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1. Introduction 

In this report we investigate the differential equation 

a2 a2 
b.=--+-, 

ax2 ay2 
( 1. 1 ) 0 ' 0 < £ <<. 1; 

$(x,y;£) holds for x2 + y2 < 1. The boundary value is given for 

x2 + y 2 = 1. It is known ( see [7]), that for this problem the singular 

perturbation method can be applied. It yields a boundary-layer at the 

part of the boundary for x > 0. 

In the usual singular perturbation methods the points (x,y) = (0,1) 

and (x,y) = (0,-1) are excluded in this case. Before we examine these 

points we introduce the notion of a reduced differential equation. 

The reduced equation of a differential equation with a small para.meter 

£ is constructed by posing£= 0 in the differential equation. For 

example the reduced equation of (1.1) is::= 0. If we introduce other 

coordinates by some transformation, then it remains that£= 0 is 

substituted. Before this can be done, the terms of the equation need 

to be 0(£a) with a> 0 and for at least one term there has to hold 

a= 0. This condition can be satisfied by multiplying the equation 

with a suitable power in£. 

In the points (0,1) and (0,-1) the characteristics of the reduced 

equation of (1.1) are tangent to the boundary. The behaviour of the 

solution $(x,y;£) is such that an asymptotic expansion of the solution, 

which holds on a great part of the domain, will not hold in a 

neighbourhood of these points. 

Therefore a special investigation is made by introducing local 

coordinates in the neighbourhood of these points. As appears from 

solving this local problem, the behaviour of the solution in the 

points, where the boundary-layer begins, can be described very well 

by an intermediate- and an interior boundary-layer expansion, see 

(2.27) and (2.44). 

Finally we compose a uniform valid expansion by taking together the 

first terms of the outer expansion, the boundar-layer expansion and the 

intermediate boundary-layer expansion. 
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We prove that the accuracy is 0(e 113 ) in the first and 0(e417 ) in the 

second approximation. 

In this report we take the results of Eckhaus [1] as a starting-point. 

It is professor w. Eckhaus, who suggested the investigations of this 

report. In [4] and [5J, respectively, Frankena and Mauss have obtained 

uniform approximations in a different way. 

Applying the method of Frankena we obtain for the accuracy 0(e 114 ) in 

the first approximation of ~(x,y;e), as it is defined by (2.1) and (2.2). 



2. Local asymptotic approximations 

2.1. Introductory remarks 

4 

We consider the function ~(x,y;s), satisfying the differential equation 

2 2 
L ( ~) = s {il + U} a~ 0 

s ax2 ay2 - ax= 
( 2. 1 ) 

for x2 + y2 < 1 with the boundary condition 

(2.2) ~(x,y;s) = ~(e), where x =sine, y = cos e. 

sis a small positive parameter0 We assume that ~(x,y;s) has the 

expansion 

00 

( 2. 3) ~(x,y;d = L 
n=0 

By substitution of (2,3) in (2.1) we obtain, after equalization of the 

coefficients of equal powers of s, equations for U (x,y), n = O, 1, 2, 
n 

that u0 (x,y) cannot satisfy both the equation It turns out 
au0 
ax = 0 and the boundary condition u0 (x,y) = ~(e). Moreover, Un(x,y) for 

n = 1, 2, ."' has singularities in (0,1) and (0,-1), In order to investigate 

the behaviour of the solution in a neighbourhood of the boundary and 

especially in a neighbourhood of the points (0,1) and (0,-1) we introduce 

the local coordinates~, n: 

(2.4a) X = (1 p)sin e, y = (1 - p)cos e, 

(2.4b) 

Substitution of (2.4) in (2 1) and (2,2) leads to 

( 2, 5) L [~] 
E. 

µ 
JSln E. n, . f 
l ].l 

E. 

1-v j s Ii 
( 1-s v~) a~ 
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For v > O, µ = 0 the reduced equation of (2.5) represents the behaviour 

of the solution in the neighbourhood of the boundary and for v > O, 

µ > 0 in the neighbourhood of ( 0, 1) or ( 0 ,-1). We refer to [1] for a 

description of all possible reduced equations. 

We restrict ourselves to four local equations (see fd.g. 1 ) 

a. V = o, µ = O: the equation ( 2. 1 ) in x,y-coordinates; 

b. V = 1 , µ = 0: the boundary-layer equation; 

c. V = 2/3, µ = 1 /3: the intermediate boundary-layer equation; 

d. V = 1 , µ = 1 : the interior boundary-layer equation; 

In the following sections we shall construct with aid of these ,equations 

expansions for ~(x,y;£). Each of these expansions will be valid in a 

part of the domain x2 + y2 ~ 1; the parts fill up the domain completely. 

i 
µ 

' / 

I 
1 /3 

b 

fig. 1 
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2.2. Expansion of solution outside the boundary layers 

We consider the expansion (2.3). U (x,y) satisfies 
n 

au a2u a2u 
0 and --1!. = I n-l + 

ax 1 2 
n-1 · 
2 } ' ay 

n = 1 , 2, • • • • 
ax 

In this way we obtain 

(2.7) u0 (x,y) = f(y), 

,x a2u 
(2.8) u (x,y) = I ~ 

n J-V1-y2 
I n-1 + 
l -2 dx, n = 1 , 2, • • • • 

ax 

The function f(y) can satisfy the boundary condition only along a part 

of the boundary. Theorem IV of [3] shows that this part consists only 
2 2 of the left half of the circle x + y = 1, so that we have 

f(y) = w(- arccos y). 

, I y2) d 2 f d 2 f (2.9) U1(x,y) = (x +v 1 - - - = ---2 w"(- arccos y) + 
dy2' d.y2 _ y 

The method of induction delivers after many calculations 

( 2 • 1 0) U ( X ,y) = 
n 

2n 
'i' 
l 

k=1 

(k) ~ (x+/1--y2 )m 
1jJ (- arccos y) l R (x y) - -

•m=l k,m,n ' (l-y2)~(3n+m-k) 

2 2 Rk (x,y) is a bounded function for x + y < 1. ,m,n 
There exists a positive number M, such that 

for all k, m and 
. . 2 in the domain x 

lljJ(k\_ arccos y)Rk (x,y)I < M 
,m,n 

2 2 w ak . . ( ) n, as x + y < 1. em e an estimation for U x,y 
2 n 

+ y .:_ 1 with exception of the parts A1 and A2• 
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/ n-e / 

0 < µ .:_ 1/3. 

K is an arbitrary large positive number. It appears that 

(2.11) 

so that the expansion (2.3) converges. 

1 / 

µ 

/ 

y 

C 
I I 

---t--- --------~ ·----++--

C -
.,,,_..-

\ 
~-

fig. 2a 
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1. 

/ 
I 

I 
! 

I 
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"' 
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fig. 2b 
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2.3. Boundary-layer expansion 

Equation (2.5) is, for v = 1, µ = 0 and o < e .::._ n-o, where o is an 

arbitrary small positive number, 

(2.12) a2
<1> • e a4> r 1 {a<I> a4>} 

3s2 + sin a1" = € [( 1-Es) a1" + COS 0 "ff! E ] 2 • 
( 1-£s) 

We introduce the boundary-layer expansion 

00 

(2.13) 'i• n 
<j>(x,y;E) = l V (s,0)E • 

n=O n 

Substitution of (2.13) in (2.12) gives 

(2.14) 
a2v av0 
--0 +sine -- = o 
as2 as 

and 

(2.15) 
a2v av1 av0 av0 
--1 + sin e -- - -- + cos e ~e • as2 as - as a 

The general solutions of (2.14) and (2;15) are 

(2.16) 

and 

(2.17) v1(s,e) 
2 tAO(e)cos e 2 A0(e)cos 0 AO(e). ~ -s sine+ 

= 2 • 0 s + { . 0 + 2 } s + A1 ( e) e 
sin sin . e sin 

B0(e)cos 0 
+ sine s + B,(e). 

AO(e), A1(e), BO(e) and B1(e) are determined by the boundary condition 

and the matching condition. 

a. The boundary condition involves 

(2.18) 
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b. Satisfying the matching condition means that the expansion (2.13) has 

to match (2.3) for~>> 1. Substituting the boundary-layer coordinates 

in (2.3) and expanding the terms in the neighbourhood of p = O, we find 

(2.19) r-
cH:J ] <P[~,e;e:1 = u0 [o,eJ + e:{~ ~ + u1 [o,e]} + e: 2 

- p p=O 

The matching condition is satisfied, if 

(2.20) 

and 

(2.21) 

Lim v O ( ~ , e ) = u O [ o , e J 
~~ 

tau -J 
Lim { v 1 ( ~ , e ) - ~ ~ } = u 1 [ o , e J . 
~~ p p=O 

From (2.18), (2.20) and (2.21) we deduce 

(2.22a) 

( 2. 22b) 

A0(e) = ~(e) - ~(-e), (2.22c) 

B0(e) = ~(-e), (2.22d) 

A1(e) = O, 

B1(e) = O. 

V (~,e) can be written as 
n 

(2.23) v (~,e) = P (~,e)e-~ sin 6 + Q (~,e), n = 1, 2, 
n n n 

After some laborous calculations we obtain for n = 2, 3, ••• , using (2.12), 

(2.24a) 
2n k 6-3n+k+1 P (~,e) = \ spk(~,e) ~ n l , 
k=1 

(2.24b) 
n 

sqk(~,e) ~k 6-3n+k+1. Qn(~,e) = I 
k=1 

Spk(~,e) and Sqk(~,e) are bounded functions for O ~~and O < e < n. 

There exists a number M such that 

max { I spk ( p /£, e) I , Is qk ( p / e:, e) I } < M for k = 1 , 2, • • • • 

We observe that it is possible to make the following estimation 
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(2.25) 

in the domains B1 and B2• 

B1: O.::. p.::. K2e/e, Keµ< e.::. n/2; 

0 < µ ~ 1/3, see fig. 2. 

In formula (2.25) R(M,K) is a positive number depending on Mand K. 

The expansion (2.13) converges in B1 and B2, on account of the validity 

of estimate (2.25). 
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2.4. Intermediate boundary-layer expansion 

In the present and the following section we only consider the neighbour­

hood of (0,1 ). For (0,-1) the computations are completely analogous. 

In (2.5) we take v = 2/3, JJ = 1/3; I;> cS > 0 for 0 .::_ lnl .::_ cS and I;.::_ 0 

for o .::_J ~I, where cS is an arbitrary small positive number. In this case 

the solution of the reduced equation of (2.5) represents the behaviour 

of ¢(x,y;E) in the neighbourhood of (0,1). In the same way as in the 

preceding section we assert an expansion for ¢(x,y;E): the intermediate 

boundary-layer expansion. 

The name "intermediate boundary-layer" has to do with the fact that 

another boundary-layer exists: the so-called "interior boundary-layer" 

(µ = v = 1). The intermediate boundary-layer is singular in I;= n = 0, 

therefore we construct this interior boundary-layer expansion in the 

following section. 

For v = 2/3, JJ = 1/3 equation (2,5) is 

We pose that ¢(x,y;E) can be expanded as 

(2.27) ¢(x,y;E) = 
00 

\ 
l 

n=0 

( n/3 Y /;,n)E , 
n 

+ ••• + 

The terms Y (!;,n) have to satisfy matching conditions. They have to match 
n 

with: 

a. the outer expansion (2.3); 

b. the boundary-layer expansion (2.13); 

c, the interior boundary-layer expansion (2.44). 

The usual way of solving the problem for Yn(!;,n) is: firstly, to deduce the 

general solution from (2.26) and (2.27); and secondly, to choose the 

undetermined terms of the general solution such that the matching conditions 
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are satisfied. This method generates a lot of difficult additional 

problems. We therefore have searched for another method to solve this 

very problem. 

Inspired by P. Roberts [2] we assert that the intermediate boundary­

layer has to satisfy the boundary condition 

(2.28) Y (O,n) = 1/J(n) (O)nn/n!, n = O, 1, 2, •••• 
n 

This method makes it necessary to verify the matching conditions after­

wards. It is obvious that 

(2.29) 

and 

(2.30) 

Introduction of a new dependent variable ~1(~,n), 

leads to 

(2.30) 

2 
a ~1 1 
-- + - ~~ 
a~2 2 1 

(2.31) 

We note that 

2 
(2.32a) P1(~,n;p) = em np • Ai(p - m~), 

2 
( 2. 32b) P2(~,n;p) = m np e • Ai(wp mw~), 

(2.32c) 
2 

. ( 2 2 ) P3 (~,n;p) = m np e Ai w p - mw ~ 

are solutions of (2.30), where Ai(z) is the Airy-function and pis an 

arbitrary constant; m = 2-113 , w = exp(2/3 ni), w2 = exp(- 2/3 ni). 
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Two of the three solutions (2.32) can be chosen independently. By 

considering these three solutions together we may make use of some 

special properties of the Airy-functions. 

In [2] Roberts introduces the solution 

.. 00 " ' , \ 

-2 1 1 3 I f Ai ( x} (2.33) Y1 (~,n) = - m ljl'(O)exp(- 2 ~n - 12 n ) w O Ai(x) Ai(x-mw~)-

m2nxw2 dx + 2 Joo Ai(x) A"( 2~) m2nxw e w "( ) 1 x-mw ~ e dx 
O A~ x : 

00 ! 2 
2 r Ai(wx) nx I - A;i. (wx - mw~ )em dx + 

w Jo Ai(wx) 

We investigate the boundary value 

' 2 ! 2 m2nx· - ( Ai ( wx) w + Ai ( w x) w) e } dx. 

From the theory of Airy-functions it is known that for all x there holds 

(2.35) Ai(x) + wAi(wx) + w2Ai(w2x) = O, 

so that from (2.34) there follows 

(2.36) Y1(0,n) roo 2 2 2 
= - m-2$' (O)exp(- _1_ n3) Ai.(x)(em nx + wem nxw + 

12 ; O 

For the computation of (2.36) we refer to [2]. 

This result agrees with (2.28). 
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We verify the matching conditions. In a certain sense it has been done 

in [2] for matching the outer expansion and the boundary-layer expansion. 

Since we approach the problem from another point of view, we give a proof 

of it in a rather different~ way. Matching the interior boundary-layer 

expansion will be investigated in the following section. 

a. Matching the outer expansion 

In accordance with the principle applied in (2.19) we substitute the 

coordinates corresponding to v = 2/3, µ = 1/3 into (2.3): 

(2.37) -- [ 1 /3 
00 

I u + 2/3 
00 

<PLP,9;£1 = u0 _o,o] + £ 
n=O n,1/3 £ I un,2/3 + £ ••• • 

n=O 

1 /3 h f n h , ( 1 /3) . . un,l/3£ represents t e part o Un£ tat is O £ in the coordinates 

corresponding to v = 2/3, µ = 1/3. For example 

u0 (x,y) = ~(- arccos y) = ~(O) - arccos{(1-£ 213~Jcos £113n}~'(O) + ••• 

£ 
2/3 ... , 

so 

(2.38) 

As W. Eckhaus in [1] suggests, we match along the line v = 2µ, 0 .::_ µ .::_ 1 /3, 

see fig. 1. This means that the expansions (2.27) and (2.38) for~= cn2 

(C > 0) and Jnl >> 1 are equal: 

00 

(2.39) Lim2 {Y1(~,n) - I un,l/3 [~,n]} = O. 
~=Cn n=O 
lnl~ 

It is easily seen that 

(2.40) Lim2 un,l/3 [~,n] = o, n = 1, 2, •••• 
~=Cn 
lnl~ 

We derive from (2.33) for~ 2 
= Cn , In I // 1: 
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(2.41) 

which is proved in appendix a. So now we can see that (2.38), (2.40) and 

(2.41) do indeed yield (2.39). 

b. Matching the boundary-layer expansion 

In the coordinates corresponding to v = 2/3, µ = 1/3 the expansion (2.13) 

transforms into 

<t> [s , n ; E: J = 1/J ( o ) + 
1 /3 

E: 

00 00 

L V n ' 1 / 3 [ s ' n] + E: 2 / 3 n--L O V n ' 2 / 3 + E: • • • ' 
n=O 

In this case we match along the line v = 1 - µ, 0 .::_ µ < 1/3, see fig. 1. 

The matching condition takes the form 

00 

(2.42) lim { Y 1 ( s, n) - I V n, 113 [ s, n] } = O, C > O. 
s=C/n n=O 
n~ 

Because in [2] it has been proved for s = C/n and n >> 1 that 

-sn ) Y 1 ( s, n) ~ ( 2ne - n 1/J' ( O) 

(2.42) is indeed valid. 

Moreover, it is easily seen that 

lim V n 1 13 [s, n] = 0, n = 1 , 2, • • • • 
s=C/n ' 
n~ 
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2.5. Interior boundary-layer expansion 

We consider the case v = µ = 1, E;, ~ O, lnl > 0. Equation (2.5) then takes 

the form 

The interior boundary-layer expansion is 

(2.44) 
00 

\ 
l 

n=O 

and satisfies the boundary condition 

00 

(2.45) I W (O,n)En = ~(sn). 
n=O n 

As a first approximation we obtain 

For the next term in the approximation we have the equation 

(2.46) 

It is known ( see [1]) that w1 ( E;,, n), as it has the form 

r+oo 

s w 7 ( E;, ' n ) = ~TT I 
J _oo 

is a solution of this equation, if sW1(0,n) = f(sp). 

K1(z) is a modified Bessel function of the first kind and 

2 1 
R I( ) + c2L2, = l n - p s J 



17 

(2.45) has been satisfied by the choice f(Ep) = $(£p) - $(0). It is 

impossible to use a Taylor-expansion of $(£p) and to change the order 

of integration and summation, because the integrals diverge for p + - 00 • 

Matching the intermediate boundary-layer expansion 

1/3 . 1/3 1/3 2/3 We transform£ Y1(~,n) into£ Y1(~£ ,n£ ) and develop this form 

into a power series in£. We now match along the line v = ~ (1 + µ), 

f ~ µ ~ 1, see fig. 1. This means that £113Y1(~£ 113 ,n£213 ) and £W1(~,n) 

have to be asymptotically equivalent for n = c~2 (C # 0), ~ >> 1. 

In appendix bit is proved, that in this case 

(2.47) 

Further, we investigate w1(~,n) and make the following estimate 

Joo 1 ( ) K (R/2) 
£W1(~,n) = ~n -N {$(£p) - $(0)}e-~ p-n 1 R dp + 0(£M), 

where N and Mare arbitrarily large positive numbers. 

The asymptotic behaviour of w1(~,n) can be determined by the saddle­

point method. We also refer to [6], in which in order to prevent a loss 

of higher order approximations the computations are rather complicated. 

In both cases we obtain 

(2.48) 

where o(N) + 0 for N + 00 • We introduce the functions 

(2.49) 

and 

(2.50) 
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Repeated partial integration of (2.48) yields 

The integrand. of ( 2. 49) may be written in a truncated development 

(2.52) S,(t;i;,n) 

0 < g < t. 

So that now (2.49) and (2,50) can be integrated. Moreover, 

r{ } -h2j"" I_ s1(t;i;,n) + s2(t;i;,n) e -+ o, as N-+ oo. 

6 ( N) 

Thus we obtain 

(2.53) 
1 2 EW1(i;,n)~El/;'(O)(n+ 2 i; ). 

After examination of (2.47) and (2.53) our conclusion is that the terms 

E113y1(p/E 213 ,e/E 113 ) and EW1(p/E,8/E) indeed match. 

Comment: 
!;2 

It is impossible to expand [1/;[E(n - 2 )] - 1/;(0)} in (2.48) directly 
. b . 1 . 2t . d d . 1 in terms of E, ecause partia integration woul lea to singu ar terms. 



3. Uniformly valid approximations 

3.1. Introductory remarks 

19 

In the preceding chapter we constructed approximations of U(x,y;e) which 

are locally valid in the domain x2 + y2 < 1. Our aim is to construct a 

uniformly valid approximation; therefore we compose the local expansions 

to one expansion. This is done in such a way, that the asymptotic 

equivalence of the composite expansion and each local expansion in its 

part of validity can be proved. 

In 3.2 we reproduce a theorem, that will be applied in the following 

sections. 

The accuracy of the uniform approximation will be estimated by choosing 

the boundaries between the parts in such a manner that the remainder 

tersm are optimal. 
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3.2. Application of the maximum principle 

Let 

M[<P] a2"' a"' a2"' a<1> - a(F,;,n) 7 + 2b(F,;,n) ¾ + c(F,;,n)·7 + d(F,;,n) ~ + 
ar,; an 

be a differential expression elliptic in a bounded domain G while the 

coefficients a, b, etc. are continuous within G with a(F,;,n) > O. 

Theorem: 

Let <j>(F,;,n) be the solution of the differential equation 

M[<P} = h(F,;,n) 

valid in G, while along the boundary r of G the relation 

holds. e(F,;,n) is either positive or negative and f(F,;,n) < 0 in G. If there 

exists a con·stant m with the properties: 

jh(F,;,n)I < m in G 

jk(F,;,n)I < m along r, 

then there exists also a real number M independent of m such that 

l<P(F,;,n)I ,:_mM in G. 

For the proof of this theorem we refer to [3], where it has been derived 

from the maximum principle. We investigate the parts A1 and A2 for the 

elliptic differential equation 

( 3. 1 ) L [<P ( F,;, n) 1 
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Obviously L[<l>(~,n)] satisfies the conditions for M[<i>(~,n)l. It is 

easily verified that: if L ~( ~, n )] = 0( e?) in G and R( ~, n) = 0( ES) 

on r, then R(~,n) = O(tmin a,S)) in G. We shall make use of this property 

in 3.3 and 3.4 for the parts A1 and A2 • 
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3.3. First uniform approximation 

We consider the first term of each local expansion. 

In domain C we have 

From (2.11) we derive the estimate 

00 

In domain B1, B2 we have 

~(x,y;e) = v0(p/e,e) + ZB(p,e;e). 

Using (2.25) we obtain 

00 

In the domain A1 we apply the theorem of the preceding section to 

~(~,n;e) = $(0) + ZA (~,n;e). 
1 

Substitution in (3.1) yields 

(3.2) L[ZA (~,n;d] = o. 
1 

On the boundary of A1 ZA (~,n;e) satisfies: 
1 

ZA (O,n;e) = $(eµn) - $(0) = O(eµ) 
1 

for O < I n I .::_ K; 

for O < I n I .::_ K; 
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( ) [ 2µ µ ] = O ( c- 1-2µ) ZA ~,K;E = ZB ~E: ,KE ;E ~ 
1 

1-2µ for KE < ~ < K. 

From (3.2) and the boundary conditions it follows with aid of the 

theorem 

ZA (~,n;E) = 0(Emin(1-2µ,µ)). 
1 

In domain A2 we find, as in domain A1, 

where 

~(~,n;E) =~(TT)+ ZA (~,n;E), 
2 

ZA (~,n;E) = 0(E:min(1-2µ,µ)). 
2 

We make the optimal choiceµ= 1/3. Further we introduce the form 

Now it is easy to deduce that 

in the whole domain x2 + y2 < 1. 



3.4. Second uniform approximation 

As in 3.3 we may write immediately: 

In domain C: -· 

In domain B1 , B2 : 

24 

~(x,y;e) = v0(p/e,e) + ev1(p/e,e) + ZB(p,e;e), 

00 

lzBI 2- l 1vnlen = 0(£2-5µ). 
n=2 

In domain A1 : 

(3.3) 

We shall prove in appendix c that 

(3.4) L r,.,z (1:: )] = o(.,.9µ-2). 1.;A ..,,n;e <:, 

1 

Moreover, ZA (;,n;e) satisfies on the boundary of A1 : 
1 

ZA (O,n;e) = $(eµn) - $(0) - eµn$'(0) = O(e2µ) for O < lnl ~ K; 
1 

ZA (K,n;d = Z rKe 2µ neµ • e] = 0(£2-5µ) 
1 C - ' ' \ for O < In I ~ K; 

ZA (;,-K;d 0 2µ µ J = 0(£2-5µ) = ZC ;£ ,-Ke ;e 
1 

for O 2- ; 2- K; 

ZA (;,K;d [ 2µ µ ] = 0(£2-5µ) = ZB ;£ ,Ke ,£ 
1 

ZA (; ,K;d = zC[;e2µ,Keµ;eJ = O(e 2- 5µ) 
1 

1-3µ for Ke < ; ~ K. 
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In this case we conclude: 

In domain A2 : 

ZA (~,n;E) = O(Emin(9µ-2,2µ,2-5µ)). 
1 

In the same way as in the preceding case we find 

ZA (~,n;E) = O(Emin(9µ-2,2µ,2-5µ)). 
2 

The remainder term is estimated as accurately as possible forµ= 2/7. 

The uniformly valid approximation now takes the form: 

W ( e ) = Y1{p/~2/3,e/~1/3} 1 /3 p ' ; E c.. c.. 

- { 2/3 1/3 (TT 8)p/E + Y1 p/E ,(n-8)/E } - ~ 1 (n){2(n-8)e- -

✓ 2}' -1/3 -p + (n-8) E a 
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4. Conclusions 

Summarizing the results of the preceding sections we make the following 

conclusions. We have investigated the differential equation 

€~~ - !f = 0, 0 < e << 1, ax 

valid inside the circle x2 + y2 = 1 with ~(x,y;e) given on the boundary, 

and we have obtained: 

. d . 2 2 . . a. In every point of the omain x + y < 1 there exists an asymptotic 

expansion of the solution ~(x,y;e). 

However, an explicit computation of the higher order approximations 

for the intermediate - and interior - expansion appears almost 

impossible. We only computed the first two terms of both expansions. 

b. The neighbourhoods of (0,1) and (0,-1) need to be explored into 

details in order to get a comprehensive insight in the character of 

the singularities of the outer expansion at these points. 

c. We have made a uniformly valid approximation with accuracy O(e 113 ) 

and also a better one with accuracy O(t417 ). 

Finally, we remark that the way of matching the expansions, as it has 

been done, needs to be prescribed into more details, than has been done 

by the matching principle in the literature. 

An extensive study of the matching technique in two dimensions would 

probably reveal more about the behaviour of the function ~(x,y;e) near 

the singular points. 
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5. Appendices 

!!-_l)pendix a 

We prove: 

ifs= Cn2 (C > 0) and lnl >> 1, then 

( a. 1 ) y1 (s,n),% - ✓ 2s + n21 1/1 1 (0) 

holds. After a changing of integration variables (see [2] pag. 102) 

(2.33) takes the form: 

(a.2) 

(a.2a) 

(a.2b) 

(a.2c) 

(a.2d) 

00 ' ! 2 2 
f A;dmws+x) · .. ( ) m nw X q,A = w A · ( ) • Ai x e dx, 
JO ~mws+x ' 

oo ' I 2 
= w2 I A;i.(mws+x) Ai(x)em nwx dx, 

q,B ; 0 Ai(mw~+x) 

·I 2 
q,C __ 2 Joo Ai(mws+wx) Ai(wx)em nx dx, 

w O A~(mws+wx) 

For n > 0 the largest contribution comes from q,C and 4>D. Taking these 

terms together and making use of the asymptotic property 

' Ai(p) -1 
;i. ( p ) ~ - VP + 0 ( p ) ( for I p I » 1 ) , 

we obtain 

With (2.35) this form reduces to 
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Application of the saddle-poi:nt,method produces the asymptotic formula 

(a.1). 

For n < 0 ~A and ~B dominate and their sum has the same asymptotic 

behaviour as ~C and ~D. 
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appendix b 

2 We investigate the behaviour of Y1(s,n) for n = Cs (C # 0). 

oo I II 2 2 
J ! { Ai(x) 1 2 2c2 Ai(x) 

¢A= w O Ai(x) 1 - mws Ai(x) + 2 m w s Ai(x) } m nxw 
••• e dx, 

I II 2 
2 f"" 1 )f 2c Ai(x) + 1 2 c2 Ai(x) 

¢B = w Ai(x l1 - mw s Ai(x) 2 m Ws Ai(x) 
l m nxw 

·••Je dx, 
Jo 

I II 

2 f"" 1 ) { Ai ( WX) + 1 2 2 c2 Ai ( WX) 
w Ai(wx 1 - mws Ai(wx) 2 m w s Ai(.wx) 

; 0 

2 
} m nx 

••• e dx, 

I 2 II 2 2 
f00 Ai!(w2x){l 2c Ai(w x) 1 2 c2 Ai(w x) } m nx d ¢ = - w - mw s --------- + - m Ws --'------ ••• e x. 

D JO Ai(w2x) 2 Ai(w2x) 

We call the first term of each development respectively ¢A, ¢B, ¢C 
1 1 1 and ¢D, and define 

1 

In the same way Y 1 2 ( s, n) , Y 1 3 ( s, n) , etc. • • , . 
' ' Using (2.35) and (2.36) we obtain 

Y ( C n) = ,i,l(Q) + Q(C3), 1 1 s, 'l' s 
' 

Proceeding in the same way for the second terms we find 

¢c + 
2 

¢D 
2 

We define P(x) 

= ms f"" {Ai(x)}2 
; 0 Ai (x) {-

2 2 2 m nxw w e 
2 

m nxw}dx - we , 

I: I 2 · I 2 2 2 
= ms tA~(wxfL + ~i(w x)} Jem nx dx. 

Ai wx Ai(w2x) 

- - f"" {Ai ( s) J 2 
ds, so that 

;x Ai(s) 
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( 00 II I 

P(z) 
(oo I 2 roo 
I J Ai ( s )} . ) 

= ·-. lAi(s) Ai(s ds ~ - s Ai(s)ds 
J z J z 

I Ai(s)ds = Ai(z), 
J z 

z = Reic/> with R >> 1 and O .:. I <1> I < TI . 

I: 2 2 2 
<I>A + <I>JB = ml; { 2 m nxw - wem nxw}dP(x), - w e 

2 2 

= ml; I: 2 
{w2dP(wx) + wdP(w2x)}. <I>c + <I>]) 

m nx e 
2 2 

= ml; [{-
2 2 2 Joo 

<I>A + <I>B 
2 m nxw - wem nxw}P(x) 0 w e 

2 2 

- m31;n J: P(x){-
2 2 2 m nxw 2 m nw}d we - we x, 

<I> + <I>]) = ml; [em2nx{w2P(wx) + wP(w2x) }]: 
c2 2 

3 roo 2 ( 2 ) } m2nx - m l;n J
0 

{P(wx)w + P w x we dx. 

It is immediately seen that 

<I>A + <I>B 
3 3 

JooQ I 2 2 
x Ai ( x ) {em nxw 

2 
m nxw}d + e x, 

2 I I 2 2 
w Ai(wx) - wAi(w x)}em nx dx. 

1 2 1 1 3 Joo ! m 2 nx Y 1 , 3 ( I; , n ) = - 2 I; 1/J ' ( 0 ) exp ( - 2 I; n - 12 n ) 0 xAi ( x ) { e + 

2 2 2 
+ em nxw + em nxw }dx. 
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Partial integration makes 

( ~ ) 1 2 '(O) ( 1 3) fooo Ai· (x)flem2nx + em2nxw + Y 1 '3 "' 'n = 2 ~ 1jJ exp - 12 n 

Application of the same method of computation as in (2.36) yields 

Finally we mention that 

for n = 4, 5, 6, •••• 

In this appendix we have demonstrated that 

1 2 
Y1 (~,n) ~ w' (O)(n + 2 ~ ) 

for n = c~2 (C # O) and O < ~ << 1. 

In the coordinates e = En and p = E~ the matching takes the form 

1/3 1 2 E Y1(~,n) ~ EljJ'(O)(n + 2 ~ ). 
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appendix c 

Substitution of (3.3) in (3.1) yields 

(c.1) L[ZA (E;,n)] 
· 1 

2 ay] n + • • . 1 

- ( 1- E 2µ f; ) 3r) • 

( ) ( 2µ-2/3 µ-1/3 In accordance with 2.33 for Y1 = Y1 f;E ,nE ) we obtain 

ay1 3µ-1 -1 2µ-2/3 ( 2 ) 
(c.2a) ar- = - 2 E Y1 + m E R1 w ,w,1,1,E;,n , 

( ) aY 1 ( 1 c- 1 2) 3µ-1 y µ-1 /3 ( 2 ) 
c.2b an= - 2 '-, - 4 n E 1 - E Ro x,x,-w x,-wx,t;,n ' 

2 
a Y1 1 3µ-1 1 1 2 3µ-1 ay1 1/3 

(c.2c) -- = - - nE Y + (- - t; - r n )E {- - Eµ-
an2 2 1 2 4 an 

2 µ-1/3 2 2 2 2 2 2 - m E R0 (w x ,wx ,-w x ,-wx ,E;,n); 

1 

Ai(x) 
Ai(x) Gi (x 

2 2 µ-1/3 
c- 2µ-2/3) m w nxE - illWc,E e 

oo I 2 lJ-1/3 

dx + 

f Ai(wx) G ( c- 2µ-2/3) m nxE 
0 p3 Ai(wx) i wx - mwsE e dx + 

_ 2 2c- 2µ-2/3) m nxE~ Joo Ai!(w2x) 2 "-1/3 ] 
- P4 2 G.(w x - mw c,E e dx, 

Cl Ai(w x) 1 

I 

1 = o, 1; G0(z) = Ai(z), G1(z) = Ai(z). 
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We divide the domain A1 into two parts 
a. o ~ ~ ~ K£2/3-2µ, o < In! < K£1/3-µ; 

b. 0 ~ ~ ~ K , 0 ~In!~ K, with exception of part a. 

t 
K n 

K£1/3-µ 
b 

a ~ -+ 

K£2/3-2µ K 

K 1/3-µ 
- € 

-K 

fig. 3 

In part a:ay ay a2y 
1 1 1 . 

The terms a7""°' -a-· and - 2- contain 
" n an 

integrals, which are 

domain. As an example we take the first integral 
ay1 

of ar-= 
00 ' 2 2 µ-1/3 

I= J A~(x) A~(x - mw~£2µ-2/3)em xw n£ dx. 
- O A;i.(x) . 

2µ-2/3 I I µ-1 /3 For O ~ ~ £ ~ K and O ~ n £ ~ K there holds : 

bounded in this 

given any arbitrarily small number cr > O, there exists a number R(cr), 

such that 

So indeed I is bounded and from (c.1) and (c.2) it follows that 

in a. 
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In part b: 

Here holds sE 2µ- 2/ 3 >> 1 and nEµ-l/ 3 >> 1. 

Application of the saddle-point method (as in appendix a) gives: 

n, 
--= as 

It is easily seen that L[ZA (s,n)] = 0(E9µ- 2 ) in b. 
1 

In the parts a and b together ( = A1) is L [zA ( s, n )J = O( E 9µ-2 ). 
1 
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