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Abstract

We describe the Turing Machine, list some of its many influences on the theory
of computation and complexity of computations, and illustrate its importance.

1. Introduction

A Turing machine refers to a hypothetical machine proposed by Alan M.
Turing (1912–1954) in 1936 [11] whose computations are intended to give an
operational and formal definition of the intuitive notion of computability in the
discrete domain. It is a digital device and sufficiently simple to be amenable
to theoretical analysis and sufficiently powerful to embrace everything in the
discrete domain that is intuitively computable. As if that were not enough, in
the theory of computation many major complexity classes can be easily charac-
terized by an appropriately restricted Turing machine; notably the important
classes P and NP and consequently the major question whether P equals NP.

Turing gave a brilliant demonstration that everything that can be reason-
ably said to be computed by a human computer using a fixed procedure can
be computed by such a machine. As Turing claimed, any process that can be
naturally called an effective procedure is realized by a Turing machine. This is
known as Turing’s thesis. Enter Alonzo Church (1903–1995). Over the years,
all serious attempts to give precise yet intuitively satisfactory definitions of a
notion of effective procedure (what Church called effectively calculable func-
tion) in the widest possible sense have turned out to be equivalent—to define
essentially the same class of processes. The Church-Turing thesis states that a
function on the positive integers is effectively calculable if and only if it is com-
putable. An informal accumulation of the tradition in S. C. Kleene (1952) [5]
has transformed it to the Computability thesis: there is an objective notion of
effective computability independent of a particular formalization. The informal
arguments Turing sets forth in his 1936 paper are as lucid and convincing now
as they were then. To us it seems that it is the best introduction to the subject.
It gives the intüıtions that lead up to the formal definition, and is in a certain
sense a prerequisite of what follows. The reader can find this introduction in
[11] included in this volume. It begins with:
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“All arguments are bound to be, fundamentally, appeals to intuition, and
for that reason rather unsatisfactory mathematically. The real question
at issue is: ‘what are the possible processes which can be carried out in
computing (a number)?’ The arguments which I shall use are of three
kinds.

(a) A direct appeal to intuition.

(b) A proof of equivalence of two definitions (in case the new definition
has a greater intuitive appeal).

(c) Giving examples of large classes of numbers which are computable.”

2. Formal Definition of the Turing Machine

We formalize Turing’s description as follows: A Turing machine consists of
a finite program, called the finite control, capable of manipulating a linear list
of cells, called the tape, using one access pointer, called the head. We refer to
the two directions on the tape as right and left. The finite control can be in
any one of a finite set of states Q, and each tape cell can contain a 0, a 1, or a
blank B. Time is discrete and the time instants are ordered 0, 1, 2, . . . , with 0
the time at which the machine starts its computation. At any time, the head is
positioned over a particular cell, which it is said to scan. At time 0 the head is
situated on a distinguished cell on the tape called the start cell, and the finite
control is in a distinguished state q0. At time 0 all cells contain Bs, except for
a contiguous finite sequence of cells, extending from the start cell to the right,
which contain 0’s and 1’s. This binary sequence is called the input. The device
can perform the following basic operations:

1. It can write an element from A = {0, 1, B} in the cell it scans; and

2. it can shift the head one cell left or right.

When the device is active it executes these operations at the rate of one
operation per time unit (a step). At the conclusion of each step, the finite
control takes on a state from Q. The device is constructed so that it behaves
according to a finite list of rules. These rules determine, from the current state of
the finite control and the symbol contained in the cell under scan, the operation
to be performed next and the state to enter at the end of the next operation
execution.

The rules have format (p, s, a, q): p is the current state of the finite control;
s is the symbol under scan; a is the next operation to be executed of type (1)
or (2) designated in the obvious sense by an element from S = {0, 1, B, L,R};
and q is the state of the finite control to be entered at the end of this step.

For now, we assume that there are no two distinct quadruples that have
their first two elements identical, the device is deterministic. Not every possible
combination of the first two elements has to be in the set; in this way we permit
the device to perform ‘no’ operation. In this case we say that the device halts.
Hence, we can define a Turing machine by a mapping from a finite subset of
Q ×A into S ×Q. Given a Turing machine and an input, the Turing machine
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Figure 1: Turing machine

carries out a uniquely determined succession of operations, which may or may
not terminate in a finite number of steps.

Strings and natural numbers are occasionally identified according to the
pairing

(ǫ, 0), (0, 1), (1, 2), (00, 3), (01, 4), (10, 5), (11, 6), . . . , (1)

where ǫ denotes the empty string (with no bits). In the following we need the
notion of a self-delimiting code of a binary string. If x = x1 . . . xn is a string of n
bits, then its self-delimiting code is x̄ = 1n0x. Clearly, the length |x̄| = 2|x|+1.
Encoding a binary string self-delimitingly enables a machine to determine where
the string ends reading it from left to right in a single pass and without reading
past the last bit of the code.

2.1. Computable Functions

We can associate a partial function with each Turing machine in the following
way: The input to the Turing machine is presented as an n-tuple (x1, . . . , xn)
consisting of self-delimiting versions of the xi’s. The integer represented by the
maximal binary string (bordered by blanks) of which some bit is scanned, or
0 if a blank is scanned, by the time the machine halts, is called the output of
the computation. Under this convention for inputs and outputs, each Turing
machine defines a partial function from n-tuples of integers onto the integers,
n ≥ 1. We call such a function partial computable. If the Turing machine
halts for all inputs, then the function computed is defined for all arguments
and we call it total computable. (Instead of computable the more ambiguous
recursive has also been used.) We call a function with range {0, 1} a predicate,
with the interpretation that the predicate of an n-tuple of values is true if
the corresponding function assumes value 1 for that n-tuple of values for its
arguments and is false or undefined otherwise. Hence, we can talk about partial
(total) computable predicates.

2.2. Examples of Computable Functions

Consider x as a binary string. It is easy to see that the functions |x|,
f(x) = x̄, g(x̄y) = x, and h(x̄y) = y are partial computable. Functions g and h
are not total since the value for input 1111 is not defined. The function g′(x̄y)
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defined as 1 if x = y and as 0 if x 6= y is a computable predicate. Consider x as
an integer. The following functions are basic n-place total computable functions:
the successor function γ(1)(x) = x + 1, the zero function ζ(n)(x1, . . . , xn) = 0,

and the projection function π
(n)
m (x1, . . . , xn) = xm(1 ≤ m ≤ n). The function

〈x, y〉 = x̄y is a total computable one-to-one mapping from pairs of natural
numbers into the natural numbers. We can easily extend this scheme to ob-
tain a total computable one-to-one mapping from k-tuples of integers into the
integers, for each fixed k. Define 〈n1, n2, . . . , nk〉 = 〈n1, 〈n2, . . . , nk〉〉. Another
total recursive one-to-one mapping from k-tuples of integers into the integers is
〈n1, n2, . . . , nk〉 = n̄1 . . . n̄k−1n̄k.

3. Computability Thesis and the Universal Turing Machine

The class of algorithmically computable numerical functions (in the intuitive
sense) coincides with the class of partial computable functions. Originally in-
tended as a proposal to henceforth supply intuitive terms such as ‘computable’
and ‘effective procedure’ with a precise meaning, the Computability thesis has
come into use as shorthand for a claim that from a given description of a pro-
cedure in terms of an informal set of instructions we can derive a formal one in
terms of Turing machines.

It is possible to give an effective (computable) one-to-one pairing between
natural numbers and Turing machines. This is called an effective enumeration.
One way to do this is to encode the table of rules of each Turing machine in
binary, in a canonical way.

The only thing we have to do for every Turing machine is to encode the
defining mapping T : Q × A → S ×Q. Giving each element of Q

⋃
S a unique

binary code requires s bits for each such element, with s = ⌈log(|Q| + 5)⌉.
Denote the encoding function by e. Then the quadruple (p, 0, B, q) is encoded
as e(p)e(0)e(B)e(q). If the number of rules is r, then r ≤ 3|Q|. We agree to
consider the state of the first rule as the start state. The entire list of quadruples,

T = (p1, t1, s1, q1), (p2, t2, s2, q2), . . . , (pr, tr, sr, qr),

is encoded as

E(T ) = s̄r̄e(p1)e(t1)e(s1)e(q1) . . . e(pr)e(tr)e(sr)e(qr).

Note that l(E(T )) ≤ 4rs + 2 log rs + 4. (Moreover, E is self-delimiting, which
is convenient in situations in which we want to recognize the substring E(T ) as
prefix of a larger string.)

We order the resulting binary strings lexicographically (according to increas-
ing length). We assign an index, or Gödel number, n(T ) to each Turing machine
T by defining n(T ) = i if E(T ) is the ith element in the lexicographic order of
Turing machine codes. This yields a sequence of Turing machines T1, T2, . . . that
constitutes the effective enumeration. One can construct a Turing machine to
decide whether a given binary string x encodes a Turing machine, by checking
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whether it can be decoded according to the scheme above, that the tuple ele-
ments belong to Q×A× S ×Q, followed by a check whether any two different
rules start with the same two elements. This observation enables us to construct
universal Turing machines.

A universal Turing machine U is a Turing machine that can imitate the
behavior of any other Turing machine T . It is a fundamental result that such
machines exist and can be constructed effectively. Only a suitable description
of T ’s finite program and input needs to be entered on U ’s tape initially. To
execute the consecutive actions that T would perform on its own tape, U uses T ’s
description to simulate T ’s actions on a representation of T ’s tape contents. Such
a machine U is also called computation universal. In fact, there are infinitely
many such U ’s.

We focus on a universal Turing machine U that uses the encoding above.
It is not difficult, but tedious, to define a Turing machine in quadruple format
that expects inputs of the format E(T )p and is undefined for inputs not of that
form. The machine U starts to execute the successive operations of T using p
as input and the description E(T ) of T it has found so that U(E(T )p) = T (p)
for every T and p. We omit the explicit construction of U .

For the contemporary reader there should be nothing mysterious in the con-
cept of a general-purpose computer which can perform any computation when
supplied with an appropriate program. The surprising thing is that a general-
purpose computer can be very simple: M. Minsky [7] has shown that four tape
symbols and seven states suffice easily in the above scheme. This machine can be
changed to, in the sense of being simulated by, our format using tape symbols
{0, 1, B} at the cost of an increase in the number of states. The last refer-
ence contains an excellent discussion of Turing machines, their computations,
and related machines. The effective enumeration of Turing machines T1, T2, . . .
determines an effective enumeration of partial computable functions φ1, φ2, . . .
such that φi is the function computed by Ti, for all i. It is important to dis-
tinguish between a function ψ and a name for ψ. A name for ψ can be an
algorithm that computes ψ, in the form of a Turing machine T . It can also be a
natural number i such that ψ equals φi in the above list. We call i an index for
ψ. Thus, each partial computable ψ occurs many times in the given effective
enumeration, that is, it has many indices.

4. Undecidability of the Halting Problem

Turing’s paper [11], and more so Kurt Gödel’s paper [4], where such a result
first appeared, are celebrated for showing that certain well-defined questions in
the mathematical domain cannot be settled by any effective procedure for an-
swering questions. The following ’machine form’ of this undecidability result is
due to Turing and Church: “which machine computations eventually terminate
with a definite result, and which machine computations go on forever without
a definite conclusion?” This is sometimes called the halting problem.

Since all machines can be simulated by the universal Turing machine U ,
this question cannot be decided in the case of the single machine U , or more
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generally for any other individual universal machine. The following theorem
due to Turing [11], formalizes this discussion. Let φ1, φ2, . . . be the standard
enumeration of partial computable functions and write φ(x) < ∞ if φ(x) is
defined and write φ(x) = ∞ otherwise. Define K0 = {〈x, y〉 : φx(y) < ∞} as
the halting set.

Theorem 1. The halting set K0 is not computable.

The theorem of Turing on the incomputability of the halting set was pre-
ceded by (and was intended as an alternative way to show) the famous (first)
incompleteness theorem of Kurt Gödel in 1931 [4]. Recall that a formal theory
T consists of a set of well-formed formulas, formulas for short. For convenience
these formulas are taken to be finite binary strings. Invariably, the formulas
are specified in such a way that an effective procedure exists that decides which
strings are formulas and which strings are not.

The formulas are the objects of interest of the theory and constitute the
meaningful statements. With each theory we associate a set of true formulas
and a set of provable formulas. The set of true formulas is true according to
some (often nonconstructive) criterion of truth. The set of provable formulas is
provable according to some (usually effective) syntactic notion of proof.

A theory T is simply any set of formulas. A theory is axiomatizable if it
can be effectively enumerated. For instance, its axioms (initial formulas) can
be effectively enumerated and there is an effective procedure that enumerates
all proofs for formulas in T from the axioms. A theory is decidable if it is a
recursive set. A theory T is consistent if not both formula x and and its negation
¬x are in T . A theory T is sound if each formula x in T is true (with respect
to the standard model of the natural numbers).

Hence, soundness implies consistency. A particularly important example of
an axiomatizable theory is Peano arithmetic, which axiomatizes the standard
elementary theory of the natural numbers.

Theorem 2. There is a computably enumerable set, say the set K0 defined
above, such that for every axiomatizable theory T that is sound and extends
Peano arithmetic, there is a number n such that the formula “n 6∈ K0” is true
but not provable in T .

In his original proof, Gödel uses diagonalization to prove the incompleteness
of any sufficiently rich logical theory T with a computably enumerable axiom
system, such as Peano arithmetic. By his technique he exhibits for such a theory
an explicit construction of an undecidable statement y that says of itself I am
unprovable in T . The formulation in terms of computable function theory is
due to A. Church and S.C. Kleene.

Turing’s idea was to give a formal meaning to the notion of “giving a proof.”
Intuitively, a proof is a sort of computation where every step follows (and follows
logically) from the previous one, starting from the input. To put everything as
broad as possible, Turing analyses the notion of ‘computation’ from an ‘input’
to an ‘output’ and uses this to give an alternative proof of Gödel’s theorem.
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Prominent examples of uncomputable functions are the Kolmogorov com-
plexity function and the universal algorithmic probability function. These are
the fundamental notions in [6] and, among others, [9, 2].

5. Complexity of Computations

Theoretically, every intuitively computable (effectively calculable) function is
computable by a personal computer or by a Turing machine. But a computation
that takes 2n steps on an input of length n would not be regarded as practical
or feasible. No computer would ever finish such a computation in the lifetime of
the universe even with n merely 1, 000. For example, if we have 109 processors
each taking 109 steps/second, then we can execute 3.1× 1025 < 2100 steps/year.
Computational complexity theory tries to identify problems that are feasibly
computable.

In computational complexity theory, we are often concerned with languages.
A language L over a finite alphabet Σ is simply a subset of Σ∗. We say that
a Turing machine accepts a language L if it outputs 1 when the input is a
member of L and outputs 0 otherwise. That is, the Turing machine computes
a predicate.

Let T be a Turing machine. If for every input of length n we have that
T makes at most t(n) moves before it halts, then we say that T runs in time
t(n), or has time complexity t(n). If T uses at most s(n) tape cells in the above
computations, then we say that T uses s(n) space, or has space complexity s(n).

For convenience, we often give the Turing machine in Figure 1 a few more
work tapes and designate one tape as a read-only input tape. Thus, each tran-
sition rule will be of the form (p, s̄, a, q), where s̄ contains the scanned symbols
on all the tapes, and p, a, q are as above, except that an operation now involves
moving maybe more than one head.

We sometimes also make a Turing machine nondeterministic by allowing
two distinct transition rules to have identical first two components. That is, a
nondeterministic Turing machine may have different alternative moves at each
step. Such a machine accepts if one accepting path leads to acceptance. Turing
machines are deterministic unless it is explicitly stated otherwise.

• DTIME[t(n)] is the set of languages accepted by multitape deterministic
Turing machines in time O(t(n));

• NTIME[t(n)] is the set of languages accepted by multitape nondetermin-
istic Turing machines in time O(t(n));

• DSPACE[s(n)] is the set of languages accepted by multitape deterministic
Turing machines in O(s(n)) space;

• NSPACE[s(n)] is the set of languages accepted by multitape nondetermin-
istic Turing machines in O(s(n)) space.

7



• With c running through the natural numbers:

P is the complexity class
⋃

c
DTIME[nc];

NP is the complexity class
⋃

c
NTIME[nc];

PSPACE is the complexity class
⋃

c
DSPACE[nc].

Languages in P, that is, languages acceptable in polynomial time, are con-
sidered feasibly computable. The nondeterministic version for PSPACE turns
out to be identical to PSPACE by Savitch’s Theorem [10] which states that
NSPACE[s(n)] = DSPACE[(s(n))2]. The following relationships hold trivially,
P ⊆ NP ⊆ PSPACE. It is one of the most fundamental open questions in com-
puter science and mathematics to prove whether either of the above inclusions
is proper. Research in computational complexity theory focuses on these ques-
tions. In order to solve these problems, one can identify the hardest problems
in NP or PSPACE. The Bible of this area is [3].

6. Importance of the Turing Machine

In the last three-quarter of a century the Turing machine model has proven
to be of priceless value for the development of the science of data processing.
All theory development reaches back to this format. The model has become
so dominant that new other models that are not polynomial-time reducible
to Turing machines are viewed as not realistic (the so-called polynomial-time
Computability thesis).

Without explaining terms, the random access machine (RAM) with loga-
rithmic cost, or unit cost without multiplications, is viewed as realistic, while
the unit cost RAM with multiplications or the parallel random access machine
(PRAM) are not so viewed. New notions, such as randomized computations as
in R. Motwani and P. Raghavan [8] (like the fast primality tests used in Internet
cryptographical protocols) are analysed using probabilistic Turing machines.

In 1980 the Nobelist Richard Feynman proposed a quantum computer, in
effect an analogous version of a quantum system. Contrary to digital computers
(classical, quantum, or otherwise), an analogue computer works with continuous
variables and simulates the system we want to solve directly: for example, a wind
tunnel with a model aircraft simulates the aeroflow and in particular nonlami-
nar turbulence of the aimed-for actual aircraft. In practice, analogue computers
have worked only for special problems. In contrast, the digital computer, where
everything is expressed in bits, has proven to be universally applicable. Feyn-
man’s innovative idea was without issue until D. Deutsch [1] put the proposal
in the form of a quantum Turing machine, that is, a digital quantum computer.
This digital development exploded the area both theoretically and applied to
the great area of quantum computing.
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