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Abstract. A notion of highly probable fitness optimization through evo­
lutionary computing runs on small size populations in a very general set­
ting is proposed. This has applications to evolutionary learning. Based 
on rapidly mixing Markov chains, the approach pertains to most types 
of evolutionary genetic algorithms, genetic programming and the like. 
For systems having associated rapidly mixing Markov chains and appro­
priate stationary distributions the new method finds optimal programs 
(individuals) with probability almost 1. Algorithmically, the novel ap­
proach prescribes a strategy of executing many short computation runs, 
rather than one long computation run. Given an arbitrary evolutionary 
program it may be infeasible to determine whether its associated matrix 
is rapidly mixing. In our proposed structured evolutionary program dis­
cipline, the development of the program and the guaranty of the rapidly 
mixing property go hand in hand. We conclude with a tentative toy 
example. 

1 Introduction 

Theoretical performance analysis of genetic computing often uses unbounded or 
exponential population sizes [l, 10, 15, 16]. Results obtained in this way may 
not be directly applicable to real practical problems where we always have to 
deal with a bounded (small) population size [4, 14]. 

Considering small population sizes it is at once obvious that the size and 
constitution of the population may have a major impact on the evolutionary 
development of the population. We aim to establish a fast feasible speed of 
convergence to a distribution of populations from which we can obtain by Monte 
Carlo sampling an optimal type individual with high probability. 

The method we propose is applicable to a wide range of genetic computing 
models which includes genetic algorithms on strings and genetic programming on 
trees, and so forth. The computational properties are analyzed in terms of a finite 
Markov chain where the states correspond to finite populations. The transition 
probability between two states is induced by the selection, reproduction, and 
fitness rules, [10, 16, 7]. 
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Under mild conditions guarantying ergodicity the Markov chain converges to 
a stationary distribution over the set of states, and hence over the set of reachable 
populations. From this stationary distribution we can sample a set of popula­
tions. If populations with optimal individuals have high enough probability of 
occurring, then it is almost certain that we can locate such an individual. 

We analyze the speed of convergence using recent results, (11, 2, 3] in rapid 
mixing of Markov chains, to obtain an overall feasible process (for example, poly­
nomially many runs of polynomially long evolutions of small size populations.) 

Outline of a Discipline of Genetic Optimization. An evolutionary com­
putation process with positive mutation rates corresponds to the development of 
an ergodic Markov chain whose states are the populations and which converges 
to a desired stationary probability distribution over the sample space of which 
the elements are populations, (10]. In each single run of the evolutionary compu­
tation we find with some probability a particular population. Repeat this process 
so as to obtain a large enough sample of populations drawn from the stationary 
distribution, and subsequently determine the fittest individuals from each such 
population. We shall show that if proper conditions can be guarantied, then this 
process finds a global optimally fit individual with probability almost one. Our 
analysis shows that for certain genetic computations using a large number of 
short runs is provably a good strategy as opposed to one long run. In practice, 
several researchers observed earlier that it pays to restart on a new population 
when the evolution takes a unpromising direction, for example (6, 4]. 2 To the 
author's knowledge, we provide the first formal method of genetic fitness opti­
mization (applicable to restricted classes of GA, GP, and related optimization 
problems) together with a rigorous analysis demonstrating that this strategy is 
guarantied to work with high probability, rather than intuitive heuristic or ad 
hoe arguments. 

The efficiency of this technique in any application depends crucially on the 
rate of convergence of the Markov chain. Since the number of states is typically 
very very large, the chain should reach equilibrium after each particular evolution 
has only explored a tiny fraction of the state space. Chains with this property 
are called rapidly mixing. 

Towards Structured Genetic Computing. To actually use the method 
we have to find a structured methodology to set up the genetic system (selection, 
reproduction, fitness) such that the resulting Markov chain is rapidly mixing, 
and, moreover, such that the types with sufficiently high fitness will be obtained 
by Monte Carlo sampling with sufficiently high probability from the (close to) 
final stationary state distribution. What we have in mind is a design methodology 
to develop a genetic system satisfying these requirements from the specifications 
of the problem statement. This is a tall order, but on the positive side we recall 
that similar techniques have been used successfully in combinatorial counting, 
statistical physics, and combinatorial optimization, [11] and certain quadratic 
dynamic processes related to genetics of infinite populations [13]. 

2 Also J. Koza and L.J. Eshelman have algorithms that specifically restart automati­
cally (GP, CHC, respectively), as do many others. 
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Genetic Learning. Genetic fitness optimization has direct applications to 
genetic learning. In genetic learning the individuals in a population represent 
alternative hypotheses concerning the phenomenon being learned. The fitness of 
the individual can be related to prediction success, classification success of a test 
set, and so on. 

2 Formal Model 

Assume, there are r possible types of individuals, say a set [} = {l, ... , r }. Such 
individuals can be strings, trees or whatever--our discussion is so general that 
the precise objects don't matter. The genetic system tries to solve an optimiza­
tion problem in the following sense. Each individual in [} is graded in terms of 
how well it solves the problem the genetic system is supposed to solve, expressed 
as a function f which maps [} to some grading set G. For example, G can be 
the real interval [O, l]. With J(i) be the fitness of type i, the normalized fitness 
of individual i is 

~ . f (i) 
f(i) = I:;en f(j). 

To fix thoughts, we use fitness proportional selection where selection of individ­
uals from a population is according to probability related to the product of fre­
quency of occurrence and fitness. That is, in a population P = (P(l), ... ,P(r)) 
of size n, where type i occurs with frequency P(i) ;::: 0 with I:;=l P(i) = n, we 
have probability p(i) to select individual i (with replacement) for the cross-over 
defined by 

. f(i)P(i) 
p( i) = l::;en f (j)P(j) · 

Define a Markov chain M with states P consisting of nonnegative integer r­
vectors of which the individual entries sum up to the population size n. The 
number of states of M is 

N = (n+r -1), 
r-1 

(1) 

see [10]. The associated transition matrix Q =(Qi,;) is a N x N matrix where 
the entry Qi,j is the probability that the kth generation will be pi given that 
the ( k - 1 )st generation is pi. 

A general closed form expression for transition probabilities for simple GA's 
is derived in [10] and its asymptotics to steady state distributions as popula­
tion size increases is determined. In [7] it is observed that the mentioned closed 
form expression allows expression of 'expected waiting time until global opti­
mum is encountered for the first time', 'expected waiting time for first optimum 
within some error tolerance of global optimum', and 'variance in such measures 
from run to run', and so on, but no further analysis is provided. Instead, initial 
experimental work is reported. 

Rather than using the general closed form expression, for our purpose it 
is more useful to focus on particular illustrative example GAs. This involves 
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no loss of generality, since the special types of selection, cross-over, mutation, 
and generation of the next population which we consider here is for the sake of 
definiteness and generalize (within the level of detail we need for the remainder 
of this paper) to any reasonable other evolutionary computing procedure, be it 
GA, GP, or other types. 

Let us calculate the transition probabilities Qi,j for a very simple selection 
process. This consists of sampling two individuals from a population P, remove 
these two individuals from P, let them produce two offspring which are inserted 
again in the population resulting in a population P'. 

The transition probability of 

P-+ P' 

with P'(i) = P(i) - 1, P'(j) = P(j) - 1, P'(k) = P(k) + 1, P'(h) = P'(h) + 1 
(replacing a pair of individuals i, j by k, h) is given by 

A(i, j, k, h) = p(i)p(j)B(i,j, k, h). (2) 

Here B(i,j, k, h) incorporates both the mutation probability and the cross-over 
probability of producing k and h from i and j. (Other known selection, mutation, 
and generation rules lead to similar transition probabilities between states P -+ 

P' of the Markov chain.) We desire M to be ergodic. To ensure this we assume 
that the mutation probability of obtaining k and h from i and j is positive, even 
without any cross-over. Choose B(i,j,k,h) > 0 such that Mis ergodic. 

3 Sample Size Versus Divergence of Evolutionary 
Trajectories 

The phenomenon of the influence of population size and sample size on the 
drifting apart of evolutionary trajectories can be illustrated in a simplified setting 
ignoring fitness selection (without loss of generality). For convenience therefore, 
we ignore the actual populations and deal with the occurrence probability of 
types rather than with the number of occurrences of types in a population. 

3.1 Infinite Sample 

Given a distribution panda transition matrix B(i,j, k, h), let the transformation 
p' = g(p) be defined by 

p'(h) = LP(i)p(j)B(i,j, k, h) (3) 
i,j,k 

Consider a (not necessarily finite) population of individuals, each individual 
being of some type i E {1, ... , r }. Let p(i) be the probability of selecting an 
individual of type i. When individuals of type i mate with individuals of type j, 
then this produces individuals k and h with probability B(i,j, k, h). Assuming 
that a mating of i and j must result in some offspring k and h means that 
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Lk h B(i,j, k, = l. The resulting probability of his p1(h) above. We transform 
a p~obability distribution pin a probability distribution p1 where the probabilities 
of the types i are given by p'(i). This implies that 

L p(i)p(j)B(i,j, k, h) = p1 (k)p' (h) 
i,j 

LP'(k)p'(h) = 1. 
k,h 

A distribution p is called an equilibrium distribution (with respect to trans­
formation g) if g(p) = p. In [l, 10] for simple GA with fitness selection, and [12] 
for more general quadratic dynamical systems but without fitness selection, the 
following convergence property is derived. 

Theorem l. The sequence p0 ,p1 , ..• with pt = gl(p0 ) (t 2 0) converges to an 
equilibrium distribution lim1_, 00 pt = p. 

As is easy to see, if the populations involved are infinitely large, then essen­
tially evolution develops deterministically according to Equation 3. But if the 
populations are very small, then chance selections can cause great divergence of 
evolution of populations. It is useful to look at a quantification of this distinction. 
Neither [10] or [12] explores in an explicit quantitative manner the divergence of 
trajectories of individual runs based on population sizes. They rather focus on 
the issue that as the population size grows, the divergence of possible trajectories 
gets progressively smaller. In the limit, for infinite populations, the generations 
in the run converge to the expected trajectory for smaller populations. Clearly, if 
all trajectories are in a small envelope around the expected trajectory, then the 
expected trajectory is a good predictor for what happens with an individual run. 
If moreover the expected trajectory corresponds to the infinite population tra­
jectory, as in the system analyzed in [10], then the analysis of the infinite system 
tells us what to expect from our individual bounded population evolution. 

In contrast, in Section 4 we give an example using bounded size populations 
where the expected trajectory is completely different from all individual trajec­
tories. If the individual trajectories of bounded populations diverge wildly, the 
expected trajectory may not predict anything about what happens to an individ­
ual run, as the analysis below shows. We analyze quantitatively in some detail 
bounds on this divergence based on population sizes. In the next sections we 
introduce a methodology based on rapidly mixing Markov chains. This method­
ology guaranties that enough probability is concentrated on trajectories of 'fast' 
runs ending with small populations containing globally optimal programs. Those 
optimal programs are then retrieved using Monte Carlo sampling of such popu­
lations and evaluating the fitness of the programs they contain. 

3.2 Large Sample 

If we draw an infinite sample from the distribution p then we produce by Equa­
tion 3 a new population distributed according to p1• Let us now analyze the case 
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where we draw a sample of cardinality s. If s is large enough then we can ap­
proximate p by the resulting frequencies within an e fraction of each probability 
p(i)p(j) (for p(i)p(j) bounded away from 0). Quantitatively this works out as 
follows. 

Let there be r types of individuals in fl. Ifs( i, j) is an outcome of the random 
variable measuring number of outcome pairs i, j in s trials then by Chernoff's 
bound, see for example [8], 

Pr(is(i,j) - p(i)p(j)sl > t:s) < 2e-•2s/4p(i)p(j){l-p(i)p(j)). 

If p' () is the next probability distribution as defined above, and p' () is the prob­
ability distribution we obtain on the basis of the outcome s( i, j) in drawing s 
examples, for all types h E fl, 

IP'(h) - p'(h)l 5 L ls(i,j)/s - p(i)p(j)IB(i,j, k, h) 
i,j,k 

5 € L B(i,j, k, h) =er, 
i,j,k 

with an exponentially (in s) vanishing probability of error. Let e = €1 fr and 
sample size s(r) ~ r3p(i)p(j) to ensure that t:2s/p(i)p(j) > r, for all i,j E JJ. 
Then, with vanishing probability (at most e-r) the next generation probability 
p'(h) will be at least €1-far from probability p'(h) for all r-many types h. 3 

From this result it may be possible to estimate how fast the trajectory of a 
population of such sample size possibly strays away from the evolution of the 
infinite system. This may be the subject of a future paper. In a more restricted 
setting of a quadratic cross-over system with fl = {O, 1 }' reference [13] shows 
that the probability distribution of an infinite quadratic cross-over system (with­
out fitness selection) stays for the duration of an evolution of t generations in 
an appropriate sense close to that of a population of size O(n2 t) initially drawn 
randomly from the infinite population. 

3.3 Small Sample 

We draw one pair of individuals from p and do a cross-over to obtain a single 
new pair of individuals. Then p(i)p(j)B(i,j, k, h) is the probability of obtaining 
k, h. In a computational run of a genetic algorithm this means that we have dis­
tribution p before the cross-over and with probability p(i)p(j)B(i,j, k, h) obtain 
a distribution p' after the cross-over, resulting from first drawing i,j to mate, 
and then producing k, h and updating p accordingly to obtain p'. If we assume 
that we have a fixed population of size n where each type in JJ has probability 
I/r and the mating consumes two elements of types i,j and produces two ele­
ments, one each of types k, h, then there are at most r 4 distributions which can 
be obtained from p this way by Equation 3. 

3 Cubic results appearing in [5, 4) are cubic in the population size n and refer to 
different issues. 
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Repeating this procedure, we potentially obtain in t steps up to distribu-
tions. For sensitive systems this means that we very quickly realize all N possible 
different distributions. 

Each such distribution p1 is obtained with some probability p( i)p(j)B(i. j, k, h). 
Now the right hand side of Equation 3 gives the expectation that an individual 
of type h results from the mating of two individuals of p and gets added to the 
population. It says therefore something about the expected increase of h-type 
individuals but does not give the value of any particular new f/(h). 

4 Divergence of Trajectories of Individual Runs 

In the large sample case above we can make the error in distribution entries 
exponentially small for polynomial size samples. However, the error increases 
exponentially fast with the generations again, loosing all accuracy in a polyno­
mial number of generations. 

In the small sample case above we explicitly consider the exponential ex­
plosion of different future possibilities, rather in a Markov chain format. There 
remains the task of measuring the specific properties of the thus produced en­
semble of runs-like average and variance. 

The analysis of [10, 12] does not deal with individual runs of a genetic algo­
rithm, but rather with the sequence of expectations over all individual runs of 
the system. To give an analogy, if we look at the expected outcome of the tth 
coin flip in a sequence of independent flips of a fair coin, then p(O) = p(l) = 1/2. 
However, in any individual sequence of outcomes the nth outcome is either 0 or 
l. 

However, the expectation says not too much about what actually happens. 
To see this, consider a dictatorial coin which gives a first outcome 0 or l with 
fair odds. However, afterwards it always gives the same outcome. So it either 
produces an all 0 run or an all 1 run with equal probabilities. The expectation 
of obtaining a 0 at the tth trial is 1/2. However, in actual fact at the tth (t > 1) 
trial we have either probability 1 or probability 0 for outcome 0. In terms of the 
above formalism, initially, p(O) = p(l) = 1/2. 

Consider the following similar example in quadratic systems format. Let the 
B transformation be given by (a more complicated example can also~satisfy the 
requirement that B be symmetric, locally reversible, and a-periodic as required 
in [12]) 

ijkhB(i,j,k,h) 
0 0 0 0 1 
0 1 0 0 1 
101 1 1 
11 l 1 1 

0 

Then, we have 
I II p-;p -;p --; ... 
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p'(O) = p(O)p(O)B(O, 0, 0, 0) + p(O)p(l)B(O, 1, 0, 0) = 1/2 

p'(l) = p(l)p(O)B(l, 0, 1, 1) + p(l)p(l)B(l, 1, 1, 1) = 1/2 

But if we interpret the system in an algorithmic manner, then the following 
scenario is perhaps more realistic. Initially, the population is P 0 = {O, 1} with 
p(O) = p(l) = 1/2. Draw two elements from this population with replacement. 
Execute a cross-over according to the B matrix. We then obtain either a popu­
lation P 1 = {O, O} with p1(0) = 1,p1 (1) = 0, or a population P 2 = {1, 1} with 
p2 (0) = O,p2 (1) = 1, with probability 1/2 for obtaining P 1 or P 2 : 

Po -+ P1 _ P1 -+ ... 

or 
Po _ p2 _ P2 -+ ... 

(Another possibility is that we draw two elements from the population without 
replacement. So we draw either the sequence 0, 1 or the sequence 1, 0 with equal 
probability. For this example these outcomes lead again by B to the two different 
populations with associated distributions.) 

Now either of the resulting P 1 or P2 with associated distributions will forever 
remain entirely stable under B transformations. We have not derived an explicit 
population associated with the distribution p'. In fact, the interpretation of p' is 

p'(O) = (p1 (0) +p2(0))/2 

p'(l) = (p1 (1) + p2 (1))/2 

5 Towards a Discipline of Evolutionary Programming 

The upshot of the considerations so far is that with a limited size populations 
the variation in evolutions and resulting populations is very great. In practice 
we always deal with very limited size populations such as say 500 individuals. 
The question arises how to overcome the problem that an individual evolution 
can become trapped in an undesirable niche of populations with non-optimal 
individuals~ The answer is that we need to randomize over the evolutions so 
that we inspect a sample of evolutions resulting in a set of populations, one of 
which almost surely contains a global optimally fit individual. The latter is easy 
if the set of inspected evolutions is large enough, say almost as large as the set 
of individuals to be evaluated with respect to fitness, thus begging the question. 

However, it turns out that we can make such an approach feasible in the 
rigorous sense that one constructs the evolutionary system so that its associated 
Markov chain satisfies certain conditions, which in turn guaranty that both with 
probability almost one a global optimally fit individual occurs in one of the 
evolved populations, and the entire set of evolutions required takes only feasible 
time. We aim for two properties. 
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1. The stationary distribution of populations the associated Markov chain of the 
evolutionary process converges to concentrate a sufficient amount of proba­
bility on populations containing maximally fit individuals. 

2. The Markov chain of the evolutionary process converges sufficiently fast to 
the stationary distribution: it is rapidly mixing, see Appendix A for precise 
definitions. Here it is only important to know that the evolution of such a 
chain approximates the stationary distribution suitably fast close enough. 

The question of rapid mixing, property 2, can be satisfied by having the 
evolutionary system satisfy some structural properties. Such properties can, at 
least in principle if not in practice, always be taken care of while implementing 
the evolutionary system by choosing the selection rules, cross-over operator, and 
mutation rules appropriately. These requirements are covered in the next section. 

The question of probability concentration, property 1, is more subtle, and 
it is not yet clear how to generally go about it, even in principle. However, 
similar approaches in approximating hard combinatorial optimization problems 
(approximating the permanent which is deterministically a #P-hard problem, 
that is, at least as hard as NP-complete problems) have successfully resolved 
this issue. 

5.1 Structural Requirements of the Discipline 

We have delegated the technical section on rapidly mixing property to Ap­
pendix A. The precise definitions can perhaps be ignored at first reading until 
after the main approach has become clear in outline. 

Our task in designing evolutionary systems turns out to be two fold. We need 
to design the system such that for the associated Markov chain 

l. the second largest eigenvalue Amax is suitably bounded away far enough 
from 1 so that the Markov chain is rapidly mixing (Definition 10 of the 
Appendix A); and 

2. the stationary distribution 7r gives probability greater than 1/ q( n ), where 
q( n) is polynomial, to states s which contain nonzero frequencies of the 
fittest types. 

For Item 1 it is required that the matrices are (i) irreducible, and (ii) have 
nonnegative entries. Since the only matrices we consider are stochastic where the 
entries are transition probabilities, (ii) is in our case easy to satisfy up to the 
'suitable' condition. Since we only deal with ergodic matrices, and (i) is required 
for ergodicity, Item 1 is always satisfied in our case. Ergodicity is immediate if 
we have a positive mutation probability of transforming i into j for each pair 
of types i,j. Hence by proper choice of the genetic system leading to suitable 
transition probabilities inducing a rapidly mixing Markov chain one can satisfy 
Item 1 in construction of an evolutionary system. It is perhaps less easy to see 
whether it is feasible to satisfy Item 2 in each particular case, without knowing 
the optimal individual a priori. However, a similar approach for approximating 
very hard combinatorial optimization problems, [11], worked out fine. 
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Assume th11.t we have defined our evolutionary system satisfying Items 1, 2. 
The program we use is then as follows. Repeat a polynomial number of times: 

l. From a start state evolve through a polynomial number of generations; 
2. From the population vector select the fittest individual. 

we are dealing with fl::: {O, 1}1. Then there are r = 21 different types. 
Suppose further we are dealing with populations of size n, say with n :S 500, 
then the number of possible populations is given by Equation 1 and hence the 
associated Markov chain has that number N of states. 

We repeat the above process a logarithmic number of times in N, that is, a 
polynomial number of times in terms of r. Then, the probability that we end 
with a vector which contains the fittest types with frequency 0 vanishes as a 
negative exponential. Thus, we have discovered a new interesting paradigm. 

Paradigm. Running the program longer than a polynomial number of gen­
erations will not significantly change the closeness of the state distribution to 
the stationary distribution in the Markov chain. We can only guaranty that we 
find a state (vector) containing an optimal fit individual with probability l/q(n). 
However, polynomially repeating this procedure implies Monte Carlo sampling 
which almost surely discovers the individual with optimal fitness. 

6 A Toy Rapidly Mixing Genetic Algorithm 

Consider a toy evolutionary problem as follows. We consider a population of size 
Ji and very simple crossover only and some mutation. This example already 
illustrates adequately the rapid mixing phenomenon. The genetic algorithm G is 
defined as follows. The set of all program types is n = {O, 1}1 with l fixed, even, 
and large enough for the following analysis to hold. The fitness of a program 
w E n with i.J.) = W1 W2 ••• W[ is given by the function 

l 

f(w) = 1 if L = l/2 and 1/2 otherwise. 
i=l 

The starting population po at time t0 = 0 contains JI copies of the individual 
00 ... 0; its cardinality (number of elements in P0 ) is JI. We express the fre­
quency of a string win a population P by #w(P). That is, #oo ... o(P0 ) = JI and 
#w (po) = 0 for w I- 00 ... 0 

The transition of one population to the next generation (population) is as 
follows. To avoid problems of periodicity, we add self-loop probability of 1/2 to 
each state (that is, population). Note that this also dispenses with the problem 
of negative eigenvalues. Consequently, there is probability 1/2 that the state 
changes using crossover and mutation, and there is probability 1/2 that it stays 
the same. The probability p(w) of selecting a string w from a population P is 

p(w) = #w(P)f(w) 
EwE!1 #w(P)J(w). 

(4) 
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In the selection phase we select two individuals in P, say wi, wi, according to 
these probabilities, and with probability 1/2 we perform a crossover and muta­
tion on each (and with probability 1/2 we do nothing). The crossover operator 
interchanges a single bit of wi with the corresponding bit of wi. It selects the 
single bit position with uniform probability 1/l. Subsequently, we mutate each 
offspring by flipping a single bit with uniform probability l/l chosen from the 
positions 1 through l. (If i = j then the cross-over doesn't do anything and the 
two mutations may result in 0,1, or 2 bit flips of wi-) We first prove that G is 
rapid mixing by reducing it to the following problem. 

Consider a system G' where the initial state is a binary l-vector. At each step 
uniformly at random select a bit position of the current l-vector and flip that 
bit with fifty-fifty probability to produce the next l-vector. Then G' is a Markov 
chain where the states are the binary l-vectors. 

Lemma2. The chain G' is rapid mixing with r.p.d. at most E within O(l2 (l + 
log(l/t:))) steps. 

For a proof see [11], pp. 63-66. This system is an almost uniform generator for 
n, using singleton populations, where it suffices to use an arbitrary starting 
singleton population. In terms of GA's it is single-bit mutation. Our example 
involves single-bit mutation, single-bit cross-over, and selection. The reader is 
advised that this is only a cosmetic change to make the example look more like a 
'realistic' GA. Our toy example G is essentially the example G' as in Lemma 2. 
To reduce G to G', consider the vectors in successive generations po, P 1 , ... to 
maintain their identity. If Pt = {wt• 1, •.. ,wt,v'i} fort> 0 and in the selection 
phase we select indices i,j, then wt+l,k = wt,k for 0 ~ k ~ ../land k i= i,j, or 
wt+l,h results from wt,h (the 'same vector') by at most two bit flips for h = i,j. 

Lemma3. Lett:> 0 and T(l) = O(l512 (l + log(l/t:))). For each t ~ T(l), with 

probability at least 1-1/T(l), for each w E {O, l}v'i every l-vectorw0•i E po has 
probability ( 1 ± t:) /21 of being changed into wt,j = w in t generations of G. 

Proof. For a fraction of at least 1-1/t of all runs oft > ../l steps of a population 
of ../l elements, for each index j the vector w·,i is selected with frequency of at 
least 

t/(4../l) ± 0( Vt/Vzlogt) (5) 

in the selection phases of the generating process. This is shown similar to the 
statistical analysis of 'block frequencies' of high Kolmogorov complexity strings 
in [8], Theorem 2.15. 

Namely, consider t throws of a ../l-sided coin, each throw constituting these­
lection of an index. There are 2(tlogl)/2 possible sequences x oft outcomes. Hence, 
the maximal Kolmogorov complexity is given by C(xlt,l) ~ (tlogl)/2 + 0(1). 
Moreover, there is a fraction of at least 1-1/t sequences x which has C(x!t, l)?: 
( t log l) /2 - log t. Divide each such x in consecutive blocks of length (log l) /2. 
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Let #j(x) denote the number of occurrences of each of the Vi elementary index 
j outcomes in x. Then, by [8] p. 132, 

l#j(x) - t/./li:::; 
(logl)/2 + logt + 0(1) 

11 4t. 
viloge 

The extra factor '4' in the denominator of Equation 5 is an overestimate ac­
counting for the the following facts: (i) some individuals have fitness 1/2, and 
the other individuals have fitness l; (ii) with probability 1/2 the population is 
not changed at all. 

Following the same vector in the successive generations, consider each time 
it is selected for a cross-over and mutation. At such times, with fifty-fifty proba­
bility either nothing is done or the vector incurs (i) a bit flip in a position which 
was selected uniformly at random because of the cross-over (or no bit flip if the 
bits in that position of the two parents happened to be the same), followed by 
(ii) a bit flip in a position selected uniformly at random because of the mutation. 
From the viewpoint of the individual vector it simply describes a trajectory of 
length as given in Equation 5 of the singleton l-vector in Lemma 2 Substitute t 
in Equation 5 by T(l) as in the statement of the lemma. By Lemma 2 the lemma 
is proven. 

Corollary 4. It follows that G is a rapidly mixing Markov Chain with a uniform 
stationary distribution. 

Lemma5. The probability of finding a population with an optimally fit element 
in t runs is at least 1 - 2e-at with a = c/(16(1 - c)), for the fixed constant c 
given in Equation 6. 

Proof. There are (1/ 2) ~ 21 / .Jif12 strings with fitness 1. Hence a fraction of at 
most 

(1 - 1/ ~r./i < e-~ 
populations of size JI contain no such strings. This means that a constant frac­
tion of at least 

(6) 

of the populations of size Vi contain at least one string of fitness 1. 
Consider each run of T(l) generations an experiment with a success outcome 

if the final population contains an individual with fitness 1. Let the number of 
successes in t trials be s(t). Then, with f3 defined as 

f3 = Pr{is(t) - cti > 8t} 

we have 
(3 < 2e-52 t/(4c(l-c)), 

by Chernoff's bound. For 8 = c/2 we know that the number of successes s(t) > 0 
with probability at least 1 - (3. 
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Theorem 6 (Rapidly Mixing GA Algorithm). Let f. and T ( l) be as in Lem­
ma 2 and let a be as in Lemma 5. Repeat t times: run G for T(l) generations. 
This procedure uses O(T(l) · t) elementary steps consisting of the generation from 
one population to the next population. (With t = l this is a low degree polynomial 
in l and f.}. The probability of finding an optimal element exceeds 

1- 2e-"'t, 

where a > 0, that is, with probability of failure which vanishes exponentially fast 
with rising t. 

Proof. By Lemmas 3, 5. 

A Appendix: Basics of Markov Chains and Rapid Mixing 

A sequence of random variables (Xi)~0 with outcomes in a finite state space 
T = {O, ... , N - 1} is a finite state time-homogeneous Markov chain if for any 
ordered pair i, j of states the quantity Pi,j = Pr(Xt+l = ilXt = i) called the 
transition probability from state i to state j, is independent oft. If M is a Markov 
chain then its associated transition matrix is P = (Pi,j )f,/:,~. The matrix P is 
non-negative and stochastic, its row sums are all unity. 

For s E N, the s-step transition matrix is the power P 8 = (P1,j) with P1,; = 
Pr(Xt+s = ilXt = i), independent oft. Denote the distribution of Xt by the 
row vector 7rt = (7r~, ... , 7r}.,_1) with 7r! = Pr(Xt = i). If 7ro denotes the initial 
distribution then 7rt = 7ro pt for all t E .N. Often we have 7r? = 1 for some i (and 
0 elsewhere) in which case i is called the initial state. 

The chain is ergodic if there exists a distribution 7r over T with strictly 
positive probabilities such that 

lim Pt.= 1rj, 
B~CXJ ,J 

for all i, j E T. In this case we have that 7rt = 7ro pt -+ 7r pointwise as t -+ oo, 
and the limit is independent of tr0 . The stationary distribution 7r is the unique 
vector satisfying trP = 71", where Li 11"i = l; that is, the unique normalized 
left eigenvector of P with eigenvalue 1. Necessary and sufficient conditions for 
ergodicity are that the chain should be irreducible, for each pair of states i, j E T 
there is an s E N such that p~ . > 0 (j can be reached from i in a finite number 

i,3 

of steps); and aperiodic, the gcd { s : Pt,j > 0} = 1 for all i, j E T. 
An ergodic Markov chain is (time-) reversible iff either (and hence both) of 

the following equivalent conditions hold. 

- For all i, j E T we have Pi,j1ri = Pj.i11"j. That is, in a stationary distribution, 
the expected number of transitions per unit time from state i to state j and 
from state j to state i are equal. For any ergodic chain, if 7r is a positive 
vector satisfying above condition and the normalization condition Ei 'Tri = 1, 
then the chain is reversible and 7r is its stationary distribution. 
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The matrix D 112 PD-112 is symmetric, where D 1l 2 is the diagonal matrix 

diag(?r~/2 , ... ,11"~_: 1 ) and D-112 is its inverse. 

For example, if in Equation 2 A(i,j, k, h) = A(k, h, i,j) for all P E T and 
all i,j,k,h En, then the induced Markov chain defined there is reversible. Of 
course, the converse need not be true. 

Consider now the problem of sampling elements from the state space, as­
sumed very large, according to the stationary distribution 1r. The desired distri­
bution can be realized by picking an arbitrary initial state and simulating the 
transitions of the Markov chain according to probabilities Pi,j, which we assume 
can be computed locally as required. As the number t of simulated steps in­
creases, the distribution of the random variable Xt will approach 1r. The rate of 
approach to stationary can be expressed in the following time-dependent mea­
sure of deviation from the limit. For any non-empty subset U ~ T, the relative 
pointwise distance (r.p.d.) over U after t steps is given by 

lpt - Jr·I 
A (t) - i,j J L.lU - max . 

i,jEU 1rj 

This way, Llu(t) is the largest relative distance between 1rt and ?r at any state 
j E U, maximized over all possible states in U. The parameter U allows us to 
specify relevant portions of the state space. In case U = T we will omit the 
subscript and write L1 instead of Llu. 

The stationary distribution ?r of an ergodic chain is the left eigenvector of P 
with associated eigenvalue Ao = 1. Let A1, ... , AN-1 with Ai E C (the complex 
numbers) be the remaining eigenvalues (not necessarily distinct) of P. By the 
standard Perron-Frobenius theory for non-negative matrices these satisfy I.Ail< 
1 for 1 :s:; i :s:; N - 1. The transient behavior of the chain, and hence its rate of 
convergence, is governed by the magnitude of the eigenvalues Ai. In the reversible 
case, the second characterization above implies that the eigenvalues of P are 
those of the symmetric matrix D 112 PD-1/ 2 and so are all real. This leads to the 
following clean formulation of above dependence, [11). 

Lemma 7. Let P be the transition matrix of an ergodic reversible Markov chain, 
7r is stationary distribution, and Ao = 1, ... , AN-l its (necessarily real) eigenval­
ues. Then, for any nonempty subset U ~ T and all t E N the relative pointswise 
distance over U satisfies 

.1u(t) :s:; .A~ax ' 
IDliliEU 1ri 

where Amax is the largest value in IA1 I, ... , IAN-l I· 

Lemma8. With the notation of Lemma 7 the relative pointswise distance over 
T satisfies 

Ll(t) ?: .A!nax 
for all event EN. Moreover, if all eigenvalues of P are non-negative, then the 
bound holds for all t EN. 
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Therefore, provided 7r is not extremely small in any state of interest, the 
convergence of the reversible chain will be rapid iff Amax is suitably bounded 
away from 1. Such a chain is called rapid mixing. 

If we order the eigenvalues 1 = Ao > A1 2: · · · 2: AN-I > -1 then Amax = 
max{..\1, IAN-1 I} and the value of AN-1 is significant only if some eigenvalues are 
negative. The oscillatory behavior associated with negative eigenvalues cannot 
occur if each state is equipped with sufficiently large self-loop probability. It is 
enough to have mini Pj,j 2: 1/2. To see this, let IN denote the N x N identity 
matrix and consider the non-negative matrix 2P - IN, whose eigenvalues are 
µi = 2..\i - l. By Perron-Frobenius, Ai 2: -1 for all i E T which implies that 
µN-1 2: 0. 

Lemma 9. With the notation of Lemma 7, let the eigenvalues of P be ordered 
1 = ..\o > ..\1 2: · · · 2: AN-1 > -1. Then the modified chain with transition 
matrix P' = l/2(P - IN), with IN as above, is also ergodic and reversible with 
the same stationary distribution, and its eigenvalues A~ similarly ordered satisfy 
..\'.iv_1 > 0 and ..\:Uax = >.~ = 1/2(1 + ..\1). 

Following [11] we define rapid mixing. 

Definition 10. Given a family of ergodic Markov chains M(x) parametrized on 
strings x over a given alphabet. For each such x, let ,d("')(t) denote the r.p.d. 
of M ( x) over its entire state space after t steps, and define the function r(x) ( E) 
from the positive reals to the natural numbers by 

r("')(E) = min{t: ,1(z)(t') $ E for all t' 2: t}. 

We call such a family rapidly mixing iff there exist a polynomial bounded function 
q such that r<"')(c) $ q(jxj,logc 1 ) for all x and 0 < E $1. 

The question arises whether the approach to rapidly mixing Markov chains 
can be generalized from reversible chains to non-reversible chains. This was af­
firmatively settled in [9] and another treatment was later given in [3]. See the 
short discussion in [11]. 

In the applications to evolutionary programming, x will be a problem instance 
and the state space of M(x) will include solution sets R(x) of some relation R. 
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