

To illustrate the notion of a state consider Fig. 1. The current object is represented by a pointer to its memory region.
Each occurrence of the variable x is here an instance variable of a different object. In contrast, the normal variables, in
particular this, form the global component of the state.

828 K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852
Fig. 1. A state.

We need to extend the semantics σ(s) of an expression s in a proper state σ (cf. Section 2.2) by the following clauses:

• if s ≡ null then σ(s) = null, so the meaning of the constant null (representing the void reference) is the null object,
• if s ≡ x for some simple instance variable x then σ(s) = σ(o)(x), where o = σ(this), so in expanded form this is

σ(x) = σ
(
σ(this)

)
(x), (1)

• if s ≡ a[s1, . . . , sn] for some instance array variable a then

σ(s) = σ(o)(a)
(
σ(s1), . . . , σ (sn)

)
,

where o = σ(this).

4.2. Updates of states

Next, we revise the definition of a state update for the case of instance variables. Consider a proper state σ , a simple
instance variable x, and a value d belonging to the type of x. To perform the corresponding state update of σ on x to d,
written as σ [x := d], we first identify the current object o, which is σ(this) and its local state, which is σ(o), or σ(σ (this)),
that we denote by τ . Then we perform the appropriate update on the state τ . So the desired update of σ is achieved by
modifying τ to τ [x := d].

In general, let u be a (possibly subscripted) instance variable of type T and τ a local state. We define for d ∈ DT

τ [u := d]
analogously to the standard definition of state update for normal variables. Furthermore, we define for an object o ∈ Dobject
and local state τ , the state update σ [o := τ] by

σ [o := τ](o′) =
{

τ if o = o′,
σ (o′) otherwise.

We are now in a position to define the state update σ [u := d] for a (possibly subscripted) instance variable u of type T
and d ∈ DT , as follows:

σ [u := d] = σ
[
o := τ [u := d]],

where o = σ(this) and τ = σ(o). Note that the state update σ [o := τ [u := d]] assigns to the current object o the update
τ [u := d] of its local state τ . In its fully expanded form we get the following difficult to parse definition of a state update:

σ [u := d] = σ
[
σ(this) := σ

(
σ(this)

)[u := d]].
Example 4.1. Let x be a Boolean instance variable, o = σ(this), and τ = σ(o). Then

σ [x := true](x)

= {
(1) with σ replaced by σ [x := true]}

σ [x := true](σ [x := true](this)
)
(x)

= {
by the definition of state update, σ [x := true](this) = σ(this) = o

}

K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852 829
σ [x := true](o)(x)

= {
definition of state update σ [x := true]}

σ
[
o := τ [x := true]](o)(x)

= {
definition of state update σ

[
o := τ [x := true]]}

τ [x := true](x)

= {
definition of state update τ [x := true]}

true.

4.3. Semantics of programs

For the operational semantics of the considered programs we introduce two transition axioms that deal with assignments
to simple or subscripted instance variables u and with method calls s.m(t̄), where t̄ is the list of actual parameters.

• 〈u := t, σ 〉 → 〈E, σ [u := σ(t)]〉,
• 〈s.m(t̄),σ 〉 → 〈if s �= null → begin local this, ū := s, t̄; S end fi, σ 〉, where m(ū) :: S ∈ D .

This clarifies that we use the stack discipline to handle the method calls. Indeed, the method body S is executed in the
state in which the current object (denoted by the variable this) becomes σ(s), and upon termination of the method body S
the current object is restored to its previous value σ(this) using the parallel assignment σ [this, ū := σ(s, t̄)]. The use of the
failure statement implies that if in the considered state σ the called object s equals the void reference (it equals null), then
the method call yields a failure.

Lemma 4.2 (Safety). For every statement S that can arise during an execution of an object-oriented program and every proper state σ ,
the following hold.

(i) Absence of null Reference: if σ(this) �= null and 〈S, σ 〉 → 〈S1, τ 〉, then τ (this) �= null.
(ii) Type Safety: if S is well-typed and 〈S, σ 〉 → 〈S1, τ 〉 holds, then also S1 is well-typed.

Proof. (i) If S �≡ E then any configuration 〈S, σ 〉 has a successor in the transition relation →. To prove the preservation of
the assumed property of the state it suffices to consider the execution of an assignment this := s. Each such assignment
arises only within the context of the block statement in the corresponding transition axiom and is activated in a state σ
such that σ(s) �= null. This yields a state τ such that τ (this) �= null.

(ii) Except for method calls, the statements on the right-hand side of the transition axioms are composed of the substate-
ments of the statement on the left-hand side of the transition axiom, which are well-typed by assumption. Further, by the
second transition axiom above, well-typed method calls lead to well-typed parallel assignments in the block statements. �

When considering verification of object-oriented programs we shall only consider computations that start in a proper
state σ such that σ(this) �= null, i.e., in a state in which the current object differs from the void reference. The Safety
Lemma 4.2 implies that such computations never lead to a proper state in which this inequality is violated.

The partial correctness semantics M[[S]] and the strong partial correctness semantics Msp[[S]] of object-oriented programs S
are defined as for the kernel language.

5. Transformation to recursive programs

In this section we show that object-oriented programs introduced in the previous section can be translated by means
of a simple syntax-driven transformation to recursive programs with parameters. Intuitively, for each method the current
object is made into an explicit parameter of the corresponding recursive procedure.

5.1. Recursive programs

As a preparation we introduce recursive programs by adding recursive procedures with call-by-value parameters to the
kernel language. Procedure calls with parameters are introduced by the grammar rule

S ::= P (t1, . . . , tn),

where P is a procedure identifier and t1, . . . , tn , with n � 0, are expressions called actual parameters. Procedures are defined
by declarations of the form

P (u1, . . . , un) :: S,

830 K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852
where u1, . . . , un are distinct simple variables, called formal parameters of the procedure P and S is the body of the proce-
dure P .

We assume a given set of procedure declarations D such that each procedure that appears in D has a unique declaration
in D . A recursive program consists of a main statement S built according to the syntax of this section and a given set D of
procedure declarations such that all procedures whose calls appear in the considered recursive programs are declared in D .
So we allow mutually recursive procedures but not nested procedures. We assume that procedure calls are well-typed in
the same sense as method calls. As in the case of the object-oriented programs, name clashes between local variables and
global variables are resolved by assuming that no local variable of S or D occurs freely in S or D .

5.1.1. Semantics
For recursive programs we extend the operational semantics of the kernel language by the following transition axiom

that describes the call-by-value parameter mechanism.〈
P (t̄),σ

〉 → 〈begin local ū := t̄; S end,σ 〉, where P (ū) :: S ∈ D.

This yields for a recursive program S the semantics M[[S]] and Msp[[S]].
Note that thanks to the semantics of the block statement this axiom correctly handles the clash between formal and

actual parameters. For example for P (u) :: S ∈ D we get, as desired,〈
P (u + 1),σ

〉 →∗ 〈
S; u := σ(u),σ

[
u := σ(u + 1)

]〉
.

5.2. Transformation

We now define a formal relation between object-oriented programs and recursive programs. We assume the class of
recursive programs that use normal variables whose type may involve the basic type object and the class of object-oriented
programs, as defined in Section 3. Further, we assume for every declaration of an instance variable u of a basic type T
a declaration in Var of a normal array variable u of type

object → T .

Similarly, we assume for every declaration of an instance variable a of a higher type T1 × · · · × Tn → T a declaration in Var
of a normal array variable a of type

object × T1 × · · · × Tn → T .

A normal array variable of type

object → T

in the recursive program will represent the instance variable of basic type T in the corresponding object-oriented program,
and a normal array variable of type

object × T1 × · · · × Tn → T

in the recursive program will represent an instance variable of the corresponding object-oriented program of type T1 ×· · ·×
Tn → T .

Given an ‘object-oriented’ state σ we denote by Θ(σ) the ‘normal’ state which represents the instance variables as
normal variables. On normal variables of type T the states σ and Θ(σ) agree and are of type Var → DT . For instance
variables of basic type T the state σ is of type

Dobject → (IVar → DT),

the corresponding state Θ(σ) is of type

Var → (Dobject → DT),

and for instance array variables of type T1 × · · · × Tn → T the state σ is of type

Dobject → (
IVar → (DT1 × · · · × DTn → DT)

)
,

and the corresponding state Θ(σ) is of type

Var → (Dobject × DT1 × · · · × DTn → DT).

Formally, Θ(σ) is defined as follows:

• Θ(fail) = fail,
• Θ(σ)(x) = σ(x), for every normal variable x,
• Θ(σ)(z)(o) = σ(o)(z), for every object o ∈ Dobject and normal array variable z of type object → T on the left-hand side

of the equation corresponding to an instance variable z of a basic type T on the right-hand side of the equation,

K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852 831
• Θ(σ)(a)(o,d1, . . . ,dn) = σ(o)(a)(d1, . . . ,dn), for every object o ∈ Dobject and normal array variable a of type object ×
T1 × · · ·× Tn → T on the left-hand side of the equation corresponding to an instance array variable a of type T1 × · · ·×
Tn → T on the right-hand side of the equation, and di ∈ DTi , for i ∈ {1, . . . ,n}.

Next, we define for every expression s of the object-oriented programming language the ‘normal’ expression Θ(s) of the
recursive program by induction on the structure of s, with the following base cases:

• Θ(x) ≡ x, for every normal variable x,
• Θ(x) ≡ x[this], for every instance variable x of a basic type,
• Θ(a[s1, . . . , sn]) ≡ a[this,Θ(s1), . . . ,Θ(sn)], for every instance array variable a.

The first case in particular yields Θ(this) ≡ this. The following lemma clarifies the outcome of this transformation.

Lemma 5.1 (Translation). For all proper states σ the following hold.

(i) For all expressions s,

σ(s) = Θ(σ)
(
Θ(s)

)
,

where Θ(σ)(Θ(s)) refers to the standard semantics of expressions which involve only normal variables.
(ii) For all (possibly subscripted) instance variables u and values d of the same type as u,

Θ
(
σ [u := d]) = Θ(σ)

[
Θ(u) := d

]
.

Proof. By straightforward induction on the structure of s and case analysis on the structure of u. �
Next, we extend by structural induction the transformation Θ to statements of the considered object-oriented language.

The failure statement is used to take care of the method calls on the void reference. We prove then that this transformation
preserves both partial and strong partial correctness semantics.

• Θ(skip) ≡ skip,
• Θ(x̄ := t̄) ≡ x̄ := Θ(t̄),
• Θ(u := s) ≡ Θ(u) := Θ(s),
• Θ(s.m(s1, . . . , sn)) ≡ if Θ(s) �= null → m(Θ(s),Θ(s1), . . . ,Θ(sn)) fi,
• Θ(S1; S2) ≡ Θ(S1); Θ(S2),
• Θ(if B then S1 else S2 fi) ≡ if Θ(B) then Θ(S1) else Θ(S2) fi,
• Θ(while B do S od) ≡ while Θ(B) do Θ(S) od,
• Θ(if B → S fi) ≡ if Θ(B) → Θ(S) fi,
• Θ(begin local ū := t̄; S end) ≡ begin local ū := Θ(t̄);Θ(S) end, where Θ(t̄) denotes the result of applying Θ to the

sequence of expressions t̄ .

So the translation of a method call s.m(s1, . . . , sn) transforms the called object s into an additional actual parameter of a call
of the procedure m. Additionally a check for a failure is added. Finally, we transform every method declaration

m(u1, . . . , un) :: S

into a procedure declaration

m(this, u1, . . . , un) :: Θ(S).

So the distinguished normal variable this is added as an additional formal parameter of the procedure m. This way the
set D of method declarations is transformed into the set

Θ(D) = {
m(this, u1, . . . , un) :: Θ(S)

∣∣ m(u1, . . . , un) :: S ∈ D
}

of the corresponding procedure declarations.

Example 5.2. Consider the object-oriented program

S ≡ y.add(1); y.add(2),

where y is a normal variable of type object, in the context of the declaration

D = {
add(x) :: sum := sum + x

}
,

832 K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852
where the formal parameter x is of type integer and sum is an instance variable, also of type integer. Then the transforma-
tion Θ yields

Θ(S) ≡ if y �= null → add(y,1) fi; if y �= null → add(y,2) fi

and

Θ(D) = {
add(this, x) :: sum[this] := sum[this] + x

}
as the corresponding recursive program.

5.3. Correctness proof

We have the following crucial correspondence between an object-oriented program S and its transformation Θ(S).

Lemma 5.3 (Transformation). For all well-typed object-oriented programs S, all sets of method declarations D, all proper states σ , and
all proper or fail states τ ,

〈S,σ 〉 →∗ 〈E, τ 〉 iff
〈
Θ(S),Θ(σ)

〉 →∗ 〈
E,Θ(τ)

〉
.

Proof. We prove only the (⇒) direction. We proceed by induction on the number of the axiom and rule applications used
in the computation 〈S, σ 〉 →∗ 〈E, τ 〉.

The only non-trivial case arises when S begins with a method call, that is, is of the form s.m(t̄); S1. By the assumption,〈
s.m(t̄); S1,σ

〉 → 〈begin local this, ū := s, t̄; S end; S1,σ 〉 →∗ 〈E, τ 〉,
where σ(s) �= null and m(ū) :: S ∈ D . So by the induction hypothesis and definition of Θ ,〈

Θ(begin local this, ū := s, t̄; S end);Θ(S1),Θ(σ)
〉 →∗ 〈

E,Θ(τ)
〉
.

Note that

Θ
(
s.m(t̄); S1

) ≡ if Θ(s) �= null → m
(
Θ(s),Θ(t̄)

)
fi;Θ(S1).

By the Translation Lemma 5.1(i), we have Θ(σ)(Θ(s)) �= null. So by definition of the semantics of recursive programs and
definition of Θ ,

〈
if Θ(s) �= null → m

(
Θ(s),Θ(t̄)

)
fi;Θ(S1),Θ(σ)

〉
→∗ 〈

Θ(begin local this, ū := s, t̄; S end);Θ(S1),Θ(σ)
〉
,

which concludes the proof. �
Finally, the following theorem establishes the correctness of the transformation Θ as a homomorphism. We extend

here Θ to a (possibly empty) set of states in an obvious way.

Theorem 5.4 (Correctness of Θ). For all well-typed object-oriented programs S, all sets of method declarations D, and all proper
states σ the following hold:

(i) Θ(M[[S]](σ)) = M[[Θ(S)]](Θ(σ)),
(ii) Θ(Msp[[S]](σ)) = Msp[[Θ(S)]](Θ(σ)),

where S is considered in the context of the set D and the corresponding recursive program Θ(S) in the context of the set of procedure
declarations Θ(D).

Proof. The claim is a direct consequence of the Transformation Lemma 5.3. �
6. Assertion language

6.1. Syntax and semantics

Expressions of the programming language only refer to the local state of the executing object and do not allow us
to distinguish between different versions of the instance variables. In the assertions we need to be more explicit. So we
introduce the set of global expressions which extends the set of expressions of the object-oriented programming language
introduced in Section 3 by the following additional clauses:

K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852 833
• if s is a global expression of type object and x is an instance variable of a basic type T then s.x is a global expression
of type T ,

• if s is a global expression of type object, s1, . . . , sn are global expressions of type T1, . . . , Tn , and a is an array instance
variable of type T1 × · · · × Tn → T then s.a[s1, . . . , sn] is a global expression of type T .

In particular, every expression of the programming language is also a global expression.

Example 6.1. Consider a normal integer variable i, a normal variable x of type object, a normal array variable a of type
integer → object, and an instance variable next of type object. Using them we can generate the following global expres-
sions:

next, next.next, x.next, x.next.next, a[i].next, etc.,

all of type object. In contrast, next.x is not a global expression, since x is not an instance variable.

We call a global expression of the form s.u a navigation expression since it allows one to navigate through the local states
of the objects. For example, the global expression next.next refers to the object that can be reached by ‘moving’ to the object
denoted by the value of next of the current object this and evaluating the value of its variable next.

We define the semantics of global expressions by extending the semantics of expressions given in Section 4.1 as follows:

• for a simple instance variable x of type T ,

σ(s.x) = σ(o)(x),

where σ(s) = o,
• for an instance array variable a with value type T ,

σ
(
s.a[s1, . . . , sn]) = σ(o)(a)

(
σ(s1), . . . , σ (sn)

)
,

where σ(s) = o.

So for a simple or subscripted instance variable u the semantics of u and this.u coincide, that is, for all proper states σ
we have σ(u) = σ(this.u). In other words, we can view an instance variable u as an abbreviation for the global expression
this.u.

Note that this semantics also provides meaning to global expressions of the form null.u. However, such expressions are
meaningless when specifying correctness of programs because the local state of the null object can never be reached in
computations starting in a proper state σ such that σ(this) �= null (see the Safety Lemma 4.2).

Example 6.2. If x is an object variable and σ a proper state with σ(x) �= null, then for all simple instance variables y we
have σ(x.y) = σ(σ (x))(y).

Assertions are constructed from global Boolean expressions by adding quantification over simple normal variables. We use
p, q as typical letters for assertions. For a state σ and an assertion p we write σ |	 p if σ satisfies p. Let [[p]] denote the
set of proper states satisfying p, so [[p]] = {σ ∈ Σ | σ |	 p}. So σ |	 p iff σ ∈ [[p]].

6.2. Substitution and aliasing

We write s[u := t] for the result of substituting an expression t for a simple or subscripted normal variable u in an
expression s. We call [u := t] a substitution. For a simple variable u this is defined in the customary way. Also it is straight-
forward how to define the simultaneous substitution s[x̄ := t̄] involving a sequence of simple variables.

However, for a subscripted variable u, the problem of aliasing, i.e., when syntactically different subscripted variables
denote the same location, has to be taken care of. Following [11] we handle it using the conditional expressions. For
example,

min
(
a[x], y

)[
a[1] := 2

] ≡ if x = 1 then min(2, y) else min
(
a[x], y

)
fi.

The conditional expression checks whether a[x] and a[1] are aliases of the same location. If so, the substitution of 2 for a[1]
results in a[x] being replaced by 2, otherwise the substitution has no effect.

Intuitively, in a given state σ the substituted expression s[u := t] describes the same value as the expression s evaluated
in the updated state σ [u := σ(t)], which arises after the assignment u := t has been executed in σ . We shall later need the
details of the definition of s[u := t], so let us recall it here. It proceeds by induction on the structure of s. The cases dealing
with subscripted variables are as follows:

834 K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852
• if s ≡ a[s1, . . . , sn] for some array a, and u is a simple variable or a subscripted variable b[t1, . . . , tm] with a �≡ b, then

s[u := t] ≡ a
[
s1[u := t], . . . , sn[u := t]],

• if s ≡ a[s1, . . . , sn] for some array a and u ≡ a[t1, . . . , tn] then

s[u := t] ≡ if
n∧

i=1

s′
i = ti then t else a

[
s′

1, . . . , s′
n

]
fi

where s′
i ≡ si[u := t] for i ∈ {1, . . . ,n}.

The most complicated case is the second clause for subscripted variables. Here the conditional expression

if
n∧

i=1

s′
i = ti then . . . else . . . fi

checks whether, for any given proper state σ , the expression s ≡ a[s1, . . . , sn] in the updated state σ [u := σ(t)] and the
expression u ≡ a[t1, . . . , tn] in the state σ are aliases. For this check the substitution [u := t] needs to applied inductively to
all subscripts s1, . . . , sn of a[s1, . . . , sn]. In case of an alias s[u := t] yields t . Otherwise, the substitution is applied inductively
to the subscripts s1, . . . , sn of a[s1, . . . , sn].

We now extend the definition of the outcome s[u := t] of the substitution to the case of instance variables u and
global expressions s and t constructed from them. Let u be a simple or subscripted instance variable and s and t global
expressions. In general, the substitution [u := t] replaces every possible alias e.u of u by t . In addition to the possible
aliases of subscripted variables, we now also have to consider the possibility that the global expression e[u := t] denotes
the current object this. This explains the use of conditional expressions below.

Here are the main cases of the definition of the substitution operation s[u := t]:

• if s ≡ x ∈ Var then

s[u := t] ≡ s,

• if s ≡ e.u and u is a simple instance variable then

s[u := t] ≡ if e′ = this then t else e′.u fi,

where e′ ≡ e[u := t],
• if s ≡ e.a[s1, . . . , sn] and u ≡ a[t1, . . . , tn] then

s[u := t] ≡ if e′ = this ∧
n∧

i=1

s′
i = ti then t else e′.a

[
s′

1, . . . , s′
n

]
fi,

where e′ ≡ e[u := t] and s′
i ≡ si[u := t] for i ∈ {1, . . . ,n}.

The following example should clarify this definition.

Example 6.3. Suppose that s ≡ this.u. Then

this.u[u := t]
≡ if this[u := t] = this then t else . . . fi

≡ if this = this then t else . . . fi.

So this.u[u := t] and t are equal in the sense that for all proper states σ we have σ(this.u[u := t]) = σ(t).
Next, suppose that s ≡ this.a[x], where x is a simple variable. Then

this.a[x][a[x] := t
]

≡ if this
[
a[x] := t

] = this ∧ x
[
a[x] := t

] = x then t else . . . fi

≡ if this = this ∧ x = x then t else . . . fi.

So this.a[x][a[x] := t] and t are equal.

The substitution operation is then extended to assertions by properly taking care of quantification. We have the following
lemma that relates for instance variables the effect of substitution to the state update.

K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852 835
Lemma 6.4 (Substitution of Instance Variables). For all global expressions s and t, all assertions p, all simple or subscripted instance
variables u of the same type as t, and all proper states σ the following hold:

(i) σ(s[u := t]) = σ [u := σ(t)](s),
(ii) σ |	 p[u := t] iff σ [u := σ(t)] |	 p.

Proof. By induction on the structure of s and p. �
7. Proof theory for object-oriented programs

We now study (strong) partial correctness of object-oriented programs expressed by correctness formulas of the form
{p} S {q}, where S is a program and p and q are assertions. The assertion p is the precondition of the correctness formula
and q is the postcondition. A correctness formula {p} S {q} holds in the sense of partial correctness, abbreviated |	 {p} S {q},
if every terminating computation of S that starts in a state satisfying p terminates in a state satisfying q. And {p} S {q}
holds in the sense of strong partial correctness, abbreviated |	sp {p} S {q}, if |	 {p} S {q} and no computation of S that starts
in a state satisfying p ends in a failure.

Using the semantics M and Msp , we formalize these two interpretations of correctness formulas uniformly as set
theoretic inclusions (cf. [3]):

• |	 {p} S {q} if M[[S]]([[p]]) ⊆ [[q]],
• |	sp {p} S {q} if Msp[[S]]([[p]]) ⊆ [[q]].

Since by definition fail /∈ [[q]] holds, Msp[[S]]([[p]]) ⊆ [[q]] implies that S does not fail when started in a proper state σ
satisfying p, as required for strong partial correctness.

Example 7.1. Consider again the program S ≡ this.find(z) of Example 3.1 for finding an object in a linked list. To specify the
desired effect of the there declared method find we introduce a fresh normal array variable a of type integer → object that
stores a linked list of objects, as expressed by the assertion

p0 ≡ ∀i � 0 : a[i].next = a[i + 1].
We take p ≡ this = a[0] ∧ p0 as precondition and q ≡ ∃i � 0 : z = a[i] as postcondition. Then the correctness formula
{p} S {q} holds in the sense of partial correctness, i.e., upon termination z will store one of the objects in the list. Note that
this is a correct specification since the variable a is not used (and hence not changed) in the program S . In general, normal
auxiliary array or simple variables have to be used to record the initial values of the program variables.

However, this correctness formula does not hold in the sense of strong partial correctness if the list contains the null
object before the object stored in the variable z. To avoid this we strengthen the precondition by adding the assertion

p1 ≡ ∀i � 0 : a[i] �= null.

Then {p ∧ p1} S {q} holds in the sense of strong partial correctness. Finally, if the list is circular and does not contain the
null object or the object stored in z, the program S diverges.

7.1. Partial correctness

Partial correctness of the programs in the kernel language is proved using the proof system PK consisting of the group
of axioms and rules 1–8, and 10 shown in Appendix B.1.

We now consider partial correctness of object-oriented programs. First, we introduce the following axiom for assignments
to instance variables:

AXIOM 11. ASSIGNMENT TO INSTANCE VARIABLES{
p[u := t]} u := t {p}

where u is a simple or subscripted instance variable.

So this axiom uses the new substitution operation defined in the previous section. Next, as we shall explain in a moment,
we need the following rule for weakening the precondition of a partial correctness formula concerning a method call.

RULE 12. WEAKENING

{p ∧ s �= null} s.m(t̄) {q}
{p} s.m(t̄) {q} .

836 K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852
7.1.1. Non-recursive methods
The main issue is how to deal with the parameters of method calls. Therefore, to focus on it we discuss the parameters

of non-recursive methods first. The following copy rule shows how to prove correctness of non-recursive method calls:

{p} begin local this, ū := s, t̄; S end {q}
{p} s.m(t̄) {q}

where m(ū) :: S ∈ D .

Example 7.2. We prove the partial correctness formula {true} null.m {false}, where m :: skip ∈ D . First, we have

{false} begin local this := null; skip end {false},
so by the above copy rule we get {false} null.m {false}. The desired conclusion now follows by the above weakening rule
and the consequence rule.

7.1.2. Recursive methods
When we deal only with one recursive method and use the method call as the considered object-oriented program, the

above copy rule needs to be modified to

{p} s.m(t̄) {q} �PO {p} begin local this, ū := s, t̄; S end {q}
{p} s.m(t̄) {q}

where D = {m(ū) :: S}.
The provability relation �PO here refers to the proof system PO, which is defined as PK extended with the axiom 11 for

assignments to instance variables, the weakening rule 12, and the auxiliary rules A1–A5 (as introduced in Appendix B.2).
Thus the premise of the rule states that in the proof the correctness of the block statement we may assume the correspond-
ing correctness formula concerning the method call.

In the case of an arbitrary program and a set of mutually recursive method declarations we have the following general-
ization of the above rule.

RULE 13. RECURSION I

{p1} s1.m1(t̄1) {q1}, . . . , {pn} sn.mn(t̄n) {qn} �PO {p} S {q},
{p1} s1.m1(t̄1) {q1}, . . . , {pn} sn.mn(t̄n) {qn} �PO

{pi} begin local this, ūi := si, t̄i; Si end {qi}, i ∈ {1, . . . ,n}
{p} S {q}

where mi(ūi) :: Si ∈ D for i ∈ {1, . . . ,n}.

The intuition behind this rule is as follows. Say that a program S is (p,q)-correct if {p} S {q} holds in the sense of partial
correctness. The second premise of the rule states that we can establish from the assumption of the (pi,qi)-correctness of
the method calls si .mi(t̄i) for i ∈ {1, . . . ,n}, the (pi,qi)-correctness of the procedure bodies Si for i ∈ {1, . . . ,n}, which are
adjusted as in the transition axiom that deals with the method calls. Then we can prove the (pi,qi)-correctness of the
method calls si .mi(t̄i) for i ∈ {1, . . . ,n} unconditionally, and thanks to the first premise establish the (p,q)-correctness of
the program S .

To prove partial correctness of object-oriented programs we use the following

PROOF SYSTEM PO+:

This system is obtained by extending PO by the recursion I rule 13.

7.2. Strong partial correctness

Strong partial correctness of programs in the kernel language is proved using the proof system SPK consisting of the
group of axioms and rules 1–7, 9, and 10 shown in Appendix B.1.

To prove strong partial correctness of method calls we modify the above recursion rule I. The provability symbol �SPO

refers now to the proof system SPO, which is defined as SPK augmented with the assignment axiom 11 and the auxiliary
rules A1–A5 introduced in Appendix B.2.

K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852 837
RULE 14. RECURSION II

{p1} s1.m1(t̄1) {q1}, . . . , {pn} sn.mn(t̄n) {qn} �SPO {p} S {q},
{p1} s1.m1(t̄1) {q1}, . . . , {pn} sn.mn(t̄n) {qn} �SPO

{pi} begin local this, ūi := si, t̄i; Si end {qi}, i ∈ {1, . . . ,n}
(∗) pi → si �= null, i ∈ {1, . . . ,n}
{p} S {q}

where mi(ūi) :: Si ∈ D , for i ∈ {1, . . . ,n}.

Thus compared with the recursion I rule 13, the premises (∗) have been added. These premises are indeed needed, as
the following incorrect derivation shows.

Example 7.3. Let m :: skip ∈ D . Without the premises (∗), we could derive from

{true} null.m {true} � {true} begin local this := null; skip end {true}
the correctness formula {true} null.m {true}. However, this correctness formula does not hold in the sense of strong partial
correctness.

To prove strong partial correctness of object-oriented programs we use the following

PROOF SYSTEM SPO+:

This system is obtained by extending SPO by the recursion II rule 14.

8. Formal justification

To prove soundness and completeness of the proof systems PO and SPO for (strong) partial correctness of object-oriented
programs we shall use the transformation given in Section 5, notably the Correctness Theorem 5.4, and reduce the problem
to the analysis of the corresponding proof systems for recursive programs.

The partial correctness semantics M[[S]] and the strong partial correctness semantics Msp[[S]] of recursive programs S are
defined as for the kernel language. We have the following basic semantic invariance property of recursive programs.

Lemma 8.1 (Semantic Invariance). Let N stand for M or Msp. Further, let z̄ be a sequence of fresh variables which do not appear in

the main statement S (or the given set of declarations D) and d̄ be a corresponding sequence of values. Then

N [[S]](σ [z̄ := d̄]) = {
τ [z̄ := d̄] ∣∣ τ ∈ N [[S]](σ)

}
.

Proof. The proof proceeds by induction on the length of the computation. �
8.1. Proof theory for recursive programs

Correctness formulas {p} S {q} for recursive programs S and their interpretation in terms of partial and strong partial
correctness is defined as for object-oriented programs.

In the following rule for recursive programs we use the provability symbol � to refer to either the proof system PR which
consists of the proof system PK augmented with the auxiliary rules A1–A5 defined in Appendix B.2 or the proof system SPR
which consists of the proof system SPK augmented with the these rules.

RULE 15. RECURSION III

{p1} P1(t̄1) {q1}, . . . , {pn} Pn(t̄n) {qn} � {p} S {q},
{p1} P1(t̄1) {q1}, . . . , {pn} Pn(t̄n) {qn} �

{pi} begin local ūi := t̄i; Si end {qi}, i ∈ {1, . . . ,n}
{p} S {q}

where Pi(ūi) :: Si ∈ D .

The intuition behind this rule is analogous as in the case of the recursion I rule introduced in Section 7. For recursive
programs we use the following proof systems.

838 K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852
PROOF SYSTEM PR+ for partial correctness of recursive programs:

This system is obtained by extending PR by the recursion III rule 15.

PROOF SYSTEM SPR+ for strong partial correctness of recursive programs:

This system is obtained by extending SPR by the recursion III rule 15.

8.2. Translation of assertions and proofs

For the reduction to (correctness proofs of) recursive programs we also have to transform expressions of the assertion
language. To this end, we extend the definition of Θ(s) given in Section 5.2 to global expressions introduced in Section 6.1
by adding the following two cases (where x is an instance variable of basic type and a is an array instance variable):

• Θ(s.x) = x[Θ(s)],
• Θ(s.a[s1, . . . , sn]) = a[Θ(s),Θ(s1), . . . ,Θ(sn)].

Then we extend the transformation Θ(s) to a transformation Θ(p) of assertions by a straightforward induction on the
structure of p. Correctness of this transformation of assertions is stated in the following lemma.

Lemma 8.2 (Assertion). For all assertions p and all proper states σ

σ |	 p iff Θ(σ) |	 Θ(p).

Proof. The straightforward proof proceeds by induction on the structure of p. �
Corollary 8.3 (Translation I). For all correctness formulas {p} S {q}, where S is an object-oriented program,

|	 {p} S {q} iff |	 {
Θ(p)

}
Θ(S)

{
Θ(q)

}
,

and

|	sp {p} S {q} iff |	sp
{
Θ(p)

}
Θ(S)

{
Θ(q)

}
.

Proof. It follows directly by the Assertion Lemma 8.2 and the Correctness Theorem 5.4. �
We next show that a correctness proof of an object-oriented program can be translated to a correctness proof of the

corresponding recursive program. We first need the following lemma which states equivalence between a correctness proof
of a method call from a given set of assumptions and a correctness proof of the corresponding procedure call from the
translated set of assumptions. For a given set of assumptions A about method calls, we define the set of assumptions Θ(A)

about the corresponding procedure calls by

Θ(A) = {{Θ(p)} m(Θ(s),Θ(t̄)) {Θ(q)} | {p} s.m(t̄) {q} ∈ A
}
.

Lemma 8.4 (Translation of Adaptation Correctness Proofs). Let A be a given set of assumptions about method calls. Then

A �AR {p} s.m(t̄) {q} iff Θ(A) �AR
{
Θ(p)

}
m

(
Θ(s),Θ(t̄)

) {
Θ(q)

}
,

where �AR denotes provability in the proof system consisting of the so-called adaptation rules: the consequence rule 7 and the auxiliary
proof rules introduced in Appendix B.2.

Proof. The proof proceeds by induction on the length of the derivation. �
In order to prove the equivalence between partial correctness proofs of a method call from a given set of assumptions

and correctness proofs of the corresponding procedure call from the translated set of assumptions, we need the following
lemma about partial correctness proofs of failure statements.

Lemma 8.5 (Normal Form Partial Correctness Failure Statements). Let A be a given set of assumptions about procedure calls. If

A �PR {p} if B → S fi {q}
then

A �PR {p ∧ B} S {q}.

K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852 839
Proof. The proof proceeds by induction on the length of the given derivation. By the form of the proof rules we can restrict
to the consequence rule 7, the auxiliary proof rules introduced in Appendix B.2, and the failure rule 8. We consider the case
of an application of the auxiliary rule A3. Let

A �PR
{

p′} if B → S fi {q}
and p denote ∃x : p′ , where x /∈ Var(D) ∪ Var(S) ∪ free(q). By the induction hypothesis and an application of the auxiliary
rule 8, we have

A �PR
{∃x : (p′ ∧ B

)}
S {q}.

Since x does not occur in B , the precondition is logically equivalent to (∃x : p′) ∧ B , so the desired result follows by an
application of the consequence rule. �

Next, we introduce the following lemmas stating the equivalence between (strong) partial correctness proofs of a method
call from a given set of assumptions and correctness proofs of the corresponding procedure call from the translated set of
assumptions.

Lemma 8.6 (Translation of Partial Correctness Proofs). Let A be a given set of assumptions about method calls. Then

A �PO {p} s.m(t̄) {q}
iff

Θ(A) �PR
{
Θ(p)

}
if Θ(s) �= null → m

(
Θ(s),Θ(t̄)

)
fi

{
Θ(q)

}
.

Proof. Note that by the form of the proof rules we can restrict the rules of PO to the proof system AR extended with the
weakening rule 12 and restrict the rules of PR to the proof system AR extended with the failure rule 8.

(⇒) We prove the claim by induction on the length of the derivation. For the base case assume that {p} s.m(t̄) {q} ∈ A.
By definition of Θ(A),{

Θ(p)
}

m
(
Θ(s),Θ(t̄)

) {
Θ(q)

} ∈ Θ(A),

so

Θ(A) �PR
{
Θ(p)

}
m

(
Θ(s),Θ(t̄)

) {
Θ(q)

}
.

By a trivial application of the consequence rule, we get

Θ(A) �PR
{
Θ(p) ∧ Θ(s) �= null

}
m

(
Θ(s),Θ(t̄)

) {
Θ(q)

}
.

Now by the failure rule, we get the desired result.
For the induction step we treat the case when the last rule applied is the weakening rule. Then it is applied to

A �PO {p ∧ s �= null} s.m(t̄) {q}.
By the induction hypothesis,

Θ(A) �PR
{
Θ(p) ∧ Θ(s) �= null

}
if Θ(s) �= null → m

(
Θ(s),Θ(t̄)

)
fi

{
Θ(q)

}
.

By Lemma 8.5, it follows that

Θ(A) �PR
{
Θ(p) ∧ Θ(s) �= null ∧ Θ(s) �= null

}
m

(
Θ(s),Θ(t̄)

) {
Θ(q)

}
,

so by the consequence and failure rules we get the desired result, the right-hand side of the statement of the lemma.
(⇐) We prove the claim by induction on the length of the derivation. We only treat the main case of the induction step

when the last rule applied is the failure rule. Then it is applied to

Θ(A) �PR
{
Θ(p) ∧ Θ(s) �= null

}
m

(
Θ(s),Θ(t̄)

) {
Θ(q)

}
.

In this derivation in �PR the failure rule has not been applied. Thus we can replace �PR by �AR . By the Translation
Lemma 8.4, we get

A �AR {p ∧ s �= null} s.m(t̄) {q}.
Applying the weakening rule we get the desired result, the left-hand side of the statement of the lemma. �
Lemma 8.7 (Translation of Strong Partial Correctness Proofs). Let A be a given set of assumptions about method calls such that
p′ → s′ �= null holds for all {p′} s′.m′(t̄′) {q′} ∈ A. Then

A �SPO {p} s.m(t̄) {q}
iff

Θ(A) �SPR
{
Θ(p)

}
if Θ(s) �= null → m

(
Θ(s),Θ(t̄)

)
fi

{
Θ(q)

}
.

840 K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852
Proof. (⇒) We prove the claim by induction on the length of the derivation. We only treat the base case, that is when
{p} s.m(t̄) {q} ∈ A. By definition of A, the implication p → s �= null holds. By definition of Θ(A),{

Θ(p)
}

m
(
Θ(s),Θ(t̄)

) {
Θ(q)

} ∈ Θ(A).

Furthermore, by the Assertion Lemma 8.2, we have Θ(p) → Θ(s) �= null. So we conclude the desired result by an application
of the failure II rule.

(⇐) We prove the claim by induction on the length of the derivation. We only treat the main case of the inductive step,
an application of the failure II rule. So Θ(p) → Θ(s) �= null holds and the rule is applied to

Θ(A) �SPR
{
Θ(p)

}
m

(
Θ(s),Θ(t̄)

) {
Θ(q)

}
.

In this derivation in �SPR the failure II rule has not been applied. So we can replace �SPR by �AR . Thus by the Translation
Lemma 8.4,

A �AR {p} s.m(t̄) {q}
from which the desired result follows. �

In order to extend the above lemmas from method calls to arbitrary statements we need the following lemma which
states that the transformation on assertions is a homomorphism with respect to the substitution operation.

Lemma 8.8 (Homomorphism). For all global expressions or assertions p, all expressions t of the programming language, and all simple
or subscripted variables u,

Θ
(

p[u := t]) ≡ Θ(p)
[
Θ(u) := Θ(t)

]
.

Proof. We treat the case of a global expression s and a simple instance variable u. By definition, Θ(u) ≡ u[this]. It suffices
to prove

Θ
(
s[u := t]) ≡ Θ(s)

[
u[this] := Θ(t)

]
by induction on the structure of the global expression s. We treat the case of s ≡ e.u.

Θ
(
e.u[u := t])

≡ {
by definition of the substitution [u := t]}

Θ
(
if e[u := t] = this then t else e[u := t].u fi

)
≡ {by definition of Θ}

if Θ
(
e[u := t] = this

)
then Θ(t) else Θ

(
e[u := t].u)

fi

≡ {by definition of Θ}
if Θ

(
e[u := t]) = this then Θ(t) else u

[
Θ

(
e[u := t])] fi

≡ {by induction hypothesis about e}
if Θ(e)

[
u[this] := Θ(t)

] = this then Θ(t) else u
[
Θ(e)

[
u[this] := Θ(t)

]]
fi

≡ {
by definition of the substitution

[
u[this] := Θ(t)

]}
u
[
Θ(e)

][
u[this] := Θ(t)

]
≡ {by definition of Θ}

Θ(e.u)
[
u[this] := Θ(t)

]
. �

Lemma 8.9 (Translation of Correctness Proofs Statements). Let A be a set of assumptions about method calls and {p} S {q} be a cor-
rectness formula of an object-oriented statement S. Then

A � {p} S {q} iff Θ(A) � {
Θ(p)

}
Θ(S)

{
Θ(q)

}
,

where

• in case of partial correctness � on the left-hand side denotes provability in the proof system PO, and � on the right-hand side
denotes provability in the proof system PR, and

• in case of strong partial correctness � on the left-hand side denotes provability in the proof system SPO, and � on the right-hand
side denotes provability in the proof system SPR. Additionally, we assume that p′ → s �= null holds for all {p′} s.m(t̄) {q′} ∈ A.

K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852 841
Proof. The proof proceeds by induction on the length of the derivation. The case of an assignment statement follows by the
Homomorphism Lemma 8.8. The case of a method call follows by the Translation Lemma 8.7. The cases of other program
statements follow directly by the induction hypothesis. In particular, in the cases of the consequence rule and the rules for
conditionals and loops, the Assertion Lemma 8.2 is used. �

Finally, we arrive at the main result of this section.

Theorem 8.10 (Translation II). For all correctness formulas {p} S {q}, where S is an object-oriented program,

(i) {p} S {q} is derivable in the proof system PO+ iff {Θ(p)} Θ(S) {Θ(q)} is derivable in PR+,
(ii) {p} S {q} is derivable in the proof system SPO+ iff {Θ(p)} Θ(S) {Θ(q)} is derivable in SPR+.

Proof. The proof proceeds by an induction on the length of the derivation. The case of the assignment axioms is taken care
of by the above Lemma 8.8. The case of the recursion rules is taken care of by the Translation Lemma 8.9. The case of
the other axioms and rules follows immediately from the induction hypothesis (using the Assertion Lemma 8.2 in case of
the rules for the conditional and while statements). Note that in the premises of the recursion rules we cannot apply the
recursion rule again. �

From the above theorem it immediately follows that the proof systems PO+ and SPO+ are sound and (relative) complete
if and only if the corresponding proof systems PR+ and SPR+ are sound and (relative) complete. For proofs of soundness
of the systems PR+ and SPR+, that is, for every correctness formula {p} S {q} about a recursive program S , derivability of
{p} S {q} in PR+ and SPR+ implies |	 {p} S {q} and |	sp {p} S {q}, respectively, we refer to our book [3]. In the next section
we discuss (relative) completeness of the proof systems PR+ and SPR+.

9. Completeness

We prove here relative completeness of the proof systems PR+ and SPR+ for partial and strong partial correctness of the
class of recursive programs considered in this paper. The proof is based on the use of weakest preconditions. As explained in
Section 10, this approach also applies to total correctness. We first discuss the expressibility of weakest preconditions for
recursive programs that use variables whose type may involve abstract data types (like the basic type object).

9.1. Expressibility

We introduce the following definitions and conventions. By σ =V σ ′ , for V ⊆ Var, we denote the fact that σ(v) = σ ′(v),
for v ∈ V . We fix throughout this section a sequence x̄ = x1, . . . , xk of (simple and array) variables and a main statement S
such that its variables and those of the given set of declarations D are contained in x̄. Further, we fix a corresponding
sequence ȳ of fresh variables used to refer to the final values of x̄ in the definition of the weakest preconditions below.
By x̄ = ȳ we denote the conjunction of the formulas xi = yi , for a simple variable xi , and ∀ūi : xi[ūi] = yi[ūi], for an array
variable xi (ūi denotes a sequence of simple variables corresponding to the argument types of xi). The update σ [x̄ := σ ′(ȳ)]
assigns to each variable xi the value/function σ ′(yi), for i ∈ {1, . . . ,k}. We denote by the substitution p[x̄ := ȳ] the result
of renaming every variable xi by yi , for i ∈ {1, . . . ,k}. We have the following substitution lemma corresponding to the
Substitution Lemma 6.4.

Lemma 9.1 (Substitution). We have

σ |	 p[x̄ := ȳ] iff σ
[
x̄ := σ(ȳ)

] |	 p.

Proof. The proof proceeds by induction on the structure of p. �
The weakest precondition WP(S, p) for partial correctness denotes the set{

σ
∣∣ M[[S]](σ) ⊆ [[p]]}.

Similarly, the weakest precondition WPsp(S, p) for strong partial correctness denotes the set{
σ

∣∣ Msp[[S]](σ) ⊆ [[p]]}.
The above predicates satisfy the following equations.

Lemma 9.2 (Weakest Precondition Calculus). Let W stand for WP or WPsp. The weakest preconditions satisfy the following (standard)
equations.

842 K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852
• W (skip, p) = [[p]],
• W (u := t, p) = [[p[u := t]]],
• W (x̄ := t̄, p) = [[p[x̄ := t̄]]],
• W(S1; S2, p) = W(S1,W(S2, p)),
• W(if B then S1 else S2 fi, p) = ([[B]] ∩ W(S1, p)) ∪ ([[¬B]] ∩ W(S2, p)),
• W(while B do S od, p) = ([[¬B]] ∩ [[p]]) ∪ ([[B]] ∩ W(S,W(while B do S od, p))).

Failure statements satisfy

WP(if B → S fi, p) = ([[B]] ∩ WP(S, p)
) ∪ [[¬B]]

and

WPsp(if B → S fi, p) = [[B]] ∩ WPsp(S, p).

Finally, block statements satisfy

W(begin local ū := t̄; S end, p) = W(ū := t̄; S, p),

where the local variables ū do not appear in p.

Proof. We prove the equation for block statements (the equations for the other statements are standard). By definition
of the semantics of block statements and the above equations for (parallel) assignments and sequential composition of
statements, we have

W(begin local ū := t̄; S end, p)

= W
(
ū := t̄; S; ū := σ(ū), p

)
= W

(
ū := t̄; S;W

(
ū := σ(ū), p

))
= W(ū := t̄; S, p).

Note that p[ū := σ(ū)] equals p because the variables ū do not appear in p. �
As a special case, we introduce the following most general weakest preconditions

WP(S, x̄ = ȳ) and WPsp(S, x̄ = ȳ).

Note that by definition,

WP(S, x̄ = ȳ) = {
σ

∣∣ M[[S]](σ) ⊆ {
σ

[
x̄ := σ(ȳ)

]}}
and

WPsp(S, x̄ = ȳ) = {
σ

∣∣ Msp[[S]](σ) ⊆ {
σ

[
x̄ := σ(ȳ)

]}}
.

These predicates describe the graphs of the deterministic functions M[[S]] and Msp[[S]] in terms of a relation between the
input variables x̄ and the output variables ȳ.

In order to express these most general weakest preconditions in the first-order assertion language we introduce a state-
based encoding of the basic types which allows for a standard arithmetic encoding of the programming semantics.

Let nat denote the basic type of the set N of natural numbers. For each basic type T we fix a fresh array variable hT

of type nat → T for a state-based encoding of the values of basic type T . We will use h to range over the variables hT .
Without loss of generality we restrict our attention to states for which the interpretation of each array variable hT specifies
an enumeration of the values of the basic type T , that is, hT is surjective, as expressed by

∀x : ∃n : x = hT [n],
where x is of type T and n of type nat.

Given this encoding of the basic types, we next show how to express in the assertion language the encoding of the
interpretation of the variables. The assertion code(n, z) defined by h[n] = z, where z is a (simple) variable, directly expresses
that the variable n (of type nat) stores an integer representation of the value of z. In order to express a similar assertion
code(n,a), where a is an array variable, we assume in the assertion language the following arithmetic operations:

• 〈n̄〉 denotes the natural number encoding the sequence of natural numbers n̄,
• n(i) denotes the ith element of the sequence encoded by n,
• |n| denotes the length of the sequence of numbers encoded by n.

K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852 843
We note that the above operations can be formally defined in the assertion language by some computable enumeration of
all finite sequences of natural numbers (details are standard and therefore omitted). Let l denote the number of argument
types of the array variable a. The assertion app(n,a) defined by

|n| = l + 1 ∧ a
[
h
[
n(1)

]
, . . . ,h

[
n(l)

]] = h
[
n(l + 1)

]
expresses that n encodes an application of the interpretation of the array a. The assertion code(n,a) is then defined by

|n|∧
k=1

app
(
n(k),a

)
.

This assertion expresses that n encodes a finite sequence of numbers n(k) each of which in turn encodes an application of
the interpretation of the array a. For every sequence z̄ = z1, . . . , zk of variables we denote by code(n, z̄) the conjunction

|n| = k ∧
k∧

i=1

code
(
n(i), zi

)
.

Without loss of generality we assume that the encoding of any sequence of variables z̄ is surjective: for every n ∈ N there
exists a state σ such σ |	 code(n, z̄).

Given this encoding of the interpretation of simple and array variables, we next introduce the following binary arithmetic
relation compS , where S is a recursive program, which denotes the set

{
(n,m)

∣∣ ∀σ : σ |	 code(n, x̄) and σ |	 code+(m, x̄, ȳ) implies σ
[
x̄ := σ(ȳ)

] ∈ M[[S]](σ)
}
.

Here we implicitly assume that code+(m, x̄, ȳ) asserts code(m, ȳ) and additionally enforces that each array variable xi agrees
with the corresponding array variable yi on the complement of the domain specified by m(i) (note that m codes only a
finite part of each array variable of ȳ). (The details of this extension of the assertion code(m, ȳ) are straightforward though
somewhat tedious and therefore omitted.) In the sequel we write compS(n,m) to denote that n and m belong to the binary
relation compS (we will use n and m both to denote natural numbers and variables of type nat).

Since every finite computation of S accesses each array variable of x̄ only on a finite subset of the domain of its inter-
pretation, we have the following closure property of compS .

Lemma 9.3 (Closure of comp). For all states σ and σ ′ we have that σ ′ ∈ M[[S]](σ) implies compS (n,m), for some pair of numbers n
and m such that σ |	 code(n, x̄) and σ [ȳ := σ ′(x̄)] |	 code+(m, x̄, ȳ).

We proceed with the introduction of the (unary) arithmetic predicate failS which denotes the set{
n

∣∣ ∀σ : σ |	 code(n, x̄) implies fail ∈ Msp[[S]](σ)
}
.

In the sequel we also use failS(n) to denote that n is an element of the set failS .
Again, since every finite sequence of computation steps of S accesses each array variable of x̄ only on a finite subset of

the domain of its interpretation, we can assume the following closure property of the failS .

Lemma 9.4 (Closure of fail). For every state σ such that fail ∈ Msp[[S]](σ) we have σ |	 code(n, x̄) and failS (n), for some natural
number n.

By means of standard techniques for encoding finite sequences of computation steps (see for example [11]) we can
express the predicates compS and failS arithmetically in the (first-order) assertion language in terms of the above encoding
of the interpretation of the variables x̄. Therefore, we may assume without loss of generality that these predicates are
present in the assertion language.

Lemma 9.5 (Expressibility). For the assertion

p ≡ ∀n,m : (code(n, x̄) ∧ compS(n,m)
) → code(m, ȳ)

we have

WP(S, x̄ = ȳ) = [[p]]
and

WPsp(S, x̄ = ȳ) = �
p ∧ ∀n : code(n, x̄) → ¬failS(n)

�
.

844 K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852
Proof. We prove first the first equation. Let σ ∈ WP(S, x̄ = ȳ), i.e., M[[S]](σ) ⊆ {σ [x̄ := σ(ȳ)]}. In order to prove σ |	 p,
let σ |	 code(n, x̄) and compS (n,m), for some arbitrary (constants) n and m. Further, let σ ′ |	 code(m, ȳ), for some σ ′
(note that the encoding of the variables ȳ is assumed to be surjective). Without loss of generality we may assume that
σ [ȳ := σ ′(ȳ)] |	 code+(m, x̄, ȳ) (note that m only codes a finite part of σ ′). Since the evaluation of code(n, x̄) only depends
on the interpretation of the variables x̄, σ |	 code(n, x̄) implies σ [ȳ := σ ′(ȳ)] |	 code(n, x̄). By definition of compS it follows
that σ [x̄ := σ ′(ȳ)] ∈ M[[S]](σ) (note that ȳ are assumed not to occur in S). Because S is deterministic it follows that
σ [x̄ := σ ′(ȳ)] = σ [x̄ := σ(ȳ)], i.e., σ ′(ȳ) = σ(ȳ). So we conclude that σ |	 code(m, ȳ) (note that code+(m, x̄, ȳ) trivially
implies code(m, ȳ)).

Next let σ |	 p. In order to prove σ ∈ WP(S, x̄ = ȳ), i.e., M[[S]](σ) ⊆ {σ [x̄ := σ(ȳ)]}, let σ ′ ∈ M[[S]](σ). By Lemma 9.3, it
follows that compS(n,m), for some n and m such that σ |	 code(n, x̄) and σ [ȳ := σ ′(x̄)] |	 code+(m, x̄, ȳ). So by the definition
of compS it follows that σ [x̄ := σ ′(x̄)] ∈ M[[S]](σ) (as above, note that σ |	 code(n, x̄) implies σ [ȳ := σ ′(x̄)] |	 code(n, x̄) and
the variables ȳ do not appear in S). Since S is deterministic we conclude that σ ′(x̄) = σ(ȳ) = σ ′(ȳ).

For the second equation, it suffices to observe that by Lemma 9.4, fail ∈ Msp[[S]](σ) implies σ |	 ∃n : code(n, x̄)∧ failS (n).
On the other hand, by definition of failS it immediately follows that σ |	 ∃n : code(n, x̄) ∧ failS (n) implies fail ∈ Msp[[S]](σ).
We conclude that fail /∈ Msp[[S]](σ) iff σ |	 ∀n : code(n, x̄) → ¬failS(n). �

We conclude this discussion of the encoding of the most general weakest preconditions with the following characteriza-
tion of divergence or failure, in case of partial correctness, and divergence, in case of strong partial correctness.

Lemma 9.6 (Expressibility of Divergence/Failure). For the assertion

p ≡ ∀n,m : code(n, x̄) → ¬compS(n,m)

we have

WP(S, false) = [[p]],
and

WPsp(S, false) = �
p ∧ ∀n : code(n, x̄) → ¬failS(n)

�
.

The formula p in the first equality expresses all states from which S can diverge or fail, while the formula on the
right-hand side of the second equality expresses all states from which S can diverge.

Proof. We prove the first equation (the second is dealt with as above). First let σ ∈ WP(S, false), i.e., M[[S]](σ) = ∅. In
order to prove σ |	 p, let σ |	 code(n, x̄) and compS (n,m), for some arbitrary (constants) n and m. As above, we may
assume without loss of generality that σ [ȳ := σ ′(x̄)] |	 code+(m, x̄, ȳ), for some σ ′ . By definition of compS , it follows that
σ [x̄ := σ ′(x̄)] ∈ M[[S]](σ) which contradicts M[[S]](σ) = ∅.

Next let σ |	 p. In order to prove σ ∈ WP(S, false), i.e., M[[S]](σ) = ∅, let σ ′ ∈ M[[S]](σ). By Lemma 9.3, it follows that
compS(n,m), for some n and m such that σ |	 code(n, x̄) (and σ [ȳ := σ ′(x̄)] |	 code+(m, x̄, ȳ)). But this contradicts σ |	 p.
So we conclude that M[[S]](σ) = ∅. �
9.2. Completeness proof using most general correctness formulas

We prove (relative) completeness of the proof system SPR+, i.e., every strong partially correct specification {p} S {q}
of a recursive program S is derivable in SPR+. Formally, |	sp {p} S {q} implies �SPR+ {p} S {q}. The proof of (relative)
completeness of the proof system PR+ for partial correctness of recursive programs is similar.

First we state and prove the following completeness result for the most general correctness formulas. Its formulation
refers to the expressibility of the most general weakest preconditions justified by the Expressibility Lemma 9.5.

Lemma 9.7 (Completeness: Most General Correctness Formulas). Let x̄ = x1, . . . , xk be all the variables (global and local) appearing in
D, S, p or q, and ȳ be a corresponding sequence of fresh variables. Further, let q be a consistent assertion, i.e., [[q]] �= [[false]]. We have

|	sp {p} S {q} implies
{

WPsp(S, x̄ = ȳ)
}

S {x̄ = ȳ} �SPR {p} S {q}.

Proof. Let |	sp {p} S {q}, with q a consistent assertion. Without loss of generality we may assume that p and q do not refer
to the variables ȳ (otherwise, we rename them and apply the substitution rule). Applying the invariance rule we obtain{

q[x̄ := ȳ] ∧ WPsp(S, x̄ = ȳ)
}

S
{

q[x̄ := ȳ] ∧ x̄ = ȳ
}
.

Clearly the postcondition implies q. By the consequence rule, we then obtain{
q[x̄ := ȳ] ∧ WPsp(S, x̄ = ȳ)

}
S {q}.

K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852 845
Next we apply the auxiliary rule A3:{∃ ȳ : q[x̄ := ȳ] ∧ WPsp(S, x̄ = ȳ)
}

S {q}.
By definition of the weakest precondition and |	sp {p} S {q}, it follows that p implies the above precondition (an appli-
cation of the consequence rule thus gives us the desired correctness formula): Let σ |	 p. It follows from |	sp {p} S {q}
that Msp[[S]](σ) ⊆ [[q]], i.e., Msp[[S]](σ) = ∅ or σ ′ ∈ Msp[[S]](σ), for some proper state σ ′ . First we consider the case
that Msp[[S]](σ) = ∅. From Lemma 8.1 it follows that Msp[[S]](σ ′) = ∅, for every σ ′ such σ ′ =Var\ ȳ σ . Further, since q is
consistent, we have σ ′ |	 q[x̄ := ȳ], for some σ ′ such σ ′ =Var\ ȳ σ . Summarizing, we have

σ ′ |	 q[x̄ := ȳ] ∧ WPsp(S, x̄ = ȳ),

for some σ ′ such that σ ′ =Var\ ȳ σ . From which we conclude that

σ |	 ∃ ȳ : q[x̄ := ȳ] ∧ WPsp(S, x̄ = ȳ).

Next we consider the case that σ ′ ∈ Msp[[S]](σ), for some proper state σ ′ . From Lemma 8.1 it follows that σ ′ ∈
Msp[[S]](σ) implies σ ′[ȳ := σ ′(x̄)] ∈ Msp[[S]](σ [ȳ := σ ′(x̄)]). Clearly, σ ′[ȳ := σ ′(x̄)] |	 x̄ = ȳ, and therefore σ [ȳ := σ ′(x̄)] |	
WPsp(S, x̄ = ȳ). Further, since ȳ are assumed not to appear in p, σ |	 p implies σ [ȳ := σ ′(x̄)] |	 p. So we derive from
the assumption |	sp {p} S {q} that σ ′[ȳ := σ ′(x̄)] |	 q. By Lemma 9.1 it then follows that σ ′[ȳ := σ ′(x̄)] |	 q[x̄ := ȳ].
Since σ =Var\x̄ σ ′ and the evaluation of q[x̄ := ȳ] does not depend on the interpretation of the variables x̄, we have also
σ [ȳ := σ ′(x̄)] |	 q[x̄ := ȳ]. Summarizing, we obtain that

σ
[

ȳ := σ ′(x̄)
] |	 q[x̄ := ȳ] ∧ WPsp(S, x̄ = ȳ),

that is,

σ |	 ∃ ȳ : q[x̄ := ȳ] ∧ WPsp(S, x̄ = ȳ). �
We next introduce for each procedure call Pi(t̄i), i ∈ {1, . . . ,n}, appearing in the given set of declarations D or the main

statement S , the correctness formulas{
WPsp

(
Pi(t̄i), false

)}
Pi(t̄i) {false} and

{
WPsp

(
Pi(t̄i), x̄ = ȳ

)}
Pi(t̄i) {x̄ = ȳ},

where x̄ = x1, . . . , xk are all variables (global and local) appearing in D or S , and ȳ is a corresponding sequence of fresh
variables. We rely here on the expressibility of divergence and failure, as justified by the Expressibility Lemma 9.6. Let A
denote the set of these correctness formulas.

Lemma 9.8 (Completeness Assumptions A). We have

|	sp {p} S {q} implies A �SPR {p} S {q}.

Proof. The proof proceeds by induction on the structure of the statement S . Distinguishing between |	sp {p} S {false} and
|	sp {p} S {q}, where q is consistent, by definition of WPsp(S, false) and the above Lemma 9.7, it suffices to prove

A �SPR
{

WPsp(S, r)
}

S {r},
where r denotes the assertion false or x̄ = ȳ. For assignments, sequential composition of statements, conditionals, failure
statements and while statements the derivability of these correctness formulas follow from the standard properties of
weakest preconditions as described in Lemma 9.2. We consider therefore the non-standard case that S denotes a block
statement begin local ū := t̄; S1 end. We introduce a sequence z̄ of fresh variables corresponding to the local variables ū.
By the semantics of block statements, it follows that

|	sp
{

z̄ = ū ∧ WPsp(S, r)
}

ū := t̄; S1
{

r[ū := z̄]}.
By the (general) induction hypothesis, we can derive this correctness formula from the given set of assumptions A. Next we
apply the block rule which gives{

z̄ = ū ∧ WPsp(S, r)
}

S
{

r[ū := z̄]}.
We proceed by an application of the invariance rule, which gives us{

z̄ = ū ∧ WPsp(S, r)
}

S
{

z̄ = ū ∧ r[ū := z̄]}.
The postcondition clearly implies r, so by the consequence rule, we obtain{

z̄ = ū ∧ WPsp(S, r)
}

S {r}.
Finally, applying the substitution rule (replacing in the precondition z̄ by ū) followed a trivial application of the consequence
rule gives us the desired result. �

846 K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852
We conclude with the following main completeness theorem.

Theorem 9.9 (Completeness: Strong Partial Correctness). Every strong partially correct specification {p} S {q} of a recursive program S
is derivable in SPR+. Formally, |	sp {p} S {q} implies �SPR+ {p} S {q}.

Proof. Let |	sp {p} S {q} and A be the set of assumptions as defined above. By Lemma 9.8, we have

A �SPR {p} S {q}.
Next, let r denote the assertion false or x̄ = ȳ. We have that

|	sp
{

WPsp
(

Pi(t̄i)
)
, r

}
Pi(t̄i) {r}

implies

|	sp
{

WPsp
(

Pi(t̄i), r
)}

begin local ūi := t̄i; Si end {r},
for every Pi(ūi) :: Si ∈ D . By Lemma 9.8 again we have

A �SPR
{

WPsp
(

Pi(t̄i), r
)}

begin local ūi := t̄i; Si end {r},
for every assumption of A. Finally, by the recursion III rule 15, we conclude that {p} S {q} is derivable in the proof sys-
tem SPR+. �
10. Extensions

The approach to the verification of the object-oriented programs that we proposed here is flexible and natural. To sub-
stantiate this claim we explain now how it can be naturally extended to other features of object-oriented programming and
to total correctness.

10.1. Access to instance variables

A natural possibility is to allow method calls to access instance variables of arbitrary objects, a feature available in Java.
Then, given instance variables x, y and object variables s, t , we could use assignments such as y := s.x + 1, or s.x := t.y + 1,
and use global expressions in Boolean expressions, for example 2 · s.x = t.y + 1, and as actual parameters in method calls,
for example s.m(t.y + 1).

To extend the obtained results to the resulting programming language the presentation would have to be modified in
a number of places. More precisely, such an extension requires the following:

• introduction of the global expressions already in Section 3.1,
• introduction of global terms, which are expressions built out of global expressions using the admitted function symbols

(and respecting the well-typedness condition),
• extension of the assignment statement to one of the form s := t , where s is a global expression and t is a global term,
• admission of the method calls of the form s.m(t1, . . . , tn), where s is an object expression and t1, . . . , tn are global

terms,
• introduction of the definition of semantics of global terms in Section 4.1,
• extension of the notion of an update of a state σ [s := d] in Section 4.2 to the case of a global expression s,
• extension of the definition of substitution given in Section 6.2 to one of the form [s := t], where s is a global expression

and t is a global term,
• extension of the transformation Θ given in Section 5 to the considered programming language, by defining Θ(s) for

a global expression s already in Section 5.2,
• extension of the assignment axiom 11 to the above introduced class of assignments, and the recursion rules 13 and 14

to the above introduced method calls,
• extension of the results of Section 8, notably the Homomorphism Lemma 8.8, to this extended programming language.

The details are relatively straightforward and omitted.

10.2. Object creation

Most existing approaches to object creation (see for example in [7]) follow implicitly the transformational approach by
modeling it in terms of object activation. This can be made more explicit as follows. Given an array variable store of type
N → object and a variable count of type N, we model the object creation statement x := new by the statement

count := count + 1; x := store[count].

K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852 847
This modeling of the object activation crucially depends on store being an unbounded array variable. Further it assumes that
store is injective:

∀i : ∀ j : i �= j → store[i] �= store[j],
which is possible since we assumed that the type object has infinitely many elements.

A drawback of this approach to object creation is that it involves an explicit reference to a particular implementation.
Since object variables can only be compared for equality or dereferenced, we show in Chapter 6 of our book [3] that we can
in fact define a substitution [x := new] which statically evaluates expressions in which x occurs, assuming that x denotes a
newly created object. This in turn allows us to define the weakest precondition p[x := new] of the object creation statement
x := new and w.r.t. a postcondition p which abstracts from the particular implementation of object creation. This yields the
assignment statement{

p[x := new]} x := new {p}
allowing us to reason about object creation.

10.3. Classes and inheritance

The transformational approach discussed in this paper can be readily extended to deal with various features of main-
stream object-oriented languages, like classes, inheritance and polymorphism (i.e., subtyping). As an example, we now
discuss the details of such a transformation for a fragment of Java that extends the object-oriented language considered so
far with dynamic binding of methods. This extension comprises the following:

• introduction of classes as basic types,
• use within the context of each program of a reflexive and transitive subclass relation and its inverse superclass relation

defined on the set of classes used; we assume that this relation respects single inheritance, i.e., each class has at most
one direct superclass, and that object is the superclass of each class,

• introduction of the assignment u := t , where the type of the object expression t is a subclass of the type of u, and of
the method call s.m(t1, . . . , tn), where for i ∈ {1, . . . ,n} the type of the actual parameter ti is a subclass of the type of
the corresponding formal parameter, in case ti is an object expression,

• introduction of mutually disjoint sets DC ⊆ Dobject of object instances of class C .

Further, we associate with each class a set of method declarations. The instance variables of a class C are the inherited
ones plus the ones that are introduced in the method declarations of C . An object-oriented program in this new setting
consists then of a main statement and a set of classes, each with its set of method declarations, and a subclass relation. The
semantics of a method call in this extension is captured by the rule〈

s.m(t̄),σ
〉 → 〈if s �= null → begin local this, ū := s, t̄; S fi end,σ 〉,

where S is such that σ(s) ∈ DC and m(ū) :: S ∈ C . In words, the class of the object denoted by the expression s determines
the actual definition of the called method to be used. Note that this class in general is a subclass of the type of the
expression s.

We now explain how the programs formed in this extended setting can be transformed to the programs considered
earlier extended by an introduction for each class C of a unary predicate C : object → Boolean whose semantics is defined
by

σ
(
C(s)

) =
{

true if σ(s) ∈ DC ,

false otherwise.

In order to model dynamic binding in this extended object-oriented language we first flatten the inheritance hierarchy
between classes by introducing a global set of method definitions D which consists of all method definitions

m@C(ū) :: S,

where the declaration m(ū) :: S appears in the class C itself or in the ‘minimal’ superclass C ′ of C , that is, no other superclass
of C which is also a subclass of C ′ contains a declaration of m. We then model the semantics of a method call s.m(t̄) by the
statement Sn , inductively defined for i ∈ {0, . . . ,n − 1} by

S0 ≡ skip,

Si+1 ≡ if Ci+1(s) then s.m@Ci+1(t̄) else Si fi,

where {C1, . . . , Cn} is the set of subclasses of the type of s.
After establishing an analogue of Theorem 5.4 for the above transformation one could verify the programs written in

the source language by verifying their translated version. In principle one could also derive proof rules that deal with the
source programs directly, analogously as in Section 7.

848 K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852
10.4. Total correctness

To focus on the crucial aspects of our approach to verification we did not deal with program termination. The appropriate
extension combines strong partial correctness with termination and requires the following:

• addition of a special state ⊥ that models divergence,
• modification of the definition of semantics to take care of divergence,
• introduction of a new notion of soundness of a proof system,
• replacement of the current LOOP rule 6 by a rule that also takes care of termination,
• replacement of the current the recursion rules 13 and 14 by a single rule that also takes care of termination,
• similarly for the recursion III rule 15,
• appropriate modification of the proofs in Section 8 to additionally deal with termination.

The details are presented in [3, Chapter 6]. Since termination is, roughly speaking, orthogonal to object-orientation, the
transformational approach for (strong) partial correctness can be extended to total correctness in a straightforward, though
somewhat tedious, manner.

11. Conclusion

We presented here an assertional proof system to reason about partial and strong partial correctness of a class of object-
oriented programs. Its formal justification (that is, soundness and relative completeness) was carried out using a syntax-
directed transformation to recursive programs.

We proved a new relative completeness result for a class of recursive programs that use variables ranging over abstract
data types (like the basic type object) and showed that the transformation preserves completeness. We also showed that
the transformational approach can be applied to intricate and complex object-oriented features, such as inheritance and
subtype polymorphism, by transforming them in the context of a closed program to the core language considered in this
paper.

Extension of the transformational approach to open object-oriented programs, so programs that do not necessarily include
the definitions of all the classes used (in Java for example such classes are imported from packages), however, requires
an additional study of structuring recursive programs by means of modules along the lines of the Modula programming
language [31] and of the corresponding proof-theoretical concept of a contract as introduced in the Eiffel programming
language [20].

Appendix A. Semantics

In the following we list the omitted transition axioms and rules that define the transition relation →.

(i) 〈skip, σ 〉 → 〈E, σ 〉,
(ii) 〈u := t, σ 〉 → 〈E, σ [u := σ(t)]〉, where u ∈ Var is a simple variable or u ≡ a[s1, . . . , sn], for a ∈ Var,

(iii) 〈x̄ := t̄, σ 〉 → 〈E, σ [x̄ := σ(t̄)]〉,

(iv)
〈S1, σ 〉 → 〈S2, τ 〉

〈S1; S, σ 〉 → 〈S2; S, τ 〉 ,

(v) 〈if B then S1 else S2 fi, σ 〉 → 〈S1, σ 〉, where σ |	 B ,
(vi) 〈if B then S1 else S2 fi, σ 〉 → 〈S2, σ 〉, where σ |	 ¬B ,

(vii) 〈while B do S od, σ 〉 → 〈S; while B do S od, σ 〉, where σ |	 B ,
(viii) 〈while B do S od, σ 〉 → 〈E, σ 〉 where σ |	 ¬B .

Appendix B. Axioms and proof rules

In the following we list the used axioms and proof rules. Given an assertion q we denote below its set of free variables
by free(q).

B.1. Axioms and proof rules for the kernel language

To establish correctness of programs from the kernel language of Section 2 we rely on the following axioms and proof
rules.

AXIOM 1. SKIP

{p} skip {p}.

K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852 849
AXIOM 2. ASSIGNMENT{
p[u := t]} u := t {p}

where u ∈ Var or u ≡ a[s1, . . . , sn] and a ∈ Var.

AXIOM 3. PARALLEL ASSIGNMENT{
p[x̄ := t̄]} x̄ := t̄ {p}.

RULE 4. COMPOSITION

{p} S1 {r}, {r} S2 {q}
{p} S1; S2 {q} .

RULE 5. CONDITIONAL

{p ∧ B} S1 {q}, {p ∧ ¬B} S2 {q}
{p} if B then S1 else S2 fi {q} .

RULE 6. LOOP

{p ∧ B} S {p}
{p} while B do S od {p ∧ ¬B} .

RULE 7. CONSEQUENCE

p → p1, {p1} S {q1},q1 → q

{p} S {q} .

RULE 8. FAILURE

{p ∧ B} S {q}
{p} if B → S fi {q} .

RULE 9. FAILURE II

p → B, {p} S {q}
{p} if B → S fi {q} .

RULE 10. BLOCK

{p} x̄ := t̄; S {q}
{p} begin local x̄ := t̄; S end {q}

where {x̄} ∩ free(q) = ∅.

B.2. Auxiliary rules

Further, we rely on the following auxiliary axioms and proof rules that occasionally refer to the assumed set of procedure
or method declarations D . We refer in them to the sets of variables var(D) and change(D) defined in the expected way.

RULE A1. DISJUNCTION

{p} S {q}, {r} S {q}
{p ∨ r} S {q} .

RULE A2. CONJUNCTION

{p1} S {q1}, {p2} S {q2}
{p1 ∧ p2} S {q1 ∧ q2} .

RULE A3. ∃-INTRODUCTION

{p} S {q}
{∃x : p} S {q} ,

where x /∈ var(D) ∪ var(S) ∪ free(q).

850 K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852
RULE A4. INVARIANCE

{r} S {q}
{p ∧ r} S {p ∧ q}

where free(p) ∩ (change(D) ∪ change(S)) = ∅.

RULE A5. SUBSTITUTION

{p} S {q}
{p[z̄ := t̄]} S {q[z̄ := t̄]}

where var(z̄) ∩ (var(D) ∪ var(S)) = var(t̄) ∩ (change(D) ∪ change(S)) = ∅.

B.3. Axioms and proof rules for object-oriented programs

The following axioms and proof rules were introduced for the object-oriented programs.

AXIOM 11. ASSIGNMENT TO INSTANCE VARIABLES{
p[u := t]} u := t {p}

where u is a simple or subscripted instance variable.

RULE 12. WEAKENING

{p ∧ s �= null} s.m(t̄) {q}
{p} s.m(t̄) {q}

RULE 13. RECURSION I

{p1} s1.m1(t̄1) {q1}, . . . , {pn} sn.mn(t̄n) {qn} � {p} S {q},
{p1} s1.m1(t̄1) {q1}, . . . , {pn} sn.mn(t̄n) {qn} �

{pi} begin local this, ūi := si, t̄i; Si end {qi}, i ∈ {1, . . . ,n}
{p} S {q}

where mi(ūi) :: Si ∈ D for i ∈ {1, . . . ,n}.

RULE 14. RECURSION II

{p1} s1.m1(t̄1) {q1}, . . . , {pn} sn.mn(t̄n) {qn} � {p} S {q},
{p1} s1.m1(t̄1) {q1}, . . . , {pn} sn.mn(t̄n) {qn} �

{pi} begin local this, ūi := si, t̄i; Si end {qi}, i ∈ {1, . . . ,n}
pi → si �= null, i ∈ {1, . . . ,n}
{p} S {q}

where mi(ūi) :: Si ∈ D for i ∈ {1, . . . ,n}.

B.4. Proof rule for recursive programs

Finally, the following proof rule was introduced for the recursive programs.

RULE 15. RECURSION III

{p1} P1(t̄1) {q1}, . . . , {pn} Pn(t̄n) {qn} � {p} S {q},
{p1} P1(t̄1) {q1}, . . . , {pn} Pn(t̄n) {qn} �

{pi} begin local ūi := t̄i; Si end {qi}, i ∈ {1, . . . ,n}
{p} S {q}

where Pi(ūi) :: Si ∈ D .

Appendix C. Proof systems

In the following we list the proof systems used in this paper.

K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852 851
Kernel language
PROOF SYSTEM PK for partial correctness:

This system consists of the group of axioms and rules 1–8, and 10.

PROOF SYSTEM SPK for strong partial correctness:

This system consists of the group of axioms and rules 1–7, 9, and 10.

Object-oriented programs
PROOF SYSTEM PO for partial correctness:

This system is obtained by extending PK with the axiom 11 for assignments to instance variables, the weakening rule 12,
and the auxiliary rules A1–A5.

PROOF SYSTEM PO+ for strong partial correctness:

This system is obtained by extending PO by the recursion I rule 13.

PROOF SYSTEM SPO for partial correctness:

This system is obtained by extending SPK with the axiom 11 for assignments to instance variables and the auxiliary
rules A1–A5.

PROOF SYSTEM SPO+ for strong partial correctness:

This system is obtained by extending SPR by the recursion II rule 14.

Recursive programs
PROOF SYSTEM PR for partial correctness:

This system is obtained by extending PK with the auxiliary rules A1–A5.

PROOF SYSTEM SPR for strong partial correctness:

This system is obtained by extending SPK with the auxiliary rules A1–A5.

PROOF SYSTEM PR+ for partial correctness:

This system is obtained by extending PR by the recursion III rule 15.

PROOF SYSTEM SPR+ for strong partial correctness:

This system is obtained by extending the SPR by the recursion III rule 15.

References

[1] M. Abadi, K. Leino, A logic of object-oriented programs, in: N. Dershowitz (Ed.), Verification: Theory and Practice, in: Lecture Notes in Comput. Sci.,
vol. 2772, Springer, 2003, pp. 11–41.

[2] P. America, F.S. de Boer, Proving total correctness of recursive procedures, Inform. and Comput. 84 (2) (1990) 129–162.
[3] K.R. Apt, F.S. de Boer, E.-R. Olderog, Verification of Sequential and Concurrent Programs, third, extended edition, Springer, London, 2009.
[4] K.R. Apt, N. Francez, W.P. de Roever, A proof system for communicating sequential processes, ACM Trans. Program. Lang. Syst. 2 (3) (1980) 359–385.
[5] A. Banerjee, D.A. Naumann, Ownership confinement ensures representation independence for object-oriented programs, J. ACM 52 (6) (2005) 894–960.
[6] M. Barnett, B.-Y.E. Chang, R. DeLine, B. Jacobs, K.R.M. Leino, Boogie: A modular reusable verifier for object-oriented programs, in: Formal Methods for

Components and Objects (FMCO), 2005, pp. 364–387.
[7] B. Beckert, R. Hähnle, P.H. Schmitt (Eds.), Verification of Object-Oriented Software: The KeY Approach, Lecture Notes in Comput. Sci., vol. 4334, Springer,

2007.
[8] L. Burdy, Y. Cheon, D.R. Cok, M.D. Ernst, J.R. Kiniry, G.T. Leavens, K.R.M. Leino, E. Poll, An overview of JML tools and applications, Int. J. Softw. Tools

Technol. Transf. 7 (3) (2005) 212–232.
[9] E.M. Clarke, Programming language constructs for which it is impossible to obtain good Hoare axiom systems, J. ACM 26 (1) (January 1979) 129–147.

[10] S.A. Cook, Soundness and completeness of an axiom system for program verification, SIAM J. Comput. 7 (1) (1978) 70–90.
[11] J.W. de Bakker, Mathematical Theory of Program Correctness, Prentice Hall International, Englewood Cliffs, NJ, 1980.
[12] F. S. de Boer, Reasoning about dynamically evolving process structures – A proof theory of the parallel object-oriented language POOL, PhD thesis, Free

University of Amsterdam, 1991.

852 K.R. Apt et al. / Journal of Computer and System Sciences 78 (2012) 823–852
[13] G. Gorelick, A complete axiomatic system for proving assertions about recursive and non recursive programs, Technical Report 75, Department of
Computer Science, University of Toronto, 1975.

[14] C.A.R. Hoare, An axiomatic basis for computer programming, Commun. ACM 12 (1969) 576–580, 583.
[15] C.A.R. Hoare, Procedures and parameters: an axiomatic approach, in: E. Engeler (Ed.), Proceedings of Symposium on the Semantics of Algorithmic

Languages, in: Lecture Notes in Math., vol. 188, Springer, 1971, pp. 102–116.
[16] M. Huisman, B. Jacobs, Java program verification via a Hoare logic with abrupt termination, in: T.S.E. Maibaum (Ed.), Fundamental Approaches of

Software Engineering (FASE), in: Lecture Notes in Comput. Sci., vol. 1783, Springer, 2000, pp. 284–303.
[17] B. Jacobs, Weakest pre-condition reasoning for Java programs with JML annotations, J. Log. Algebr. Program. 58 (1–2) (2004) 61–88.
[18] G. Klein, T. Nipkow, A machine-checked model for a Java-like language, virtual machine, and compiler, ACM Trans. Program. Lang. Syst. 28 (4) (2006)

619–695.
[19] H. Langmaack, E.-R. Olderog, Present-day Hoare-like systems for programming languages with procedures: Power, limits and most likely expressions,

in: Proc. 7th Intern. Colloq. on Automata, Languages and Programming (ICALP), 1980, pp. 363–373.
[20] B. Meyer, Object-Oriented Software Construction, second ed., Prentice Hall, 1997.
[21] J.M. Morris, A general axiom of assignment/Assignment and linked data structures/A proof of the Schorr–Waite algorithm, in: Theoretical Foundations

of Programming Methodology, in: Lecture Notes of an International Summer School, Reidel, 1982.
[22] P. Müller, A. Poetzsch-Heffter, G.T. Leavens, Modular invariants for layered object structures, Sci. Comput. Programming 62 (3) (2006) 253–286.
[23] S. Owicki, D. Gries, An axiomatic proof technique for parallel programs, Acta Inform. 6 (1976) 319–340.
[24] S. Owicki, D. Gries, Verifying properties of parallel programs: an axiomatic approach, Commun. ACM 19 (1976) 279–285.
[25] C. Pierik, F.S. de Boer, A proof outline logic for object-oriented programming, Theoret. Comput. Sci. 343 (3) (2005) 413–442.
[26] G.D. Plotkin, A structural approach to operational semantics, Technical Report DAIMI-FN 19, Department of Computer Science, Aarhus University, 1981.
[27] G.D. Plotkin, A structural approach to operational semantics, J. Log. Algebr. Program. 60–61 (2004) 17–139, revised version of Plotkin [26].
[28] J.C. Reynolds, Separation logic: A logic for shared mutable data structures, in: Logic in Computer Science (LICS), 2002, pp. 55–74.
[29] J.V. Tucker, J.I. Zucker, Program Correctness over Abstract Data Types, with Error-State Semantics, CWI Monograph, North-Holland, Amsterdam, 1988.
[30] D. von Oheimb, Hoare logic for Java in Isabelle/HOL, Concurr. Comput. Practice Experience 13 (13) (2001) 1173–1214.
[31] N. Wirth, Programming in Modula-2, Texts Monogr. Comput. Sci., Springer-Verlag, ISBN 0-387-50150-9, 1989.

	Veriﬁcation of object-oriented programs: A transformational approach
	1 Introduction
	1.1 Background and motivation
	1.2 Related work
	1.3 Technical contributions
	1.4 Plan of the paper

	2 Preliminaries
	2.1 A kernel language
	2.2 … and its semantics

	3 Object-oriented programs: syntax
	3.1 Expressions
	3.2 Programs

	4 Object-oriented programs: semantics
	4.1 Semantics of expressions
	4.2 Updates of states
	4.3 Semantics of programs

	5 Transformation to recursive programs
	5.1 Recursive programs
	5.1.1 Semantics

	5.2 Transformation
	5.3 Correctness proof

	6 Assertion language
	6.1 Syntax and semantics
	6.2 Substitution and aliasing

	7 Proof theory for object-oriented programs
	7.1 Partial correctness
	7.1.1 Non-recursive methods
	7.1.2 Recursive methods

	7.2 Strong partial correctness

	8 Formal justiﬁcation
	8.1 Proof theory for recursive programs
	8.2 Translation of assertions and proofs

	9 Completeness
	9.1 Expressibility
	9.2 Completeness proof using most general correctness formulas

	10 Extensions
	10.1 Access to instance variables
	10.2 Object creation
	10.3 Classes and inheritance
	10.4 Total correctness

	11 Conclusion
	Appendix A Semantics
	Appendix B Axioms and proof rules
	B.1 Axioms and proof rules for the kernel language
	B.2 Auxiliary rules
	B.3 Axioms and proof rules for object-oriented programs
	B.4 Proof rule for recursive programs

	Appendix C Proof systems
	Kernel language
	Object-oriented programs
	Recursive programs

	References

