
Theoretical Computer Science 86 (1991) 35-79
Elsevier

An analysis of loop checking
mechanisms for logic programs*

Roland N. Bol
Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam,
Netherlands

Krzysztof R. Apt
Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam,
Netherlands

Jan Willem Klop
Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam,
Netherlands, and Department of Computer Sciences, Free University of Amsterdam,
De Boelelaan 1081, 108JHV Amsterdam, Netherlands

Abstract

35

Bo!, R.N., K.R. Apt and J.W. Kl op, An analysis of loop checking mechanisms for logic programs,
Theoretical Computer Science 86 (1991) 35-79.

We systematically study loop checking mechanisms for logic programs by considering their
soundness, completeness, relative strength and related concepts. We introduce a natural concept
of a simple loop check and prove that no sound and complete simple loop check exists, even for
programs without function symbols. Then we introduce a number of sound simple loop checks
and identify natural classes of Prolog programs without function symbols for which they are
complete. In these classes a limited form of recursion is allowed. As a by-product we obtain an
implementation of the closed world assumption of Reiter (1978) and a query evaluation algorithm
for these classes of logic programs.

1. Introduction

1.1. Motivation

Prolog has been advocated as a programming language which allows us to write
executable specifications. Unfortunately, when interpreting correct specifications
written in the form of a logic program as a Prolog program, a divergence usually

* This research was partly supported by Esprit BRA-project 3020 Integration.

0304-3975/91/$03.50 © 1991-Elsevier Science Publishers B.V.

36 R.N. Bo/, K.R. Apt, J. W. Klop

arises. This is due to the fact that the Prolog interpreter uses a depth-first search
and consequently can enter an infinite branch and miss a solution.

The problem of detecting such a possibility of divergence is obviously undecidable
as Prolog has the full power of recursion theory. Consequently this problem has
been taken care of by developing a number of useful heuristics on how to avoid a
possibility of nontermination. However, the resulting program can be very different
from the original specification.

Another possible approach to this problem has been based on modifying the
underlying computation mechanism that searches through the corresponding SLD­
trees by adding a capability of pruning. Pruning an SLD-tree means that at some
point the interpreter is forced to stop its search through a certain part of the tree,
typically an infinite branch. Every method of pruning SLD-trees considered so far
has been based on excluding some kind of repetition in the SLD-derivations, because
such a repetition makes the interpreter enter an infinite loop. That is why pruning
SLD-trees has been called loop checking. Such modifications of Prolog interpreters
were considered in the literature (see e.g. [3, 4, 8, 18, 20, 21, 23]), but no results
were proved about them, with notable exceptions of [20, 21, 23].

1.2. Plan of the paper

In this paper we systematically study loop checking mechanisms. To this end,
after providing in Section 2 a sufficiently general definition of a loop check, we
introduce in Section 3 the relevant concepts, like soundness (no computed answer
substitution to a goal is missed), completeness (all resulting derivations are finite)
and relative strength. We also introduce a natural subclass of loop checks, called
simple loop checks, obtained when their definition does not depend on the analyzed
logic programs. We prove among others the result that no sound and complete
simple loop check exists even in the absence of function symbols.

In the remainder of the paper we study a number of intuitive simple loop checks.
We can divide them into three groups, which are studied in Sections 4, 5 and 6
respectively. For each group we prove the appropriate soundness results and identify
one or more natural classes of programs without function symbols for which the
loop checks in the group are complete. The loop checks in all three groups appear
to be complete for restricted programs without function symbols. Restricted programs
allow a restricted form of recursion (hence the name).

The first group consists of loop checks based on the equality between goals,
respectively resultants, of the derivations and is studied in Section 4. We call these
loop checks equality checks.

The second group of loop checks is based on the inclusion between goals,
respectively resultants, of the derivations and is studied in Section 5. We call these
loop checks subsumption checks. Subsumption checks are stronger than the corre­
sponding equality checks and therefore they prune SLD-derivations earlier than
their counterparts. This makes it more difficult to establish their soundness but

Loop checking mechanisms for logic programs 37

opens a possibility for completeness for a larger class of programs than restricted
ones.

We show that subsumption checks are complete for logic programs without
function symbols in which no variables are introduced in the clause bodies (so
called nvi programs). Also, the subsumption checks are complete for logic programs
without function symbols in which a variable occurs at most once in every clause
body (so called svo programs). These completeness theorems make use of a simple
version of Kruskal's Tree Theorem, called Higman's Lemma [12]. While the use of
this theorem to establish termination of term rewriting systems is well-known (see
e.g. [9] or [14]), we have not encountered any applications of this theorem in the
area of logic programming.

The third group is based on a simple loop check introduced by Besnard [3] and
is studied in Section 6. These checks test for equality of atoms in a certain context
(a goal or a resultant). Therefore we call them context checks. We prove that for
certain selection rules, the subsumption checks are stronger than the context checks.

As mentioned above, we prove that context checks are complete for restricted
programs without function symbols. We also prove that the context checks are
complete for nvi programs without function symbols.

1.3. Example

To better understand the relevance of the problems studied here, consider the
following example. Let P be the following simple-minded Prolog program computing
in the relation tc the transitive closure of the relation r:

P={tc(x,y) -r(x,y).

tc(x, y) .,,_ r(x, z), tc(z, y).}

Suppose we add to P the following facts about r: r(a, a)-, r(a, b)-, r(b, c)<--,
r(d, a)-. Then if we ask:
• tc(a, b), we get the answer "yes";
• tc(a, c), the program gets into an infinite loop (whereas we should get the answer

"yes");
• tc(a, d), the program gets into an infinite loop (whereas we should get the answer

''no");
• tc(b, d), we get the answer "no".

Thus P is not the right program for computing the transitive closure. One solution
is to write a different program, which is not straightforward, see for example the
program in [7, Section 7.2]. In fact, Kunen [15] recently proved that any such
program must use either function symbols or negated literals.

In our solution, we change the underlying interpreter by adding to it an equality
check, and retain the above program, which turns out to be restricted. (In contrast,
this solution cannot be applied to an alternative version of P obtained by replacing

38 R.N. Bo!, K.R. Apt, J. W. Klop

the second clause by tc(x, y) +-- tc(x, z), tc(z, y), as the resulting program is in that
case not restricted.)

1.4. Applications

As a by-product of these considerations we obtain an implementation of the closed
world assumption of Reiter [19] and of a query evaluation mechanism for various
classes of definite deductive databases. The closed world assumption (CW A in
short) is a way of inferring negative information in deductive databases. Reiter (19]
showed that in the case of definite deductive databases (DB in short) it does not
introduce inconsistency. However, even though CWA is correctly defined for DB,
there is still the problem of how it can be implemented, since it calls for the use of
the following rule (or rather metarule):

if DB 1:1- cp then DB I- 1cp,

that is, deduce 1cp if cp cannot be proved from DB using first order logic.
The problem is how to determine for a particular ground atom (or fact in short)

that there is no proof of it. The soundness and completeness results proved in
Section 4 show that when DB is a restricted program, to infer 1A for a fact A it
suffices to use Clark's [5] negation as (finite) failure rule augmented with an
appropriate equality check.

A more general problem is that of query processing in DB. Given an atom A,
compute the set [A]os of all its ground instances AfJ such that DB I- AfJ. Indeed,
when A is ground and DB l:f- A, the query processing problem reduces to the problem
of deducing 1A by means of CWA. The results proved in Section 4 imply that when
DB is a restricted program, to compute [A] 08 for an atom A, it suffices to collect
all computed answer substitutions in the SLD-tree with leftmost selection rule
and +--A as root, pruned by an appropriate equality check.

Similar results concerning CWA and query processing hold for the subsumption
and context checks and the corresponding classes of programs for which they are
complete.

This paper is an extension of [1], where exclusively equality checks were studied.

2. Loop checking

Throughout this paper we assume familiarity with the basic concepts and notations
of logic programming as described in (16]. For two substitutions u and r, we write
a-~ r when u is more general than r and for two expressions E and F, we write
E ~ F when F is an instance of E. We then say that Fis less general than E.

By an SLD-derivation we mean an SLD-derivation in the sense of [16] or an

initial segment of it. In SLD-derivations we shall only use idempotent mgu's. It is
known that any idempotent mgu is relevant, i.e. its domain contains only variables

Loop checking mechanisms for logic programs 39

of the atoms that are unified. An SLD-derivation step from a goal G, using a clause
C and an idempotent mgu e, to a goal H is denoted as G ~c,o H.

2.1. Definitions

The purpose of a loop check is to prune every infinite SLD-tree to a finite subtree
of it containing the root. One might define a loop check as a function from SLD-trees
to SLD-trees, directly giving the pruned tree. However, this would be a very general
definition, allowing practically everything. We shall use here a more restricted
definition according to which for a program P

(i) a node in an SLD-tree of Pu { G} (for some goal G) is pruned if all its
descendants have been removed (note the terminology: the pruned node itself
remains in the tree);

(ii) by pruning some of the nodes we obtain a pruned version of the SLD-tree;
(iii) whether a node is pruned depends only upon its ancestors in the SLD-tree,

that is on the SLD-derivation from the root up to this node.
Therefore, we can define a loop check as a function on the SLD-derivations

instead of on the SLD-trees. However, for convenience we do not define it as a
function from derivations to derivations, but as a set of derivations (depending on
the program): the derivations that are pruned exactly at their last node. Such a set
of SLD-derivations L(P) can be extended in a canonical way to a function !L(P)

from SLD-trees to SLD-trees by pruning in an SLD-tree the nodes in { G [the
SLD-derivation from the root to G is in L(P) }. In the remainder of this article, we
shall usually make this conversion implicitly.

It is useful to note here that our definition of a loop check excludes more
complicated pruning mechanisms for which the decision whether a node in a tree
is pruned depends on the so far traversed segment of the considered tree. Such
mechanisms are for example studied in [23] and [21].

We shall also study an even more restricted form of a loop check, called simple
loop check, in which the set of pruned derivations is independent of the program
P. In other words, a loop check is a function, having a program as input and a
simple loop check as output. This leads us to the following definitions.

Definition 2.1. Let L be a set of SLD-derivations. RemSub(L) ={DEL[L does not
contain a proper subderivation of D}. Lis subderivationfree if L= RemSub(L).

In order to render the intuitive meaning of a loop check L: "every derivation
DEL is pruned exactly at its last node", we need that Lis subderivation free. Note
that RemSub(RemSub(L)) = RemSub(L).

In the following definition, by a variant of a derivation D we mean a derivation
D' in which in every derivation step, atoms in the same positions are selected and
the same programs clause are used. D' may differ from D in the renaming that is
applied to these program clauses for reasons of standardizing apart and in the mgu

40 R.N. Bo/, K.R. Apt, J. W Klop

used. Thus any variant of an SLD-refutation is also an SLD-refutation and yields
the same computed answer substitution up to a renaming.

Definition 2.2. A simple loop check is a computable set L of finite SLD-derivations
such that L is closed under variants and subderivation free.

The first condition here ensures that the choice of variables in the input clauses
in an SLD-derivation does not influence its pruning. This is a reasonable demand
since we are not interested in the choice of the names of the variables in the
derivations.

Definition 2.3. A loop check is a computable function L from programs to sets of
SLD-derivations such that for every program P, L(P) is a simple loop check.

Of course, we can treat a simple loop check L as a loop check, namely as the
constant function J...P.L.

Definition 2.4. Let L be a loop check. An SLD-derivation D of Pu { G} is pruned
by L if L(P) contains a subderivation D' of D.

2.2. Example

Example 2.5 (Variant of Atom check). (This example is based on Example 8 in [3],
see also [10]). A first attempt to formulate the Variant of Atom (VA) check might
be: "A derivation is pruned at the first goal that contains a variant A of an atom
A' that occurred in an earlier goal". Note that we have to allow here that A and
A' are variants: if we required A= A' then we would violate the first condition in
Definition 2.2.

The intuition behind this loop check is the following. We wish to prove A' by
resolution. If we find out after some resolution steps that in order to prove A' we
need to prove a variant A of A', then there are two possibilities. One is that there
is a proof for A. Then this proof could also be used as a proof for A', by applying
an appropriate renaming on it. So we do not need the proof of A' that goes via A.
The other possibility is that there is no proof for A. In that case, the attempt to
prove A' via A cannot be successful. So in both cases there is no reason to continue
the attempt to prove A' via A.

The derivation step ~B, A =>s~ ~A shows that the first formulation of the VA
check is not precise enough: it does not capture the intuition that the proof of A'
goes via A. The atom A should be the result (after one or more derivation steps)
of resolving A', or a further instantiated version of A' (if A' is not immediately
selected).

Loop checking mechanisms for logic programs 41

Therefore we define
VA=RemSub({DID= (Go~c,,11, G 1 ~ • • ·:::} Gk-i :::}ck>11• Gk) such that

for some i and j, 0.;;;; i ...;;;,, j < k, Gk contains an atom A
that is
- a variant of an atom A' in Gi and
- the result of an attempt to resolve A'8i+ 1 • • • Oj, the

further instantiated version of A', that is selected in
Gj}).

We now illustrate the use of this loop check. Let

P={A(O) -. (Cl),

(C2), B(I)-.

A(x) -A(y). (C3),

C +-A(x), B(x). (C4)},

let G =-c.
That the informal justification of the loop check VA is incorrect, is shown by

applying it to two SLD-trees of Pu { G}, via the leftmost and rightmost selection
rule respectively, which gives us Fig. 1. (In this figure and elsewhere, a failed node,
i.e. a node without a successor in the SLD-tree, is marked by a box around it.)

bC
ic;4)

b A(x),B(x)

(Cl) "-.CC3)'
{x/0} ~x'/x}

b B(O) b A(y'),B(x.) -----------,

bC

~~4)
b A(x),B(x)

I (C2)
.{x/l}

b A(l)

I (C3)'
{y'!dcpy "\..f C3t:"/y'} VA prunes here • {x'/l}

If ~ I bA(y')
b B(x) b A(y"),B(x) ~-----

1 (C2) ccp; \ (C3)'" (C~)/ \<S3)"
t{x/l} {y"/OV ~{x'"/y"} {y''ov ~x"/y'}

D D

Fig. 1

A detailed analysis shows why the goal 0 3 = -A(y') in the rightmost tree is
pruned by the VA check. Clearly, a variant of A(y') occurs in an earlier goal: A(x)
in G1 • So we take i = 1. In G 1 , A(x) is not yet selected, so j >i. In fact j = 2, for
in G2 the atom A(l), which is a further instantiated version of A(x), is selected.
Indeed, A(y') is the result of resolving A(l). Therefore the derivation is pruned at

42 R.N. Bo/, K.R. Apt, J. W. K/op

0 3 by the VA check. (In this case, A(y') is the direct result of resolving A(l), but
in general there may be any number of derivation steps between Gj and Gd

Indeed, this loop check has not worked properly here: all successful derivations
have been pruned. Clearly, this is an undesirable property for loop checks. On the
other hand, all infinite derivations are pruned, as intended. In the next section, we
shall give formal definitions of these and related properties of loop checks.

3. Some general considerations

In this section some basic properties of loop checks are introduced and some
natural results concerning them are established.

3.1. Soundness and completeness

The most important property is definitely that using a loop check does not result
in a loss of success. Since we intend to use pruned trees instead of the original ones,
we need at least that pruning a successful tree yields again a successful tree.

Even stronger, because we use here a Prolog-like interpreter augmented with a
loop check as the only inference mechanism, we do not want to lose any individual
solution. That is, if the original tree contains a successful branch (giving some
computed answer), then we require that the pruned tree contains a successful branch
giving a more general answer.

Finally, we would like to retain only shorter derivations and prune the longer
ones that give the same result. This leads to the following definitions, where for a
derivation D, !DI stands for its length, i.e. the number of goals in it.

Definition 3.1 (Soundness). (i) A loop check Lis weakly sound if for every program
P and goal G, and SLD-tree T of Pu { G}: if T contains a successful branch, then
fL(Pl(T) contains a successful branch.

(ii) A loop check L is sound if for every program P and goal G, and SLD-tree
T of Pu { G}: if T contains a successful branch with a computed answer substitution
er, then fL<Pl(T) contains a successful branch with a computed answer substitution
er' such that Ga'~ Ga.

(iii) A loop check Lis shortening iffor every program P and goal G, and SLD-tree
T of Pu { G}: if T contains a successful branch D with a computed answer
substitution (), then either fL<P>(T) contains D or fL<Pl(T) contains a successful
branch D' with a computed answer substitution rr' such that Ga'~ Gu and ID'I <ID!.

The following lemma is an immediate consequence of these definitions.

Lemma 3.2. Let L be a loop check. (i) If L is shortening, then L is sound.

Loop checking mechanisms for logic programs 43

(ii) If L is sound, then L is weakly sound.

The purpose of a loop check is to reduce the search space for top-down inter­
preters. We would like to end up with a finite search space. This is the case when
every infinite derivation is pruned.

Definition 3.3 (Completeness). A loop check L is complete if every infinite
SLD-derivation is pruned by L.

We must point out that in these definitions we have overloaded the terms "sound­
ness" and "completeness". These terms do not refer here only to loop checks, but
also to interpreters for logic programs (with or without a loop check). Such an
interpreter is sound if any answer it gives is correct w .r.t. the intended model or the
intended theory of the program. An interpreter is complete if it finds every correct
answer within a finite time.

3.2. Interpreters and loop checks

When a top-down interpreter is augmented with a loop check, we obtain a new
interpreter. The soundness and completeness of this new interpreter depends on the
soundness and completeness of the old one, as well as on the soundness and
completeness of the loop check. However, these relations are not trivial. For example,
it is not true that adding a complete loop check to a complete interpreter yields
again a complete interpreter.

These relationships are expressed in the following lemma's. We refer here to two
interpreters: one searching the SLD-tree depth-first left-to-right (as the Prolog
interpreter does), and one searching breadth-first. Without a loop check, both
interpreters are sound w.r.t. CW A. The breadth-first interpreter is also complete
(but not complete w.r.t. CWA).

Lemma 3.4. Let P be a program, A a ground atom and L a weakly sound loop check.
Then for every SLD-tree Tof Pu {~A}, P f-cwA 1A i.fffL(P)(T) contains no successful
branches.

Proof. By the soundness and strong completeness of SLD-resolution (see
[2, 16]). 0

Thus an interpreter augmented with a weakly sound loop check remains sound
w.r.t. CW A. Since fL(P)(T) may be infinite, nothing can be said about completeness.

Lemma 3.5. Let P be a program, A an atom and L a sound loop check. Then for every
SLD-tree T of Pu {~A} and for every ground substitution 0, P f- AO if! fL< P)(T)
contains a successful branch with a computed answer substitution r such that Ar,;;; Ae.

44 R.N. Bal, K.R. Apt, J. W. Klop

Proof. We have by the strong completeness of SLD-resolution P 1- A8 ~ T contains
a successful branch with a computed answer substitution u such that Aa.,;;; A8.

(:::>): T contains this successful branch, and since L is sound, fL< P> (T) contains
a successful branch with a computed answer substitution T such that AT-=;; Au.

Hence AT:::;;; A8.
(~): fL<P>(T) contains a successful branch with a computed answer substitution

AT-=;; A8, so T contains this branch as well. 0

Thus an interpreter augmented with a sound loop check remains sound. Moreover,
a breadth-first interpreter remains complete.

Corollary 3.6. Let P be a program, A a ground atom and L a weakly sound and
complete loop check. Then for every SLD-tree T of Pu {-A}, P 1-cwA -,A iff fL<P>(T)
is finite and contains no successful branches.

Proof. By Lemma 3.4 and the Completeness Definition 3.3. D

Thus an interpreter augmented with a weakly sound and complete loop check
becomes complete w.r.t. CWA.

Corollary 3.7. Let P be a program, A an atom and La sound and complete loop check.
Then for every SLD-tree T of P v {-A} and for every ground substitution 8, PI- A8
if! fL<P>(T) is.finite and contains a successful branch with a computed answer substitution
T such that AT-=;; A8.

Proof. By Lemma 3.5 and the Completeness Definition 3.3. D

Thus a depth-first interpreter augmented with a sound and complete loop check
becomes complete. This also means that a sound and complete loop check can be
used to implement query processing as defined in the introduction. Indeed, given
a program P and an atom A with an SLD-tree T of P v {-A}, it suffices to traverse
the finite tree fL<P>(T) and collect all computed answer substitutions.

3.3. Comparing loop checks

After studying the relationships between loop checks and interpreters, we shall
now analyze a relationship between loop checks themselves. In general, it can be
quite difficult to compare loop checks. However, some of them can be compared
in a natural way: if every loop that is detected by one loop check, is detected at
the same derivation step or earlier by another loop check, then the latter one is
stronger than the former.

Definition 3.8. Let L, and L2 be loop checks. L1 is stronger than L2 if for every
program P and goal G, every SLD-derivation D2 E L2(P) of P v { G} contains a
subderivation D 1 such that D, E L1(P).

Loop checking mechanisms for logic programs 45

In other words, Li is stronger than L 2 if every SLD-derivation that is pruned by
L2 is also pruned by Li. Note that the definition implies that every loop check is
stronger than itself.

The following theorem will prove to be very useful. It will enable us to obtain
soundness and completeness results for loop checks which are related by the
"stronger than" relation, by proving soundness and completeness for only one of
them.

Theorem 3.9 (Relative strength). Let L 1 and L2 be loop checks, and let L 1 be stronger
than L2 •

(i) If L 1 is weakly sound, then L2 is weakly sound.
(ii) If Li is sound, then L 2 is sound.

(iii) If Li is shortening, then L2 is shortening.
(iv) If L2 is complete, then Li is complete.

Proof. (i)-(iii) If an SLD-tree T contains a successful branch, thenfL,<Pl(T) contains
a successful branch that satisfies the conditions of Definition 3.1. Since L 1 is stronger
than L2 .fLt<P>(T) is a subtree of fLi<P>(T), so this branch is also contained infLi<P>(T).

(iv) Every infinite SLD-derivation is pruned by L2 , so it is also pruned by L 1 • D

Now we have a clearer view of the situation. Very strong loop checks prune
derivations in an "early stage". If they prune too early, then they are unsound.
Since this is undesirable, we must look for weaker loop checks. But a loop check
should preferably be not too weak, for then it might fail to prune some infinite
derivations (in other words, it might be incomplete). Of course, the "stronger than"
relation is not linear. Moreover, loop checks exist that are neither sound nor
complete.

3.4. Sound and complete loop checks

A question now arises: do there exist sound and complete loop checks? Obviously,
there cannot be such a loop check for logic programs in general, as logic programming
has the full power of recursion theory. (Remember that according to the definition,
a loop check is computable.) So when studying completeness we shall rule out
programs that compute over an infinite domain. We shall do so by restricting our
attention to programs without function symbols, so called function-free programs.
This restriction leads to a finite Herbrand Universe, but other solutions (typed
functions, bounded term-size property [11]) are also possible here.

Note that our definitions so far referred to arbitrary programs and SLD-deriva­
tions. In the remainder of the paper, we shall consider certain classes of programs
(like function-free programs) and SLD-derivations (like the derivations via the
leftmost selection rule). The definitions we introduced can be extended in an obvious
way so that we can use terminology like "complete w.r.t. the leftmost selection rule
for function-free restricted programs".

46 R.N. Bol, K.R. Apt, J. W. Klop

As stated above, we shall study completeness only for function-free programs.
So our question can be reformulated as: is there a sound and complete loop check
for function-free programs? Before answering this question for loop checks in
general, we shall answer it for simple loop checks.

Theorem 3.10. There is no weakly sound and complete simple loop check for function-free
programs.

Proof. Let L be a simple loop check that is complete for function free programs.
Consider the infinite SLD-derivation D in Fig. 2, obtained by repeatedly using the
clause A(x)-A(y), S(y, x) (using the leftmost selection rule).

~A(xo),B(xo)

JJ
~A(x1),S(x1,xo),B(xo)

JJ
~A(x2),S(x2,x 1),S(x 1,xo),B(xo)

a
t-A(x3),S(x3,x2),S (x2,x 1) ,S(x i,xo),B(xo)

a

Fig. 2

Since L is a complete loop check, this derivation is pruned by L and since L is
simple, the goal at which pruning takes place is independent of the program used
for this derivation. Suppose that this derivation is pruned by L at the goal

-A(xn), S(xn, Xn_ 1), ••• , S(x,, X0), B(xo).

Now let

P = {S(i, i + 1)-. lo~ i < n} u {A(O)-. A(x)-A(y), S(y, x). B(n)-.}.

Extending the above derivation to an SLD-tree of Pu { G} (still using the leftmost
selection rule, see Fig. 3), we see that every goal of the derivation has two descen­
dants, obtained by applying the clauses A(x)-A(y), S(y, x) and A(O)- respec­
tively. The derivation of Fig. 2 shows the effect of repeatedly applying A(x)-A(y),
S(y, x). After applying A(O)- at some goal, a derivation becomes deterministic: if
there are initially m S-atoms, then these atoms are resolved from left to right by
the clauses S(O, 1)-, ... , S(m -1, m)-.

Finally, the goal -B(m) is left. Since of all goals of the form -B(i) (i;a.O) only
the goal -B(n) can be refuted, exactly n S-atoms are needed. Therefore the only
successful branch of this SLD-tree of Pu { G} goes via the goal -A(x"),
S(xn, Xn-i), ... , S(x1 , x0), B(x0). As exactly this goal is pruned by L, L has pruned
the only successful branch of this SLD-tree. Hence L is not weakly sound. D

Loop checking mechanisms for logic programs

bA(xo),B(xo)

JJ
bA(x1),S(x1,xo),B(xo)

JJ
bA(x2),S(x2,x1),S(x1 ,xo),B(xo)

=> bS(O,xo),B(xo) =>lbB(I)I

=> bS(O,x1),S(x1,xo),B(xo)
=> bS(l,xo),B(xo) =>lbB(2)1

bA(xn),S(xn,Xn-J), .. .,S(x1,xo),B(xo) => ... n intermediate goals... => bB(n)

=>D

Fig. 3

47

However, taking the program into account gives us an opportunity to define for
function-free programs a shortening (so a fortiori sound) loop check which is
complete. Moreover, this loop check is stronger than every other shortening loop
check. Strange as it may seem, this one is also impractical. It is like solving a puzzle
by trial and error. One can save effort if one can avoid the trials that lead to an
error. Assuming that the puzzle is solvable (as our "puzzle", finding the correct
answers to a given goal, is), it is possible to find out exactly which trials to avoid.
How this can be done is formalized in the proof of Theorem 3.13 (1). However,
solving the puzzle is the first step of the method described, so it can only be of
theoretical importance.

For convenience, we shall write S(P, G, a) for the set of successful SLD-deriva­
tions of Pu { G} with a computed answer substitution r such that Gr :s:; Ga. We say
that a derivation Dis a minimal length derivation in S(P, G, a) if DE S(P, G, a)
and IDI = min{ID'l ID' E S(P, G, u)}.

Definition 3.11 (STRONG check). For a function-free program P, STRONG(P) =

RemSub({D = G~· · ·I for no a, D is an initial segment of a minimal length
derivation in S(P, G, a)}).

Note that an SLD-tree pruned by STRONG consists not only of the minimal
length refutation(s) of Pu { G} for any computed answer substitution u, but also
of the derivations that follow the path of such a derivation but "make a wrong
decision'', that is a step deviating from such a refutation. After such a step, the
derivation is immediately pruned by STRONG. This effect is a consequence of the
fact that pruning a node in a tree implies removing all descendants, so we cannot
remove the descendants caused by a "wrong step" while retaining the others. The
following example shows the effect of pruning an SLD-tree by STRONG.

48 R.N. Bol, K.R. Apt, J. W. Klop

Example 3.12. Let

p ={A(l) +-. (Cl),

A(y) +- B(y, z), A(z). (C2),

B(w, O) +-.

B(O, 1) +-.

and let G = +-A(x).

(C3),

(C4)},

Consider an SLD-tree of Pu { G} displayed in Fig. 4. In S(P, G, {x/ l}) a minimal
length derivation has 2 goals, in S(P, G, {x/O}) a minimal length derivation has 4
goals and in S(P, G, e) a minimal length derivation has 6 goals. These derivations

t-A(x)

{~7 ~Ix)
0 t-B(x,z),A(z)

~ (C4)/ \(C3)

{x/O,z/ly \/x,z/0}

<-A(l) t-A(O)

CC2l'/ \ccil \cc2)'
{y'/11 \ ~'/O}
..-B(l,z'),A(z') 0 f-B(O,z'),A(z')

(C3) I ({xiO}) cc4>/ \cc3)'
{z'/O,wll}t {z'/ \'/0,w'/0}

f-A(O) f-A(l) t-A(O)

(C2)"l (Cy l (C2)"

{y"/0} 0 {y"/l}

t-B(O,z"),A(z") ~ t-B(l,z"),A(z")

(C4) l \ (C3)' I .(C3)'
{z"/l} \{z"/0,w'/O} ~z"/O,w'/l}

f-A(l) t-A(O) t-A(O)

Fig. 4

I (C2)"

~ {y"/0}

t-B(O,z"),A(z")

(C4) l\ (C3)"
{z"/l} ~z"/0,w"/O}

t-A(l) rA(O)

Loop checking mechanisms for logic programs 49

are retained by STRONG in the considered SLD-tree, the others are pruned (at the
horizontal lines in the figure). Among these are successful ones, but not minimal
length successful ones. (The tree in Fig. 4 is extended beyond the sixth level to
show this effect.)

Theorem 3.13. For function-free programs,
(i) STRONG is a shortening loop check;

(ii) STRONG is stronger than any shortening loop check;
(iii) STRONG is complete.

Proof. (i) a) STRONG is a loop check. The nontrivial point here is to prove that
for every function-free program P, STRONG(P) is computable. Can we, given a
derivation D = G-=;· · ·, decide whether or not D is pruned by STRONG and if
so, at which node? Indeed we can, using the following procedure.

(1) Compute the set of correct answers for Pu{G}, modulo renamings (e.g.
bottom up). Since P has no function symbols, this set is finite. Construct (breadth
first) an initial segment of an SLD-tree of Pu { G} that contains (an initial part of)
D and for each correct answer a successful branch with a more general computed
answer. Such a segment exists by the strong completeness of SLD-resolution. It has
been shown in [13] that a length preserving bijection exists between the successful
branches of two different SLD-trees for Pu { G}. Therefore in every SLD-tree of
Pu { G}, for every correct answer substitution a there exists a derivation D' E
S(P, G, a) with ID'l=min{ID"llD"ES(P, G, a)}.

(2) For each computed answer substitution, mark the nodes of the minimal length
successful branches with this computed answer substitution.

(3) Prune D at the first node in the tree that is not marked. If such a node does
not exist, then D is a subderivation of a minimal length successful branch.

(i) b) STRONG is shortening. If a successful derivation D of Pu{G} with
computed answer substitution a is pruned by STRONG, then it is not a minimal
length derivation in S(P, G, o-). By construction, there exists a minimal length
derivation D' E S(P, G, a) in the SLD-tree. D' is shorter than D and not pruned by
STRONG.

(ii) STRONG is stronger than any shortening loop check. Let L be a loop check
and let D be a derivation of Pu { G} that is pruned by L. If D is a subderivation
of a minimal length successful derivation D', then Lis not shortening. Otherwise,
D is pruned by STRONG.

(iii) STRONG is complete. If Dis an infinite SLD-derivation, then only an initial
segment of D is contained in the constructed (finite) part of the SLD-tree. Since
the last goal of D that is in the tree is not successful, it is not marked in the procedure
for computing STRONG. So D contains a "wrong step" there or earlier. Hence D
is pruned by STRONG. D

So far, we have not been very successful in defining useful sound and complete
loop checks. In the next sections, we shall restrict our attention to simple loop

50 R.N. Bol, K.R. Apt, J. W. Klop

checks. They will be shortening, but as shown above, they cannot be complete (not
even for function-free programs). Nevertheless, for each of these loop checks we
shall introduce one or more natural classes of programs for which they are complete.

4. Equality checks

4.1. Overview

In this section, we introduce some simple loop checks. For each of them, there
exist two versions: the first one is weakly sound, the second one shortening. The
second shortening version is obtained by adding an additional condition to the
criterion that describes the derivations pruned by the first one. By this construction,
the first version is always stronger than the corresponding second version.

Starting with the Variant of Atom check, we can make three independent
modifications of it.

(1) Adding this additional condition to the loop cheek's criterion. This condition
mainly deals with the computed answer substitution 'generated so far' and is more
or less equivalent to applying the criterion to resultants instead of goals in SLD­
derivations. When considering a derivation G0 =>c'i. 81 G1 ==> · · · , to every goal G; =
+-S; there corresponds the resultant R; = S 0 81 ••• O;+-S1• Resultants were introduced
in [17].

(2) Replace variant by instance. This yields the Instance of Atom (IA) check.
This check is still unsound: it is even stronger than the VA check. Besnard [3] has
introduced a weakly sound version of this loop check. This check and related ones
(derived from VA; shortening versions) are discussed in Section 6.

(3) Replace atom by goal. This yields the Equals Variant of Goal (EVG) check.
Informally, this loop check prunes a derivation as soon as a goal occurs that is a
variant of an earlier goal. Replacing "variant" by "instance" again yields the Equals
Instance of Goal (EIG) check. The shortening versions are called Equals Variant
of Resultant (EVR) and Equals Instance of Resultant (EIR).

Taking goals instead of atoms as a basis for a loop check yields two independent
choices again.

(3a) Whereas equality between atoms is unambiguous, equality between goals is
much less clear. In SLD-derivations, we regard goals as lists, so both the number
and the order of occurrences of atoms is important. However, we may also regard
them as multisets, where the order of the occurrences is unimportant. We might
even consider regarding them as sets, but that proves to be impractical: the difference
between the derivation steps +-A, A=>+-A and +-A=>+-A is then no longer visible.
Regarding goals as sets in our loop checks would require regarding goals as sets in
SLD-derivations, which would result in too many undesirable effects.

So we shall consider two EVG checks: EVGL (for list) and EVGM (for multiset).
The same holds for EIG, EVR and EIR. We shall refer to these eight loop checks
as the equality checks. They are discussed in the remainder of this section.

Loop checking mechanisms for logic programs 51

(3b) Finally, we may replace "G2 is a variant/instance of G1" by "G2 is subsumed
by a variant/instance of G1". We define "G1 subsumes G2" as "G1 s;;:; G2". Thus
we can make a distinction between "subsumed by a variant" and "subsumed by an
instance". Usually in literature, "subsumed by a variant" is not considered, "sub­
sumed by an instance" is simply called "subsumed" (see, e.g., [6]). Subsumption
can also be defined for resultants.

This yields the subsumption check. Since this modification is again independent
of the others, there are also eight subsumption checks. These checks are discussed
in Section 5.

4.2. Formal definitions

We now study the equality checks in more detail. At first we give a formal definition
of the weakly sound versions. Then we introduce an additional condition that makes
these checks shortening. Finally, we identify a natural class of programs for which
the equality checks are complete.

In fact, we should give a definition for each equality check. This would yield
eight almost identical definitions. Therefore we compress them into two definitions,
trusting that the reader is willing to understand our notation. The equality relation
between goals regarded as lists is denoted by = L; similarly = M for multisets. We
begin with the weakly sound versions.

Definition 4.1 (Equality checks for goals). For Type E {L, M}, the Equals Variant/
Instance of Goalryp• check is the set of SLD-derivations

EVG/EIGJ:vpe = RemSub({D ID= (Go =>c1 ,e1 G1=>· · ·=> Gk-1 =>c.,ek Gk)
such that for some i, 0.:;; i < k, there is a
renaming/substitution r such that
Gk =rype G;r}).

For example, EIGM = RemSub({DI D = (Go =>c1 .e1 G1=>· · ·=>Gk-1 =>c.,ek Gk)
such that for some i, Oo:;; i < k, there is a substitution r such that Gk =M G;r}).

The informal justification for these loop checks is similar to the one given for the
VA check. Suppose that we want to refute a goal G. If we find that in order to
refute G we need to refute a variant or instance of G, say Gr, then two cases arise.
If there is no solution for Gr, then pruning Gr is clearly safe. On the other hand,
if there is a solution for Gr, then the derivation giving this solution might be used
(possibly in a more general form) directly from G.

We shall prove later in this section that these loop checks are weakly sound.
However, they are not sound. To see this, suppose that we find for Gr a successful
derivation D with a computed answer substitution u. Then using D directly from
G gives a computed answer substitution ru (maybe a more general substitution,
but not necessarily). Therefore success is not lost.

However, the derivation G = G; =>c,+1 • 8,. 1 • • • =>c •. e, Gk =Gr, followed by D,
yields a possibly different computed answer substitution: 8;+1 ••• (:Jku, thus possibly

52 RN. Bol, K.R Apt, J. W. Klop

affecting soundness. (In Example 4.3, we show a specific program and goal for
which this difference arises.) Of course, we are only interested in the effect of this
difference on the variables of the initial goal G0 • When G; is reached, these variables
are renamed by 91 ••• 8;. So T and 9;+1 ••• 9k should coincide on the variables of

0 0 81 ••• 9;.
Hence we can make these loop checks sound, and even shortening, by adding

the condition 0 091 ••• 8k = 0 0 91 •.. 9;T- (Note that in this equality it is irrelevant
whether goals are lists or multisets.) It will appear that this condition works not
only for EVG and EIG, but for all other loop checks studied in Sections 5 and 6,

as well.
finally, note that adding this condition is equivalent to the replacement of the

condition Gk =rype G;T by the condition Rk =rype R;T, where Rk and R; are the
resultants corresponding to the goals Gk and G;.

Definition 4.2 (Equality checks for resultants). For TypeE{L, M}, the Equals
Variant/ Instance of Resultantrype check is the set of SLD-derivations

EVR/EIRryp• = RemSub({DJ D= (Go~c,,a, G,~· · ·~Gk-1 ~c.,ak Gk)
such that for some i, 0 ~ i < k, there is a
renaming/substitution T such that
Gk =Type G;T and Go81 ... 8k =
G0 91 ••• O;T}).

For example, EVRL=RemSub({DJD=(G0 ~c, 9, G1~· · ·~Gk-1~c.,ek Gk)
such that for some i, O~ i <le, there is a renaming T such that Gk =L G;T and
Go81 ... 9k = 0081 ... 9;T}).

The following example shows the difference between the goal-based and resultant­
based equality checks. It is so chosen that the other variations (variants or instances,
goals regarded as lists or as multisets) do not play a role.

Example 4.3. Let

P={p(a) -· (Cl),

p(y) - p(z). (C2)},

let G = -p(x).

Without the condition G0 81 ••• Ok= 0 081 ••• 8;T we would only obtain the com­
puted answer substitution {x/ a}, whereas we should also obtain the empty substitu­
tion. This shows that the EVG and EIG loop checks are not sound.

In the leftmost tree in Fig. 5 -p(z) is a variant of -p(x), so the derivation is
pruned by EVG at that goal. However, the corresponding resultant p(x) - p(z) is
clearly not a variant of p(x) - p(x), therefore the derivation is not yet pruned by
EVR. After another application of (C2), the resultant p(x) - p(z') occurs, which
is a variant of p(x)-p(z). At that point the derivation is pruned by EVR.

Loop checking mechanisms for logic programs

EVG/EIG
prunes

An SLD-tree of
Pu{G} based on goals:

f-p(x)

(C2i/ \c1)
{y/xv vx/a}

f-p(z) 0

here ~
(C2r/ \(Cl) x a

{y'/zJ vz/a}

An 'SLD-tree' of
Pu{G} based on resultants:

p(x)f-p(x)

(C2i/ \cl)
{y/xv vx/a}

p(x)f-p(z) p(a)f-

(C2)/ \cc1) ({xia})

{y'/zv vz/a}
f-p(z') .. 0

p(x)f-p(z') p(x)f-

QJ
EVR/EIR

!\ ~~~ , '•,,

prunes I j \
here j

Fig. 5

53

The rightmost tree in Fig. 5 shows an "SLD-tree" in which the goals are replaced
by the corresponding resultants. Note that a successful branch in a resultant-based
SLD-tree does not end by the empty goal 0, but by the instance of the initial goal
that was 'proved' by this branch.

Lemma 4.4. All equality checks are simple loop checks.

Figure 6 shows the "stronger than" relationships between the equality checks
(and the VA and IA checks) and summarizes their properties. In this figure, an
arrow L1 - L2 means that L2 is stronger than L1 • Proving these "stronger than"
relations is straightforward.

Er~--~EVG~

EVRM E!R L - E~~~ • EllGL

~.,
EIRM :-- EIGM

hortening
1J

VA

~· IA

Fig. 6

weakly sound

not weakly sound

54 R.N. Bo/, K.R. Apt, J. W Klop

4.3. Soundness

We now prove that the equality checks based on resultants are shortening and
that the equality checks based on goals are weakly sound. According to the Relative
strength Theorem 3.9 it is sufficient to focus on the strongest checks in both classes:
the EIRM and the EIGM checks. The proof consists of two stages. The first stage,
established in the following lemma, does not depend on the loop checking criterion
and can therefore also be used to prove the soundness of the simple loop checks
presented in the following sections.

Lemma 4.5 (Shortening condition). Let L be a loop check. If, for every program P,
goal 0 0 and SLD-derivation

of Pv{G0} (O<k~m),

[Gk is pruned by L]

implies I/or some goal Gi (O~ i < k) in D there exists an SLD-derivation

G; =>a-1 • • • =>"" D of Pu { G;} such that n < m - i],

then L is weakly sound.
Moreover, if also G0e1 ••• 8;cr1 ••• an~ G 0 81 ••• 8kfh+ 1 ••• ern is implied, then L is

shortening.

Proof. First we focus on the weakly sound case. Let P be a program, G0 a goal
and Tan SLD-tree of P v { G 0}. Suppose T contains a successful branch

D=(Oo=>c1,e 1 01=>· · ·=>0;-1=>c,.e, 0;=>· · ·=>Ok-1

=>c,,e, Ok=>·· ·=>c,,,,e,,, D)

and suppose that D is pruned at Gk. We use here induction on m, i.e. we assume
that for every successful branch B in T shorter than D, fL(T) contains either B or
a successful branch shorter than B.

We prove that fL(T) contains a successful branch D' that is shorter than D. By
assumption and SLD-derivation D 1 = (O; ::::>,,.1 • • • =>u,, O) of Pu { O;} exists. Adding
(a properly renamed version of) D 1 to the initial part of D gives the derivation

By the independence of the selection rule, T contains a branch D3 such that
ID3l = ID2l and the computed answers of D 3 and D 2 are variants [13]. Since D 3 is
shorter than D (JD3l=i+n+l<i+(m-i)+l=m+l=IDI), by the induction
hypothesis fL(T) contains either D' = D 3 or a successful branch D' shorter than
D3 , which proves the claim.

Loop checking mechanisms for logic programs 55

For the shortening case, it remains to prove that G0 u'.;:; 0 0 61 ••• em, where u' is
the computed answer substitution of D'. First we strengthen the induction
hypothesis: for every successful branch B in T shorter than D giving a computed
answer substitution u,JL(T) contains either B or a successful branch shorter than
B, giving a computed answer substitution u' such that G0u'.;:; G0 u.

Then either since D' = D3 or by the new induction hypothesis, and since the
computed answers of D3 and D2 are variants,

We now use this lemma to prove the desired result.

Theorem 4.6. (i) The loop check EIRM is shortening.
(ii) The loop check EIGM is weakly sound.

Proof. Let P be a program, G0 a goal and

D = (Go=>c,,o, 01=>· · ·~G;-1 =>c,,o, G;=>· · ·=>Gk-1

=>c.,o. Ok=>· · · =>c ... o,.. D)

an SLD-derivation of Pu { 0 0} (where 0.;:; i < k.;:; m).
(i) Assume that for some substitution T: Ok = M G;T and 0081 ... ek = Goe 1 ••• e;T.

So the SLD-derivation G;T='>ck+,.o.+, · · · =>c,,,,a,.. D exists (the order of the atoms
in G;T may differ from the order in Ok, so a different selection rule may be necessary).
By the Lifting Lemma of [16] a derivation G;=>u, · · ·=>u,,D of Pu{G;} exists,
with U1 ••• Un""' Tek+l ... em (n = m -k < m - i). Now

hence the full condition of Lemma 4.5 is satisfied, so EIRM is shortening.
(ii) The additional condition G0e1 ••• Ok= G0e1 ••• f:i;T was only used to prove

the additional shortening condition of Lemma 4.5. D

Corollary 4.7 (Equality soundness). (i) All equality checks based on resultants are
shortening. A fortiori they are sound

(ii) All equality checks based on goals are weakly sound.

Proof. By Theorem 4.6 and the Relative strength Theorem 3.9. D

4.4. Completeness

For completeness issues, it is sufficient to consider the weakest of the equality
checks: the EVRL check. We know that EVRL is not complete (Theorem 3.10 presents
a counterexample that holds for every simple loop check). However, for the EVRL
check this counterexample can be simplified. The program in Theorem 3.10 consists

56 R.N. Bo/, K.R. Apt, J. W. Klop

of a collection of ground facts and one recursive clause. Clearly, this clause is the
"core" of the counterexample. It appears that for EVRL, we need only this clause
for a demonstration of its incompleteness. Moreover, we need only the propositional
structure of the clause, i.e. we may remove the arguments.

Example 4.8. Let P ={A +-A, S}. Then for "the" SLD-tree T of Pu {+-A} via the
leftmost selection rule, fEvRL(T) is infinite. Indeed, every descendant of the initial
goal has one occurrence of S more than its parent goal, so it cannot be a variant
of any of its ancestors.

Obviously, the problem is that the atom A in the goal is allowed to generate
infinitely many S-atoms, which are never selected, thereby making the goal wider
and wider. We now introduce a class of programs for which this phenomenon cannot
occur and we prove that EVRL is complete for these programs. The necessary
restriction is obtained by allowing at most one recursive call per clause and allowing
such a call only after all other atoms in the body of the clause have been completely
resolved. In order to avoid unnecessary complications, we shall place the atom that
causes the recursive call (if present) at the right end of the body of the clause, and
consider only derivations via the leftmost selection rule. For a formal definition,
we use the notion of the dependency graph Dp of a program P.

Definition 4.9. The dependency graph DP of a program P is a directed graph whose
nodes are the predicate symbols appearing in P and (p, q) E Dp iff there is a clause
in P using p in its head and q in its body.
D~ is the reflexive, transitive closure of Dp. When (p, q) ED~, we say that p

depends on q. For a predicate symbol p, the class of p is the set of predicate symbols
p "mutually depends" on: clp(p) = {q I (p, q) E vi and (q, p) ED~}.

Definition4.10 (Restricted program). Given an atom A, let rel(A) denote its predicate
symbol. Let P be a program. A clause A 0 +- A 1 , ••• , An (n ;a.: 0) is called restricted
w.r.t. P if for i = 1, ... , n -1, rel(A;) does not depend on rel(A0) in P. The atoms
A 1 , ••• , An-i are called the nonrecursive atoms of the clause A 0 +-A 1 , ••• , An. A
program P is called restricted if every clause in P is restricted w.r.t. P.

Note that this definition allows at most one recursive call per clause. Thus
(disregarding the order of atoms in the bodies) restricted programs include so called
linear programs, which contain only one recursive clause and in this clause only a
single recursive call occurs. The "transitive closure" program given in the introduc­
tion is restricted. Note also that programs of which all clauses have a body with at
most one atom are restricted. See also [22], where essentially the same class of
programs is defined and investigated, although a more rigid format is used.

We now prove that EVRL is complete w.r.t. the leftmost selection rule for restricted
programs. First we demonstrate an interesting feature of restricted programs, namely

Loop checking mechanisms for logic programs 57

that in each SLD-derivation via the leftmost selection rule, goals have a number of
atoms which is bounded by a value depending only on the program and the initial
goal. Then we shall show that this implies that modulo the "being a variant of"
relation, the number of possible goals in such an SLD-derivation is finite.

In the rest of this section, P is a function-free restricted program and G is a goal
in Lp. With the length of G, IGI, we mean the number of atoms in G. The maximum
length of the goals in a derivation of Pu { G} can be computed by means of the
following weight-function, which is defined on goals and predicate symbols (by
mutual induction).

Definition 4.11. Let P be a restricted program. Then the function weight is defined
as follows:

(i) fora goal G=-A1 , ••• ,A" (n:;;l:l}inLp,

weight(G) = max{weight(rel(A;)) + n - i / i = 1, ... , n};

(ii) for a predicate symbol p of P,

weight(p) = max({weight(-A 1 , ••• , An)/ A -A1 , ••• , A" E P, n > 0,

rel(A) E clp(p), rel(A") e clp(p)}

u{l +weight(+-Ai. , An_1)IA +-A1o , An e P, n> 1,

rel(A) E clp(p), rel(A") E clp(p)}

u {l}).

Note that in the definition of weight(p), clauses of the form A +-- B, with
cl(rel(A)) = cl(rel(B)) are not considered, they do not affect the length of goals
appearing in a derivation. Moreover, if the predicate symbols p and q are mutually
dependent, then weight(p) =weight(q).

The fact that P is restricted ensures that the weight-function is well-defined: if
weight(p) is defined in terms of weight(q), then (q, p) e v:, hence weight(q) is not
defined in terms of weight(p). Intuitively, the weight of a goal G majorizes the
length of all goals which appear in an SLD-derivation of Pu { G} using leftmost
selection rule. More precisely, we have the following lemma's.

Lemma 4.12. IG/,;;;; weight(G).

Proof. Let G =+-Ai. ... , An (n :;;l: 1). Then

weight(G) :;;l:weight(rel(A1))+n-l :;;l: n = /G/ D

Lemma 4.13. Let G ~c H be a derivation step w.r.t. P where the leftmost atom of G

is selected. Then weight(G) :;;l: weight(H).

Proof. Since the weight of a goal depends only on the predicates appearing in it,
and not on the arguments of these predicates, we prove this fact for the case of
programs written in propositional logic.

58 R. N. Bo/, K.R. Apt, J. W. Klop

Let G = ~A1 , •••• , An; then weight(G) = max{weight(A;) + n - i Ii= 1, ... , n},

and let C = A 1 ~Bi, , Bm. Then the goal H =~Bi, ... , Bm, A2 , ••• , An and
therefore

weight(H) = max({weight(B;)+ m + n -1- iii= 1, ... , m}

Two cases arise.

u { weight(A;-m+i) + m + n - 1 - i Ii= m + 1, ... , m + n - I})

= max({weight(B;)+m + n-1- iii= 1, ... , m}

u {weight(A;) + n -i Ii= 2, ... , n}).

(i) weight(H) = max{weight(A;) + n - i Ii= 2, ... , n}. Then clearly weight(H) ~
weight(G).

(ii) weight(H)=max{weight(B;)+m+n-1-iJi=l, ... ,m} (hence m>O). We

show that in this case weight(H)~weight(A 1)+n-l (which is ~weight(G)). Sub­
tracting n -1, it suffices to show that max{weight(B;) + m - i Ii= 1,. . ., m} ~
weight(A 1). Again two cases arise.

(iia) (Bn,, Ai) E Di. Then because of the existence of C,

weight(A 1);;;;: weight(~B1 , ••• , Bm)

= max{weight(B;) + m - i Ii= 1, ... , m}.

(iib) (Bm,A 1)ED~. Then

weight(A 1);;;;: 1 +weight(~B 1 , ••• , Bm_1)

= 1 +max{weight(B;)+m -1-ili= 1, ... , m -1}

= max{weight(B;)+ m - i Ii= 1, ... , m -1}.

Also weight(Bm) + m - m = weight(A 1), since Bm E clp(A 1). This proves the claim
that

max{weight(B;)+m -iii= 1, ... , m}~weight(A 1). D

Corollary 4.14. Let D = (G0 ~ G 1 ~ G2 ~ • • • ~ G; ~ · · ·) be an SLD-derivation

via the leftmost selection rule. Then for every goal G; in D: IG;j~weight(G0).

Proof. By induction on i. The induction basis is provided by Lemma 4.12, the
induction step by Lemma 4.13. D

So weight(G0) is indeed the desired maximum length of goals occurring in any
SLD-derivation of Pu { G0}.

We now present a formalization of the "being a variant of" relation on resultants.

Our presentation here is more general than needed for the completeness proof for
the equality checks. However, we need these results in full generality to prove the

completeness of the subsumption checks and the context checks.

Loop checking mechanisms for logic programs 59

Definition 4.15. Let X be a set of variables. We define the relation -x on resultants
as R1 -x R 2 if for some renaming p, R1p = R 2 and for every x EX, xp = x. Now let
G be a goal and let k ~ 1. Then the relation - x.c.k stands for the restriction of the
relation - x to resultants S1 - S2 such that -s1 is an instance of G and l-S2l .s; k.

Lemma 4.16. For every set of variables X, goal G and k~ 1, -x.o,k is an equivalence
relation.

For a resultant R, the equivalence class of R w.r.t. the relation - x.a.k will be
denoted as [RJx.o,k, or just [R] whenever X, G and k are clear from the context.
The following lemma is crucial for our considerations.

Lemma 4.17. Suppose that the language L has no function symbols and finitely many
predicate symbols and constants. Then for every finite set of variables X, goal G and
k ~ 1, the relation - x.o.k has only finitely many equivalence classes.

We can now prove the desired theorem.

Theorem 4.18. The loop check EVRL is complete w. r. t. the leftmost selection rule for
function-free restricted programs.

Proof. Let P be a function-free restricted program and let G 0 be a goal
in Lp. Let k =weight(0 0). Consider an infinite SLD-derivation D =

(Go~c1 ,e 1 G1~· · ·~G;-1~c,,11, G;=?· ··)of Pu{G0 }. By Corollary 4.14, for
every i ~ 0, I G;I :s; k. Every goal G; is a goal in Lp and hence every resultant
0 0 01 ••• fJ; - G; belongs to an equivalence class of - 0•011 ,k. Since Lp satisfies the
conditions of Lemma 4.17, - 0.00 ,k has only finitely many equivalence classes, so
for some i ~ 0 and j > i, G0 81 ... 8; - G; and G 0 fJ 1 ... 8J - GJ are variants. This
implies that Dis pruned by EVRL. D

Corollary 4.19 (Equality completeness). All equality checks are complete w.r.t. the
leftmost selection rule for function-free restricted programs.

Proof. By Theorem 4.18 and the Relative strength Theorem 3.9. D

Now combining Corollary 3.6 and Corollary 3.7 with the Equality soundness
Corollary 4.7 and the Equality completeness Corollary 4.19, we conclude that all
equality checks lead to an implementation of CW A for function-free restricted
programs. Moreover, a depth-first interpreter augmented by any of the equality
checks based on resultants yields an implementation of query processing for these

programs.

60 R.N. Bo/, K.R. Apt, 1. W. Klop

5. Subsumption checks

As already stated, there are eight subsumption checks. We shall define them by
means of two parametrized definitions, again trusting that the reader is willing to
understand our notation. The inclusion relation between goals regarded as lists is
denoted by ~L; similarly ~M for multisets. Note: L 1 ~L L2 if all elements of L 1

occur in the same order in L2 ; they need not to occur on adjacent positions. For
example, (a, c) ~L (a, b, c).

5.1. Definitions

Definition 5.1 (Subsumption checks for goals). For TypeE{L, M}, the Subsumes
Variant/ Instance of Goalrype check is the set of SLD-derivations

SVG/SlGType = RemSub({D j D = (Go =}c,,e, G1 => · · · => Gk-1 =>c"ek Gk)
such that for some i, 0 ~ i < k, there is a
renaming/ substitution r with
Gk 2.rype Gir}).

Definition 5.2 (Subsumption checks for resultants). For Type E {L, M}, the Subsumes
Variant/ Instance of ResultantType check is the set of SLD-derivations

SVR/SlRType = RemSub({DID= (Go =}c, e, G1 => · · · => Gk-1 =>ck,ak Gk)
such that for some i, 0 ~ i < k, there is a renam­
ing/ substitution r with Gk 2 Type G;r and
G0 e1 ••• ek = G0e1 •.. eir}).

Lemma 5.3. All subsumption checks are simple loop checks.

The following example shows the differences between the behavior of various
subsumption checks and the equality checks.

Example 5.4. Let

P={A(y)+-A(O),C(y). (Cl),

A(O) +-. (C2),

B(l) +-. (C3),

C(z) +- B(z), A(w). (C4)},

and let G = +-A(x).
Figure 7 shows an SLD-tree of Pu { G} using the leftmost selection rule. It also

shows how this tree is pruned by different loop checks. First we explain the behavior
of the loop checks with respect to this tree. Then we shall make some generalizing
comments on this behavior. In this example, the distinction between list versus
multiset based loop checks does not play a role.

Loop checking mechanisms for logic programs

(C3) I
{x/l }V

~A(w)

IEIG,EVG1-l ------­

cc1y '\cz)
{y'/wy '\w/0}

rA(O),C(w) o@:D
SlR, ~--r-----------
STRONG

(C2) ········· ... {y"/O}

\:t
rC(w) rA(O),C(O),C(w)

(C4)' ·

{z'/w} \

rB(w)0,A(w')

(C3)

{w/l}

(C2) (Cl)'"

rC(O),C(w)

(C4)'

{ z'/O}

rA(w') I rB(O),A(w'),C(w)I
IEIR,EVR >-I -- . .

Fig. 7

(C2) (Cl)"

rC(O),C(x)

(C4)

{z/O}

I rB(O),A(w),C(x) I

61

Starting at the root, the first loop check that prunes the tree is the SIG check. It
prunes the goal +-A(O), C(x), because it contains A(O), an instance of A(x).

Following the leftmost infinite branch two steps down, the SVG check prunes the
goal +-B(x), A(w), because it contains A(w), a variant of A(x). One step later, the
atom B(x) is resolved, so the EIG and EVG checks prune the goal +-A(w) for the

same reason.
However, the loop checks based on resultants do not yet prune the tree. The

computed answer substitution built up so far maps x to x after the first three steps

62 R.N. Bol, K.R. Apt, 1. W. Klop

and to 1 later on. This is clearly different from the substitutions {x/O} and {x/w},
which are used to show that A(O) resp. A(w) are an instance resp. a variant of A(x).

Now the derivation repeats itself, but with x replaced by w. Therefore the loop
checks based on resultants prune the tree during this second phase, exactly in the
place where the corresponding loop checks based on goals pruned during the first
phase.

The side branch that is obtained by repeatedly applying the first clause (and
corresponding side branches later on) is pruned by the subsumption checks at the
goal -A(O), C(O), C(x). This goal contains the previous goal -A(O), C(x). There­
fore both the resultant based and the goal based loop checks prune this goal. In
contrast, the equality checks do not prune this infinite branch because the goals in
it become longer in every derivation step (analogously to Example 4.8).

The loop checks based on goals all prune the solution {x / 1}, so they are not
sound. Among these loop checks, the SIG check prunes as soon as possible for a
weakly sound loop check. Conversely, the SIR check prunes this tree as soon as
possible for a shortening loop check. So on this tree, it behaves exactly like STRONG,
which exhibits such a behavior by definition.

Another example shows that there can be a nontrivial difference between the
behavior of subsumption checks based on list subsumption and those based on
multiset subsumption.

Example 5.5. Let P={A(x)-A(y), S(x), T(y)}. (Note the similarity between this
clause and the clause A(x) -A(y), S(y, x) in Theorem 3.10.) Let G =
-A(xo), B(xo). An SLD-derivation (and SLD-tree) of Pu { G} via the leftmost
selection rule is depicted in Fig. 8. This infinite SLD-derivation is pruned by the
SVRM check at the goal -A(x2), S(x1), T(x2), S(x0), T(x1), B(x0), since a variant
of an earlier goal, namely (-A(x1), S(x0), T(x 1), B(x0)){xif x2}, is "multiset­
contained" in it.

However, this derivation is not pruned by the SVRL check, nor by the stronger
SIGL check. For, assume that the SIGL check prunes this derivation at the goal

Gk = -A(xk), S(xk-1), T(xk), S(xk-2), T(xk_ 1), ••• , S(x0), T(x1), B(x0),

~A(xo),B(xo)

u
~A(x 1),S(xo),T(x1),B(xo)

u
~A(x2),S(x 1),T(x2),S(xo), T(x 1),B(xo)

u
~A(x:3),S(x2),T(x3),S(x1),T(x2),S(xo),T(x1),B(xo)

u

Fig. 8

Loop checking mechanisms for logic programs 63

because an instance of an earlier goal G;,

is list-contained in it.
Clearly, the presence of the B-atoms in G;T and Gk requires X0 T = x0 • So the

atom S(x0)T in G;T corresponds to the atom S(x0) in Gk. Then, because G;T is
list-contained in Gk> T(x 1)T can only correspond to T(x1), the only atom between
S(x0) and B(x0). Therefore x 1 T = x 1 • Using induction, we can derive x2 T =
x2 , ••• , X;T = x;. However, the presence of the A-atoms in G;T and Gk requires
X;T = xk. Since i < k, this is a contradiction. So the assumption that the SIGL check
prunes the derivation is refuted.

The above examples suggest some "stronger than" relationships (although an
example can only prove the absence of such a relationship). Figure 9 shows the
relationships between the subsumption checks, the equality checks, VA and IA. The
arrows between the "cubes" mean that every subsumption check is stronger than
the corresponding equality check in the other "cube". So the structure of "stronger

EVRL EVGL l "'-..EIRL "'-..EIGL

EVR~ EVG~l

SVRL SVGL

1~IRL ~IGL
SVR~ SVG~l

shortening

SIRM--r---t---1r- SIG M

t weakly sound

-- ·-·---·-·not weakly sound

VA

~
IA

Fig. 9

64 R.N. Bo/, KR. Apt, J. W. Klop

than" relations between equality checks and subsumption checks is a four­
dimensional hypercube. Again, proving these "stronger than" relations is straight­

forward.

5.2. Soundness

To prove the desired soundness results, we prove that the SIRM check is shortening
and that the SIGM check is weakly sound, since these are the strongest loop checks
based on resultants, respectively goals, in our scheme. First we need the following

lemma.

Lemma 5.6. Let P be a program and r a substitution. Let G 1 and G2 be goals such
that G2T s; M G1• Suppose D 1 is an SLD-derivation of Pu { G1} with computed answer

substitution u 1 • Then there exists an SLD-derivation D2 of Pu { G2} with a computed
answer substitution u2 such that ID2J,,;,;; ID1I and a 2 ,,;,;:; ru1 •

Proof. Let D = (G1 =>c,,e, · · · =>c.,e. D) and let Cn,, .. . , C"m be those clauses from
C1 , ••• , Cn that are used (directly or indirectly) to resolve atoms belonging to G2 T,

with 1,,;,;; n1 < · ··<nm..;; n. Then there exists an unrestricted (in the sense of [16])
SLD-derivation

Now apply the mgu lemma and the lifting lemma of [16]. D

We can now prove the desired theorem.

Theorem 5.7. (i) The SIRM check is shortening.
(ii) The SIGM check is weakly sound.

Proof. Let P be a program, G0 a goal and

D = (Go=>cl>e, G1 => · · · => Gi-1 =>c,.e, Gi => · · · => Gk-1

=>c •. e. Gk => · · ·=>cm.em D)

an SLD-derivation of Pu { G0} (where 0 :soi< k :so m).
(i) Assume that for some substitution r: Gk 2 M G;T and G081 ••• 8k = G0 81 ... 8;T.

Then since Gk =>ck+1 .ek+1 • • ·=>cm. em D, by Lemma 5.6 an SLD-derivation
G; =>u, • • · =>o-. D of Pu { G;} exists, with u 1 ••• an..;; r8k+l ... 8m (n..;; m - k < m -
i).

Go81 · • • 8;0'1 · • • O'n..;; Go81 · • · 8;T8k+I • • . 8m = Ga81 ... 8k8k+I ... 8m,

hence the full condition of Lemma 4.5 is satisfied, so SIRM is shortening.
(ii) The additional condition G0 81 ••• 8k = 0 0 81 ••• 8;r was only used to prove

the additional shortening condition of Lemma 4.5. D

Loop checking mechanisms for logic programs 65

Corollary 5.8 (Subsumption soundness). (i) All subsumption checks based on

resultants are shortening. A fortiori they are sound.

(ii) All subsumption checks based on goals are weakly sound.

Proof. By Theorem 5.7 and the Relative strength Theorem 3.9. D

5.3. Completeness

We now shift our attention to completeness issues. From the results of the previous
section we can immediately deduce the following result.

Corollary 5.9 (Subsumption completeness 1). All subsumption checks are complete

w.r.t. the leftmost selection rule for function-free restricted programs.

Proof. By the Equality completeness Corollary 4.19 and the Relative strength

Theorem 3.9. D

However, the subsumption checks are stronger than the corresponding equality

checks. So we can try to find other classes of programs for which the subsumption

checks are complete. We know that the subsumption checks are not complete for

all programs, not even for all function-free programs. For P =

{A(x)~A(y),S(y,x)}, a derivation of Pu{~A(x),B(x)} is not pruned by any

of the subsumption checks, as was shown in Theorem 3.10.
A close analysis of the proof of this theorem shows that the problem is caused

by three "events" occurring simultaneously:
(1) A new variable y is introduced by a "recursive" atom, A(y).

(2) There is a relation between this new variable y and an old variable x, namely
via the atom S(y, x).

(3) The "recursive" atom A(y) is selected before the "relating" atom S(y, x).

It appears that, in order to obtain the completeness of the subsumption checks,

it is enough to prevent any of these events. Clearly, the use of restricted programs

and the leftmost selection rule prevents the third event. We now introduce two new

classes of programs, preventing the first and the second event, respectively.

Definition 5.10 (Nvi program). A clause C is non variable introducing (in short nvi)

if every variable that appears in the body of C also appears in the head of C. A

program P is nvi if every clause in P is nvi.

Definition 5.11 (Svo program). A clause C has the single variable occurrence property

(in short is svo) if, in the body of C, no variable occurs more than once. A program

P is svo if every clause in P is svo.

66 R.N. Bo/, K.R. Apt, J. W. Klop

Clearly, in nvi programs the first event cannot occur, whereas in svo programs the
second event is prevented. We would rather have used the terminology right-linear
instead of svo, which is common in the area of term rewriting systems. However,
in the area of deductive databases this term is already in use for a completely

different notion.

Example 5.12. The following program is an nvi program and an svo program, but
not a restricted program. It computes in the relation add the sum of two two-digit
binary numbers (the first four arguments of add); this sum is a three-digit binary
number, stored in the last three arguments of add.

ADD= {add(O,O, A,B, O,A,B) +--.

add(A,B, 0,0, O,A,B) +--.

add (A,B, A,B, A,B,O) _._

add(A 1 ,8 1 , A 2 ,B2 , C,A3 ,B3) +-- add(O,B1, O,B2, 0,0,B3),

add(O,Ai. O,A 2 , O,C,A3).

add(Ai.1, A2 ,1, 1,0,0) _. add(O,Ai. O,A2 , 0,0,1).}.

The first three clauses are evidently correct; every addition of the form OX+ 0 Y is
taken care of by them. The fourth clause deals with the case where adding the last
digits of both numbers does not give a carry (ensured by the first atom in the body).
The fifth clause deals with the case where there is such a carry. Only the case A 1 ~ A 1

(or equivalently, A1+A 2 =1) has to be considered there: if A 1 = A2 then the third
clause applies.

Note that this program yields infinite derivations that are not pruned by any of
the equality checks. Indeed, starting with the goal +-add(O,Bi. O,B2 , 0,0,B3), the
first recursive clause applies, giving the goal +-add(O,B,, 0,82 , 0,0,B3),

add(O,O, 0,0, 0,0,0). Repeatedly selecting add (O,B,, O,B2 , 0,0,B3) and applying the
first recursive clause yields an infinite derivation containing goals of increasing
length, which is not pruned by any of the equality checks.

We now prove that the weakest of the subsumption checks, the SVRL check, is
complete for function-free nvi programs. To this end we use the following
(weakened) version ofKruskal's Tree Theorem, called Higman's Lemma. (See [12];
for a formulation of the full version of Kruskal's Tree Theorem, see [9] or [14].)

Lemma 5.13 (Higman's Lemma). Let Wo, w,, w2 , ••• be an infinite sequence of (finite)
words over a finite alphabet X. Then for some i and k > i, W; ~ L wk.

In order to prove that the SVRL check is complete for function-free nvi programs,
we prove that, in the absence of function symbols, infinite derivations in which no
new variables are introduced are pruned by the SVRL check. Then we prove that
every derivation of a function-free nvi program (and an arbitrary goal) has a variant
that indeed does not introduce new variables.

Loop checking mechanisms for logic programs 67

Definition 5.14. An SLD-derivation D = (G0 ~c,.e, G 1 =:;. · · ·) is nonvariable
introducing (in short nvi) if var(G0) 2 var(G1) 2 var(G2) 2 · · · .

Lemma 5.15. In the absence of function symbols, every infinite nvi SLD-derivation is
pruned by SVRL.

Proof. Let D = (G0 =;.c, ,9 , G 1 =:;. • · ·) be an infinite nvi SLD-derivation. We take
for~ the set of equivalence classes of -var(Gol,Go.l as defined in Definition 4.15. By
Lemma 4.17, ~is finite. To apply Higman's Lemma 5.13 we represent for j'~O a
goal G; = -A1i, ... , A 11d (or rather the corresponding resultant G0 81 ••• 8i-Gi)

as the word [G 0 81 ... 8i - Ali], ... , [G 0 81 ... 8i -. A 111J over ~. (Recall that for a
resultant R, [R] denotes its equivalence class.) The sequence of representations of
G0 , G1, G2 , ••• yields an infinite sequence of words w0 , w1, w2 , ••• over~.

Now by Higman's Lemma 5.13, for some j and k > j:

[Go81 ... (Ji -Ali], ... , [G 0 81 ••• 8i-. A 111J

£L [Go81 ... Bk -A1k], ... , [Go81 ... fJk -.A"kd.

So by the definition of -var(Gol.Go,1 , there exist renamings p 1 , ••• , p 111 which do not
act on the variables of G0 such that

(G0 81 ... (Ji -A1i)P1o ... , (G0 81 ••• (Ji -An1i)Pn1

£L (Go81 ... Bk-. A1k), ... , (Go61 ... Ok -Ankk).

However, D is nvi, so var(Gi) £ var(G0) and therefore the renamings Ph do not
act on the atoms Aij of Gi (1 ~ h, i ~ nJ). Thus GJ = GJp 1 s;L Gk and G0 61 ••• 8Jp1 =
Go61 ... ek. So D is pruned by SVRL. 0

Lemma 5.16. Let P be a function-free nvi program and let G0 be a goal in Lp. Let D
be an infinite SLD-derivation of Pu { G0}. Then a variant D' of D is an infinite nvi
derivation.

Proof. Suppose that D = (G0 =;.c,,11, G 1 =;.c,, 82 G2 =:;. · · ·). We show that there exists
an infinite nvi derivation D' = (Gb =;.c"e; G; =;.c,,e2 G~ =:;. · · ·) that is a variant of
D. Note that D' uses the same input clauses as D.

We give an inductive construction of D'. By definition, Gb = G0 • Suppose we
have constructed D' up to a goal G;_ 1 (i> O). G;_ 1 and Gi-i are variants, say
Gi-i = G;_ 1p. Gb = G0 and the clauses C 1 , ••• , Ci-i are the same as in D, so C; is
well standardized apart and we may assume that C;p = C;. Therefore p6ip- 1 is an
applicable (idempotent) mgu.

Now we obtain e; by replacing every pure variable binding x/y within p8ip-1 by
y / x whenever x E var(G;_1) and y E var(Ci), and replacing for such x and y every
other binding z/y within p6ip- 1 by z/x.

68 R.N. Bol, K.R. Apt, J. W. Klop

Since no function symbols appear in P, this yields that for every variable x E

var(G;_1) either xe: E var(G;_1) or xe; is a constant. Hence var(G;_1 ODs var(G;_1).

Now let A be the selected atom in G:-1. let R be the rest of G;_l and let x E var(G;).

Two cases arise.
(1) x is introduced by C;, that is xEvar(body(Ci)O;). Then, since P is an nvi

program, xEvar(head(Ci)O;). e; is a unifier of head(C;) and A, so xEvar(Ae;)s

var(Gi-1 ODs var(G;_1).
(2) x is introduced by G;_i. that is x E var(RO;). Then x E var(G;_ 1 O;) s var(G;_ 1).

This proves the induction hypothesis for D' up to the goal a;. D

Theorem 5.17. The SVRL loop check is complete for function-free nvi programs.

Proof. By Lemmas 5.3, 5.15 and 5.16. D

Corollary 5.18 (Subsumption completeness 2). All subsumption checks are complete

for function-free nvi programs.

Proof. By Theorem 5.17 and the Relative strength Theorem 3.9. D

We now prove that the SVRL check (and hence all subsumption checks) are

complete for function-free svo programs. By a construction similar to the one used

in the proof of Lemma 5.16, we may assume that in an SLD-derivation D =
(G 0 ::;.c, ,e, G 1 ::;> · · ·), var(G0 0;) <:; var(G 0) for i > 0. (Note that for this construction,

only the absence of function symbols was needed, and not the nvi property.) Under

this assumtion we can prove the following lemma.

Lemma 5.19. Let P be a function-free svo program and let G0 be a goal in Lp. Let

D = (G0 ~c, ,e, G 1 ::;.c,,82 0 2 -=='> • • •) be an SLD-derivation of Pu { G 0}. Then for

every goal Gi (i;=:;.O), ifx occurs more than once in Gi> then xEvar(G0).

Proof. By induction. For i = 0, the claim is trivial. Now suppose x occurs more

than once in G;+1 (i;=;;.O) and x~var(G0).

Let G; =(A, S), where A is the selected atom (not necessarily the leftmost atom)

and let Ci+1 = H ~ X. Then Oi+t is an idempotent mgu of A and H and Gi+ 1 =
(X, S) 0;+ 1. There are two ways in which we can obtain a variable x occurring more

than once in G;+1 ·
(1) A variable y occurs more than once in (X, S) and yll;+1 = x. By standardizing

apart, var(S) n var(X) = 0, so y occurs either only in S or only in X. Since Ci+ 1 is

svo, y does not occur more than once in X. Therefore y occurs more than once in

S. Then by the induction hypothesis, y E var(G0). So x = yll;+i E var(G0 ll;+ 1) <:;

var(G0).

Loop checking mechanisms for logic programs 69

(2) There are two variables y1 and Yi in (X, S) such that y 16;+ 1 = Yi6i+ 1 = x and
y 1 ;t. Yi. In this case Yi. y2 E var(A, H), since dom(6;+ 1) s; var(A, H). If y 1 E var(S),
then by standardizing apart y 1 e var(H), so y 1 E var(A). Therefore y 1 occurs more
than once in G; (in A and in S), and we can apply the induction hypothesis again.
Since the same argument holds for Yi E var(S), only the case y 1 , Yi E var(X) is left.
In this case, since Yi. Yi E var(A, H), by standardizing apart, Yi. Yi E var(H).

Since Y16i+1 = Yi6;+ 1 = x, the sets Z1 = {z E var(A) I z occurs in A at the position
of an occurrence of y1 in H} and Zi = {z E var(A) I z occurs in A at the position of
an occurrence of Yi in H} are not disjoint. (Otherwise, a more general unifier of A
and H than ei+1 would exist, mapping y 1 to an element of Z 1 and Yi to an element
of Zi.) Let zEZ1 nZ2 • Then z occurs at least twice in A, so zevar(G0). Thus
x = zB;+ 1 E var(G0 6;+ 1) s; var(G0). D

We can now prove the desired theorem.

Theorem 5.20. The SVRL loop check is complete for function-free svo programs.

Proof. Let P be a function-free svo program and let G0 be a goal in Lp. Let
D = (Go ::;>c"6 ' G 1 ::;>c,,62 G2 ::;> • • ·) be an infinite SLD-derivation of Pu { G0}.

Again, we take for.! the set of equivalence classes of -var(GoJ,a0 , 1 as defined in
Definition 4.15. By Lemma 4.17, .! is finite. To apply Higman's Lemma 5.13 we
represent a goal Gj = AIJ, ... , Anjj in D as the word wj =
[G0 e1 ... ej -A1j], ... , [G0 61 ••• ej -Anjj] over.!. The sequence ofrepresentations
of G0 , G 1 , G 2 , ••• yields an infinite sequence of words w0 , w1 , Wi, ••• over .!.

Now by Higman's Lemma 5.13, for some j and k > j,

[G0 e1 ••• ej -Alj], ... , [GoB1 ... ej -Anjj]

s; L [Goel ... ek -A1k] •... ' [Goel ... ek -An.kl

So there are renamings p1 , ••• , Pn1 such that

(Ga61 ... ej -A1j)P1, ... , (Gae1 ... ei -Anjj)Pn1

s; L (Gael ... ek -Alk), ... ' (Go81 ... 6k -An.d·

We now construct a renaming p. Consider the set X = var(Gj)-var(G0). By
Lemma 5.19 a variable x EX occurs at most once in Gi; if x occurs in A;1, then we
define xp = xp;. In order to make p a renaming p maps (one-to-one) the variables
of Xp - X to the variables of X - Xp; p is the identity mapping on variables outside

Xu Xp. Since, by the definition of -var(Gol.Go.l • the renamings p; do not act on
variables in var(G0), x EX u Xp implies x e var(G0). Hence p does not act on the

variables in var(G0), so G1p s;L Gk. From the assumption var(G0 6;)s;var(G0) for
i > 0 it follows that var(Goe1 ... B;) s; var(Go), thus Gae1 ... eip = Gae1 ... 01• So
G1p s;L Gk and G0 81 ... O;P = G081 .•• Ok. hence D is pruned by SVRL· D

70 R.N. Bol, K.R. Apt, J. W. Klop

Corollary 5.21 (Subsumption completeness 3). All subsumption checks are complete
for function-free svo programs.

Proof. By Theorem 5.20 and the Relative strength Theorem 3.9. 0

Now combining Corollaries 3.6 and 3.7 with the Subsumption soundness Corollary
5.8 and the Subsumption completeness Corollaries 5.9, 5.18 and 5.21, we conclude
that all subsumption checks lead to an implementation of CW A for restricted
programs, nvi programs and svo programs without function symbols. Moreover, the
subsumption checks based on resultants also lead to an implementation of query
processing for these programs.

6. Context checks

The Instance of Atom check is not weakly sound due to the fact that it does not
take into account the context of an atom. However, whereas A(x) and A(y) differ
only by a renaming, the existence of a refutation of -A(y), B(x) does not imply
the existence of a refutation of +-A(x), B(x). To remedy this problem we should
keep track of the links between the variables in the atom and those in the rest of
the goal.

Roughly speaking, the IA check prunes a derivation as soon as a goal Ok occurs
that contains an instance Ar of an atom A that occurred in an earlier goal O;. But
when a variable occurs both inside and outside of A in O;, we should not prune
the derivation if this link has been altered. Such a variable x in G; is substituted
by xBi+ 1 ••• Bk when Ok is reached. Therefore r and 0;+ 1 ••• Bk should agree on x.
This leads us to a loop check introduced by [3].

6.1. Definitions

Definition 6.1 (Context checks for goals). The Variant/ Instance Context check on
Goals is the set of SLD-derivations

CVG/CIG= RemSub({D\D= (Oo~c,, 8 , 0 1 ~ • • • ~Gk-1 ~c.,o. Gk)
such that for some i and j, 0 ~ i ~ j < k, there is a
renaming/ substitution r such that for some atom
A in G;: Ar appears in Ok as the result of
resolving A0;+1 ••• ej in Oi and for every variable
x that occurs both inside and outside of A in G;,
x9;+ 1 ••• Ok= xr}).

Besnard describes the condition on the substitutions as follows: "When Ar is
substituted for A9;+1 ••• Bk in 0;9;+ 1 ••• Bk> this should give an instance of G;." We

Loop checking mechanisms for logic programs 71

show that this formulation is equivalent to ours. Let G; =(A, S), that is A occurs

in G; and S is the list of other atoms in G;. Then (Ar, S8i+ 1 ••• 8k) should be an
instance of (A, S), say (Aa, SCT). Clearly,

{
XT

xa=
x8i+l ... ek

for x E var(A)

for x E var(S),

so for x E var(A) n var(S), xr = x8;+ 1 ••• ek.
The following example clarifies the use of the context checks.

Example 6.2. We use the program P and the goal G of Variant of Atom check

Example 2.5 and apply the CIG check on two SLD-trees of Pu { G}, via the leftmost

and rightmost selection rule, respectively. This yields the trees in Fig. 10.

rC rC

i(C4) i(C4)

rA(x),B(x)

(Ct) "-.cc~)'
{x/O '\f"'/x}

CIG prunes here

rA(x),B(x)

I (C2)

rB(O) rA(y'),B(x)

cc1)/ \.cc3)"
{y·1ov ~{x"/y'}

rB(x) rA(y"),B(x)

1<C2) cc,1y \CC3)'"
{x/l} { y"/O/ ~{ x"'/y"}

D

Fig. JO

t{ x/l}

rA(l)

I (C3)'
t{x'/I}

<--A(y')

cc~l/ \Stl
{x"/y'~ ~'/O}

<--A(y") D

The goal 0 3 = <-A(y') in the rightmost tree that was incorrectly pruned by the

VA check, is not pruned by the CIG check. Certainly, A(y') is the result of resolving

A(l) in 0 2 , the further instantiated version of A(x) in 0 1 • But replacing A(x)82 83

by A(y') in 0 182 83 yields <-A(y'), B(l), which is not an instance of <-A(x), B(x).

Claim 6.3. CVG and CIG are weakly sound simple loop checks.

Proof. Proving that CVG and CIG are simple loop checks is straightforward. Besnard

claims that CIG is weakly sound. From this it follows that the weaker CVG check

is also weakly sound. See also Corollary 6.7. D

In Example 4.3, the context checks act exactly in the same way as the corresponding

equality checks. This shows that CVG and CIG are not sound. Again we can obtain

sound, even shortening, versions by using resultants instead of goals.

72 R.N. Bo/, K.R. Apt, J. W. Klop

Definition 6.4 (Context checks for resultants). The Variant/ Instance Context check

on Resultants is the set of SLD-derivations

CVR/CIR= RemSub({DiD = (Oo=>ci.e, G1 => · · · => Gk-1 =>c.,1J, Ok)
such that for some i and j, 0 ~ i ~ j < k, there is a
renaming/substitution r such that 0081 ... 8k =

0 081 ••• 8;r and for some atom A in Gi: Ar
appears in Ok as the result of resolving
A8i+1 ... (Ji in Oi and for every variable x that
occurs both inside and outside of A in
G;: X8;+1 . .. (Jk = XT}).

Using Besnard's phrasing, the conditions on the substitutions can be summarized
as: "When Ar is substituted for A8i+1 ... 8k in the resultant R;8;+1 ... 8k, this should
give an instance of R;."

Lemma 6.5. CVR and CIR are simple loop checks.

6.2. Soundness

Now we prove that the CIR check is shortening. From this it follows that the
weaker loop check CVR is also shortening.

Theorem 6.6. The CIR check is shortening.

Proof. Let P be a program, G0 a goal and D=(G0 =>c,,e, G 1 => · · ·=> G;-1=>c,,e,
G; => · · · => Gk-1 =>c.,e. Gk => · · ·=>cm.em D) an SLD-derivation of Pu { G0} (where
O~i<k:o;;;;m).

Assume that Dis pruned by CIR, that is for some substitution r: G; = -(A, S;),
Ok = -(Ar, Sk), Ar descends from A, S;8;+ 1 ... 8k =Sir and G0 81 ••• 8k =
G0 81 ••• 8;r. (Here G = -(A, S) means: A occurs in G and S is obtained by
removing A from G.)

Then -s; s;M G; and -Ar s;;;M Gk. Since

by Lemma 5.6 we have SLD-refutations D 1 of Pu{-SJ and D2 of Pu{-A},
where the computed answer substitution of D 1 , r 1 ,;;;; lli+J ..• 8m and the computed
answer substitution of D 2 , r2 ,;;;; rOk+i ... Om. Say r2 y = r(h+ 1 ... 8m. Now we combine
D 1 and D2 into an unrestricted SLD-refutation of Pu {-(A, S;)}: first resolve A
as in D2; the goal S;r2 remains. Replacing the last mgu µ, of this derivation by µ,-y,
this remaining goal becomes

Loop checking mechanisms for logic programs 73

From Lemma 8.5 of [16] and the existence of D 1 it follows that Pu { +-SJ1i+i ... em}
can be refuted indeed, giving a computed answer substitution e. The mgu lemma
of [16] shows that the combined unrestricted refutation can be turned into a real
SLD-refutation D3 of Pu {+-(A, Si)} giving a computed answer substitution 7 3 .;:;

T2'YE = Tek+I ... em. Therefore

Go81 · • • ejT3.;:; Go81 • · · 8jTek+I . ·. em= Goel ·. · ekek+I ... em•

Since AT descends from A, an inspection of the proof of Lemma 5.6 shows that
every derivation step in D 1 and D 2 has a corresponding derivation step in the tail
(Gi ~ · · · =? O) of D. This tail consists of m - i derivation steps. On the other hand,
at least one step in this tail has no corresponding step in D 1 or D 2 : the step in
which Aei+1 ... ei is selected. Hence the number of derivation steps in D 3 (which
equals the number of derivation steps in D 1 and D 2 together) is smaller than m - i.

Now, apply Lemma 4.5. 0

Corollary 6.7 (Context soundness). (i) The context checks based on resultants are
shortening. A fortiori they are sound.

(ii) The context checks based on goals are weakly sound.

Proof. By Theorem 6.6 and the Relative strength Theorem 3.9. Note that omitting
the considerations about computed answer substitutions from this proof yields a
proof for (ii), i.e. for Claim 6.3. 0

For derivations via certain selection rules (including leftmost and rightmost
selection rule), a much easier soundness proof exists, based on the relative strength
of the context checks.

Definition 6.8. (This definition is equivalent to the definition of local selection
functions in [23].) A selection rule R is local if every SLD-derivation D =

(G0 ~c, ,8 , G 1 =? · · ·) via R satisfies the following property. If in a goal Gi, an atom
A is selected and in a goal Gi (j > i) the further instantiated version B8;+ 1 ••• ei of
the atom B in Gi is selected, then A is resolved completely between Gi and Gi.

Lemma 6.9. The SIGL check is stronger than the CIG check and the SIRL check is
stronger than the CIR check w.r.t. local selection rules.

Proof. Suppose D = (G0 ~c,,6, G1 ~ • • • ~c.,9, Gk) is pruned at Gk by the CIG
check, see Fig. 11. We show that Dis pruned by the SIGL check at Gk (or earlier).

We have an atom A in Gi> Aei+I · · · 8i in q as the selected atom and AT as the
result of resolving A8i+I · · · ei. Let Gi =(A, S, T), where S consists of those atoms
in Gi that are completely resolved between Gi and q. The use of a local selection
rule yields

Gj = (Aei+I ... 8j, Tei+ I ••• 8j) and Gk =(AT, V, Tei+I ... 8k)

(U consists of the other atoms in Gk that are the result of resolving A8i+ 1 ••• ei).
Finally, if x E var(A) n var(S, T) then x8i+I ... 8k = XT.

74 R.N. Bol, K.R. Apt, J. W. Klop

G. T
1

./~,./·
/

1--~--\-r, _____ _,
1

1 S•hmmptioo dreok

akl .__A_'t~\ _u_~_T_e_i_+1_ .. _.e_k_~.
Fig. II

We show that for some substitution a, Gp s L Gk. We define a as follows:

{
x if x E var(GJ

xa = xej+I .. ' ek if x E var(GJ-var(A),
XT if XEVar(G1)nvar(A).

We show that (i) Aei+1 ... Op= Ar and that (ii) Tei+ 1 ... Op= T8i+1 ... ek.
(i) Let x E var(A), then x E var(G;). We prove that x0;+ 1 •.• Op= xr.
If x E var(GJ), then x8;+ 1 ... 81 = x, hence x8;+1 ... Op= xa = xr.
If xevar(G;) then x8;+1 ... ej-¥ x, hence xEvar(S). So xei+I ... ek = XT. Moreover,

for every yE var(x8;+ 1 ... OJ, either y E var(S) or y is introduced by C+ 1, ... , CJ,
i.e. ye var(G;), in particular y E var(A). In both cases ycr = ye;+ 1 ... fh (notice that
y E var(xei+l ... 01) s var(Alli+l ... ej) s var(G1)). So x8;+1 ... e;<J = xlli+l ... ek = XT.

(ii) Now let y E var(T8i+1 ... ej). We prove that ycr = y8j+I ... ek· First note that
for some x E var(T): y E var(xe;+ 1 ... OJ).

If x E var(S), then x = x8;+1 ... ej = y, so y E var(T), hence Y<J = y8;+1 ... ek·
If x E var{S), then again either y E var(S) or y E var(A), and in both cases yu =

y8j+I ... 8k.
If Dis pruned by the CIR check, then we also have that G0 e1 ••• 8k = G 0 e1 ••• 8;r.

We show that this implies G0 e1 ... Ok= G0 e1 ... Op, i.e. that D is pruned by the
SIRL check. Let x E var(Goel ... e;), hence x8;+1 ... ek = XT. We show that
x8;+1 ... eja = xei+l ... ek.

If xevar(S), then xB;+i · .. 81 =x, hence

{
x = x8;+1 ... ej = xei+I ... ek

xei+l ... O;cr = X<J = xej:l ... ek =XO;+ 1 ... ek

XT - xe;+1 ... 8k

if x E var(G;),

if x E var(GJ)-var(A),

if x E var(GJ) n var(A).

If x E var(S), then again for every y E var(x8H 1 ... 81), either y E var(S) or y .E

var(A), and in both cases yu = yOJ+i ... ek (if ye var(G1) then y<J = y = ye1+1 ... ed.
So x8;+1 ... ep = X8;+1 ... ek. D

The following example shows that the previous result does not hold for selection
rules that are not local.

Loop checking mechanisms for logic programs

Example 6.10 (Based on Example 10 in [3]). Let

P={A-B. (Cl),

B -A. (C2),

C - D. (C3)},

and let G =-A, C.

75

Then the derivation -~. C ~<co -B, C' ~(CJ)-!), D ~cc2 > -A, D (in which
the selected atoms are underlined) is pruned by the context checks (the A in the
fourth goal is the result of resolving the A in the first goal), but not by the subsumption
checks.

Now we can add the context checks to our "stronger than" scheme, as in Fig.
12. The dotted arrows are only valid for local selection rules.

shortening weakly sound

CYR SYR L-----+-• SYGL CVG

~!R-l ':s1R1 ~IG14-CI~
SVR~ SVG~l

SIRM-+----+---<.-

IA

not weakly sound

Fig. 12

76 R.N. Bol, K.R. Apt, J. W. Klop

6.3. Completeness

Again we shift our attention to completeness issues. We first prove that, like the
equality checks and the subsumption checks, the context checks are complete w.r.t
the leftmost selection rule for function-free restricted programs.

Theorem 6.11. The CVR check is complete w.r.t. the leftmost selection rule for function­
free restricted programs.

Proof. Let P be a function-free restricted program and let G0 be a goal in Lp. Let
k =weight(G0). Consider an infinite SLD-derivation D = (Go ~c1 ,01 G1 ~ · · ·
~ G;_1 ~c,,e, G;~ · · ·) of Pu{G0}. By Corollary 4.14 for every i;;;.O: iGJos:; k.
Every goal G; is a goal in Lp and hence every resultant G0 81 ... 8; +- G; belongs
to an equivalence class of - 0•00 ,k. Lp satisfies the conditions of Lemma 4.17, so
- 0•00 ,k has only finitely many equivalence classes. Thus the set E =fr if is an
equivalence class of - 0•00 ,k and for infinitely many resultants R in D: RE g} is
nonempty. For simplicity, we shall say that the goal G; is in an equivalence class
g, when in fact (Go81 ••• 8; +- G;) E f.

For every equivalence class g of - 0,00 ,k. we define the length off, denoted by
i.?i, as the length of the goals in g. Since E ~ 0, we can define I= min{i.ei if EE}.
Now we choose an equivalence class e EE with lei== l. According to the choice of
e, D contains infinitely many goals in e and a finite number of shorter goals (since
the number of equivalence classes of - 0,00 ,k is finite).

Let G; and Gk be (the first) two goals in D that are in e such that no goal lying
in D between them is shorter. Since G; and Gk are in the same equivalence class
e, we have Gk = G;T and 0 0 81 ••• 8k = 0 0 81 ..• 8;T for some renaming T.

Let A be the leftmost atom in G; and let S be the rest of G;. A is selected in G;.
However, A is not completely resolved between G; and Gk, otherwise a goal shorter
than G;, namely an instance of S, would appear between G; and Gk in D. Therefore
the atom AT in Gk is the result of resolving A. Furthermore, no atom of Sis selected
between G; and Gk. so Gk =(AT, S8;+1 ... 8k). Hence S8;+1 ... 8k =ST.

When in the resultant R;8;+1 ... 8k. we replace A8;+1 ... 8k by AT, we obtain
(Go81 ... fh +-AT, S8i+I ... 8k) = (Go81 ... 8;T +-AT, ST), which is a variant of R;.
Therefore D is pruned by the CVR check. 0

Corollary 6.12 (Context completeness 1). All context checks are complete w.r.t. the
leftmost selection rule for function-free restricted programs.

Proof. By Theorem 6.11 and the Relative strength Theorem 3.9. D

Besnard [3] claims without much proof that the CIG check is complete for
function-free nvi programs. It appears that even the weakest of the four context
checks, CVR, is complete for function-free nvi programs.

Loop checking mechanisms for logic programs 77

Theorem 6.13. The CVR check is complete for function-free nvi programs.

Proof. Let P be an nvi program, G0 a goal in Lp and D =

(G0 ~c, ,6 , G 1 ~c2 , 82 G2 ~ • • •) an infinite SLD-derivation of Pu { G0}. By Lemma
5.16 we may assume that D is an nvi derivation.

Since Dis infinite, at least one atom in G0 has infinitely many selected descendants,
hence the proof tree of this atom is infinite. Applying Konig's Lemma on this proof
tree shows that it has an infinite branch, so there exists an infinite sequence of goals
Gmo, Gm,, ... (Q,,;;; m0 < m1 <···)containing atoms A 0 , A1o ... such that for every
i ;;..o,

(1) A is the selected atom in Gm,,
(2) A;+ 1 is (the further instantiated version of) an atom A;+1 which is introduced

in Gm,+t as the result of resolving A;.
The situation is depicted in Fig. 13 (selected atoms are underlined).

Go = (······Ao')

*
* 01 ... emo

Gm0 = (...... Ao) (Ao= Ao'61 ... 6mo)

I \ t 0mo+I

Gmo+I = (...... A(.....)

* * 0mo+2···0m1

Gm1 =(...... A1) (A1 = A1'0mo+2·· .0m1)

I \ t 0m1+!

Gm1+1 = (...... A2'.)

* * 0m1+2···

etc.

Fig. 13

We now consider the resultants G00182 ••• em, - A; (i;;,, 0). These resultants belong
to equivalence classes of the relation -var(GoJ,Go.t (see Definition 4.15), which has
by Lemma 4.17 only finitely many equivalence classes. Hence for some p and
q > p: (G0e1 e2 ... 8mp -Ap) -var<GoJ.Go.t (G0 8182 ••• 8m• -Aq). So by Definition
4.15, there exists a renaming p such that

(1) G0e1e2 ••• flmpP = Go8182 ... Om•'
(2) App= Aq,
(3) p does not act on the variables of G0 •

When this is compared with the definition of the CVR check, taking i = j = mP,

k = mq, A= AP and T = p, it appears that the only additional condition for pruning
is that "for every variable x that occurs both inside and outside of Ap in Gmp:
x(Jm +I ••• em = xp". We now prove that this condition is also satisfied, which proves

p q

that D is pruned by the CVR check.

78 RN. Bo/, K.R. Apt, J. W. Klop

First observe that, since D is nvi, var(Gm) s;;; var(G0), so for every variable x in
p

Gmp' xp = x. In particular, it follows that Aq =App= Ar
Now suppose that x occurs both inside and outside of AP in G'"P. Then x occurs

in Aq, hence in Gm . Thus x occurs in every goal between Gm and Gm . Suppose q p q

(in order to obtain a contradiction with the previous observation) that for some en
among em + 1, ••• , fJm , xe,, ;t:. x. Since P is function-free, xfJ,, is then either a constant

p q

or a variable other than x. Furthermore, e,, is idempotent, hence e,, does not contain
a binding y / x. Therefore x ~ var(V ARe,,), in particular x ~ var(G,,): contradiction.
Hence x9mp+ 1 ••• em.= x = xp. D

Corollary 6.14 (Context completeness 2). All context checks are complete for function­

free nvi programs.

Proof. By Theorem 6.13 and the Relative strength Theorem 3.9. D

Now combining Corollary 3.6 and Corollary 3.7 with the Context soundness
Corollary 6.7 and the Context completeness Corollaries 6.12, 6.14 and 6.16, we
conclude that all context checks lead to an implementation of CWA for restricted
programs, nvi programs and svo programs without function symbols. Moreover, the
context checks based on resultants also lead to an implementation of query process­
ing for these programs.

References

[1] K.R. Apt, R.N. Bol and J.W. Klop, On the safe termination of PROLOG programs, in: G. Levi
and M. Martelli eds., Proc. 6th Internal. Conf on Logic Programming (MIT Press, Cambridge MA,
1989) 353-368.

[2] K.R. Apt and M.H. van Emden, Contributions to the theory of logic programming, J. ACM 29
(1982) 841-862.

[3] Ph. Besnard, On infinite loops in logic programming, Internal Report 488, !RISA, Rennes, 1989.
[4] D.R. Brough and A. Walker, Some practical properties of logic programming interpreters, in: Proc.

Internal. Conf. on 5th Generation Computer Systems (1984) 149-156.
[5] K.L. Clark, Negation as failure, in: H. Gallaire and J. Minker eds., Logic and Data Bases (Plenum

Press, New York, 1978) 293-322.
[6] C.L. Chang and R.C. Lee, Symbolic Logic and Mechanical Theorem Proving (Academic Press, New

York, 1973).
[7] W. Clocksin and C. Mellish, Programming in PROLOG (Springer, New York, 1981).
[8] M.A. Covington, Eliminating unwanted loops in PROLOG, SIGPLAN Notices 20 (1985) 20-26.
[9] N. Dershowitz, A note on simplification orderings, Inform. Process. Lett. 9 (1979) 212-215.

[10] A. van Gelder, Efficient loop detection in PROLOG using the tortoise-and-hare technique, J. Logic
Programming 4 (1987) 23-31.

[11] A. van Gelder, Negation as failure using tight derivations for general logic programs, in: J. Minker
ed., Foundations of Deductive Databases and Logic Programming (Morgan Kaufmann, Los Altos,
1988) 149-176.

[12] G. Higman, Ordering by divisibility in abstract algebra's, in: Proc. London Math. Soc. (3) 2 (7)
(1952) 215-221.

[13] J.W. Klop and J.J. Ch. Meyer, Toegepaste logica dee! I: Resolutie-logica, Course Notes, Free
University of Amsterdam, 1988 (in Dutch).

Loop checking mechanisms for logic programs 79

[14] J.B. Kruskal, Well-quasi-ordering, the tree theorem, and Vazsonyi's conjecture, Trans. Amer. Math.
Soc. 95 (1960) 210-225.

[15] K. Kunen, Some remarks on the completed database, in: R. Kowalski and K. Bowen eds., Proc.
5th Internal. Conf on Logic Programming (MIT Press, Cambridge MA, 1988) 978-992.

[16] J.W. Lloyd, Foundations of Logic Programming (Springer, Berlin, 2nd ed., 1987).
[17] J.W. Lloyd and J.C. Shepherdson, Partial evaluation in logic programming, Technical Report

CS-87-09, Dept. of Computer Science, University of Bristol, 1987.
[18] D. Poole and R. Goebel, On eliminating loops in PROLOG, SIGPLAN Notices 8 (1985) 38-40.
[19] R. Reiter, On closed world data bases, in: H. Gallaire and J. Minker eds., Logic and Data Bases

(Plenum Press, New York, 1978) 55-76.
[20] D.E. Smith, M.R. Genesereth and M.L. Ginsberg, Controlling recursive inference, Artificial

Intelligence 30 (1986) 343-389.
[21] H. Seki and H. ltoh, A query evaluation method for stratified programs under the extended CW A,

in: R. Kowalski and K. Bowen eds., Proc. 5th Internar. Conf on Logic Programming (MIT Press,
Cambridge MA, 1988) 195-211.

[22] 0. Stepankova and P. Stepanek, A complete class of restricted logic programs, in: F.R. Drake and
J.K. Truss eds., Logic Colloquium '86 (North Holland, Amsterdam, 1988) 319-324.

[23] L. Vieille, Resursive query processing: The power of logic, Theoret. Comput. Sci. 69 (1989) 1-53.

