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We systematically study loop checking mechanisms for logic programs by considering their 
soundness, completeness, relative strength and related concepts. We introduce a natural concept 
of a simple loop check and prove that no sound and complete simple loop check exists, even for 
programs without function symbols. Then we introduce a number of sound simple loop checks 
and identify natural classes of Prolog programs without function symbols for which they are 
complete. In these classes a limited form of recursion is allowed. As a by-product we obtain an 
implementation of the closed world assumption of Reiter (1978) and a query evaluation algorithm 
for these classes of logic programs. 

1. Introduction 

1.1. Motivation 

Prolog has been advocated as a programming language which allows us to write 
executable specifications. Unfortunately, when interpreting correct specifications 
written in the form of a logic program as a Prolog program, a divergence usually 
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arises. This is due to the fact that the Prolog interpreter uses a depth-first search 
and consequently can enter an infinite branch and miss a solution. 

The problem of detecting such a possibility of divergence is obviously undecidable 
as Prolog has the full power of recursion theory. Consequently this problem has 
been taken care of by developing a number of useful heuristics on how to avoid a 
possibility of nontermination. However, the resulting program can be very different 
from the original specification. 

Another possible approach to this problem has been based on modifying the 
underlying computation mechanism that searches through the corresponding SLD­
trees by adding a capability of pruning. Pruning an SLD-tree means that at some 
point the interpreter is forced to stop its search through a certain part of the tree, 
typically an infinite branch. Every method of pruning SLD-trees considered so far 
has been based on excluding some kind of repetition in the SLD-derivations, because 
such a repetition makes the interpreter enter an infinite loop. That is why pruning 
SLD-trees has been called loop checking. Such modifications of Prolog interpreters 
were considered in the literature (see e.g. [3, 4, 8, 18, 20, 21, 23]), but no results 
were proved about them, with notable exceptions of [20, 21, 23]. 

1.2. Plan of the paper 

In this paper we systematically study loop checking mechanisms. To this end, 
after providing in Section 2 a sufficiently general definition of a loop check, we 
introduce in Section 3 the relevant concepts, like soundness (no computed answer 
substitution to a goal is missed), completeness (all resulting derivations are finite) 
and relative strength. We also introduce a natural subclass of loop checks, called 
simple loop checks, obtained when their definition does not depend on the analyzed 
logic programs. We prove among others the result that no sound and complete 
simple loop check exists even in the absence of function symbols. 

In the remainder of the paper we study a number of intuitive simple loop checks. 
We can divide them into three groups, which are studied in Sections 4, 5 and 6 
respectively. For each group we prove the appropriate soundness results and identify 
one or more natural classes of programs without function symbols for which the 
loop checks in the group are complete. The loop checks in all three groups appear 
to be complete for restricted programs without function symbols. Restricted programs 
allow a restricted form of recursion (hence the name). 

The first group consists of loop checks based on the equality between goals, 
respectively resultants, of the derivations and is studied in Section 4. We call these 
loop checks equality checks. 

The second group of loop checks is based on the inclusion between goals, 
respectively resultants, of the derivations and is studied in Section 5. We call these 
loop checks subsumption checks. Subsumption checks are stronger than the corre­
sponding equality checks and therefore they prune SLD-derivations earlier than 
their counterparts. This makes it more difficult to establish their soundness but 
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opens a possibility for completeness for a larger class of programs than restricted 
ones. 

We show that subsumption checks are complete for logic programs without 
function symbols in which no variables are introduced in the clause bodies (so 
called nvi programs). Also, the subsumption checks are complete for logic programs 
without function symbols in which a variable occurs at most once in every clause 
body (so called svo programs). These completeness theorems make use of a simple 
version of Kruskal's Tree Theorem, called Higman's Lemma [12]. While the use of 
this theorem to establish termination of term rewriting systems is well-known (see 
e.g. [9] or [14]), we have not encountered any applications of this theorem in the 
area of logic programming. 

The third group is based on a simple loop check introduced by Besnard [3] and 
is studied in Section 6. These checks test for equality of atoms in a certain context 
(a goal or a resultant). Therefore we call them context checks. We prove that for 
certain selection rules, the subsumption checks are stronger than the context checks. 

As mentioned above, we prove that context checks are complete for restricted 
programs without function symbols. We also prove that the context checks are 
complete for nvi programs without function symbols. 

1.3. Example 

To better understand the relevance of the problems studied here, consider the 
following example. Let P be the following simple-minded Prolog program computing 
in the relation tc the transitive closure of the relation r: 

P={tc(x,y) -r(x,y). 

tc(x, y) .,,_ r(x, z), tc(z, y).} 

Suppose we add to P the following facts about r: r(a, a)-, r(a, b)-, r(b, c)<--, 
r(d, a)-. Then if we ask: 
• tc( a, b ), we get the answer "yes"; 
• tc(a, c), the program gets into an infinite loop (whereas we should get the answer 

"yes"); 
• tc( a, d ), the program gets into an infinite loop (whereas we should get the answer 

''no"); 
• tc( b, d ), we get the answer "no". 

Thus P is not the right program for computing the transitive closure. One solution 
is to write a different program, which is not straightforward, see for example the 
program in [7, Section 7.2]. In fact, Kunen [15] recently proved that any such 
program must use either function symbols or negated literals. 

In our solution, we change the underlying interpreter by adding to it an equality 
check, and retain the above program, which turns out to be restricted. (In contrast, 
this solution cannot be applied to an alternative version of P obtained by replacing 
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the second clause by tc(x, y) +-- tc(x, z), tc(z, y), as the resulting program is in that 
case not restricted.) 

1.4. Applications 

As a by-product of these considerations we obtain an implementation of the closed 
world assumption of Reiter [19] and of a query evaluation mechanism for various 
classes of definite deductive databases. The closed world assumption (CW A in 
short) is a way of inferring negative information in deductive databases. Reiter (19] 
showed that in the case of definite deductive databases (DB in short) it does not 
introduce inconsistency. However, even though CWA is correctly defined for DB, 
there is still the problem of how it can be implemented, since it calls for the use of 
the following rule (or rather metarule): 

if DB 1:1- cp then DB I- 1cp, 

that is, deduce 1cp if cp cannot be proved from DB using first order logic. 
The problem is how to determine for a particular ground atom (or fact in short) 

that there is no proof of it. The soundness and completeness results proved in 
Section 4 show that when DB is a restricted program, to infer 1A for a fact A it 
suffices to use Clark's [5] negation as (finite) failure rule augmented with an 
appropriate equality check. 

A more general problem is that of query processing in DB. Given an atom A, 
compute the set [A]os of all its ground instances AfJ such that DB I- AfJ. Indeed, 
when A is ground and DB l:f- A, the query processing problem reduces to the problem 
of deducing 1A by means of CWA. The results proved in Section 4 imply that when 
DB is a restricted program, to compute [A] 08 for an atom A, it suffices to collect 
all computed answer substitutions in the SLD-tree with leftmost selection rule 
and +--A as root, pruned by an appropriate equality check. 

Similar results concerning CWA and query processing hold for the subsumption 
and context checks and the corresponding classes of programs for which they are 
complete. 

This paper is an extension of [1 ], where exclusively equality checks were studied. 

2. Loop checking 

Throughout this paper we assume familiarity with the basic concepts and notations 
of logic programming as described in (16]. For two substitutions u and r, we write 
a-~ r when u is more general than r and for two expressions E and F, we write 
E ~ F when F is an instance of E. We then say that Fis less general than E. 

By an SLD-derivation we mean an SLD-derivation in the sense of [16] or an 

initial segment of it. In SLD-derivations we shall only use idempotent mgu's. It is 
known that any idempotent mgu is relevant, i.e. its domain contains only variables 
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of the atoms that are unified. An SLD-derivation step from a goal G, using a clause 
C and an idempotent mgu e, to a goal H is denoted as G ~c,o H. 

2.1. Definitions 

The purpose of a loop check is to prune every infinite SLD-tree to a finite subtree 
of it containing the root. One might define a loop check as a function from SLD-trees 
to SLD-trees, directly giving the pruned tree. However, this would be a very general 
definition, allowing practically everything. We shall use here a more restricted 
definition according to which for a program P 

(i) a node in an SLD-tree of Pu { G} (for some goal G) is pruned if all its 
descendants have been removed (note the terminology: the pruned node itself 
remains in the tree); 

(ii) by pruning some of the nodes we obtain a pruned version of the SLD-tree; 
(iii) whether a node is pruned depends only upon its ancestors in the SLD-tree, 

that is on the SLD-derivation from the root up to this node. 
Therefore, we can define a loop check as a function on the SLD-derivations 

instead of on the SLD-trees. However, for convenience we do not define it as a 
function from derivations to derivations, but as a set of derivations (depending on 
the program): the derivations that are pruned exactly at their last node. Such a set 
of SLD-derivations L(P) can be extended in a canonical way to a function !L(P) 

from SLD-trees to SLD-trees by pruning in an SLD-tree the nodes in { G [the 
SLD-derivation from the root to G is in L( P) }. In the remainder of this article, we 
shall usually make this conversion implicitly. 

It is useful to note here that our definition of a loop check excludes more 
complicated pruning mechanisms for which the decision whether a node in a tree 
is pruned depends on the so far traversed segment of the considered tree. Such 
mechanisms are for example studied in [23] and [21 ]. 

We shall also study an even more restricted form of a loop check, called simple 
loop check, in which the set of pruned derivations is independent of the program 
P. In other words, a loop check is a function, having a program as input and a 
simple loop check as output. This leads us to the following definitions. 

Definition 2.1. Let L be a set of SLD-derivations. RemSub(L) ={DEL[ L does not 
contain a proper subderivation of D}. Lis subderivationfree if L= RemSub(L). 

In order to render the intuitive meaning of a loop check L: "every derivation 
DEL is pruned exactly at its last node", we need that Lis subderivation free. Note 
that RemSub(RemSub(L)) = RemSub(L). 

In the following definition, by a variant of a derivation D we mean a derivation 
D' in which in every derivation step, atoms in the same positions are selected and 
the same programs clause are used. D' may differ from D in the renaming that is 
applied to these program clauses for reasons of standardizing apart and in the mgu 
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used. Thus any variant of an SLD-refutation is also an SLD-refutation and yields 
the same computed answer substitution up to a renaming. 

Definition 2.2. A simple loop check is a computable set L of finite SLD-derivations 
such that L is closed under variants and subderivation free. 

The first condition here ensures that the choice of variables in the input clauses 
in an SLD-derivation does not influence its pruning. This is a reasonable demand 
since we are not interested in the choice of the names of the variables in the 
derivations. 

Definition 2.3. A loop check is a computable function L from programs to sets of 
SLD-derivations such that for every program P, L(P) is a simple loop check. 

Of course, we can treat a simple loop check L as a loop check, namely as the 
constant function J...P.L. 

Definition 2.4. Let L be a loop check. An SLD-derivation D of Pu { G} is pruned 
by L if L(P) contains a subderivation D' of D. 

2.2. Example 

Example 2.5 (Variant of Atom check). (This example is based on Example 8 in [3], 
see also [10]). A first attempt to formulate the Variant of Atom (VA) check might 
be: "A derivation is pruned at the first goal that contains a variant A of an atom 
A' that occurred in an earlier goal". Note that we have to allow here that A and 
A' are variants: if we required A= A' then we would violate the first condition in 
Definition 2.2. 

The intuition behind this loop check is the following. We wish to prove A' by 
resolution. If we find out after some resolution steps that in order to prove A' we 
need to prove a variant A of A', then there are two possibilities. One is that there 
is a proof for A. Then this proof could also be used as a proof for A', by applying 
an appropriate renaming on it. So we do not need the proof of A' that goes via A. 
The other possibility is that there is no proof for A. In that case, the attempt to 
prove A' via A cannot be successful. So in both cases there is no reason to continue 
the attempt to prove A' via A. 

The derivation step ~B, A =>s~ ~A shows that the first formulation of the VA 
check is not precise enough: it does not capture the intuition that the proof of A' 
goes via A. The atom A should be the result (after one or more derivation steps) 
of resolving A', or a further instantiated version of A' (if A' is not immediately 
selected). 
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Therefore we define 
VA=RemSub({DID= (Go~c,,11, G 1 ~ • • ·:::} Gk-i :::}ck>11• Gk) such that 

for some i and j, 0.;;;; i ...;;;,, j < k, Gk contains an atom A 
that is 
- a variant of an atom A' in Gi and 
- the result of an attempt to resolve A'8i+ 1 • • • Oj, the 

further instantiated version of A', that is selected in 
Gj}). 

We now illustrate the use of this loop check. Let 

P={A(O) -. (Cl), 

(C2), B(I)-. 

A(x) -A(y). (C3), 

C +-A(x), B(x). (C4)}, 

let G =-c. 
That the informal justification of the loop check VA is incorrect, is shown by 

applying it to two SLD-trees of Pu { G}, via the leftmost and rightmost selection 
rule respectively, which gives us Fig. 1. (In this figure and elsewhere, a failed node, 
i.e. a node without a successor in the SLD-tree, is marked by a box around it.) 

bC 
ic;4) 

b A(x),B(x) 

(Cl) "-.CC3)' 
{x/0} ~x'/x} 

b B(O) b A(y'),B(x.) -----------, 

bC 

~~4) 
b A(x),B(x) 

I (C2) 
.{x/l} 

b A(l) 

I (C3)' 
{y'!dcpy "\..f C3t:"/y'} VA prunes here • {x'/l} 

If ~ I bA(y') 
b B(x) b A(y"),B(x) ~-----

1 (C2) ccp; \ (C3)'" (C~)/ \<S3)" 
t{x/l} {y"/OV ~{x'"/y"} {y''ov ~x"/y'} 

D D 

Fig. 1 

A detailed analysis shows why the goal 0 3 = -A(y') in the rightmost tree is 
pruned by the VA check. Clearly, a variant of A(y') occurs in an earlier goal: A(x) 
in G1 • So we take i = 1. In G 1 , A(x) is not yet selected, so j >i. In fact j = 2, for 
in G2 the atom A(l), which is a further instantiated version of A(x), is selected. 
Indeed, A(y') is the result of resolving A(l). Therefore the derivation is pruned at 
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0 3 by the VA check. (In this case, A(y') is the direct result of resolving A(l), but 
in general there may be any number of derivation steps between Gj and Gd 

Indeed, this loop check has not worked properly here: all successful derivations 
have been pruned. Clearly, this is an undesirable property for loop checks. On the 
other hand, all infinite derivations are pruned, as intended. In the next section, we 
shall give formal definitions of these and related properties of loop checks. 

3. Some general considerations 

In this section some basic properties of loop checks are introduced and some 
natural results concerning them are established. 

3.1. Soundness and completeness 

The most important property is definitely that using a loop check does not result 
in a loss of success. Since we intend to use pruned trees instead of the original ones, 
we need at least that pruning a successful tree yields again a successful tree. 

Even stronger, because we use here a Prolog-like interpreter augmented with a 
loop check as the only inference mechanism, we do not want to lose any individual 
solution. That is, if the original tree contains a successful branch (giving some 
computed answer), then we require that the pruned tree contains a successful branch 
giving a more general answer. 

Finally, we would like to retain only shorter derivations and prune the longer 
ones that give the same result. This leads to the following definitions, where for a 
derivation D, !DI stands for its length, i.e. the number of goals in it. 

Definition 3.1 (Soundness). (i) A loop check Lis weakly sound if for every program 
P and goal G, and SLD-tree T of Pu { G}: if T contains a successful branch, then 
fL(Pl( T) contains a successful branch. 

(ii) A loop check L is sound if for every program P and goal G, and SLD-tree 
T of Pu { G}: if T contains a successful branch with a computed answer substitution 
er, then fL<Pl( T) contains a successful branch with a computed answer substitution 
er' such that Ga'~ Ga. 

(iii) A loop check Lis shortening iffor every program P and goal G, and SLD-tree 
T of Pu { G}: if T contains a successful branch D with a computed answer 
substitution (), then either fL<P>( T) contains D or fL<Pl( T) contains a successful 
branch D' with a computed answer substitution rr' such that Ga'~ Gu and ID'I <ID!. 

The following lemma is an immediate consequence of these definitions. 

Lemma 3.2. Let L be a loop check. (i) If L is shortening, then L is sound. 
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(ii) If L is sound, then L is weakly sound. 

The purpose of a loop check is to reduce the search space for top-down inter­
preters. We would like to end up with a finite search space. This is the case when 
every infinite derivation is pruned. 

Definition 3.3 (Completeness). A loop check L is complete if every infinite 
SLD-derivation is pruned by L. 

We must point out that in these definitions we have overloaded the terms "sound­
ness" and "completeness". These terms do not refer here only to loop checks, but 
also to interpreters for logic programs (with or without a loop check). Such an 
interpreter is sound if any answer it gives is correct w .r.t. the intended model or the 
intended theory of the program. An interpreter is complete if it finds every correct 
answer within a finite time. 

3.2. Interpreters and loop checks 

When a top-down interpreter is augmented with a loop check, we obtain a new 
interpreter. The soundness and completeness of this new interpreter depends on the 
soundness and completeness of the old one, as well as on the soundness and 
completeness of the loop check. However, these relations are not trivial. For example, 
it is not true that adding a complete loop check to a complete interpreter yields 
again a complete interpreter. 

These relationships are expressed in the following lemma's. We refer here to two 
interpreters: one searching the SLD-tree depth-first left-to-right (as the Prolog 
interpreter does), and one searching breadth-first. Without a loop check, both 
interpreters are sound w.r.t. CW A. The breadth-first interpreter is also complete 
(but not complete w.r.t. CWA). 

Lemma 3.4. Let P be a program, A a ground atom and L a weakly sound loop check. 
Then for every SLD-tree Tof Pu {~A}, P f-cwA 1A i.fffL(P)(T) contains no successful 
branches. 

Proof. By the soundness and strong completeness of SLD-resolution (see 
[2, 16]). 0 

Thus an interpreter augmented with a weakly sound loop check remains sound 
w.r.t. CW A. Since fL(P)( T) may be infinite, nothing can be said about completeness. 

Lemma 3.5. Let P be a program, A an atom and L a sound loop check. Then for every 
SLD-tree T of Pu {~A} and for every ground substitution 0, P f- AO if! fL< P)( T) 
contains a successful branch with a computed answer substitution r such that Ar,;;; Ae. 
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Proof. We have by the strong completeness of SLD-resolution P 1- A8 ~ T contains 
a successful branch with a computed answer substitution u such that Aa.,;;; A8. 

( :::>): T contains this successful branch, and since L is sound, fL< P> ( T) contains 
a successful branch with a computed answer substitution T such that AT-=;; Au. 

Hence AT:::;;; A8. 
(~): fL<P>( T) contains a successful branch with a computed answer substitution 

AT-=;; A8, so T contains this branch as well. 0 

Thus an interpreter augmented with a sound loop check remains sound. Moreover, 
a breadth-first interpreter remains complete. 

Corollary 3.6. Let P be a program, A a ground atom and L a weakly sound and 
complete loop check. Then for every SLD-tree T of Pu {-A}, P 1-cwA -,A iff fL<P>( T) 
is finite and contains no successful branches. 

Proof. By Lemma 3.4 and the Completeness Definition 3.3. D 

Thus an interpreter augmented with a weakly sound and complete loop check 
becomes complete w.r.t. CWA. 

Corollary 3.7. Let P be a program, A an atom and La sound and complete loop check. 
Then for every SLD-tree T of P v {-A} and for every ground substitution 8, PI- A8 
if! fL<P>( T) is.finite and contains a successful branch with a computed answer substitution 
T such that AT-=;; A8. 

Proof. By Lemma 3.5 and the Completeness Definition 3.3. D 

Thus a depth-first interpreter augmented with a sound and complete loop check 
becomes complete. This also means that a sound and complete loop check can be 
used to implement query processing as defined in the introduction. Indeed, given 
a program P and an atom A with an SLD-tree T of P v {-A}, it suffices to traverse 
the finite tree fL<P>(T) and collect all computed answer substitutions. 

3.3. Comparing loop checks 

After studying the relationships between loop checks and interpreters, we shall 
now analyze a relationship between loop checks themselves. In general, it can be 
quite difficult to compare loop checks. However, some of them can be compared 
in a natural way: if every loop that is detected by one loop check, is detected at 
the same derivation step or earlier by another loop check, then the latter one is 
stronger than the former. 

Definition 3.8. Let L, and L2 be loop checks. L1 is stronger than L2 if for every 
program P and goal G, every SLD-derivation D2 E L2( P) of P v { G} contains a 
subderivation D 1 such that D, E L1(P). 
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In other words, Li is stronger than L 2 if every SLD-derivation that is pruned by 
L2 is also pruned by Li. Note that the definition implies that every loop check is 
stronger than itself. 

The following theorem will prove to be very useful. It will enable us to obtain 
soundness and completeness results for loop checks which are related by the 
"stronger than" relation, by proving soundness and completeness for only one of 
them. 

Theorem 3.9 (Relative strength). Let L 1 and L2 be loop checks, and let L 1 be stronger 
than L2 • 

(i) If L 1 is weakly sound, then L2 is weakly sound. 
(ii) If Li is sound, then L 2 is sound. 

(iii) If Li is shortening, then L2 is shortening. 
(iv) If L2 is complete, then Li is complete. 

Proof. (i)-(iii) If an SLD-tree T contains a successful branch, thenfL,<Pl( T) contains 
a successful branch that satisfies the conditions of Definition 3.1. Since L 1 is stronger 
than L2 .fLt<P>( T) is a subtree of fLi<P>( T), so this branch is also contained infLi<P>( T). 

(iv) Every infinite SLD-derivation is pruned by L2 , so it is also pruned by L 1 • D 

Now we have a clearer view of the situation. Very strong loop checks prune 
derivations in an "early stage". If they prune too early, then they are unsound. 
Since this is undesirable, we must look for weaker loop checks. But a loop check 
should preferably be not too weak, for then it might fail to prune some infinite 
derivations (in other words, it might be incomplete). Of course, the "stronger than" 
relation is not linear. Moreover, loop checks exist that are neither sound nor 
complete. 

3.4. Sound and complete loop checks 

A question now arises: do there exist sound and complete loop checks? Obviously, 
there cannot be such a loop check for logic programs in general, as logic programming 
has the full power of recursion theory. (Remember that according to the definition, 
a loop check is computable.) So when studying completeness we shall rule out 
programs that compute over an infinite domain. We shall do so by restricting our 
attention to programs without function symbols, so called function-free programs. 
This restriction leads to a finite Herbrand Universe, but other solutions (typed 
functions, bounded term-size property [11]) are also possible here. 

Note that our definitions so far referred to arbitrary programs and SLD-deriva­
tions. In the remainder of the paper, we shall consider certain classes of programs 
(like function-free programs) and SLD-derivations (like the derivations via the 
leftmost selection rule). The definitions we introduced can be extended in an obvious 
way so that we can use terminology like "complete w.r.t. the leftmost selection rule 
for function-free restricted programs". 
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As stated above, we shall study completeness only for function-free programs. 
So our question can be reformulated as: is there a sound and complete loop check 
for function-free programs? Before answering this question for loop checks in 
general, we shall answer it for simple loop checks. 

Theorem 3.10. There is no weakly sound and complete simple loop check for function-free 
programs. 

Proof. Let L be a simple loop check that is complete for function free programs. 
Consider the infinite SLD-derivation D in Fig. 2, obtained by repeatedly using the 
clause A(x)-A(y), S(y, x) (using the leftmost selection rule). 

~A(xo),B(xo) 

JJ 
~A(x1),S(x1,xo),B(xo) 

JJ 
~A(x2),S(x2,x 1),S(x 1,xo),B(xo) 

a 
t-A(x3),S(x3,x2),S (x2,x 1) ,S(x i,xo),B(xo) 

a 

Fig. 2 

Since L is a complete loop check, this derivation is pruned by L and since L is 
simple, the goal at which pruning takes place is independent of the program used 
for this derivation. Suppose that this derivation is pruned by L at the goal 

-A(xn), S(xn, Xn_ 1), ••• , S(x,, X0 ), B(xo). 

Now let 

P = {S(i, i + 1)-. lo~ i < n} u {A(O)-. A(x)-A(y), S(y, x). B(n)-.}. 

Extending the above derivation to an SLD-tree of Pu { G} (still using the leftmost 
selection rule, see Fig. 3), we see that every goal of the derivation has two descen­
dants, obtained by applying the clauses A(x)-A(y), S(y, x) and A(O)- respec­
tively. The derivation of Fig. 2 shows the effect of repeatedly applying A(x)-A(y), 
S(y, x). After applying A(O)- at some goal, a derivation becomes deterministic: if 
there are initially m S-atoms, then these atoms are resolved from left to right by 
the clauses S(O, 1)-, ... , S(m -1, m)-. 

Finally, the goal -B(m) is left. Since of all goals of the form -B(i) (i;a.O) only 
the goal -B(n) can be refuted, exactly n S-atoms are needed. Therefore the only 
successful branch of this SLD-tree of Pu { G} goes via the goal -A(x" ), 
S(xn, Xn-i ), ... , S(x1 , x0 ), B(x0). As exactly this goal is pruned by L, L has pruned 
the only successful branch of this SLD-tree. Hence L is not weakly sound. D 
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bA(xo),B(xo) 

JJ 
bA(x1),S(x1,xo),B(xo) 

JJ 
bA(x2),S(x2,x1),S(x1 ,xo),B(xo) 

=> bS(O,xo),B(xo) =>lbB(I)I 

=> bS(O,x1),S(x1,xo),B(xo) 
=> bS(l,xo),B(xo) =>lbB(2)1 

bA(xn),S(xn,Xn-J), .. .,S(x1,xo),B(xo) => ... n intermediate goals... => bB(n) 

=>D 

Fig. 3 
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However, taking the program into account gives us an opportunity to define for 
function-free programs a shortening (so a fortiori sound) loop check which is 
complete. Moreover, this loop check is stronger than every other shortening loop 
check. Strange as it may seem, this one is also impractical. It is like solving a puzzle 
by trial and error. One can save effort if one can avoid the trials that lead to an 
error. Assuming that the puzzle is solvable (as our "puzzle", finding the correct 
answers to a given goal, is), it is possible to find out exactly which trials to avoid. 
How this can be done is formalized in the proof of Theorem 3.13 (1). However, 
solving the puzzle is the first step of the method described, so it can only be of 
theoretical importance. 

For convenience, we shall write S(P, G, a) for the set of successful SLD-deriva­
tions of Pu { G} with a computed answer substitution r such that Gr :s:; Ga. We say 
that a derivation Dis a minimal length derivation in S(P, G, a) if DE S(P, G, a) 
and IDI = min{ID'l ID' E S(P, G, u)}. 

Definition 3.11 (STRONG check). For a function-free program P, STRONG(P) = 

RemSub( {D = G~· · ·I for no a, D is an initial segment of a minimal length 
derivation in S(P, G, a)}). 

Note that an SLD-tree pruned by STRONG consists not only of the minimal 
length refutation(s) of Pu { G} for any computed answer substitution u, but also 
of the derivations that follow the path of such a derivation but "make a wrong 
decision'', that is a step deviating from such a refutation. After such a step, the 
derivation is immediately pruned by STRONG. This effect is a consequence of the 
fact that pruning a node in a tree implies removing all descendants, so we cannot 
remove the descendants caused by a "wrong step" while retaining the others. The 
following example shows the effect of pruning an SLD-tree by STRONG. 
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Example 3.12. Let 

p ={A(l) +-. (Cl), 

A(y) +- B(y, z), A(z). (C2), 

B(w, O) +-. 

B(O, 1) +-. 

and let G = +-A(x). 

(C3), 

(C4)}, 

Consider an SLD-tree of Pu { G} displayed in Fig. 4. In S(P, G, {x/ l}) a minimal 
length derivation has 2 goals, in S(P, G, {x/O}) a minimal length derivation has 4 
goals and in S( P, G, e) a minimal length derivation has 6 goals. These derivations 

t-A(x) 

{~7 ~Ix) 
0 t-B(x,z),A(z) 

~ (C4)/ \(C3) 

{x/O,z/ly \/x,z/0} 

<-A(l) t-A(O) 

CC2l'/ \ccil \cc2)' 
{y'/11 \ ~'/O} 
..-B(l,z'),A(z') 0 f-B(O,z'),A(z') 

(C3) I ({xiO}) cc4>/ \cc3)' 
{z'/O,wll}t {z'/ \'/0,w'/0} 

f-A(O) f-A(l) t-A(O) 

(C2)"l (Cy l (C2)" 

{y"/0} 0 {y"/l} 

t-B(O,z"),A(z") ~ t-B(l,z"),A(z") 

(C4) l \ (C3)' I .(C3)' 
{z"/l} \{z"/0,w'/O} ~z"/O,w'/l} 

f-A(l) t-A(O) t-A(O) 

Fig. 4 

I (C2)" 

~ {y"/0} 

t-B(O,z"),A(z") 

(C4) l\ (C3)" 
{z"/l} ~z"/0,w"/O} 

t-A(l) rA(O) 
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are retained by STRONG in the considered SLD-tree, the others are pruned (at the 
horizontal lines in the figure). Among these are successful ones, but not minimal 
length successful ones. (The tree in Fig. 4 is extended beyond the sixth level to 
show this effect.) 

Theorem 3.13. For function-free programs, 
(i) STRONG is a shortening loop check; 

(ii) STRONG is stronger than any shortening loop check; 
(iii) STRONG is complete. 

Proof. (i) a) STRONG is a loop check. The nontrivial point here is to prove that 
for every function-free program P, STRONG(P) is computable. Can we, given a 
derivation D = G-=;· · ·, decide whether or not D is pruned by STRONG and if 
so, at which node? Indeed we can, using the following procedure. 

(1) Compute the set of correct answers for Pu{G}, modulo renamings (e.g. 
bottom up). Since P has no function symbols, this set is finite. Construct (breadth 
first) an initial segment of an SLD-tree of Pu { G} that contains (an initial part of) 
D and for each correct answer a successful branch with a more general computed 
answer. Such a segment exists by the strong completeness of SLD-resolution. It has 
been shown in [ 13] that a length preserving bijection exists between the successful 
branches of two different SLD-trees for Pu { G}. Therefore in every SLD-tree of 
Pu { G}, for every correct answer substitution a there exists a derivation D' E 
S(P, G, a) with ID'l=min{ID"llD"ES(P, G, a)}. 

(2) For each computed answer substitution, mark the nodes of the minimal length 
successful branches with this computed answer substitution. 

(3) Prune D at the first node in the tree that is not marked. If such a node does 
not exist, then D is a subderivation of a minimal length successful branch. 

(i) b) STRONG is shortening. If a successful derivation D of Pu{G} with 
computed answer substitution a is pruned by STRONG, then it is not a minimal 
length derivation in S(P, G, o-). By construction, there exists a minimal length 
derivation D' E S(P, G, a) in the SLD-tree. D' is shorter than D and not pruned by 
STRONG. 

(ii) STRONG is stronger than any shortening loop check. Let L be a loop check 
and let D be a derivation of Pu { G} that is pruned by L. If D is a subderivation 
of a minimal length successful derivation D', then Lis not shortening. Otherwise, 
D is pruned by STRONG. 

(iii) STRONG is complete. If Dis an infinite SLD-derivation, then only an initial 
segment of D is contained in the constructed (finite) part of the SLD-tree. Since 
the last goal of D that is in the tree is not successful, it is not marked in the procedure 
for computing STRONG. So D contains a "wrong step" there or earlier. Hence D 
is pruned by STRONG. D 

So far, we have not been very successful in defining useful sound and complete 
loop checks. In the next sections, we shall restrict our attention to simple loop 
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checks. They will be shortening, but as shown above, they cannot be complete (not 
even for function-free programs). Nevertheless, for each of these loop checks we 
shall introduce one or more natural classes of programs for which they are complete. 

4. Equality checks 

4.1. Overview 

In this section, we introduce some simple loop checks. For each of them, there 
exist two versions: the first one is weakly sound, the second one shortening. The 
second shortening version is obtained by adding an additional condition to the 
criterion that describes the derivations pruned by the first one. By this construction, 
the first version is always stronger than the corresponding second version. 

Starting with the Variant of Atom check, we can make three independent 
modifications of it. 

( 1) Adding this additional condition to the loop cheek's criterion. This condition 
mainly deals with the computed answer substitution 'generated so far' and is more 
or less equivalent to applying the criterion to resultants instead of goals in SLD­
derivations. When considering a derivation G0 =>c'i. 81 G1 ==> · · · , to every goal G; = 
+-S; there corresponds the resultant R; = S 0 81 ••• O;+-S1• Resultants were introduced 
in [17]. 

(2) Replace variant by instance. This yields the Instance of Atom (IA) check. 
This check is still unsound: it is even stronger than the VA check. Besnard [3] has 
introduced a weakly sound version of this loop check. This check and related ones 
(derived from VA; shortening versions) are discussed in Section 6. 

(3) Replace atom by goal. This yields the Equals Variant of Goal (EVG) check. 
Informally, this loop check prunes a derivation as soon as a goal occurs that is a 
variant of an earlier goal. Replacing "variant" by "instance" again yields the Equals 
Instance of Goal (EIG) check. The shortening versions are called Equals Variant 
of Resultant (EVR) and Equals Instance of Resultant (EIR). 

Taking goals instead of atoms as a basis for a loop check yields two independent 
choices again. 

(3a) Whereas equality between atoms is unambiguous, equality between goals is 
much less clear. In SLD-derivations, we regard goals as lists, so both the number 
and the order of occurrences of atoms is important. However, we may also regard 
them as multisets, where the order of the occurrences is unimportant. We might 
even consider regarding them as sets, but that proves to be impractical: the difference 
between the derivation steps +-A, A=>+-A and +-A=>+-A is then no longer visible. 
Regarding goals as sets in our loop checks would require regarding goals as sets in 
SLD-derivations, which would result in too many undesirable effects. 

So we shall consider two EVG checks: EVGL (for list) and EVGM (for multiset). 
The same holds for EIG, EVR and EIR. We shall refer to these eight loop checks 
as the equality checks. They are discussed in the remainder of this section. 
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(3b) Finally, we may replace "G2 is a variant/instance of G1" by "G2 is subsumed 
by a variant/instance of G1". We define "G1 subsumes G2" as "G1 s;;:; G2". Thus 
we can make a distinction between "subsumed by a variant" and "subsumed by an 
instance". Usually in literature, "subsumed by a variant" is not considered, "sub­
sumed by an instance" is simply called "subsumed" (see, e.g., [6]). Subsumption 
can also be defined for resultants. 

This yields the subsumption check. Since this modification is again independent 
of the others, there are also eight subsumption checks. These checks are discussed 
in Section 5. 

4.2. Formal definitions 

We now study the equality checks in more detail. At first we give a formal definition 
of the weakly sound versions. Then we introduce an additional condition that makes 
these checks shortening. Finally, we identify a natural class of programs for which 
the equality checks are complete. 

In fact, we should give a definition for each equality check. This would yield 
eight almost identical definitions. Therefore we compress them into two definitions, 
trusting that the reader is willing to understand our notation. The equality relation 
between goals regarded as lists is denoted by = L; similarly = M for multisets. We 
begin with the weakly sound versions. 

Definition 4.1 (Equality checks for goals). For Type E {L, M}, the Equals Variant/ 
Instance of Goalryp• check is the set of SLD-derivations 

EVG/EIGJ:vpe = RemSub({D ID= (Go =>c1 ,e1 G1=>· · ·=> Gk-1 =>c.,ek Gk) 
such that for some i, 0.:;; i < k, there is a 
renaming/substitution r such that 
Gk =rype G;r}). 

For example, EIGM = RemSub({DI D = (Go =>c1 .e1 G1=>· · ·=>Gk-1 =>c.,ek Gk) 
such that for some i, Oo:;; i < k, there is a substitution r such that Gk =M G;r}). 

The informal justification for these loop checks is similar to the one given for the 
VA check. Suppose that we want to refute a goal G. If we find that in order to 
refute G we need to refute a variant or instance of G, say Gr, then two cases arise. 
If there is no solution for Gr, then pruning Gr is clearly safe. On the other hand, 
if there is a solution for Gr, then the derivation giving this solution might be used 
(possibly in a more general form) directly from G. 

We shall prove later in this section that these loop checks are weakly sound. 
However, they are not sound. To see this, suppose that we find for Gr a successful 
derivation D with a computed answer substitution u. Then using D directly from 
G gives a computed answer substitution ru (maybe a more general substitution, 
but not necessarily). Therefore success is not lost. 

However, the derivation G = G; =>c,+1 • 8,. 1 • • • =>c •. e, Gk =Gr, followed by D, 
yields a possibly different computed answer substitution: 8;+1 ••• (:Jku, thus possibly 
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affecting soundness. (In Example 4.3, we show a specific program and goal for 
which this difference arises.) Of course, we are only interested in the effect of this 
difference on the variables of the initial goal G0 • When G; is reached, these variables 
are renamed by 91 ••• 8;. So T and 9;+1 ••• 9k should coincide on the variables of 

0 0 81 ••• 9;. 
Hence we can make these loop checks sound, and even shortening, by adding 

the condition 0 091 ••• 8k = 0 0 91 •.. 9;T- (Note that in this equality it is irrelevant 
whether goals are lists or multisets.) It will appear that this condition works not 
only for EVG and EIG, but for all other loop checks studied in Sections 5 and 6, 

as well. 
finally, note that adding this condition is equivalent to the replacement of the 

condition Gk =rype G;T by the condition Rk =rype R;T, where Rk and R; are the 
resultants corresponding to the goals Gk and G;. 

Definition 4.2 (Equality checks for resultants). For TypeE{L, M}, the Equals 
Variant/ Instance of Resultantrype check is the set of SLD-derivations 

EVR/EIRryp• = RemSub({DJ D= (Go~c,,a, G,~· · ·~Gk-1 ~c.,ak Gk) 
such that for some i, 0 ~ i < k, there is a 
renaming/substitution T such that 
Gk =Type G;T and Go81 ... 8k = 
G0 91 ••• O;T}). 

For example, EVRL=RemSub({DJD=(G0 ~c, 9, G1~· · ·~Gk-1~c.,ek Gk) 
such that for some i, O~ i <le, there is a renaming T such that Gk =L G;T and 
Go81 ... 9k = 0081 ... 9;T} ). 

The following example shows the difference between the goal-based and resultant­
based equality checks. It is so chosen that the other variations (variants or instances, 
goals regarded as lists or as multisets) do not play a role. 

Example 4.3. Let 

P={p(a) -· (Cl), 

p(y) - p(z). (C2)}, 

let G = -p(x). 

Without the condition G0 81 ••• Ok= 0 081 ••• 8;T we would only obtain the com­
puted answer substitution {x/ a}, whereas we should also obtain the empty substitu­
tion. This shows that the EVG and EIG loop checks are not sound. 

In the leftmost tree in Fig. 5 -p(z) is a variant of -p(x), so the derivation is 
pruned by EVG at that goal. However, the corresponding resultant p(x) - p(z) is 
clearly not a variant of p(x) - p(x), therefore the derivation is not yet pruned by 
EVR. After another application of (C2), the resultant p(x) - p(z') occurs, which 
is a variant of p(x)-p(z). At that point the derivation is pruned by EVR. 
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EVR/EIR 
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prunes I j \ 
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Fig. 5 

53 

The rightmost tree in Fig. 5 shows an "SLD-tree" in which the goals are replaced 
by the corresponding resultants. Note that a successful branch in a resultant-based 
SLD-tree does not end by the empty goal 0, but by the instance of the initial goal 
that was 'proved' by this branch. 

Lemma 4.4. All equality checks are simple loop checks. 

Figure 6 shows the "stronger than" relationships between the equality checks 
(and the VA and IA checks) and summarizes their properties. In this figure, an 
arrow L1 - L2 means that L2 is stronger than L1 • Proving these "stronger than" 
relations is straightforward. 

Er~--~EVG~ 

EVRM E!R L - E~~~ • EllGL 

~., ........ 
EIRM :-- EIGM 

hortening 
1J 

VA 

~· IA 

Fig. 6 

weakly sound 

not weakly sound 
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4.3. Soundness 

We now prove that the equality checks based on resultants are shortening and 
that the equality checks based on goals are weakly sound. According to the Relative 
strength Theorem 3.9 it is sufficient to focus on the strongest checks in both classes: 
the EIRM and the EIGM checks. The proof consists of two stages. The first stage, 
established in the following lemma, does not depend on the loop checking criterion 
and can therefore also be used to prove the soundness of the simple loop checks 
presented in the following sections. 

Lemma 4.5 (Shortening condition). Let L be a loop check. If, for every program P, 
goal 0 0 and SLD-derivation 

of Pv{G0} (O<k~m), 

[ Gk is pruned by L] 

implies I/or some goal Gi (O~ i < k) in D there exists an SLD-derivation 

G; =>a-1 • • • =>"" D of Pu { G;} such that n < m - i], 

then L is weakly sound. 
Moreover, if also G0e1 ••• 8;cr1 ••• an~ G 0 81 ••• 8kfh+ 1 ••• ern is implied, then L is 

shortening. 

Proof. First we focus on the weakly sound case. Let P be a program, G0 a goal 
and Tan SLD-tree of P v { G 0}. Suppose T contains a successful branch 

D=(Oo=>c1,e 1 01=>· · ·=>0;-1=>c,.e, 0;=>· · ·=>Ok-1 

=>c,,e, Ok=>·· ·=>c,,,,e,,, D) 

and suppose that D is pruned at Gk. We use here induction on m, i.e. we assume 
that for every successful branch B in T shorter than D, fL( T) contains either B or 
a successful branch shorter than B. 

We prove that fL( T) contains a successful branch D' that is shorter than D. By 
assumption and SLD-derivation D 1 = ( O; ::::>,,.1 • • • =>u,, O) of Pu { O;} exists. Adding 
(a properly renamed version of) D 1 to the initial part of D gives the derivation 

By the independence of the selection rule, T contains a branch D3 such that 
ID3l = ID2l and the computed answers of D 3 and D 2 are variants [13]. Since D 3 is 
shorter than D (JD3l=i+n+l<i+(m-i)+l=m+l=IDI), by the induction 
hypothesis fL( T) contains either D' = D 3 or a successful branch D' shorter than 
D3 , which proves the claim. 
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For the shortening case, it remains to prove that G0 u'.;:; 0 0 61 ••• em, where u' is 
the computed answer substitution of D'. First we strengthen the induction 
hypothesis: for every successful branch B in T shorter than D giving a computed 
answer substitution u,JL( T) contains either B or a successful branch shorter than 
B, giving a computed answer substitution u' such that G0u'.;:; G0 u. 

Then either since D' = D3 or by the new induction hypothesis, and since the 
computed answers of D3 and D2 are variants, 

We now use this lemma to prove the desired result. 

Theorem 4.6. (i) The loop check EIRM is shortening. 
(ii) The loop check EIGM is weakly sound. 

Proof. Let P be a program, G0 a goal and 

D = (Go=>c,,o, 01=>· · ·~G;-1 =>c,,o, G;=>· · ·=>Gk-1 

=>c.,o. Ok=>· · · =>c ... o,.. D) 

an SLD-derivation of Pu { 0 0} (where 0.;:; i < k.;:; m ). 
(i) Assume that for some substitution T: Ok = M G;T and 0081 ... ek = Goe 1 ••• e;T. 

So the SLD-derivation G;T='>ck+,.o.+, · · · =>c,,,,a,.. D exists (the order of the atoms 
in G;T may differ from the order in Ok, so a different selection rule may be necessary). 
By the Lifting Lemma of [16] a derivation G;=>u, · · ·=>u,,D of Pu{G;} exists, 
with U1 ••• Un""' Tek+l ... em (n = m -k < m - i). Now 

hence the full condition of Lemma 4.5 is satisfied, so EIRM is shortening. 
(ii) The additional condition G0e1 ••• Ok= G0e1 ••• f:i;T was only used to prove 

the additional shortening condition of Lemma 4.5. D 

Corollary 4.7 (Equality soundness). (i) All equality checks based on resultants are 
shortening. A fortiori they are sound 

(ii) All equality checks based on goals are weakly sound. 

Proof. By Theorem 4.6 and the Relative strength Theorem 3.9. D 

4.4. Completeness 

For completeness issues, it is sufficient to consider the weakest of the equality 
checks: the EVRL check. We know that EVRL is not complete (Theorem 3.10 presents 
a counterexample that holds for every simple loop check). However, for the EVRL 
check this counterexample can be simplified. The program in Theorem 3.10 consists 
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of a collection of ground facts and one recursive clause. Clearly, this clause is the 
"core" of the counterexample. It appears that for EVRL, we need only this clause 
for a demonstration of its incompleteness. Moreover, we need only the propositional 
structure of the clause, i.e. we may remove the arguments. 

Example 4.8. Let P ={A +-A, S}. Then for "the" SLD-tree T of Pu {+-A} via the 
leftmost selection rule, fEvRL( T) is infinite. Indeed, every descendant of the initial 
goal has one occurrence of S more than its parent goal, so it cannot be a variant 
of any of its ancestors. 

Obviously, the problem is that the atom A in the goal is allowed to generate 
infinitely many S-atoms, which are never selected, thereby making the goal wider 
and wider. We now introduce a class of programs for which this phenomenon cannot 
occur and we prove that EVRL is complete for these programs. The necessary 
restriction is obtained by allowing at most one recursive call per clause and allowing 
such a call only after all other atoms in the body of the clause have been completely 
resolved. In order to avoid unnecessary complications, we shall place the atom that 
causes the recursive call (if present) at the right end of the body of the clause, and 
consider only derivations via the leftmost selection rule. For a formal definition, 
we use the notion of the dependency graph Dp of a program P. 

Definition 4.9. The dependency graph DP of a program P is a directed graph whose 
nodes are the predicate symbols appearing in P and (p, q) E Dp iff there is a clause 
in P using p in its head and q in its body. 
D~ is the reflexive, transitive closure of Dp. When (p, q) ED~, we say that p 

depends on q. For a predicate symbol p, the class of p is the set of predicate symbols 
p "mutually depends" on: clp(p) = {q I (p, q) E vi and (q, p) ED~}. 

Definition4.10 (Restricted program). Given an atom A, let rel(A) denote its predicate 
symbol. Let P be a program. A clause A 0 +- A 1 , ••• , An (n ;a.: 0) is called restricted 
w.r.t. P if for i = 1, ... , n -1, rel(A;) does not depend on rel(A0 ) in P. The atoms 
A 1 , ••• , An-i are called the nonrecursive atoms of the clause A 0 +-A 1 , ••• , An. A 
program P is called restricted if every clause in P is restricted w.r.t. P. 

Note that this definition allows at most one recursive call per clause. Thus 
(disregarding the order of atoms in the bodies) restricted programs include so called 
linear programs, which contain only one recursive clause and in this clause only a 
single recursive call occurs. The "transitive closure" program given in the introduc­
tion is restricted. Note also that programs of which all clauses have a body with at 
most one atom are restricted. See also [22], where essentially the same class of 
programs is defined and investigated, although a more rigid format is used. 

We now prove that EVRL is complete w.r.t. the leftmost selection rule for restricted 
programs. First we demonstrate an interesting feature of restricted programs, namely 
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that in each SLD-derivation via the leftmost selection rule, goals have a number of 
atoms which is bounded by a value depending only on the program and the initial 
goal. Then we shall show that this implies that modulo the "being a variant of" 
relation, the number of possible goals in such an SLD-derivation is finite. 

In the rest of this section, P is a function-free restricted program and G is a goal 
in Lp. With the length of G, IGI, we mean the number of atoms in G. The maximum 
length of the goals in a derivation of Pu { G} can be computed by means of the 
following weight-function, which is defined on goals and predicate symbols (by 
mutual induction). 

Definition 4.11. Let P be a restricted program. Then the function weight is defined 
as follows: 

(i) fora goal G=-A1 , ••• ,A" (n:;;l:l}inLp, 

weight( G) = max{weight(rel(A;)) + n - i / i = 1, ... , n}; 

(ii) for a predicate symbol p of P, 

weight(p) = max( {weight(-A 1 , ••• , An)/ A -A1 , ••• , A" E P, n > 0, 

rel(A) E clp(p ), rel(A") e clp(p)} 

u{l +weight(+-Ai. .... , An_1)IA +-A1o .... , An e P, n> 1, 

rel(A) E clp(p), rel(A") E clp(p)} 

u {l} ). 

Note that in the definition of weight( p), clauses of the form A +-- B, with 
cl(rel(A)) = cl(rel(B)) are not considered, they do not affect the length of goals 
appearing in a derivation. Moreover, if the predicate symbols p and q are mutually 
dependent, then weight( p) =weight( q). 

The fact that P is restricted ensures that the weight-function is well-defined: if 
weight( p) is defined in terms of weight( q), then ( q, p) e v:, hence weight( q) is not 
defined in terms of weight(p ). Intuitively, the weight of a goal G majorizes the 
length of all goals which appear in an SLD-derivation of Pu { G} using leftmost 
selection rule. More precisely, we have the following lemma's. 

Lemma 4.12. IG/,;;;; weight( G). 

Proof. Let G =+-Ai. ... , An (n :;;l: 1). Then 

weight(G) :;;l:weight(rel(A1))+n-l :;;l: n = /G/ D 

Lemma 4.13. Let G ~c H be a derivation step w.r.t. P where the leftmost atom of G 

is selected. Then weight( G) :;;l: weight(H). 

Proof. Since the weight of a goal depends only on the predicates appearing in it, 
and not on the arguments of these predicates, we prove this fact for the case of 
programs written in propositional logic. 
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Let G = ~A1 , •••• , An; then weight( G) = max{weight(A;) + n - i Ii= 1, ... , n}, 

and let C = A 1 ~Bi, .... , Bm. Then the goal H =~Bi, ... , Bm, A2 , ••• , An and 
therefore 

weight(H) = max({weight(B;)+ m + n -1- iii= 1, ... , m} 

Two cases arise. 

u { weight(A;-m+i) + m + n - 1 - i Ii= m + 1, ... , m + n - I}) 

= max({weight(B;)+m + n-1- iii= 1, ... , m} 

u {weight(A;) + n -i Ii= 2, ... , n}). 

(i) weight(H) = max{weight(A;) + n - i Ii= 2, ... , n}. Then clearly weight(H) ~ 
weight( G). 

(ii) weight(H)=max{weight(B;)+m+n-1-iJi=l, ... ,m} (hence m>O). We 

show that in this case weight(H)~weight(A 1 )+n-l (which is ~weight(G)). Sub­
tracting n -1, it suffices to show that max{weight(B;) + m - i Ii= 1,. . ., m} ~ 
weight(A 1). Again two cases arise. 

(iia) ( Bn,, Ai) E Di. Then because of the existence of C, 

weight(A 1);;;;: weight( ~B1 , ••• , Bm) 

= max{weight(B;) + m - i Ii= 1, ... , m}. 

(iib) (Bm,A 1 )ED~. Then 

weight(A 1);;;;: 1 +weight(~B 1 , ••• , Bm_1) 

= 1 +max{weight(B;)+m -1-ili= 1, ... , m -1} 

= max{weight(B;)+ m - i Ii= 1, ... , m -1}. 

Also weight(Bm) + m - m = weight(A 1), since Bm E clp(A 1 ). This proves the claim 
that 

max{weight(B;)+m -iii= 1, ... , m}~weight(A 1 ). D 

Corollary 4.14. Let D = ( G0 ~ G 1 ~ G2 ~ • • • ~ G; ~ · · ·) be an SLD-derivation 

via the leftmost selection rule. Then for every goal G; in D: IG;j~weight(G0 ). 

Proof. By induction on i. The induction basis is provided by Lemma 4.12, the 
induction step by Lemma 4.13. D 

So weight( G0 ) is indeed the desired maximum length of goals occurring in any 
SLD-derivation of Pu { G0}. 

We now present a formalization of the "being a variant of" relation on resultants. 

Our presentation here is more general than needed for the completeness proof for 
the equality checks. However, we need these results in full generality to prove the 

completeness of the subsumption checks and the context checks. 
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Definition 4.15. Let X be a set of variables. We define the relation -x on resultants 
as R1 -x R 2 if for some renaming p, R1p = R 2 and for every x EX, xp = x. Now let 
G be a goal and let k ~ 1. Then the relation - x.c.k stands for the restriction of the 
relation - x to resultants S1 - S2 such that -s1 is an instance of G and l-S2l .s; k. 

Lemma 4.16. For every set of variables X, goal G and k~ 1, -x.o,k is an equivalence 
relation. 

For a resultant R, the equivalence class of R w.r.t. the relation - x.a.k will be 
denoted as [RJx.o,k, or just [R] whenever X, G and k are clear from the context. 
The following lemma is crucial for our considerations. 

Lemma 4.17. Suppose that the language L has no function symbols and finitely many 
predicate symbols and constants. Then for every finite set of variables X, goal G and 
k ~ 1, the relation - x.o.k has only finitely many equivalence classes. 

We can now prove the desired theorem. 

Theorem 4.18. The loop check EVRL is complete w. r. t. the leftmost selection rule for 
function-free restricted programs. 

Proof. Let P be a function-free restricted program and let G 0 be a goal 
in Lp. Let k =weight( 0 0 ). Consider an infinite SLD-derivation D = 

(Go~c1 ,e 1 G1~· · ·~G;-1~c,,11, G;=?· ··)of Pu{G0 }. By Corollary 4.14, for 
every i ~ 0, I G;I :s; k. Every goal G; is a goal in Lp and hence every resultant 
0 0 01 ••• fJ; - G; belongs to an equivalence class of - 0•011 ,k. Since Lp satisfies the 
conditions of Lemma 4.17, - 0.00 ,k has only finitely many equivalence classes, so 
for some i ~ 0 and j > i, G0 81 ... 8; - G; and G 0 fJ 1 ... 8J - GJ are variants. This 
implies that Dis pruned by EVRL. D 

Corollary 4.19 (Equality completeness). All equality checks are complete w.r.t. the 
leftmost selection rule for function-free restricted programs. 

Proof. By Theorem 4.18 and the Relative strength Theorem 3.9. D 

Now combining Corollary 3.6 and Corollary 3.7 with the Equality soundness 
Corollary 4.7 and the Equality completeness Corollary 4.19, we conclude that all 
equality checks lead to an implementation of CW A for function-free restricted 
programs. Moreover, a depth-first interpreter augmented by any of the equality 
checks based on resultants yields an implementation of query processing for these 

programs. 
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5. Subsumption checks 

As already stated, there are eight subsumption checks. We shall define them by 
means of two parametrized definitions, again trusting that the reader is willing to 
understand our notation. The inclusion relation between goals regarded as lists is 
denoted by ~L; similarly ~M for multisets. Note: L 1 ~L L2 if all elements of L 1 

occur in the same order in L2 ; they need not to occur on adjacent positions. For 
example, (a, c) ~L (a, b, c). 

5.1. Definitions 

Definition 5.1 (Subsumption checks for goals). For TypeE{L, M}, the Subsumes 
Variant/ Instance of Goalrype check is the set of SLD-derivations 

SVG/SlGType = RemSub({D j D = (Go =}c,,e, G1 => · · · => Gk-1 =>c"ek Gk) 
such that for some i, 0 ~ i < k, there is a 
renaming/ substitution r with 
Gk 2.rype Gir}). 

Definition 5.2 (Subsumption checks for resultants). For Type E {L, M}, the Subsumes 
Variant/ Instance of ResultantType check is the set of SLD-derivations 

SVR/SlRType = RemSub( {DID= (Go =}c, e, G1 => · · · => Gk-1 =>ck,ak Gk) 
such that for some i, 0 ~ i < k, there is a renam­
ing/ substitution r with Gk 2 Type G;r and 
G0 e1 ••• ek = G0e1 •.. eir} ). 

Lemma 5.3. All subsumption checks are simple loop checks. 

The following example shows the differences between the behavior of various 
subsumption checks and the equality checks. 

Example 5.4. Let 

P={A(y)+-A(O),C(y). (Cl), 

A(O) +-. (C2), 

B(l) +-. (C3), 

C(z) +- B(z), A(w). (C4)}, 

and let G = +-A(x). 
Figure 7 shows an SLD-tree of Pu { G} using the leftmost selection rule. It also 

shows how this tree is pruned by different loop checks. First we explain the behavior 
of the loop checks with respect to this tree. Then we shall make some generalizing 
comments on this behavior. In this example, the distinction between list versus 
multiset based loop checks does not play a role. 



Loop checking mechanisms for logic programs 

(C3) I 
{x/l }V 

~A(w) 

IEIG,EVG1-l ------­

cc1y '\cz) 
{y'/wy '\w/0} 

rA(O),C(w) o@:D 
SlR, ~--r-----------
STRONG 

(C2) ········· ... {y"/O} 

\:t 
rC(w) rA(O),C(O),C(w) 

(C4)' · 

{z'/w} \ 

rB(w)0,A(w') 

(C3) 

{w/l} 

(C2) (Cl)'" 

rC(O),C(w) 

(C4)' 

{ z'/O} 

rA(w') I rB(O),A(w'),C(w)I 
IEIR,EVR >-I -- . . 

Fig. 7 

(C2) (Cl)" 

rC(O),C(x) 

(C4) 

{z/O} 

I rB(O),A(w),C(x) I 

61 

Starting at the root, the first loop check that prunes the tree is the SIG check. It 
prunes the goal +-A(O), C(x), because it contains A(O), an instance of A(x). 

Following the leftmost infinite branch two steps down, the SVG check prunes the 
goal +-B(x), A(w), because it contains A(w), a variant of A(x). One step later, the 
atom B(x) is resolved, so the EIG and EVG checks prune the goal +-A(w) for the 

same reason. 
However, the loop checks based on resultants do not yet prune the tree. The 

computed answer substitution built up so far maps x to x after the first three steps 
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and to 1 later on. This is clearly different from the substitutions {x/O} and {x/w}, 
which are used to show that A(O) resp. A( w) are an instance resp. a variant of A(x). 

Now the derivation repeats itself, but with x replaced by w. Therefore the loop 
checks based on resultants prune the tree during this second phase, exactly in the 
place where the corresponding loop checks based on goals pruned during the first 
phase. 

The side branch that is obtained by repeatedly applying the first clause (and 
corresponding side branches later on) is pruned by the subsumption checks at the 
goal -A(O), C(O), C(x). This goal contains the previous goal -A(O), C(x). There­
fore both the resultant based and the goal based loop checks prune this goal. In 
contrast, the equality checks do not prune this infinite branch because the goals in 
it become longer in every derivation step (analogously to Example 4.8). 

The loop checks based on goals all prune the solution {x / 1}, so they are not 
sound. Among these loop checks, the SIG check prunes as soon as possible for a 
weakly sound loop check. Conversely, the SIR check prunes this tree as soon as 
possible for a shortening loop check. So on this tree, it behaves exactly like STRONG, 
which exhibits such a behavior by definition. 

Another example shows that there can be a nontrivial difference between the 
behavior of subsumption checks based on list subsumption and those based on 
multiset subsumption. 

Example 5.5. Let P={A(x)-A(y), S(x), T(y)}. (Note the similarity between this 
clause and the clause A(x) -A(y), S(y, x) in Theorem 3.10.) Let G = 
-A(xo), B(xo). An SLD-derivation (and SLD-tree) of Pu { G} via the leftmost 
selection rule is depicted in Fig. 8. This infinite SLD-derivation is pruned by the 
SVRM check at the goal -A(x2 ), S(x1), T(x2), S(x0), T(x1), B(x0 ), since a variant 
of an earlier goal, namely (-A(x1), S(x0 ), T(x 1), B(x0 )){xif x2}, is "multiset­
contained" in it. 

However, this derivation is not pruned by the SVRL check, nor by the stronger 
SIGL check. For, assume that the SIGL check prunes this derivation at the goal 

Gk = -A(xk), S(xk-1), T(xk), S(xk-2 ), T(xk_ 1), ••• , S(x0), T(x1), B(x0 ), 

~A(xo),B(xo) 

u 
~A(x 1),S(xo),T(x1 ),B(xo) 

u 
~A(x2),S(x 1 ),T(x2),S(xo), T(x 1),B(xo) 

u 
~A(x:3),S(x2),T(x3),S(x1),T(x2),S(xo),T(x1),B(xo) 

u 

Fig. 8 
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because an instance of an earlier goal G;, 

is list-contained in it. 
Clearly, the presence of the B-atoms in G;T and Gk requires X0 T = x0 • So the 

atom S(x0 )T in G;T corresponds to the atom S(x0 ) in Gk. Then, because G;T is 
list-contained in Gk> T(x 1)T can only correspond to T(x1), the only atom between 
S(x0 ) and B(x0 ). Therefore x 1 T = x 1 • Using induction, we can derive x2 T = 
x2 , ••• , X;T = x;. However, the presence of the A-atoms in G;T and Gk requires 
X;T = xk. Since i < k, this is a contradiction. So the assumption that the SIGL check 
prunes the derivation is refuted. 

The above examples suggest some "stronger than" relationships (although an 
example can only prove the absence of such a relationship). Figure 9 shows the 
relationships between the subsumption checks, the equality checks, VA and IA. The 
arrows between the "cubes" mean that every subsumption check is stronger than 
the corresponding equality check in the other "cube". So the structure of "stronger 

EVRL EVGL l "'-..EIRL "'-..EIGL 

EVR~ EVG~l 

SVRL SVGL 

1~IRL ~IGL 
SVR~ SVG~l 

shortening 

SIRM--r---t---1r- SIG M 

t weakly sound 

-- ·-·---·-·not weakly sound 

VA 

~ 
IA 

Fig. 9 
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than" relations between equality checks and subsumption checks is a four­
dimensional hypercube. Again, proving these "stronger than" relations is straight­

forward. 

5.2. Soundness 

To prove the desired soundness results, we prove that the SIRM check is shortening 
and that the SIGM check is weakly sound, since these are the strongest loop checks 
based on resultants, respectively goals, in our scheme. First we need the following 

lemma. 

Lemma 5.6. Let P be a program and r a substitution. Let G 1 and G2 be goals such 
that G2T s; M G1• Suppose D 1 is an SLD-derivation of Pu { G1} with computed answer 

substitution u 1 • Then there exists an SLD-derivation D2 of Pu { G2} with a computed 
answer substitution u2 such that ID2J,,;,;; ID1I and a 2 ,,;,;:; ru1 • 

Proof. Let D = ( G1 =>c,,e, · · · =>c.,e. D) and let Cn,, .. . , C"m be those clauses from 
C1 , ••• , Cn that are used (directly or indirectly) to resolve atoms belonging to G2 T, 

with 1,,;,;; n1 < · ··<nm..;; n. Then there exists an unrestricted (in the sense of [16]) 
SLD-derivation 

Now apply the mgu lemma and the lifting lemma of [16]. D 

We can now prove the desired theorem. 

Theorem 5.7. (i) The SIRM check is shortening. 
(ii) The SIGM check is weakly sound. 

Proof. Let P be a program, G0 a goal and 

D = (Go=>cl>e, G1 => · · · => Gi-1 =>c,.e, Gi => · · · => Gk-1 

=>c •. e. Gk => · · ·=>cm.em D) 

an SLD-derivation of Pu { G0} (where 0 :soi< k :so m ). 
(i) Assume that for some substitution r: Gk 2 M G;T and G081 ••• 8k = G0 81 ... 8;T. 

Then since Gk =>ck+1 .ek+1 • • ·=>cm. em D, by Lemma 5.6 an SLD-derivation 
G; =>u, • • · =>o-. D of Pu { G;} exists, with u 1 ••• an..;; r8k+l ... 8m (n..;; m - k < m -
i). 

Go81 · • • 8;0'1 · • • O'n..;; Go81 · • · 8;T8k+I • • . 8m = Ga81 ... 8k8k+I ... 8m, 

hence the full condition of Lemma 4.5 is satisfied, so SIRM is shortening. 
(ii) The additional condition G0 81 ••• 8k = 0 0 81 ••• 8;r was only used to prove 

the additional shortening condition of Lemma 4.5. D 
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Corollary 5.8 (Subsumption soundness). (i) All subsumption checks based on 

resultants are shortening. A fortiori they are sound. 

(ii) All subsumption checks based on goals are weakly sound. 

Proof. By Theorem 5.7 and the Relative strength Theorem 3.9. D 

5.3. Completeness 

We now shift our attention to completeness issues. From the results of the previous 
section we can immediately deduce the following result. 

Corollary 5.9 (Subsumption completeness 1). All subsumption checks are complete 

w.r.t. the leftmost selection rule for function-free restricted programs. 

Proof. By the Equality completeness Corollary 4.19 and the Relative strength 

Theorem 3.9. D 

However, the subsumption checks are stronger than the corresponding equality 

checks. So we can try to find other classes of programs for which the subsumption 

checks are complete. We know that the subsumption checks are not complete for 

all programs, not even for all function-free programs. For P = 

{A(x)~A(y),S(y,x)}, a derivation of Pu{~A(x),B(x)} is not pruned by any 

of the subsumption checks, as was shown in Theorem 3.10. 
A close analysis of the proof of this theorem shows that the problem is caused 

by three "events" occurring simultaneously: 
(1) A new variable y is introduced by a "recursive" atom, A(y). 

(2) There is a relation between this new variable y and an old variable x, namely 
via the atom S(y, x). 

(3) The "recursive" atom A(y) is selected before the "relating" atom S(y, x). 

It appears that, in order to obtain the completeness of the subsumption checks, 

it is enough to prevent any of these events. Clearly, the use of restricted programs 

and the leftmost selection rule prevents the third event. We now introduce two new 

classes of programs, preventing the first and the second event, respectively. 

Definition 5.10 ( Nvi program). A clause C is non variable introducing (in short nvi) 

if every variable that appears in the body of C also appears in the head of C. A 

program P is nvi if every clause in P is nvi. 

Definition 5.11 (Svo program). A clause C has the single variable occurrence property 

(in short is svo) if, in the body of C, no variable occurs more than once. A program 

P is svo if every clause in P is svo. 
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Clearly, in nvi programs the first event cannot occur, whereas in svo programs the 
second event is prevented. We would rather have used the terminology right-linear 
instead of svo, which is common in the area of term rewriting systems. However, 
in the area of deductive databases this term is already in use for a completely 

different notion. 

Example 5.12. The following program is an nvi program and an svo program, but 
not a restricted program. It computes in the relation add the sum of two two-digit 
binary numbers (the first four arguments of add); this sum is a three-digit binary 
number, stored in the last three arguments of add. 

ADD= {add(O,O, A,B, O,A,B) +--. 

add(A,B, 0,0, O,A,B) +--. 

add (A,B, A,B, A,B,O) _._ 

add(A 1 ,8 1 , A 2 ,B2 , C,A3 ,B3 ) +-- add(O,B1, O,B2, 0,0,B3 ), 

add(O,Ai. O,A 2 , O,C,A3 ). 

add(Ai.1, A2 ,1, 1,0,0) _. add(O,Ai. O,A2 , 0,0,1).}. 

The first three clauses are evidently correct; every addition of the form OX+ 0 Y is 
taken care of by them. The fourth clause deals with the case where adding the last 
digits of both numbers does not give a carry (ensured by the first atom in the body). 
The fifth clause deals with the case where there is such a carry. Only the case A 1 ~ A 1 

(or equivalently, A1+A 2 =1) has to be considered there: if A 1 = A2 then the third 
clause applies. 

Note that this program yields infinite derivations that are not pruned by any of 
the equality checks. Indeed, starting with the goal +-add(O,Bi. O,B2 , 0,0,B3 ), the 
first recursive clause applies, giving the goal +-add(O,B,, 0,82 , 0,0,B3 ), 

add(O,O, 0,0, 0,0,0). Repeatedly selecting add (O,B,, O,B2 , 0,0,B3 ) and applying the 
first recursive clause yields an infinite derivation containing goals of increasing 
length, which is not pruned by any of the equality checks. 

We now prove that the weakest of the subsumption checks, the SVRL check, is 
complete for function-free nvi programs. To this end we use the following 
(weakened) version ofKruskal's Tree Theorem, called Higman's Lemma. (See [12]; 
for a formulation of the full version of Kruskal's Tree Theorem, see [9] or [14].) 

Lemma 5.13 (Higman's Lemma). Let Wo, w,, w2 , ••• be an infinite sequence of (finite) 
words over a finite alphabet X. Then for some i and k > i, W; ~ L wk. 

In order to prove that the SVRL check is complete for function-free nvi programs, 
we prove that, in the absence of function symbols, infinite derivations in which no 
new variables are introduced are pruned by the SVRL check. Then we prove that 
every derivation of a function-free nvi program (and an arbitrary goal) has a variant 
that indeed does not introduce new variables. 
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Definition 5.14. An SLD-derivation D = ( G0 ~c,.e, G 1 =:;. · · · ) is nonvariable 
introducing (in short nvi) if var( G0 ) 2 var( G1) 2 var( G2) 2 · · · . 

Lemma 5.15. In the absence of function symbols, every infinite nvi SLD-derivation is 
pruned by SVRL. 

Proof. Let D = ( G0 =;.c, ,9 , G 1 =:;. • · · ) be an infinite nvi SLD-derivation. We take 
for~ the set of equivalence classes of -var(Gol,Go.l as defined in Definition 4.15. By 
Lemma 4.17, ~is finite. To apply Higman's Lemma 5.13 we represent for j'~O a 
goal G; = -A1i, ... , A 11d (or rather the corresponding resultant G0 81 ••• 8i-Gi) 

as the word [ G 0 81 ... 8i - Ali], ... , [ G 0 81 ... 8i -. A 111J over ~. (Recall that for a 
resultant R, [R] denotes its equivalence class.) The sequence of representations of 
G0 , G1, G2 , ••• yields an infinite sequence of words w0 , w1, w2 , ••• over~. 

Now by Higman's Lemma 5.13, for some j and k > j: 

[ Go81 ... (Ji -Ali], ... , [ G 0 81 ••• 8i-. A 111J 

£L [Go81 ... Bk -A1k], ... , [Go81 ... fJk -.A"kd. 

So by the definition of -var(Gol.Go,1 , there exist renamings p 1 , ••• , p 111 which do not 
act on the variables of G0 such that 

(G0 81 ... (Ji -A1i)P1o ... , (G0 81 ••• (Ji -An1i)Pn1 

£L ( Go81 ... Bk-. A1k), ... , ( Go61 ... Ok -Ankk). 

However, D is nvi, so var( Gi) £ var( G0 ) and therefore the renamings Ph do not 
act on the atoms Aij of Gi (1 ~ h, i ~ nJ). Thus GJ = GJp 1 s;L Gk and G0 61 ••• 8Jp1 = 
Go61 ... ek. So D is pruned by SVRL. 0 

Lemma 5.16. Let P be a function-free nvi program and let G0 be a goal in Lp. Let D 
be an infinite SLD-derivation of Pu { G0}. Then a variant D' of D is an infinite nvi 
derivation. 

Proof. Suppose that D = ( G0 =;.c,,11, G 1 =;.c,, 82 G2 =:;. · · · ). We show that there exists 
an infinite nvi derivation D' = ( Gb =;.c"e; G; =;.c,,e2 G~ =:;. · · · ) that is a variant of 
D. Note that D' uses the same input clauses as D. 

We give an inductive construction of D'. By definition, Gb = G0 • Suppose we 
have constructed D' up to a goal G;_ 1 (i> O). G;_ 1 and Gi-i are variants, say 
Gi-i = G;_ 1p. Gb = G0 and the clauses C 1 , ••• , Ci-i are the same as in D, so C; is 
well standardized apart and we may assume that C;p = C;. Therefore p6ip- 1 is an 
applicable (idempotent) mgu. 

Now we obtain e; by replacing every pure variable binding x/y within p8ip-1 by 
y / x whenever x E var( G;_1 ) and y E var( Ci ), and replacing for such x and y every 
other binding z/y within p6ip- 1 by z/x. 
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Since no function symbols appear in P, this yields that for every variable x E 

var( G;_1) either xe: E var( G;_1) or xe; is a constant. Hence var( G;_1 ODs var( G;_1). 

Now let A be the selected atom in G:-1. let R be the rest of G;_l and let x E var( G;). 

Two cases arise. 
(1) x is introduced by C;, that is xEvar(body(Ci)O;). Then, since P is an nvi 

program, xEvar(head(Ci)O;). e; is a unifier of head(C;) and A, so xEvar(Ae;)s 

var( Gi-1 ODs var( G;_1). 
(2) x is introduced by G;_i. that is x E var(RO;). Then x E var( G;_ 1 O;) s var( G;_ 1). 

This proves the induction hypothesis for D' up to the goal a;. D 

Theorem 5.17. The SVRL loop check is complete for function-free nvi programs. 

Proof. By Lemmas 5.3, 5.15 and 5.16. D 

Corollary 5.18 (Subsumption completeness 2). All subsumption checks are complete 

for function-free nvi programs. 

Proof. By Theorem 5.17 and the Relative strength Theorem 3.9. D 

We now prove that the SVRL check (and hence all subsumption checks) are 

complete for function-free svo programs. By a construction similar to the one used 

in the proof of Lemma 5.16, we may assume that in an SLD-derivation D = 
( G 0 ::;.c, ,e, G 1 ::;> · · · ), var( G0 0;) <:; var( G 0) for i > 0. (Note that for this construction, 

only the absence of function symbols was needed, and not the nvi property.) Under 

this assumtion we can prove the following lemma. 

Lemma 5.19. Let P be a function-free svo program and let G0 be a goal in Lp. Let 

D = ( G0 ~c, ,e, G 1 ::;.c,,82 0 2 -=='> • • • ) be an SLD-derivation of Pu { G 0}. Then for 

every goal Gi (i;=:;.O), ifx occurs more than once in Gi> then xEvar(G0 ). 

Proof. By induction. For i = 0, the claim is trivial. Now suppose x occurs more 

than once in G;+1 (i;=;;.O) and x~var(G0). 

Let G; =(A, S), where A is the selected atom (not necessarily the leftmost atom) 

and let Ci+1 = H ~ X. Then Oi+t is an idempotent mgu of A and H and Gi+ 1 = 
(X, S) 0;+ 1. There are two ways in which we can obtain a variable x occurring more 

than once in G;+1 · 
( 1) A variable y occurs more than once in (X, S) and yll;+1 = x. By standardizing 

apart, var(S) n var(X) = 0, so y occurs either only in S or only in X. Since Ci+ 1 is 

svo, y does not occur more than once in X. Therefore y occurs more than once in 

S. Then by the induction hypothesis, y E var( G0 ). So x = yll;+i E var( G0 ll;+ 1) <:; 

var( G0). 
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(2) There are two variables y1 and Yi in (X, S) such that y 16;+ 1 = Yi6i+ 1 = x and 
y 1 ;t. Yi. In this case Yi. y2 E var( A, H ), since dom( 6;+ 1) s; var(A, H ). If y 1 E var(S), 
then by standardizing apart y 1 e var(H), so y 1 E var(A). Therefore y 1 occurs more 
than once in G; (in A and in S), and we can apply the induction hypothesis again. 
Since the same argument holds for Yi E var(S), only the case y 1 , Yi E var(X) is left. 
In this case, since Yi. Yi E var(A, H), by standardizing apart, Yi. Yi E var(H). 

Since Y16i+1 = Yi6;+ 1 = x, the sets Z1 = {z E var(A) I z occurs in A at the position 
of an occurrence of y1 in H} and Zi = {z E var(A) I z occurs in A at the position of 
an occurrence of Yi in H} are not disjoint. (Otherwise, a more general unifier of A 
and H than ei+1 would exist, mapping y 1 to an element of Z 1 and Yi to an element 
of Zi.) Let zEZ1 nZ2 • Then z occurs at least twice in A, so zevar(G0). Thus 
x = zB;+ 1 E var( G0 6;+ 1) s; var( G0 ). D 

We can now prove the desired theorem. 

Theorem 5.20. The SVRL loop check is complete for function-free svo programs. 

Proof. Let P be a function-free svo program and let G0 be a goal in Lp. Let 
D = (Go ::;>c"6 ' G 1 ::;>c,,62 G2 ::;> • • ·) be an infinite SLD-derivation of Pu { G0}. 

Again, we take for.! the set of equivalence classes of -var(GoJ,a0 , 1 as defined in 
Definition 4.15. By Lemma 4.17, .! is finite. To apply Higman's Lemma 5.13 we 
represent a goal Gj = AIJ, ... , Anjj in D as the word wj = 
[ G0 e1 ... ej -A1j], ... , [ G0 61 ••• ej -Anjj] over.!. The sequence ofrepresentations 
of G0 , G 1 , G 2 , ••• yields an infinite sequence of words w0 , w1 , Wi, ••• over .!. 

Now by Higman's Lemma 5.13, for some j and k > j, 

[ G0 e1 ••• ej -Alj], ... , [ GoB1 ... ej -Anjj] 

s; L [Goel ... ek -A1k] •... ' [Goel ... ek -An.kl 

So there are renamings p1 , ••• , Pn1 such that 

( Ga61 ... ej -A1j)P1, ... , ( Gae1 ... ei -Anjj)Pn1 

s; L (Gael ... ek -Alk), ... ' ( Go81 ... 6k -An.d· 

We now construct a renaming p. Consider the set X = var( Gj)-var( G0 ). By 
Lemma 5.19 a variable x EX occurs at most once in Gi; if x occurs in A;1, then we 
define xp = xp;. In order to make p a renaming p maps (one-to-one) the variables 
of Xp - X to the variables of X - Xp; p is the identity mapping on variables outside 

Xu Xp. Since, by the definition of -var(Gol.Go.l • the renamings p; do not act on 
variables in var( G0), x EX u Xp implies x e var( G0). Hence p does not act on the 

variables in var(G0 ), so G1p s;L Gk. From the assumption var(G0 6;)s;var(G0 ) for 
i > 0 it follows that var( Goe1 ... B;) s; var( Go), thus Gae1 ... eip = Gae1 ... 01• So 
G1p s;L Gk and G0 81 ... O;P = G081 .•• Ok. hence D is pruned by SVRL· D 



70 R.N. Bol, K.R. Apt, J. W. Klop 

Corollary 5.21 (Subsumption completeness 3). All subsumption checks are complete 
for function-free svo programs. 

Proof. By Theorem 5.20 and the Relative strength Theorem 3.9. 0 

Now combining Corollaries 3.6 and 3.7 with the Subsumption soundness Corollary 
5.8 and the Subsumption completeness Corollaries 5.9, 5.18 and 5.21, we conclude 
that all subsumption checks lead to an implementation of CW A for restricted 
programs, nvi programs and svo programs without function symbols. Moreover, the 
subsumption checks based on resultants also lead to an implementation of query 
processing for these programs. 

6. Context checks 

The Instance of Atom check is not weakly sound due to the fact that it does not 
take into account the context of an atom. However, whereas A(x) and A(y) differ 
only by a renaming, the existence of a refutation of -A(y), B(x) does not imply 
the existence of a refutation of +-A(x), B(x). To remedy this problem we should 
keep track of the links between the variables in the atom and those in the rest of 
the goal. 

Roughly speaking, the IA check prunes a derivation as soon as a goal Ok occurs 
that contains an instance Ar of an atom A that occurred in an earlier goal O;. But 
when a variable occurs both inside and outside of A in O;, we should not prune 
the derivation if this link has been altered. Such a variable x in G; is substituted 
by xBi+ 1 ••• Bk when Ok is reached. Therefore r and 0;+ 1 ••• Bk should agree on x. 
This leads us to a loop check introduced by [3]. 

6.1. Definitions 

Definition 6.1 (Context checks for goals). The Variant/ Instance Context check on 
Goals is the set of SLD-derivations 

CVG/CIG= RemSub({D\D= (Oo~c,, 8 , 0 1 ~ • • • ~Gk-1 ~c.,o. Gk) 
such that for some i and j, 0 ~ i ~ j < k, there is a 
renaming/ substitution r such that for some atom 
A in G;: Ar appears in Ok as the result of 
resolving A0;+1 ••• ej in Oi and for every variable 
x that occurs both inside and outside of A in G;, 
x9;+ 1 ••• Ok= xr} ). 

Besnard describes the condition on the substitutions as follows: "When Ar is 
substituted for A9;+1 ••• Bk in 0;9;+ 1 ••• Bk> this should give an instance of G;." We 
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show that this formulation is equivalent to ours. Let G; =(A, S), that is A occurs 

in G; and S is the list of other atoms in G;. Then (Ar, S8i+ 1 ••• 8k) should be an 
instance of (A, S), say (Aa, SCT). Clearly, 

{
XT 

xa= 
x8i+l ... ek 

for x E var(A) 

for x E var(S), 

so for x E var(A) n var(S), xr = x8;+ 1 ••• ek. 
The following example clarifies the use of the context checks. 

Example 6.2. We use the program P and the goal G of Variant of Atom check 

Example 2.5 and apply the CIG check on two SLD-trees of Pu { G}, via the leftmost 

and rightmost selection rule, respectively. This yields the trees in Fig. 10. 

rC rC 

i(C4) i(C4) 

rA(x),B(x) 

(Ct) "-.cc~)' 
{x/O '\f"'/x} 

CIG prunes here 

rA(x),B(x) 

I (C2) 

rB(O) rA(y'),B(x) 

cc1)/ \.cc3)" 
{y·1ov ~{x"/y'} 

rB(x) rA(y"),B(x) 

1<C2) cc,1y \CC3)'" 
{x/l} { y"/O/ ~{ x"'/y"} 

D 

Fig. JO 

t{ x/l} 

rA(l) 

I (C3)' 
t{x'/I} 

<--A(y') 

cc~l/ \Stl 
{x"/y'~ ~'/O} 

<--A(y") D 

The goal 0 3 = <-A(y') in the rightmost tree that was incorrectly pruned by the 

VA check, is not pruned by the CIG check. Certainly, A(y') is the result of resolving 

A(l) in 0 2 , the further instantiated version of A(x) in 0 1 • But replacing A(x)82 83 

by A(y') in 0 182 83 yields <-A(y'), B(l), which is not an instance of <-A(x), B(x). 

Claim 6.3. CVG and CIG are weakly sound simple loop checks. 

Proof. Proving that CVG and CIG are simple loop checks is straightforward. Besnard 

claims that CIG is weakly sound. From this it follows that the weaker CVG check 

is also weakly sound. See also Corollary 6.7. D 

In Example 4.3, the context checks act exactly in the same way as the corresponding 

equality checks. This shows that CVG and CIG are not sound. Again we can obtain 

sound, even shortening, versions by using resultants instead of goals. 
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Definition 6.4 (Context checks for resultants). The Variant/ Instance Context check 

on Resultants is the set of SLD-derivations 

CVR/CIR= RemSub({DiD = ( Oo=>ci.e, G1 => · · · => Gk-1 =>c.,1J, Ok) 
such that for some i and j, 0 ~ i ~ j < k, there is a 
renaming/substitution r such that 0081 ... 8k = 

0 081 ••• 8;r and for some atom A in Gi: Ar 
appears in Ok as the result of resolving 
A8i+1 ... (Ji in Oi and for every variable x that 
occurs both inside and outside of A in 
G;: X8;+1 . .. (Jk = XT} ). 

Using Besnard's phrasing, the conditions on the substitutions can be summarized 
as: "When Ar is substituted for A8i+1 ... 8k in the resultant R;8;+1 ... 8k, this should 
give an instance of R;." 

Lemma 6.5. CVR and CIR are simple loop checks. 

6.2. Soundness 

Now we prove that the CIR check is shortening. From this it follows that the 
weaker loop check CVR is also shortening. 

Theorem 6.6. The CIR check is shortening. 

Proof. Let P be a program, G0 a goal and D=(G0 =>c,,e, G 1 => · · ·=> G;-1=>c,,e, 
G; => · · · => Gk-1 =>c.,e. Gk => · · ·=>cm.em D) an SLD-derivation of Pu { G0} (where 
O~i<k:o;;;;m). 

Assume that Dis pruned by CIR, that is for some substitution r: G; = -(A, S;), 
Ok = -(Ar, Sk), Ar descends from A, S;8;+ 1 ... 8k =Sir and G0 81 ••• 8k = 
G0 81 ••• 8;r. (Here G = -(A, S) means: A occurs in G and S is obtained by 
removing A from G.) 

Then -s; s;M G; and -Ar s;;;M Gk. Since 

by Lemma 5.6 we have SLD-refutations D 1 of Pu{-SJ and D2 of Pu{-A}, 
where the computed answer substitution of D 1 , r 1 ,;;;; lli+J ..• 8m and the computed 
answer substitution of D 2 , r2 ,;;;; rOk+i ... Om. Say r2 y = r(h+ 1 ... 8m. Now we combine 
D 1 and D2 into an unrestricted SLD-refutation of Pu {-(A, S; )}: first resolve A 
as in D2; the goal S;r2 remains. Replacing the last mgu µ, of this derivation by µ,-y, 
this remaining goal becomes 
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From Lemma 8.5 of [ 16] and the existence of D 1 it follows that Pu { +-SJ1i+i ... em} 
can be refuted indeed, giving a computed answer substitution e. The mgu lemma 
of [16] shows that the combined unrestricted refutation can be turned into a real 
SLD-refutation D3 of Pu {+-(A, Si)} giving a computed answer substitution 7 3 .;:; 

T2'YE = Tek+I ... em. Therefore 

Go81 · • • ejT3.;:; Go81 • · · 8jTek+I . ·. em= Goel ·. · ekek+I ... em• 

Since AT descends from A, an inspection of the proof of Lemma 5.6 shows that 
every derivation step in D 1 and D 2 has a corresponding derivation step in the tail 
( Gi ~ · · · =? O) of D. This tail consists of m - i derivation steps. On the other hand, 
at least one step in this tail has no corresponding step in D 1 or D 2 : the step in 
which Aei+1 ... ei is selected. Hence the number of derivation steps in D 3 (which 
equals the number of derivation steps in D 1 and D 2 together) is smaller than m - i. 

Now, apply Lemma 4.5. 0 

Corollary 6.7 (Context soundness). (i) The context checks based on resultants are 
shortening. A fortiori they are sound. 

(ii) The context checks based on goals are weakly sound. 

Proof. By Theorem 6.6 and the Relative strength Theorem 3.9. Note that omitting 
the considerations about computed answer substitutions from this proof yields a 
proof for (ii), i.e. for Claim 6.3. 0 

For derivations via certain selection rules (including leftmost and rightmost 
selection rule), a much easier soundness proof exists, based on the relative strength 
of the context checks. 

Definition 6.8. (This definition is equivalent to the definition of local selection 
functions in [23].) A selection rule R is local if every SLD-derivation D = 

( G0 ~c, ,8 , G 1 =? · · · ) via R satisfies the following property. If in a goal Gi, an atom 
A is selected and in a goal Gi (j > i) the further instantiated version B8;+ 1 ••• ei of 
the atom B in Gi is selected, then A is resolved completely between Gi and Gi. 

Lemma 6.9. The SIGL check is stronger than the CIG check and the SIRL check is 
stronger than the CIR check w.r.t. local selection rules. 

Proof. Suppose D = ( G0 ~c,,6, G1 ~ • • • ~c.,9, Gk) is pruned at Gk by the CIG 
check, see Fig. 11. We show that Dis pruned by the SIGL check at Gk (or earlier). 

We have an atom A in Gi> Aei+I · · · 8i in q as the selected atom and AT as the 
result of resolving A8i+I · · · ei. Let Gi =(A, S, T), where S consists of those atoms 
in Gi that are completely resolved between Gi and q. The use of a local selection 
rule yields 

Gj = (Aei+I ... 8j, Tei+ I ••• 8j) and Gk =(AT, V, Tei+I ... 8k) 

( U consists of the other atoms in Gk that are the result of resolving A8i+ 1 ••• ei). 
Finally, if x E var(A) n var(S, T) then x8i+I ... 8k = XT. 
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G. T 
1 

./~,./· 
/ 

1--~--\-r, _____ _,
1

1 S•hmmptioo dreok 

akl .__A_'t~\ _u_~_T_e_i_+1_ .. _.e_k_~. 
Fig. II 

We show that for some substitution a, Gp s L Gk. We define a as follows: 

{
x if x E var( GJ 

xa = xej+I .. ' ek if x E var( GJ-var(A), 
XT if XEVar(G1)nvar(A). 

We show that (i) Aei+1 ... Op= Ar and that (ii) Tei+ 1 ... Op= T8i+1 ... ek. 
(i) Let x E var(A), then x E var( G;). We prove that x0;+ 1 •.• Op= xr. 
If x E var( GJ), then x8;+ 1 ... 81 = x, hence x8;+1 ... Op= xa = xr. 
If xevar(G;) then x8;+1 ... ej-¥ x, hence xEvar(S). So xei+I ... ek = XT. Moreover, 

for every yE var(x8;+ 1 ... OJ, either y E var(S) or y is introduced by C+ 1, ... , CJ, 
i.e. ye var( G; ), in particular y E var(A). In both cases ycr = ye;+ 1 ... fh (notice that 
y E var(xei+l ... 01) s var(Alli+l ... ej) s var( G1)). So x8;+1 ... e;<J = xlli+l ... ek = XT. 

(ii) Now let y E var( T8i+1 ... ej ). We prove that ycr = y8j+I ... ek· First note that 
for some x E var( T): y E var(xe;+ 1 ... OJ). 

If x E var(S), then x = x8;+1 ... ej = y, so y E var( T), hence Y<J = y8;+1 ... ek· 
If x E var{S), then again either y E var(S) or y E var(A), and in both cases yu = 

y8j+I ... 8k. 
If Dis pruned by the CIR check, then we also have that G0 e1 ••• 8k = G 0 e1 ••• 8;r. 

We show that this implies G0 e1 ... Ok= G0 e1 ... Op, i.e. that D is pruned by the 
SIRL check. Let x E var( Goel ... e;), hence x8;+1 ... ek = XT. We show that 
x8;+1 ... eja = xei+l ... ek. 

If xevar(S), then xB;+i · .. 81 =x, hence 

{
x = x8;+1 ... ej = xei+I ... ek 

xei+l ... O;cr = X<J = xej:l ... ek =XO;+ 1 ... ek 

XT - xe;+1 ... 8k 

if x E var( G;), 

if x E var( GJ)-var(A), 

if x E var( GJ) n var(A). 

If x E var(S), then again for every y E var(x8H 1 ... 81), either y E var(S) or y .E 

var(A), and in both cases yu = yOJ+i ... ek (if ye var( G1) then y<J = y = ye1+1 ... ed. 
So x8;+1 ... ep = X8;+1 ... ek. D 

The following example shows that the previous result does not hold for selection 
rules that are not local. 
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Example 6.10 (Based on Example 10 in [3]). Let 

P={A-B. (Cl), 

B -A. (C2), 

C - D. (C3)}, 

and let G =-A, C. 

75 

Then the derivation -~. C ~<co -B, C' ~(CJ)-!), D ~cc2 > -A, D (in which 
the selected atoms are underlined) is pruned by the context checks (the A in the 
fourth goal is the result of resolving the A in the first goal), but not by the subsumption 
checks. 

Now we can add the context checks to our "stronger than" scheme, as in Fig. 
12. The dotted arrows are only valid for local selection rules. 

shortening weakly sound 

CYR SYR L-----+-• SYGL CVG 

~!R-l ':s1R1 ~IG14-CI~ 
SVR~ SVG~l 

SIRM-+----+---<.-

IA 

not weakly sound 

Fig. 12 
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6.3. Completeness 

Again we shift our attention to completeness issues. We first prove that, like the 
equality checks and the subsumption checks, the context checks are complete w.r.t 
the leftmost selection rule for function-free restricted programs. 

Theorem 6.11. The CVR check is complete w.r.t. the leftmost selection rule for function­
free restricted programs. 

Proof. Let P be a function-free restricted program and let G0 be a goal in Lp. Let 
k =weight( G0 ). Consider an infinite SLD-derivation D = (Go ~c1 ,01 G1 ~ · · · 
~ G;_1 ~c,,e, G;~ · · ·) of Pu{G0}. By Corollary 4.14 for every i;;;.O: iGJos:; k. 
Every goal G; is a goal in Lp and hence every resultant G0 81 ... 8; +- G; belongs 
to an equivalence class of - 0•00 ,k. Lp satisfies the conditions of Lemma 4.17, so 
- 0•00 ,k has only finitely many equivalence classes. Thus the set E =fr if is an 
equivalence class of - 0•00 ,k and for infinitely many resultants R in D: RE g} is 
nonempty. For simplicity, we shall say that the goal G; is in an equivalence class 
g, when in fact ( Go81 ••• 8; +- G;) E f. 

For every equivalence class g of - 0,00 ,k. we define the length off, denoted by 
i.?i, as the length of the goals in g. Since E ~ 0, we can define I= min{i.ei if EE}. 
Now we choose an equivalence class e EE with lei== l. According to the choice of 
e, D contains infinitely many goals in e and a finite number of shorter goals (since 
the number of equivalence classes of - 0,00 ,k is finite). 

Let G; and Gk be (the first) two goals in D that are in e such that no goal lying 
in D between them is shorter. Since G; and Gk are in the same equivalence class 
e, we have Gk = G;T and 0 0 81 ••• 8k = 0 0 81 ..• 8;T for some renaming T. 

Let A be the leftmost atom in G; and let S be the rest of G;. A is selected in G;. 
However, A is not completely resolved between G; and Gk, otherwise a goal shorter 
than G;, namely an instance of S, would appear between G; and Gk in D. Therefore 
the atom AT in Gk is the result of resolving A. Furthermore, no atom of Sis selected 
between G; and Gk. so Gk =(AT, S8;+1 ... 8k). Hence S8;+1 ... 8k =ST. 

When in the resultant R;8;+1 ... 8k. we replace A8;+1 ... 8k by AT, we obtain 
(Go81 ... fh +-AT, S8i+I ... 8k) = (Go81 ... 8;T +-AT, ST), which is a variant of R;. 
Therefore D is pruned by the CVR check. 0 

Corollary 6.12 (Context completeness 1). All context checks are complete w.r.t. the 
leftmost selection rule for function-free restricted programs. 

Proof. By Theorem 6.11 and the Relative strength Theorem 3.9. D 

Besnard [3] claims without much proof that the CIG check is complete for 
function-free nvi programs. It appears that even the weakest of the four context 
checks, CVR, is complete for function-free nvi programs. 
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Theorem 6.13. The CVR check is complete for function-free nvi programs. 

Proof. Let P be an nvi program, G0 a goal in Lp and D = 

( G0 ~c, ,6 , G 1 ~c2 , 82 G2 ~ • • • ) an infinite SLD-derivation of Pu { G0}. By Lemma 
5.16 we may assume that D is an nvi derivation. 

Since Dis infinite, at least one atom in G0 has infinitely many selected descendants, 
hence the proof tree of this atom is infinite. Applying Konig's Lemma on this proof 
tree shows that it has an infinite branch, so there exists an infinite sequence of goals 
Gmo, Gm,, ... (Q,,;;; m0 < m1 <···)containing atoms A 0 , A1o ... such that for every 
i ;;..o, 

(1) A is the selected atom in Gm,, 
(2) A;+ 1 is (the further instantiated version of) an atom A;+1 which is introduced 

in Gm,+t as the result of resolving A;. 
The situation is depicted in Fig. 13 (selected atoms are underlined). 

Go = (······Ao' ...... ) 

* 
* 01 ... emo 

Gm0 = ( ...... Ao ...... ) (Ao= Ao'61 ... 6mo) 

I \ t 0mo+I 

Gmo+I = ( ...... A( ..... ) 

* * 0mo+2···0m1 

Gm1 =( ...... A1 ...... ) (A1 = A1'0mo+2·· .0m1) 

I \ t 0m1+! 

Gm1+1 = ( ...... A2'. ..... ) 

* * 0m1+2··· 

etc. 

Fig. 13 

We now consider the resultants G00182 ••• em, - A; (i;;,, 0). These resultants belong 
to equivalence classes of the relation -var(GoJ,Go.t (see Definition 4.15), which has 
by Lemma 4.17 only finitely many equivalence classes. Hence for some p and 
q > p: ( G0e1 e2 ... 8mp -Ap) -var<GoJ.Go.t ( G0 8182 ••• 8m• -Aq). So by Definition 
4.15, there exists a renaming p such that 

(1) G0e1e2 ••• flmpP = Go8182 ... Om•' 
(2) App= Aq, 
(3) p does not act on the variables of G0 • 

When this is compared with the definition of the CVR check, taking i = j = mP, 

k = mq, A= AP and T = p, it appears that the only additional condition for pruning 
is that "for every variable x that occurs both inside and outside of Ap in Gmp: 
x(Jm +I ••• em = xp". We now prove that this condition is also satisfied, which proves 

p q 

that D is pruned by the CVR check. 
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First observe that, since D is nvi, var( Gm ) s;;; var( G0 ), so for every variable x in 
p 

Gmp' xp = x. In particular, it follows that Aq =App= Ar 
Now suppose that x occurs both inside and outside of AP in G'"P. Then x occurs 

in Aq, hence in Gm . Thus x occurs in every goal between Gm and Gm . Suppose q p q 

(in order to obtain a contradiction with the previous observation) that for some en 
among em + 1, ••• , fJm , xe,, ;t:. x. Since P is function-free, xfJ,, is then either a constant 

p q 

or a variable other than x. Furthermore, e,, is idempotent, hence e,, does not contain 
a binding y / x. Therefore x ~ var(V ARe,, ), in particular x ~ var( G,,): contradiction. 
Hence x9mp+ 1 ••• em.= x = xp. D 

Corollary 6.14 (Context completeness 2). All context checks are complete for function­

free nvi programs. 

Proof. By Theorem 6.13 and the Relative strength Theorem 3.9. D 

Now combining Corollary 3.6 and Corollary 3.7 with the Context soundness 
Corollary 6.7 and the Context completeness Corollaries 6.12, 6.14 and 6.16, we 
conclude that all context checks lead to an implementation of CWA for restricted 
programs, nvi programs and svo programs without function symbols. Moreover, the 
context checks based on resultants also lead to an implementation of query process­
ing for these programs. 
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