
5 Comparing Negation in Logic Programming and in Prolog

Krzysztof R. Apt and Frank Teusink

Abstract
We compare here two uses of negation - in logic programming and in Prolog. As in Prolog
negation is defined by means of meta-programming facilities and the cut operator, this
requires a careful reexamination of the assumptions about the underlying syntax and a
precise definition of the computational processes involved.

After taking care of these matters we establish a formal result showing an equivalence
in appropriate sense between these two uses of negation. This result allows us to argue
about correctness of various known Prolog programs which use negation by reasoning
about the corresponding general logic programs.

5.1 Introduction

During the last 15 years, a lot of attention was devoted to the study of negation in logic
programming. No less than seven survey articles on this subject were published. Just to
mention two most recent ones: Dix [Dix93] and Apt and Bol [AB94].

The main reason for this interest is that in the logic programming setting negative
literals can be used to model non-monotonic reasoning. The computation process of
logic programming provides then a readily available computational interpretation. This
is not the case with other approaches to non-monotonic reasoning. This computation
process is called SLDNF-resolution and was proposed by Clark [Cla78]. Negation is
interpreted in it using the "negation as finite failure" rule. Intuitively, this rule works as
follows: for a ground atom A,

-,A succeeds iff A finitely fails,
-,A finitely fails iff A succeeds,

where "finitely fails" means that the corresponding evaluation tree is finite and all its
leaves are marked as failed.

However, SLDNF-resolution is not a practical way of computing and usually one resorts
to Prolog when seeking for a computational interpretation. But in Prolog negation
is implemented in a different way, namely by the predicate (or synonymously relation
symbol) neg defined internally by the following two clauses:

neg(X) +- X, !, fail.

neg(X) +-.

(1)

(2)
where "!" is the cut operator and fail is a Prolog built-in with the empty definition.

112 K.R. Apt, F. Teusink

The intuition behind this definition is perhaps best revealed by first introducing the
if _then.else predicate defined as follows:

if then_else (P, Q, R) .,__ P, ! , Q.

if_ then _else (P, Q, R) ..__ R.

if _then_else is intended to model within Prolog the customary if P then Q else R
construct of imperative programming languages. Then neg can be equivalently defined
by

neg(X) <- if_then_else(X, fail, D).

where D is the empty query which immediately succeeds. So intuitively, neg(X) can be
interpreted as "if X succeeds then fail else succeed".

It is usually tacitly assumed that logic programming and Prolog ways of dealing with
negation are "equivalent", in the sense that SLDNF-resolution combined with the left­
most selection rule (henceforth called LDNF-resolution) properly reflects Prolog's way
of handling negation. Upon closer scrutiny this assumption is far from being obvious.
The above definition of the neg predicate and its use in programs calls upon a number
of features which are present in Prolog, but absent in logic programming, and for which
a formal treatment is lacking. These are:

• the use of meta-variables, that is variables which occur in an atom position, like X
in the first clause,

• the use of meta-programming facilities that arise when applying this definition of
neg, so in constructs of the form neg (A) where A is an atom, or a query in general.

Additionally, two better understood, though not necessarily simpler to handle, features
of Prolog need to be taken care of, namely:

• the ordering of the program clauses,

• the use of the cut operator "!".

The aim of this paper is to relate precisely these two uses of negation: in logic pro­
gramming and in Prolog. To do this we appropriately tune the definition of the SLDNF­
resolution given in Apt and Doets [AD94] to our present needs and formally define
"Prolog trees" in the presence of the cut operator. Then we prove a result that shows
an appropriate equivalence between these two definitions of negation.

The outcome of this study is that we can now interpret various results about cor­
rectness of general logic programs executed by means of the LDNF-resolution (see e.g.
Apt [Apt95]) as correctness results about the corresponding Prolog programs that use
negation.

Comparing Negation in Logic Programming and in Prolog 113

5.2 Syntactic Matters

5.2. l General Logic Programs

To relate general logic programs to Prolog programs we have to be precise about the
syntax. Fix a first-order language C. To make this comparison possible we assume that

• a general program is a sequence and not a set of general clauses,

• the predicates ! , neg and fail are not present in the language C.
A general clause is defined in the usual way (see e.g. Lloyd [Llo87]), so as a construct

of the form A+-- L1, ... , Ln, where A is an atom and L1, ... , Ln are literals, i.e. atoms
or their negations, all in the language £. And a query is a finite sequence of literals. In
the context of logic programming the negation connective is written as "--,".

5.2.2 Prolog Programs

Prolog programs here considered are intended to be the programs that allow us to model
the negation by means of the predicate neg defined by the clauses (1) and (2). However,
the syntax of clause (1) creates a number of problems, even if we ignore the cut operator
"!" .

First of all, the use of the meta-variable X in clause (1) violates the syntax of the first­
order logic. This use of X in the resolution process leads to further complications. Take
an n-ary function symbol p in the language [, and let s1 , ... , Sn be some terms. Consider
now the query neg(p (s 1 , ... , sn)). During Prolog computation process it resolves using
the clause (1) to the query p(s 1 , ... , sn), ! ,fail. Now in the first query p occurs in
a position of a function symbol, whereas in the second one p occurs in a position of a
relation symbol. So every function symbol needs also to be accepted as a relation symbol.

Also conversely: take an n-ary relation symbol p with some terms s1, ... , sn, and
consider the general clause p(s1 , ... , sn) +-- --ip(s 1 , ... , sn)· Its desired translation into a
Prolog clause is p (s 1 , ... , sn) +--- neg(p (s1 , ... , sn)). In the head of the latter clause p
occurs in a position of a relation symbol, whereas in its body in the position of a function
symbol.

As in both cases p was arbitrarily chosen, we conclude that to render the resolution
process meaningful we need to accept that the classes of function symbols and of relation
symbols in the underlying language coincide.

This is clearly in violation with the (usually tacit) assumption that in the first-order
language, say £, fixed above, the classes Fm and Rn of, respectively, its function symbols
of arity m and its relation symbols of arity n are pairwise disjoint for m, n ;::: 0. In
short, the use of the clause (1) cannot be properly accounted for by just referring to the
first-order logic.

114 K.R. Apt, F. Teusink

A simple solution to the above mentioned two problems is to modify the syntax of the
language [, by allowing

• meta-variables, so variables that can occur in atoms positions, both in the queries
and in the clause bodies,

• ambivalent syntax, so - in this case - by assuming that the classes of function and
relation symbols coincide.

The latter can be achieved by extending .C to a language in which for each m :2: 0
F m U Rm are the classes of both its function symbols and relation symbols. Thus in this
language terms and atoms coincide.

Additionally, we assume that

• the predicates !, neg and fail are present in the underlying language,

o ! is a built-in 0-ary predicate (with a meaning to be explained later), and no clause
uses it in its head,

e neg is a built-in predicate defined by the clauses (1) and (2), so no other clause
uses it in its head,

• fail is a built-in 0-ary predicate with the empty definition, so no clause uses it in
its head.

The last two assumptions ensure that neg and fail are indeed defined internally in
the desired way. For the purposes of syntax the cut operator "!" is viewed here as a
0-ary predicate with the empty definition. This might suggest that its meaning coincides
with that of fail. However, this is not the case. Its real, operational, "meaning" will be
defined in Section 5.4 by means external to the resolution process.

So in the resulting language, apart of the customary atoms, also ! , fail and meta­
variables are admitted as atoms (henceforth called special atoms).

Now, a Prolog program is defined as a sequence of Prolog clauses preceded by the
clauses (1) and (2). In turn a Prolog clause is a construct of the form A +- B1 , ... , Bn,
where A, B1, ... , Bn are atoms in the language £, and A is not a special atom. And
a Prolog query is a finite sequence of atoms. For brevity, in the examples of Prolog
programs, we drop the listing of the clauses (1) and (2). Finally, we denote sequences of
atoms or literals by bold capital letters.

Note that at this stage we use two notions of an atom - one within the language [,
and another in its ambivalent extension just defined. From the context it will be always
clear to which of these two languages we refer.

Comparing Negation in Logic Programming and in Prolog 115

5.2.3 Restricted Prolog Programs

The translation of a general program to a Prolog program is now straightforward and as
expected: we just replace everywhere a logic programming literal •A by Prolog's atom
neg(A) and prefix the resulting program with the clauses (1) and (2). In short, the logic
programming negation connective "-," is traded for the built-in predicate neg. Similarly,
a general query is translated to a Prolog query by replacing everywhere •A by neg(A).

This translation process maps every general program (resp. general query) onto a
Prolog program. However, not every Prolog program (resp. Prolog query) is the result of
translating a general program (resp. general query). Indeed, in general the cut operator
"!" can be used in any Prolog clause, not only (1).

Let us now characterize the Prolog programs (resp. Prolog queries) which are the
result of the above translation of general programs (resp. general queries). We call
them restricted Prolog programs (resp. restricted Prolog queries). To this we translate
"back" every Prolog program (resp. Prolog query) onto a general program (resp. general
query) by replacing everywhere neg(A) by •A, and omitting the clauses (1) and (2)
that define the neg predicate. Then a Prolog program (resp. Prolog query) is restricted
if the outcome of this reverse translation is a syntactically legal general program (resp.
general query). For example the Prolog query neg(q) ,q is restricted because its reverse
translation is •q,q, whereas neither neg(q(neg(a))) nor p(q) ,q is restricted because
their respective reverse translations violate the syntactic assumptions concerning general
programs.

Of course, it is possible to define the class of restricted Prolog programs and queries
directly, though the resulting definition is rather tedious.

We now define a resolvent of a Prolog query as follows.

Definition 1 Consider a non-empty Prolog query A, M and a Prolog clause c. Let
H +-- L be a variant of c variable disjoint with A,M and let() be an mgu of A and H.
Then (L, M)B is called a resolvent of A, Mand c with an mgu B. 0

The only unusual feature in the present setting is, that now the mgu's also bind the
meta-variables. Also, note that the selected literal is always the leftmost literal.

It is worthwhile to mention that a resolvent of a restricted Prolog query w.r.t. a
restricted Prolog program is not necessarily a restricted Prolog query. This is due to the
use of clause (1), which introduces a cut atom. Thus, the Prolog queries generated in
a computation of a restricted Prolog query are not necessarily restricted Prolog queries.
However, the Prolog queries so generated do have one important property: they do not
contain meta-variables. To prove this fact we need a stronger property.

Definition 2
• An atom A is called unsafe if one of the following holds:

116 K.R. Apt, F. Teusink

- A is a meta-variable,

- A is neg(X) where X is a variable,

- A is neg(neg(s)) where sis a term.

• A Prolog query is called meta-safe if none of its atoms is unsafe. o
For example, the Prolog query X, p (X) is not meta-safe because its leftmost atom is a

meta-variable, neg(X) is not meta-safe because the argument of neg is a meta-variable,
and neg (neg (p (X))) is not meta-safe because it is of the form neg (neg (s)) .

Note that restricted Prolog queries and bodies of the restricted Prolog clauses are

meta-safe.
Lemma 3 Let Q be a meta-safe Prolog query and P a restricted Prolog program. Then
all resolvents of Q are meta-safe.

Proof: Let Q be of the form A, L, and let (M, L)B be a resolvent of Q, with an input
clause c and mgu B. As Q is meta-safe, we know that L(:I is meta-safe. We prove that
MB is meta-safe as well. Three cases arise.

Case 1 : c is clause (1).
Then MB is of the form B, ! ,fail, where A is of the form neg(B). But Q is
meta-safe, so B is neither a meta-variable nor of the form neg(B'). So MO is
meta-safe.

Case 2 : c is clause (2).
Then MO is the empty query, so obviously meta-safe.

Case 3 : c is different from clauses (1) and (2).
Then the body of c is meta-safe, and consequently so is MB.

This proves that (M, L)B is meta-safe. D

Corollary 4 All Prolog queries generated in a computation of a restricted Prolog query
and a restricted Pro log program are meta-safe. D

In Prolog, if the selected atom is a meta-variable, an error arises. The above result thus
shows that no errors arise in Prolog computations for queries and programs that are
obtained by a translation of a general query and a general program.

5.3 Computing with General Logic Programs: LDNF-resolution

As the next step we define the LDNF-resolution that allows us to compute with general
logic programs. The definition of LDNF-resolution given here is derived in a straightfor­
ward way from that of the SLDNF-resolution given in Apt and Doets [AD94]. Apart of
the fact that we view in this paper a general program as a finite sequence and not as a
finite set of general clauses, the differences are that:

Comparing Negation in Logic Programming and in Prolog 117

• the leftmost selection rule is used,

• floundering, so -in this context- an abnormal termination due to selection of a

non-ground literal is ignored.

In this way we bring the procedural interpretation of general programs closer to that of

the corresponding Prolog programs and make the subsequent comparison possible. Recall

from Clark [Cla78] and Lloyd [Llo87] that floundering is a problem that arises only when

dealing with the semantic aspects of the SLDNF-resolution, which are irrelevant here.

Before giving the definition of LDNF-resolution, we recall the definitions of resolvent

and pseudo-derivation.

Definition 5 Consider a non-empty general query L, M and a general clause c.

• Suppose L is a positive literal.

Let H +-- L be a variant of c variable disjoint with L, M and let e be an mgu of L

and H. Then (L,M)B is called a resolvent of L,M and c w.r.t. L, with an mgu e.
We write then L, M ~ (L, M)B, and call it a positive derivation step. We call

H +- L the input clause of the derivation step.

• Suppose L is a negative literal. Then M is called a resolvent of L, M with the

identity substitution€ w.r.t. L.

We write then L, M ~ M, and call it a negative derivation step.

• A general clause c is called applicable to an atom if it has a variant the head of

which unifies with the atom. D

Fix, until the end of this section, a general program P.

Definition 6 A (finite or infinite) sequence Q0 ~ Q1 · · ·

tion steps is called a pseudo derivation of PU { Qo} if

• Qo, .. ., Qn, ... are general queries,

• 01, ... , On, ... are substitutions,
• c1, .. ., en, ... are general clauses of P, or 0,

Q &n+l Q f d , ===;,. +1 · · · o enva-n cn+l n

and for every step involving selection of a positive literal the following condition holds:

Standardization apart: the input clause employed is variable disjoint from the initial

general query Qo and from the substitutions and input clauses used at earlier steps. 0

Intuitively, an LDNF-derivation is a pseudo derivation in which the deletion of every

negative literal is justified by means of a subsidiary (finitely failed LDNF-) tree. This

brings us to consider special types of trees, called forests.

Definition 7 A forest is a system F = (F, T, subs) where

• F is a set of trees,
• T is an element of F called the main tree, and

118 K.R. Apt, F. Teusink

• subs is a function assigning to some nodes of trees in :F a ("subsidiary") tree from

F.
By a path in :F we mean a sequence of nodes N0 , ... , N;, ... such that for all i, N;+l is

either an immediate descendant of N; in some tree in :F, or the root of the tree subs(N;).

The depth of :Fis the length of the longest path in :F. 0

Thus a forest is a special directed graph with two types of edges - the "usual" ones

stemming from the tree structures, and the ones connecting a node with the root of a

subsidiary tree. An LDNF-tree is a special type of forest, built as a limit of certain finite

forests: pre-LDNF trees.

Definition 8 A pre-LDNF-tree (relative to P) is a forest whose nodes are queries.

Leaves can be unmarked, or can be marked as either success or failure. The class of

pre-LDNF-trees is defined inductively:

• For every general query Q, the forest consisting of the main tree which has the
single unmarked node Q is a pre-LDNF-tree (an initial pre-LDNF-tree),

• If Tisa pre-LDNF-tree, then any extension of Tisa pre-LDNF-tree.

Before defining the notion of an extension of a pre-LDNF-tree, we need to define the

notion of successful and finitely failed trees: for TE T,

• T is called successful, if one of its leaves is marked as success, and
• T is called finitely failed, if it is finite and all its leaves are marked as failure.

Now, an extension of a pre-LDNF-tree T is defined by performing the following actions

for every non-empty general query Q (with leftmost literal L) which is an unmarked leaf
in some tree TE T:

• Suppose that L is a positive literal.

- If Q has no resolvents w.r.t. L and a clause from P:

Mark Q as failure.

- If Q has such resolvents:

For every clause c from P which is applicable to L, choose one resolvent Q' of
Q w.r.t. Land c, with an mgu e, and add this as an immediate descendant of

Q in T. Choose the input clauses in such a way that all branches of Tremain
pseudo derivations.

• Suppose that L is a negative literal, say -iA.

- If subs(Q) is undefined:

Add a new tree T', consisting of the single node A, to T, and let subs (Q) = T'.

- If subs(Q) is defined and successful:

Mark Q as failure.

Comparing Negation in Logic Programming and in Prolog 119

p p p p p
ext.

I
ext.

I
ext

I
ext.

I initial ==> ==> ==> ~
•q, r •q, r •q, r •q, r

\

failu~', ' ' \ \

' ' \ ' q q q

I I
0 0

success success

Figure 5.1
Step-by-step construction of an LDNF-tree for the query p w.r.t. the general program p .__ -.q, r q .__,

If subs(Q) is defined and finitely failed:

Add the resolvent Q - { L} of Q as the only immediate descendant of Q in T.

Additionally, all empty queries are marked as success. D

Note that, if no tree in T has unmarked leaves, then trivially T is an extension of itself,

and the extension process becomes stationary.

Next, we define LDNF-trees as the limit of sequences of pre-LDNF-trees. Every pre­

LDNF-tree is a tree with two types of edges between possibly marked nodes, so the

concepts of inclusion between such trees and of limit of a growing sequence of such trees

have a clear meaning.

Definition 9

• An LDNF-tree is a limit of a sequence To, ... , Ta, ... such that To is an initial

pre-LDNF-tree, and for all i 7i+ 1 is an extension of T;.
• An LDNF-tree for Q is an LDNF-tree in which Q is the root of the main tree.

• A (pre-)LDNF-tree is called successful (resp. finitely failed) if the main tree is

successful (resp. finitely failed).
• An LDNF-tree is called finite if no infinite path exists in it (cf. Definition 7). D

In Figure 5.1, we show how the notions of initial pre-LDNF-trees and extensions of

pre-LDNF-trees are used to construct a P-tree.
Finally, we recall the notion of a computed answer substitution.

Definition 10 Consider a branch in the main tree of a (pre-)LDNF-tree for Q which

ends with the empty query. Let a 1 , ... , an be the consecutive substitutions along this

branch.

120 K.R. Apt, F. Teusink

Then the restriction (a1 · · · an)IQ of the composition a1 ···an to the variables of Q is
called a computed answer substitution (c. a. s. for short) of Q. D

5.4 Computing with Prolog Programs: P-resolution

In this section, we define the computation process used in Prolog to find answers to
queries, which we call P-resolution. To this end we proceed in two steps.

First, we restrict the LDNF-resolution to logic programs, so general logic programs
without negation, by simply disregarding the selection of a negative literal. We call the
resulting computation process LD-resolution.

Then, we extend the LD-resolution to Prolog programs by allowing the choice of a
meta-variable or of a cut atom as a selected atom. In the first case an error is reported,
and in the second case the computation tree constructed so far is appropriately pruned.

To better understand the issues involved in defining the effect of the cut operator, let
us consider the definition of a predicate p:

p(s1) +-- L1.

p(sk) +-- Lk·

Here, the i-th clause contains a cut atom (there could be others, either in the same
clause, or in other clauses). Now, suppose that during the execution of a query, some
atom p(t) is resolved using (a variant of) the i-th clause, and that later on, the cut atom
thus introduced becomes the leftmost atom. Then, according to the customary definition
of the cut operator "!", once the indicated occurrence of ! is selected:

1. all other ways of resolving Mare discarded, and

2. all derivations using (variants of) the i + 1-th to k-th clause for p are discarded.

Note that this operational definition of the behaviour of the cut operator depends on the
leftmost selection rule, and on viewing a program as a sequence of clauses, instead of a
set of clauses.

To model this operational behaviour of the cut operator in P-resolution, we have to
define it in terms of a pruning operator on LD-trees, but first, let us give an example of
the behaviour of the cut operator. Consider the following Prolog program:

p +-- q, ! ,t. q +-- r, ! ,t. r +-- s. s +-- •

p +-- • q +-- • r +-- •

Comparing Negation in Logic Programming and in Prolog 121

q

,,."'~
,,. I

,,."' r,!,t 1 D // A / success
I I

I I

I I 21
I S,., t . , t

t

failure

t

failure

Figure 5.2
A computation tree for the query q

In Figure 5.2, an LD-tree for the query q is shown. In this tree, there are two nodes with

a cut atom as the leftmost atom. Both of these cut atoms are introduced by resolving q

in the root node of the tree. We say that their origin is the root node. In the figure, we

use dashed arrows to to point from a selected cut atom to its origin. The two cut atoms

that appear as leftmost atoms are marked as 1 and 2 respectively. Now, consider the cut

atom marked as 1. Execution of this cut atom results in pruning: the middle branch has

to be pruned according to rule 1, and the rightmost branch has to be pruned following

rule 2. Execution of the cut atom marked as 2 also leads to a pruning of the rightmost

branch (using rule 1 for the cut operator). In the figure, the pruned branches are marked

using a cross. The label on the cross refers to the cut atoms that where responsible for

the pruning of that branch.
Now, we can restate the behaviour of the cut operator as a pruning operator on LD­

trees. Consider an LD-tree T. Let Q be a node in T with a cut atom as the selected

atom and let Q' be the origin of this cut atom (i.e. the node that introduced this cut

atom). Then, execution of this cut atom results in pruning all branches that are to the

right of Q, contain Q', and do not contain Q.
In the tree of Figure 5.2, the order in which selected cut atoms where processed, was

not important. However, in general, the order is important. Consider the LD-tree for p

122

Figure 5.3

I

p

~
q, ! ,t ; D

1 success
I

,'r,!,t,!,t !,t

I I
,''~/

I 2 /
I S,!,t,!,t !,t,!,t t

\, I I failure

! 't' ! 't t, ! 't
I failure

t, ! ,t
failure

A computation tree for the query p

K.R. Apt, F. Teusink

in Figure 5.3. Here, there are three nodes with a cut atom as leftmost atom, marked as
1, 2 and 3, respectively. Suppose we would process them from right to left. First, the
cut atom marked as 3 would prune the rightmost branch. Then, the cut atoms marked
as 2 and 1 would prune the third and the second branch from the left, respectively.
The resulting tree would consist of the leftmost branch only. On the other hand, when
processed from left to right, the cut atom marked as 1 would prune the middle two
branches. As a result, the cut atoms marked as 2 and 3 would disappear, which would
prevent the rightmost branch from being pruned. Thus, the resulting tree would consists
of the leftmost branch and the rightmost branch.

In Prolog, answers are computed using a left to right depth-first strategy. In particular,
Prolog processes the cut atoms in the tree from left to right. On the other hand, LD­
resolution is defined in a breadth-first manner: the process of extending a pre-tree consists
of extending all unmarked leaves of that tree simultaneously. To solve this problem,
we have to refine LD-resolution so that the depth-first strategy is used instead of the
breadth-first strategy. At first sight it seems that to this end we have to implement the
backtracking mechanism used by Prolog. Fortunately, it is not so. A simpler alternative
is to generate at each stage all direct successors of the leftmost unmarked leaf only. In

Comparing Negation in Logic Programming and in Prolog 123

this way the backtracking process is taken care of automatically.

Having discussed the modifications of the LD-resolution we now model the computation

process of Prolog, by providing a formal definition of P-resolution. The central notion in

this definition is that of a P-tree. We define them as the limit of a sequence of pre-P-trees,

which in turn are a subclass of a class of ordered trees called serni-P-trees.

Definition 11 A semi-P-tree (relative to P) is an ordered tree whose nodes contain

queries, possibly marked with success, failure, or error. D

In an ordered tree, by definition for every node there is a strict total order on its

children. To define the behaviour of the cut operator, we use these total orders to define

a partial order on the nodes of an ordered tree.

Definition 12 Let m, n be two nodes in an ordered tree. We say that n is to the right

of m if for some predecessors m' and n' of m and n, respectively,

• m' and n' are siblings,
• m' is strictly smaller than n' in the total order on the children of a node. D

The first step in defining pre-P-trees is to define the effect of the cut operator.

Definition 13 Let B be a branch in a semi-P-tree, and let Q be a node in this branch

with a cut atom as the leftmost atom. Then, the origin of this cut atom is the first

predecessor of Q in B that contains less cut atoms than Q. D

To see that this definition properly captures the informal meaning of the origin note

that, when following a branch from top to bottom, the cut atoms are introduced and

removed in a First-In Last-Out manner.

Definition 14 Let T be a semi-P-tree, Q a query in T which has a cut atom as the

leftmost atom, and Q' be the origin of this cut atom. Then, the operator cut(T, Q)
removes from T all the nodes that are descendants of Q' and lie to the right of Q. D

In Figure 5.4, we illustrate the effect of cut(T, Q).

Definition 15 The class of pre-P-trees is defined as follows:

• For every query Q, the tree consisting of the single unmarked node Q is a pre-P-tree

(an initial pre-P-tree).
• If T is a pre-P-tree, then any extension of T is a pre-P-tree.

An extension of a pre-P-tree T is defined as follows:
Let Q be the leftmost unmarked leaf in T. If Q is the empty query, mark Q as

successful. Otherwise, let Q be of the form A, M.

• Suppose A is an ordinary atom (i.e. not a special atom).

If Q has no resolvents w.r.t. a clause from P:

Mark Q as failure.

124 K.R. Apt, F. Teusink

~
Q'

~
Q'

cut

~

Q=!, ...

failure failure
Figure 5.4

failure failure

The effect of the operator cut(T, Q)

- If Q has such resolvents:
For every clause c from P which are applicable to A, choose one resolvent Q'
of Q w.r.t. c and add this as a child of Q in T. Choose the input clauses in
such a way that all branches of T remain pseudo derivations. Order these
children according to the the order in which their input-clauses appear in P.

• Suppose A is a cut atom.
Apply the operation cut(T, Q).
Provide Q with a single child M.

• Suppose A is a meta-variable.
Mark Q as error. D

We now define P-trees as the limit of sequences of pre-P-trees. In Figure 5.5, we show
how the notions of initial pre-P-trees and extensions of pre-P-trees can be used to con­
struct a P-tree (the program used in the figure is the translation of the program used in
Figure 5.1). Note that in this Figure, the result of the 'cut step' (that is, the fifth tree)
is not itself part of the sequence of extensions; it was added to clarify the use of the cut
operator in the construction of P-trees.

To be able to define the limit of a sequence of pre-P-trees, we have to define a notion of
an inclusion between pre-P-trees, and of the limit of a growing sequence of pre-P-trees.
For pre-LD-trees and pre-LDNF-trees, these notions were obvious. In the case of pre-P­
trees, the pruning that takes place when extending a pre-P-tree, complicates the matters
a bit.

Definition 16 Let T and T' be pre-P-trees. T is said to be included in T' if T' can be
constructed from T by means of one of the following two operations:

Comparing Negation in Logic Programming and in Prolog

p p p p

~1
neg(q),r

ext.

==> initiaJ

I
neg(q) ,r

I
neg(q),r

ext.

==>

A A

cut

~

Figure 5.5

q,!,fail,r r q, ! ,fail,r

I
! ,fail,r

p p p

I I

ext.

==> I
ext.

==>
neg(q),r neg(q) ,r neg(q) ,r

I I
q, ! ,fail ,r q, ! ,fail,r

11 I
! ,fail,r ! ,fail ,r

I
fail,r

I
! ,fail,r

I
fail,r
failure

Step-by-step construction of a P-tree for the Prolog query p w.r.t. the Prolog program

p +- neg(q), r. q +-, .

r

125

126 K.R. Apt, F. Teusink

1. adding some children to a leaf of T.
2. removing a single subtree from T, provided its root is not a single child in T.

We say that T is properly included in T', if T is included in T' and T' is not included in
T. We use C to denote the transitive closure of the relation "T is properly included in
T'" and define T s;; T' as (T c T') V (T = T'). D

Note that operation (2) never turns an internal node into a leaf.

Lemma 17 The relation C is a strict partial order on pre-P-trees.

Proof: We have to prove that the conditions for a strict partial order hold.

1. T ~ T
Suppose by contradiction that T C T. Then, there exists a T' such that T is
properly included in T', and T' s;; T. There are two cases:

• T' is constructed by adding children to a leaf of T.
But then, some node Q that is a leaf in T, is an internal node in T'. By
definition of inclusion, and the fact that T' ~ T, Q is an internal node in T.
This is in contradiction with the fact that Q is a leaf T.

• T' is constructed by pruning a single subtree from T.
By definition of inclusion, the parent of the pruned subtree has at least two
children in T, and therefore, it has at least one child in T'. Moreover, new
nodes can only "grow" from leaves. Thus subtrees pruned from T can never
be "regenerated", to reconstruct Tout of T'. Therefore, T' g; T, which leads
to a contradiction.

2. T c T' and T' c T" imply T c T".
Straightforward by the definition of C. D

Corollary 18 The relation ~ is a partial order on pre-P-trees. D

Clearly, with this notion of inclusion, we have that if T extends T' in the sense of Defi­
nition 15, then T' s;; T, so we can use this notion of extension to construct monotonously
growing chains of pre-P-trees.

Definition 19

• A P-tree is a limit of a sequence To, ... , T;,, ... such that To is an initial pre-P-tree,
and for all i, T;,+l is an extension of T;,.

• A P-tree for Q is a P-tree whose root is the query Q.
• An P-tree is called finite if no infinite branch exists in it. D

Comparing Negation in Logic Programming and in Prolog 127

neg(p)

A
p, ! ,fail o

I

Figure 5.6
A P-tree for the query neg(p) w.r.t. p +- p.

Formally, this definition is justified by the fact that every countable partial order with

the least element (here the relation ~ on pre-P-trees with the initial pre-P-tree as least

element) can be canonically extended to a countable cpo (see e.g. Gierz [GHK+so]).

Next, we define the concepts of successful and finitely failed P-trees.

Definition 20

• A P-tree is called successful if one of its leaves is marked as success.

• A (pre-)P-tree is called finitely failed, if it is finite, and all its leaves are marked as

failure. 0

Note that in P-trees, in contrast to LDNF-trees, some leaves can be unmarked. When­

ever this is the case, the P-tree will contain exactly one infinite branch to the left of all

these unmarked leaves. Such unmarked leaves represent the resolvents the Prolog com­

putation process did not reach, because it got "trapped" in an infinite derivation (the

infinite branch). For example, take the program p +- p., and the query neg (p). Its

P-tree is shown in Figure 5.6. This tree contains a branch ending with a leaf containing

the empty query. However, this leaf is never reached by the Prolog computation process

(and therefore never marked) because there is an infinite branch to the left of it.

Finally, it is clear how to define the notion of a computed answer substitution.

Definition 21 Consider a successful derivation in a pre-P-tree for Q. Let 0:1, ... , an be

the consecutive substitutions along this branch.

Then the restriction (a 1 · · ·an) IQ of the composition 0:1 · · ·an to the variables of Q is

called a computed answer substitution (c. a.s. for short) of Q. D

5.5 Correspondence between LDNF-trees and P-trees

In this section, we prove that there is a close correspondence between (computed answers

of) LDNF-trees and P-trees. More precisely, we prove that termination results on general

128 K.R. Apt, F. Teusink

programs w.r.t. LDNF-resolution translate directly into termination of their translated
Prolog programs w.r.t. Prolog computation. For this purpose, we start by examining
finite LDNF-trees, and their corresponding P-trees.

Theorem 22 Let TL be a finite LDNF-tree for a general query Q. Then, there exists a
finite P-tree Tp for Q such that TL and Tp have the same set of computed answers.

Proof: We prove the claim by induction on the depth of LDNF-trees (cf. Definition 7).
Assume that the claim holds for all LDNF-trees of depth less than r. We have to prove
the claim for LDNF-trees of depth r.

Let Ti be an LDNF-tree for Q of some finite depth r. In the remainder of this proof,
we identify a general query with its translation into a Prolog query. From the context it
will always be clear whether we refer to a general query, or a. Prolog query. Two cases
arise.

• Suppose that Q is of the form A, L.
Let Q1, ... , Qk (k :2: 0) be the children of Q in Ti. Let, for i E (1..k], Ti denote
the subtree of TL starting at Q;.
As, for i E [l..k], Ti is finite and of depth less than r, by induction hypothesis
there exists a P-tree Tj, for Q; such that Tj, contains the same computed answers
as T{ Now consider the semi-P-tree Tp with root Q, children Q1 , ... ,Qk (ordered
according to the order of their input clauses in P) and, for i E (1..k], Tj, as the
subtree starting at Qi, as depicted by the following diagram:

To prove that Tp is a P-tree for Q, it is sufficient to show that all pruning caused
by selection of cut atoms is guaranteed to be local to the respective subtrees Tj
(for i E [l..k]). Neither Q, nor its children Q1 , ... , Qk in Tp, contain a cut atom, so
no atom in Tp has Q as its origin. It follows from the definition of the cut operator
that all pruning is indeed local to the respective subtrees Tj. Thus Tp is a P-tree
for Q. From its construction, it follows that it contains the same computed answers
as TL. Moreover, it is finite.

• Suppose that Q is of the form -iA, L.

Comparing Negation in Logic Programming and in Prolog 129

Let 7£ be the subtree of TL starting at the root of subs(Q). As the LDNF-tree

T}; for A is finite and of depth less than r, by induction hypothesis there exists a

finite P-tree T) for A that has the same computed answers as Tf. There are two
sub-cases.

Suppose that Q has a child in h.
Then, TJ, is finitely failed, and therefore T) is finitely failed as well. But then,

we can construct a finitely failed P-tree T)' for A,! ,fail,L. In this P-tree,

the cut atom introduced at the root will never be reached.

Let Tf, be the subtree of TL starting at the single child L of Q. As the LDNF­

tree Tf, for L is finite and of depth less than r, by induction hypothesis there

exists a finite P-tree Tfi for L that has the same computed answers as Tj.
Using T)/ and T) we can construct a finite P-tree Tp for Q that has the same

computed answers as TL. This tree has the following form:

/ - -.....
Tp" / neg(A) ,L

/---~--
T)',," A,! ,fail,L L ''Tfi

I I
- Suppose that Q has no children in TL.

Then, Tl is successful, and therefore T) is successful as well. But then we

can construct a finitely failed P-tree T)' for A, ! , fail, L, in which the cut

atom present in its root is selected at some point.

Let Tp be the semi-P-tree such that its root is Q, and the subtree starting

at the single child A, ! , fail, L of Q is T)'. In this tree, the origin of the

cut atom that appears in the single child of Q, is Q. This cut atom is the

selected atom in some node within T)'. Thus Tp is a P-tree for Q, because the
potential second child of Q, that would contain the query L has been pruned

at some stage. Thus Tp is finitely failed, just as TL is. D

Thus if we have a general query Q that terminates w.r.t. a general program P, we know

that Prolog computation on that query and that program will terminate, and give the

same computed answers as LDNF-resolution.

130

neg(p)

,,,'A
/p,!,fail D

/ /'w
11 / ~

! ,fail p, ! ,fail

fail

failure

Figure 5.7
A P-tree and an LDNF-tree for neg(p)

-ip

failure''

p

A
D p

K.R. Apt, F. Teusink

success A
D

Now what if we have a finite P-tree for a restricted Prolog query Q and a restricted
Prolog program P? Consider the following restricted Prolog program

p +-

p +- p

and the restricted Prolog query neg(p). The P-tree and LDNF-tree for this query and
this program are shown in Figure 5.7 (note that the pruned branches are not really part of
the P-tree for neg(p), but existed at some point during the construction of this P-tree).
In this example, the P-tree is finite, because the potentially infinite branch caused by the
clause p +- p is pruned. However, in the LDNF-tree, this branch has been constructed
in full, and therefore this LDNF-tree is infinite.

5.6 Applications

Due to the presence of cut in the definition of the predicate neg it is difficult to reason
in a declarative way about Prolog programs that use negation. In other words, it is not
clear how to prove correctness of such programs using their declarative interpretation.

We now show how this is possible using the results of this paper. The key observation
is that Theorem 22 provides a crucial relationship between the computational behaviour
of Prolog programs and their translations into general logic programs.

In the subsequent discussion we assume that the variables in the input clauses and the
mgu's are chosen in a fixed way. We can then assume that for every Prolog program

Comparing Negation in Logic Programming and in Prolog 131

P and Prolog query Q there exists exactly one P-tree, and similarly for general logic
programs, general queries and LDNF-trees.

So consider a restricted Prolog program P with a restricted query Q and their transla­
tion PL and Q L onto a general logic program and a general logic query, respectively. To
reason about correctness of P with Q it is sufficient to reason about PL and Q L. Indeed,
suppose that we proved already that all LDNF-derivations of P and Q are finite. Then
by Theorem 22 the P-tree for PL and QL is finite, and PL with QL and P with Q have
the same set of computed answers.

As an example consider the following well-known Prolog program TRANS about which
one claims that it computes the transitive closure a binary relation e:

trans(X, Y, E, Avoids) +- member([X, Y], E).
trans(X, Z, E, Avoids) +-

member([X, Y], E),
neg(member(Y, Avoids)),
trans(Y, Z, E, [Y I Avoids]).

member (X, [X I Xs]) +- •

member (X, [Y I Xs]) +- member (X, Xs) .

In Apt [Apt95] the following facts about its translation TRANSi to a general logic
program and a binary relation e were established:

• all LDNF-derivations of trans(X, Y, e, []) are finite,

• the computed answer substitutions of trans(X, Y, e, []) determine all pairs of
elements which form the transitive closure of e.

Now, by Theorem 22 the same conclusions can be drawn about the original program
TRANS.

The fact that above approach to correctness is limited to restricted Prolog programs
is in our opinion not serious. In fact, we noticed that practically all "natural" Prolog
programs that use negation are restricted.

5. 7 Related Work

We conclude by briefly discussing related work.
There is an enormous literature on the subject of negation in logic programming, see,

e.g., the references in the surveys cited in the introduction. However, to our knowledge,
no work has been done on negation in Prolog.

The use of the ambivalent syntax was first advocated in mathematical logic by Richards
[Ric74], in the logic programming setting by Kalsbeek [Kal93] (who actually coined the

132 K.R. Apt, F. Teusink

term), and Jiang [Jia94], and in the programming languages area by Chen, Kifer and
Warren[CKW89] in their language proposal HiLog. In each of these references different
versions of ambivalence are assumed. For example, in Kalsbeek [Kal93] atoms can appear
as terms and in Jiang [Jia94] formulas can appear as terms. Here we use an alternative
version of ambivalence, which amounts to identification of atoms and terms, though we
also allow meta-variables. For a systematic and thorough overview of various versions of
ambivalent syntax see Kalsbeek and Jiang [KJ95].

The definition of the LDNF-resolution given in Section 3 is derived from the definition
of the SLDNF-resolution provided in Apt and Doets [AD94]. An alternative definition
of SLDNF-resolution was given earlier by Martelli and Tricomi [MT92]. Both definitions
overcome problems encountered in the original definition of Clark (Cla78].

In our operational semantics of Prolog programs, given in Section 4, we also provided
a meaning to the cut operator. The problem of formalizing the meaning of cut has
been studied in a number of publications during the last 10 years. Jones and Mycroft
[JM84] defined various semantics for Prolog with cut. This work was pursued by Arbab
and Berry [AB87], Debray and Mishra (DM88], and more recently by Lilly and Bryant
[LB92].

In the literature several alternatives to the cut operator have been proposed - see e.g.
Moss (Mos86] and more recent Hill, Lloyd and Shepherdson (HLS90].

Acknowledgements

We would like to thank Marianne Kalsbeek and two referees for helpful comments. The
work of the second author was supported by the Foundation for the Computer Science
Research in the Netherlands (SION).

References

[AB87] B. Arbab and D.M. Berry. Operational and denotational semantics of Prolog. Journal of
Logic Programming, 4(4):309-329, 1987.

[AB94] K.R. Apt and R. Bo!. Logic programming and negation: a survey. Journal of Logic
Programming, 19-20:9-71, 1994.

[AD94] K.R. Apt and K. Doets. A new definition of SLDNF-resolution. Journal of Logic Pro­
gramming, 18(2):177-190, 1994.

[Apt95] K. R. Apt. Program verification and Prolog. In E. Borger, editor, Specification and
Validation methods for Programming languages and systems. Oxford University Press,
1994. To appear.

[CKW89] W. Chen, M. Kifer, and D.S. Warren. Hilog: A first-order semantics for higher-order
logic programming constructs. In Proceedings of the North-American Conference on Logic
Programming, Cleveland, Ohio, October 1989.

[Cla78] K.L. Clark. Negation as failure. In H. Gallaire and G. Minker, editors, Logic and Data
Bases, pages 293-322. Plenum Press, 1978.

Comparing Negation in Logic Programming and in Prolog 133

[Dix93]

[DM88]

[GHK+8o]

[HLS90]

[Jia94]

[JM84]

[Kal93]

[KJ95]

[LB92]

[Llo87]

[Mos86]

[MT92]

[Ric74]

J · Dix. Semantics of Logic Programs: Their Intuitions and Formal Properties. An
Overview. In Andre Fuhrmann and Hans Rott, editors, Logic, Action and Information.
Proceedings of the Konstanz Colloquium in Logic and Information (Login •g2). DeGruyter,
1993.

S.K. Debray and P. Mishra. Denotational and operational semantics for Prolog. Journal
of Logic Programming, 5(1):61-91, 1988.

G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.W. Mislove, and D.S. Scott. A
Compendium of Continuous Lattices. Springer-Verlag, 1980.

P.M. Hill, J.W. Lloyd, and J.C. Shepherdson. Properties of a pruning operator. Journal
of Logic and Computation, 1(1):99-143, 1990.

Y. Jiang. Ambivalent logic as the semantic basis fo metalogic programming: I. In P. Van
Hentenryck, editor, Proceedings of the International Conference on Logic Programming,
pages 387-401. MIT Press, June 1994.

N.D. Jones and A. Mycroft. Stepwise development of operational and denotational se­
mantics for Prolog. In International Symposium on Logic Programming, pages 281-288,
1984.

M. Kalsbeek. The vanilla meta-interpreter for definite logic programs and ambivalent
syntax. Technical Report CT-93-01, Department of Mathematics and Computer Science,
University of Amsterdam, The Netherlands, 1993.

M. Kalsbeek and Y. Jiang. A vademecum of ambivalent logic. This volume.

A. Lilly and B.R. Bryant. A prescribed cut for Prolog that ensures soundness. Journal of
Logic Programming, 14(4):287-339, 1992.

J. W. Lloyd. Foundations of Logic Programming. Symbolic Computation - Artificial Intel­
ligence. Springer-Verlag, 1987. Second, extended edition.

C. Moss. Cut & Paste - defining the impure primitives of Prolog. In E. Shapiro, editor,
Proceedings of the International Conference on Logic Programming, number 225 in Lecture
Notes in Computer Science, pages 686-694. Springer Verlag, 1986.

M. Martelli and C. Tricomi. A new SLDNF-tree. Information Processing Letters, 43(2):57-
62, 1992.

B. Richards. A point of reference. Synthese, 28:431-445, 1974.

