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CHAPTER II

Semigroups with zero and identity.

§ 1. Semigroups with zero.

Let S be a mob with O, and a an element of S. If an-¢>0, i.e.
if for every neighbourhood U of O there exists an integer ngs
such that ane'U if n 2 nys then a is termed a nilpotent ele-
ment . '

We denote by N the set of all nilpotent elements of S. An ide-
al (right, left) A of S with the property AP — 0 is called a
nilpotent ideal.

A nil-ideal A is an ideal comsisting entirely of nilpotent
elements.

Then it is clear that every nilpotent ideal is a nil-ideal,
and ‘that the Join of a family of (right,left) nilideals is
again a (right, left) nilideal of S.

Example: Let S be the unit interval with the usual multipli-
cation. Then I = [(D;1§ is an ideal consisting entirely of

nilpotent elements.
I is not a nilpotent ideal, since 1" = I for all n.

Lemma 1: Every right (left) nilideal of S is contained in some
nilideal of S.

Proof: Let A be a right nilideal of S. Then SA is an ideal of S.
Suppose x = sa € SA, and let U be any neighbourbood of 0. Then
there exists a neighbourhood V of O such that s V a ¢ U,

As A is a right nilideal of S, saseA, and (as)’eV forn > n.

- 0
Hence if m » n_+1 we have (sa)™ = s(as)™ Taesvacu.
Therefore S A is a nilideal of S, and hence AUS A, is a nil-

ideal of S containing A.

Definition 1: The join R of all nil-ideals of a mob S with zero
is called the radical of S. '
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Lemma 1 implies that R is 2 nil-ideal, which contains every

0

right and every left ni'ideal of 3,

Hence R is the maximal right and the maximal left nil-ideal.

If S =R i.e if S consists only of nilpotent elements, then
S is called 3 nil - semigroup.

Let a €3, then we shall denote by P(a}, the closure of the

{a } ° = {a }n-:‘:

Lemma 2: Let S be a mob and let A be a compact part of S
such that Ax ¢ A, with [P (%) compact.
Then f% A x" = he, with e=eZ e P(x).

n=7

pd n

Proof; Let pe [} Ax
' n=1
2

Then p = a X = ax o
Hence from §1 lemma 2 it follows that there is an element.
ae {ai§g= such that p = a e, where e = e? e F(x) (see § 1
th. 4).

2 n
This implies M A x ch e,

n=

A

1

Now let a, e ¢ £, Then we can find a neighbourhood V of

e such that 2,Vn A XX = 7. "
But since g € "(x), there is a K, k such that x % Vv and
hence a,x © £ A x5 . k, .
This is a nont@adintiong since A xec A Iimplies A x °c a x%,
Hence A & « A x° :§=fﬁ A x™ = h e,
n="1

Theorem 1: Let S be an element - wise ccmpact mob with zero

(i.e for every a, F(a) is compact).
Then every (right, left) ideal of S is either a nil-ideal
or contains non - zero idempotents.

Proof: Let= be a non-nilpotent element of the ideal A,
Then the identity e of the group D = a*(}i ;n‘f' is
not equal to zero. nmq

set.
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Furthermore a DcD, and a DcA Deh, since A is an ideal.
Hence DnA. # ¢, so that Dc A, since no group can properly
contain an ideal. Thus e € A,

Theorem 2: Let e be a non-zerc idempotent of the compact

mob S with zero.

Then these are equivalent.

1) e S e \ N is a group

2) e is prinitive

3) S e is a minimal non-nil left ideal
4) S e S is a minimal non-nil ideal

5) each idempotent of S e S is primitive.

Proofs (1 —=-2): If e S e \N is a group, then e is the only
idempotent in e S e‘\{Q} s, 8ince no idempotent # O, can be
nilpotent.

Hence e is primitive

(2 =+3): Let L be a non-nil left ideal LeS e.

Then by theorem 1 there is an idempotent fel f #£ O,
Since f e€Se, we have fe = f, and (ef){ef) = ef.

Thus ef is an idempotent £ 0 and ef € eSe.

Hence since e is primitive ef = e,

This implies that ef = e € eLeclL. =L = Se.

(3—=4) Let I be a non-nil ideal I «SeS.

Then there exists an idempotent fe I f#0, and elements
a;be S, such that aeb=f,

We can choose b such that bf = b,

Let g=bae. Then gegbaebae=bfae=go

Furthermore g#0, since otherwise O=gb=baeb=bf=b,

Now g e Se and g e SfS.,

Hence by (3) Se = Sg < SfS, and we conclude SeS=SfS=I.
(4= 5) Let £ be a non-zero idempotent of SeS, and let
g=g>#0 € £5°.

Since f,ge SeS, we have S5gS=SfS=SeS and f € SgS. Hence f=agb,
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and we may assume 3ag = a, gb = b.

Since gf = fg = g, this implies afb = agfb = agh = f.

Hence f = angbn°

It follows from §1 lemma 2 that there is an idempotent

g*é, IP(a) € Sg and b' & P (b) such that £ = g gb'.

We note that g'g = g°, hence g°f = f = g gf = g, and
f=g=gg=rg=g.

(5 =1) Since every idempotent in SeS is primitive, e is pri-
mitive and hence Seslis a minimal non-nil left ideal.

Now let a € eSe N N, then ae.{Sef\eS%\\No

Since L is minimal. a = ea€ela = L.

Hence there is a el such that aa = e.

Let ea = a', then a'e eSe and a'a = e,

(aa')(aa') = aea' = aa'., Hence aa' is an idempotent and
aa'é eSe \ N, Since e is primitive aa' = e,

So we can find for every a € eSe N\ N an element a'€ eSe such
that aa' = e = a'a,

This implies that eSe \ N is a group, since a’'¢ N,

D
For if a'€ N, then /) S{(a')" = S.0 =0 by lemma 2.

n="1 ' 2 2 n n
This is in contradiction with aa' = a“(a')” = a'(a') = e.

Definition: A mob S with zero is said to be an N-semigroup
if its ﬁilpotent elements form an open set,

Lemma 3: Let S be a mob with zero, and let ae S,
CIf a” is nilpotent for some n 3 O, then a itself is

a nilpotent element.

Proof: Let U be an arbitrary neighbourhood of 0, then since
eJO = 0, there is a neighbourhocod V of O, such that
alveu (j=1,2,...,n).

Since a" is nilpctent there exists an integer koc% 0 such
that (a™)¥e v for k > k_.
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jank _ ank+j

g
N

Thus a & Uo J = ,E32pooogn k
This implies that for N % nk_ a" e U.

o]
Hence a is nilpotent.

Theorem 33 If amob S with O has a neighbourhood U of 0,
which consists entirely of nilpotent elements,
then S is an N-semigroup.

Proof: Let p € N, then there is an n such that.pn@ U.
Therefore there is a neighbourhocd V of p, such that Vnéz U.
Hence every pocint of v is nilpotent.

Lemma 3 then implies that V € N,

Theorem 4: A locally compact mob S with O having a neigh-
bourhcod U of O which contains no non-zero idem-

potents 1s an N-semigroup.

Proof: Since S is locally compact and Hausdorff. S is regular,
and we can find a neighbourhood W of O, such that W ¢ U, and
W is compact.

The continuity of multiplication and the compsctness of W im-
ply, that there is a neighbourhcod V of O, with VW e W

Ve W,

Hence Voc V. We W, and Vie W,

The set A 120 vl is a mob contained in W.

Thevrefore A 1s a compact mob contained in U,

Since A contains no non-zero idempotents A is a nil-semigroup
(theorem 1),

Hence V consists entirely of nilpotent elements, and by
theorem 3 S is an N-semigroup.

| i

Corollary: A locally compact semigroup with O, which is not
an N-semigroup contzins a set of non-zero idempotents with

clusterpoint O.
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Theorem 5: The radical of a compact N-semigroup is open.

Proof: Let ae R, then for every s €S saeRcN.

Since N is open and S compact, there exists a neighbourhood
V of a such that SVelN,; VcN,

Since VuS3SV is z left nil-ideal, VUSVCR,

Hence Ve R and R 1s open.

Theorem 6: Let S be a compact N-semigroup which is not a

nil-semigroup.
Then any ncn-nilideal I ¢of S contains a2 minimal non-nil ideal
I*Q such that I*/ R* is completely simple, where R*z I*r1R
is the radical of I,

Proof: Since I is 3 non-nilidezsl of S, I contains non-zero
idempotents.

Let E*s E- {O }0 Then E* is closed, since N is open and E 1is
closed.

Let EA = E*n SexSS e, € E*m I.

Then Ex is closed and non-empty.

Suppose EP is 2 minimal member of {Ex§'a EV exists since S
is compact.

We shall now prove that e, is a primitive idempotent.
Suppose 0 # f = e e, Se,=fe I.Then SfSc Se, S. 5.

Since E is minimal;

E N SfS = EewSe S. Hence e,= sﬂfqgug with e pySq = 54,8 1f = s1°
n . no_ @nuﬁ n-1 _ _n-1 fe 01 _ on-1 n-1 _
5 bl 85 = 84 §qfsgsg = 5, fsq~s S5 = 31 feysg =
-1 -
= s? “fsg 1

n_.n _
Hence 8, €58, = €.
Thus there is an idempctent g;eF(sq} and an element se,P(sz)
sc that ge,s = e,.
We note that since P(s )e s of = g.

Hence e, = ge, = gfey =gff =g =71 :avf =gl =g =e¢e,.
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Thus e, is a non-zero primitive idempotent.
Theorem 2 then implies that SeyS=I*c I is a2 minimal non
nil-ideal,
Now we shall prcve that R* = "n R.
Since IﬁwR is a nil-ideal of ° we have I?iRcIi*o
Furthermore SR Sc SI"Sc<1”.
Ir SRS = 1%, then I'SE¥SI* = T"7 = 1%, and so
1% 1¥SR"ST1"c T¥R"1'2 R¥. This contradicts the fact that I¥
is a non nil-ideal.
Hence SR*S is an ideal of S properly contained in I*°
This implies that SR'S must be a nil-ideal i.e SR*ScR*=>
R* is a nil-ideal of S=>R<INR.
Since R" is a maximal proper ideal of I*Q §3 th.3 implies
that 1° / rR¥ is completely simple.
Corcllary: Let, S be a compact mob with zero; fthen S contains

a non=-zero primitive idempotent if and only if there is a
non-zerc idempotent e with (eSe) NN closed,

Proof: If e = eg £ 0, 2 primitive eSe\ N is a maximal subgroup.
(th.2). On the other hand if (eSe)\ N is closed and e ¥ O,
then eSeXN N is the set of nilpctent elements of eSe, and
eSenN is open in eSe,

We conclude from theorem © that eSe contains a non-zero

primitive idempotent. Hence so dces S,

Theorem 7: Let e be a non-zero primitive idempotent of the

compact mob S with zero. Then Se\ N and (Se)n N
are submobs and Se \ N is the disjoint union of the maximal
gZroups %ﬁea\N wherse e, runs over the ncn-zero idempotents
of Se.

Proof: Suppose a,be Se \ N, then angbné Se\N. Let abeN,
Then since Se is 2 minimal non-nil left idezl, we know that

Sa = Sb = Se => Sa” = Su” = Se.
Hence Sab = St~ = Se =» S{ab) = Se.
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Thus Se = () 5(sb)” = SO = 0 (lemma 2).

This is a contradiction with e # 0.

Suppose n@w a,beSenN and ab¢ N,

Then (ab)” ¢ N and hence Sab = Se, since Se is a minimal non-
nil left idesl.

Since a eSe; we have SacSe = Sab.

Hence Sac:Sabc;Sabzc Sab3c coo0anco

But since ab e Se, sat” = Se.
This implies that Se = () Sab” = Sa.0 = 0, a contradiction.

Finally let az € Se \ N, Then Sa = Se,

Choose an idempctent f in F(a); then Sf = Se = Sa, and f is
a right unit for Se. |

Let D te the subgroup of S ccntained in ['(a). Then D is an
1deal of T(z2) ( §1 th.4). Hence [(a) fcD.=>[(g)= D and
"(a) is a group. Thus Se \N is the union of groups.

For any e = ef #0, e, &Se Se, = Se, so that e, is primi-
tive and e Se NN is a group.

Now the maximal group aontaining ey is contained 1in e Se,,
moreover since any group ‘which meets N must be zerc, we

conclude that e“Se&\N is a2 maximal group.
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§2. 0 - simple semigroups.

As in Ch, 1 §3 we call 3 semigroup S simple if it does not
contain a proper non-zero ideal.

By a O-simple semigrcup we mean a simple semigroup contalning
a zero element,

A completely O-simple semigroup is a completely simple
semigroup with a zero element.

If S is completely O-simple then S contains a non-zero
idempotent and this implies that S cannot be a nil-semigroup.
On the other hand if S is not @ nil-semigroup and S is
O-simple, then every right or left nilideal of S is the zero
ideal {0}, since (§1 lemma 1) every right (left) nilideal
of S is contained in some nilideal of S.

We shall call a (left, right) ideal I of a mob S with zero
O-minimal if I # {0} and {0} 1is the only (left, right)
ideal of S properly contained in I.

Hence every minimal non-nil left ideal of a O-simple mob is

a O-minimal left idegl.

Lemma 1: Let L be 3 O-minimal left idezl of a O-simple mob
S and let 2 ¢ L\NO, Then Sa = L,

Proof: Since Sa 1s a left ideal of S ccentained in L, it

follows that Sz = 0 or Sa = L,
If Sa = 0, then SaS = 0, in contradiction with SaS = S.

If S 1s an element-wise compact mob with zero, then every
non-nil {left, right) ideal of S, contains a non-zero idem-
pctent.,

S0 in this case if L is a minimal non-nil left ideal of S,
then there 1is an idempotent eel, with Se = L.

Lemma 2: Let L be 3 O-minimal left ideal of a O-simple mob S,
and let se8. Then Ls is either {o} or a O-minimal
left ideal of 5,
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Proof: Assume Ls # 0. Evidently Ls is a left ideal of S.
Now let LQ be a left ideal of S contained in Ls. Loc:Ls°

Let A be the set of 3ll a €L with as eLOo

Then As = Lo , and AcL,
mwmmmmmeSASC$%clbandSAcSLcLo

Hence SAchA and A is a left ideal of S.

From the minimality of L, either A = 0 or A = L, and we have
correspondinglfp L, = O or L = Ls.

Theorem 1: Let S be a compact O-simple mob., Then S is the
union of all minimal (i.e minimal non-nil) left ideals of S.

Proof: Since S is compsct, S is completely O-simple and
hence contains a non-zero primitive idempotent e.

From §1 th.2 1t then follows that Se is a minimal non-nil
left ideal; and hence a O-minimal left ideal.

Now let A be the union of all the O-minimal left 1deals of S.
Clearly A is a left ideal of S and A #{0} .

Now we show that A is, also a right ideal.

Let a €A and s€ S . Then a€ Ll for some O-minimal left ideal
L of S. .

By lemma 2 ILs = O or Ls is a O-minimal left ideal,

Hence Lsc A and as e,
Thus A is a non-zero ideal of S, whence A = 3,

An analoguous result holds for O-minimal right ideals.

Lemma 33 Let L and R be O-minimal left and right ideals of
a O-simple mob, such that IR # O,

Then RL = RnL is a group with zero and the identity e of

RL‘\{O} is a primitive idempotent of S,

Ppoofg Since LR is a non-zero ideal of S, we must have

IR = S. Furthermore RL # O, since S = S° = ILRIR.

Now let 3 € RL\NO, then ae L\NO and ae R\NO, and hence Sa = L
(lemma 1) , and aR = O or aR = R.
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Since S = IR = SaR, it follows that aR # 0,

Consequently aRL = RL,

In the same way we can prove that RLa = RL.

From this we conclude that RL is a group with zero.

Now let & be the identity of RL.,

Then since R = eS and L = Se, we have RnL = eSnSe = eSe
and RL = eSSe = eSe,

Since eSe is a group with zero, e is primitive.

Theorem 2: Let S be a compact O-simple mob and let e and f

be non-zero primitive idempotents of S.
Then the maximal subgroups H(e) and H(f) containing e and f
respectively are topological isomorphic compact groups.

Proof: Siwe Se and Sf are O-minimal left ideals and eS and fS
O-minimal right ideals ( §1 th.2) it follows from lemma 3
that eSe\{O} and f“Sf\{O} are groups.

Since H(e)c eSe\{0} we have Hle) = eSeN{0} , H(f)= rsr\jo}.
Now eSSf £ 0, since eSSfS = eS” = eS,

Hence eSnAnSPE # 0,

Let a ¥ 0 € eSnSfP. Then ea = a = af,

Since eS = aS and Sf = Sa (lemma 1)}, there exists a, and
aeé's such that e = aa 4 I = a,a.

Now let b = fa,e , then b £ 0 and

ab = afa1e== aa,e = ee = e ; ba = fba = agaba = aea = f.
Furthermore bS = £fS, Sb = Se, A

We now proof that the mappings ¢ : x— bxa and yrz y —> ayb
are mutually inverse one-to-one mappings of H(e) and H(f)
upon each other.

For let x ¢H(e) then bxa € bSnSa = £SnSF = H(f) u{o} .
Simularly y e H(f) implies aybeaSnSb = eSnSe = H(e)u {0} .
And if xeH(e) a(bxa)b = exe = x.

¢ is an isomorphism since (bxqa)(bxga)= bxex,a = bx, X,a.
Since ¢ is continuous and one-to-one ¢ is topological.
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Corollarys Let S be a compact O-simple mob.
Then S is the disjeint union of isomorphic compact groups
H(e) and of sets A, with the property Ai = 0,

Corollary: Let S be a commutative compact O-simple mob.

Then S is a group with zero.

Proof: By lemma 3 we have 82 =3NS =S is a group with zero
since 3 is both a O-minimal left and right ideal.

Theorem 3: Let J be a maximal proper ideal of the compact
mob S.

Then the following are eguilvalent,

1°) S-J is the disjoint union of groups.

20) for each element of S-J, there exists a unit element
30) aeS-J implies 326 S-J

4°y T is a completely prime ideal

5°) S-J contains an idempotent, and the product of two
idempotents of S-J lies in S-J.

Proof:

(1) clearly inplies (2).

(2) —(3). Let aeS-J and ax = xa = a.

Then ae = ea = a, with e = eee. N(x) and eeS-J.

Hence since S-Ju{o} =U H(ed}uk)A&B we have ae H(e) which
implies a’e Hie) = a“e S-J.

(3)—>(4) Let a,be S-J and suppose abed,

Then I ={x|xeS =xpeJd} 1s a left ideal with I> J.
Now let x el xs%Is then xsb#Js and hence xsbxsb ¢J =3
bx ¢ J=> bxbx ¢J =>xb ¢J a contradiction. .
Since I is an ideal containing J, we have I = S=b e J a
contradiction.

(4)=>(5) This follows from the fact that J = Jo(s-e},
(58) == (1) ince ee$8-J, we have SEJ completely simple and
S/3 = U H(ed}u U Aﬁa
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Now let a # O €hgs then aeSe and a efS. with SefS = O, or
else it would follow from lemma 3 that a eSenfS=H(e«)U {O;},
Since ef ¢J, we have however SefS £ 0, a contradiction.

Hence Aﬁ =¢ and S-J =U H(ed)f

From theorem 3 it follows that S-J is a group if and only
S-J contains a unique idempotent.
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§ %, Connected semigroups

Lemma 1: If S is connected, then each minimal (left,right)
ideal of S is connected.

Proof:

Let L be a minimal left ideal of S, then for any ael, Sa = L
and hence L is connected.

If K is the minimal ideal of S, then K = SaS for each a eK.
Hence K = sigs Sasu ¢ Since each Sasd is connected and meets
the connected set aaS it follows that K is connected.

Lemma 2: If S is connected, then each ideal of S is connected,

provided S has a left or right unit.

Proof:
Let I be an ideal of S. Then I = x%& Sx if e is a left unit
of S. Since each SxX meets aS with a el we have that I is con-

nected.

Example: Let S = {(x,y) I 0¢x ¢1 osys’i} o
For (x,,¥,) and (x,,¥,)e S define the product (xﬂ,yq).(xg,yg)
to be (O,yﬂyz).

Then S is a compact connected commutative mob.

Let I = {(x,y) | x = 0,1 Os;ys‘?}.

And I*z{(x,y)[ O£x<% %<xs'1 Osyc’l}».

Then I 1s a disconnected closed ideal, and 1 is a disconnec-

ted open ideal.

Theorem 1: If S is connected and I an ideal of S, then one

and only one component of I is an ideal of S.

Proof:

Let I* = SIu IS. Then I* is connected and the component of I
which contains I* is an ideal of S.

Furthermore it is readily seen that this is the only component
of S which 1s an ideal. This ideal will be called the component
ideal of I.
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Lemma 3¢ Let S be a compact connected mob and U a proper

open subset of S with J_(U) # ¢.
Let C_ be the component ideal of J_(U), then C, intersects

U\U,

Proof:

If Eon U\NU = ¢ , then E}FUQ and since 56 is an idea}, we have
EEFJO(U) and C = C,-

Furthermore JO(U) is open and hence we can find an open set

V, with C_eVeVeJ (U).

Since CO is @ component of the compact set V of the connec -
ted set S, we have C_n VNV # ¢ a contradiction.

Corollary 1:
Let S be a compact connected mob and F a closed subset of S\K,

with the property that if FAI # ¢, then FcI for any ideal

I of S,
Then if C is the component of S\F which contains K then F =

C\C.

Proof:
Since C is closed in S\F we have CaAS\F = C=F>C\C

Furthermore it follows from lemma 3 that if CO is the compo-
nent ideal of J_ (S\F), then KeC_ and 60 intersects S\F \
S\Fec F

Hence Fcaoc C.

Since FnC = ¢ we have FeC\C.

If we take in corollary 1 F = H(e) with ee€ENXK and if C is
the component of S\H(e) which contains K , then H(e) = C\C.

This follows immediately from corcllary 1, since if H(e) I # s
then H{e)c I for any ideal I of S. Furthermore it follows that

H(e) with e e E\K can contain no innerpoints.

Theorem 2: Let S be a compact connected mob. If K is not the
cartesian product of two non-degenerate connected sets, then
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either K is a group or the multiplication in K is of type
(a) or (b).

(a) xy =x all x,yeS

(b) =xy
Proof:
From Ch I. 92 lemma 4 we know that

K= {SenE}. ese. {eSnE} ecEnk:

Now let K'= (SenE) X (eSe) X (eSoE) and ¢ : K —K
@(x,¥:2) = xyz. .

Then ¢ is clearly a continuous mapping of K ontc K.
Now let X ¥4%2q = XpV0%, with quxee,SerﬁE, zq,z2eeSnE

yqﬁyQEeSeo
Then since xS and x5S are minimal ideals with x,Sn x,8 A d

y all x,yeS.

we have XKy = Xy
Furthermore since

x1p%268e3 Se = Sx, = 3%, = X € = X45 X8 = X5,0X, = X, = €.
Hence x, = XX, = xq(exg) = X48 = X .

In the same way we can prove Zg = Zg-

Since X V424 = Xp¥52, WE have ex, ¥, 248 = ex2y222e=#>eyqe =

= eyge = y,l = yg,

Hence ¢ 1s one to one and K is homecmorphic to K™,

Since K 1s connected,; each of £Se; SenE and eSnE must be

connected,
Hence at least two of the factors must consist of single

elements,
If eSnE = SenE = e, then K = eSe and hence a group.

If eSAE = eSe = e, then K = Se, and 1if x,yeK we have xy =

= (xe)(yel= x(eye) = xe = x.
If SenE and eSe are both e, then the multiplication is of

type (b}.
Corollary: Let S be a compact connected mob. If K contailns
a cutpoint, then the multiplication in K is of type (a) or (b).
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Proof:
If K contains a cutpoint; then K is not the cartesian product

of two non-degenerate connected sets.

Hence from theorem 2 it follows that K is a group or fthe
multiplication is of type (a) or (b).

Since a compact connected group, contains no cutpoints, the

corollary follows.

Definition 1: A clan 1s a compact connected mob with a unit

element.

Lemma 4: Let B be the solid unit ball in Euclidean n-space
and let f be a map of B into itself, such that |x - f(x)]<3
for all xeB. Then O e f(B).

Proof:
Let x = (xqgaou,xn) f{x) = (fqix)gon, fn(x))o
We now consider the mapping h{x) = (x1 ﬁo,xn)—(fq(x),uo.fn(x)).

5
This mapping transforms the balll}c‘sé into itself and hence
by Brouwers fixed point theorem there is a point x" for which
h(x*) = x~.
i.e. (x;'joa.,x;') = (x;'ggoasxg‘)—(fq(x*>eoofn(i’)) S f(x ) = 0.

Theorem 3: Let S be z mob with unit element u having an

Euclidean neighbcurhood U of u.
Then H(u) is an open subset of S and is a Lie group.

Proof:

We identify U with E” and let F, = {x | ,|u-x|<cel

Since the multiplication on F is uniformly continuous there
is a J such that |x-xy| < ?2 , | x-y% | <72 whenever |u-y|<o.
By lemma 4 u.ngy and ue.ygi s hence y has an inverse y—’g
in FE and the mapping vy —Jy is continucus.

Therefore H{u) is a topological group, and since it contains
an open set 1t must be open in S.

Furthermore H(u) is locally Euclidean and hence a Lie group.
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Corollary 1: If S is a clan having a Euclidean neighbourhood
of the identity then S is a Lie group.

Proof':

By theorem 3 H{u) is open. H{u) is closedsince S is compact,
and hence H(u), must be all of S. Thus if S is a clan and S
is an n-sphere, then S is a topological group, and‘hence

n = 0,1 or 3.

In general @ compact manifold which admits a continuous
associative multiplication with identity must be a group.

Corollary 2: Let S be a clan and F a closed subset of S sud
that S-F is locally Euclidean.
Then either S is a group or H(u)cF.

Proof’:
Let heH(u) and h¢F. Then h has a Euclidean neighbourhood V.

Since h'1 V is a Euclidean neighbourhood of u, it follows
from corollary 1 that S is a group.

In case S is a subset of Euclidean space, then 1t follows from
corollary 2 that H(u) € boundary of S or S a top.group.

If S contains interior points, then it cannot be a group and
we have H(u) < Bd(S).

Definition 2: A subset C of a space X is a C-set provided that
C £ X and if M is a continuum with Cn M # ¢ then MeC or Ce M.
It can easely be shown that if C is a C- set of a compact

connected Hausd. space, then the interior of C is empty and

C 1s connected.
For let x be an interior point of C, then there is an open set

V with xevVecVcC.

Now let yeX-C. Then the component M of y in X-V has a non-
empty intersection with the boundary of X-VeV. '
Hence M is a continuum with MnC # ¢ and C%M, M ¢ C.
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Theorem 4: (Gleason).

Let G be a compact Lie group which acts on a completely
regular space X. Let peX such that g{p) # p unless g is the
identity; geG.

Then there exists a closed neighbourhood N of p and a closed
subset C of N, such that the orbit of every point of N has
exactly one point in common with C.

Procf: See Gleason Pr A.M.S.1 1950,

Lemma 5: Let G be a compact group and let U be an open
neighbourhood of the identity.

Then U contains an invariant subgroup H of G such that G/H is
a Lie group. '

Proof: See Montgomery Zippin: Topological transformation groups.

Theorem 5: Let S be a3 clan, S no group G a compact invariant
subgroup of H{u) = H, such that H/G is a Lie group.

Then S caontains a continuum M such that M meets H and the
complement of H, and such that ueMnHeG.

Proof's

We can consider H as transformation group acting on S. Let

H' = H/G and S' the space of orbits of G. Then H!' is a com-
pact Lie group acting on S'.

By theorem 4 there exists a closed neighbourhood N of u'‘=u.G
and a closed set C ¢N such that n H'n C is a single point for
each neN,

Now let S'' be the space of orbits under H.

Then we have the following canonical mappings o S=S' |

B :S'—>3S"! /:S~+S”3wﬂm /:wﬁ.

Since «x and ] are open maps, f 1s also open.

Let N° be the interior of N then pN° is open and p(u')e p(N°).
Let P be the component of @(N ) which contains plur).

Then P meets the boundary of p(N) and hence P is non-degenerate.
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Now let "= p]cC.
Then since n H'nC is a single point for each neN it follows
that p* is a homeomorphism between ¢ and Np .

P*‘,a(P) is a continuum which meets H' on., at CnH', and hence

{5*4(?)’ also meets the complement of H'.

Now let K be a component of & ' § = '{P).

Since o is an open mapping we have oK) mp&"l(P)o

Hence K is a continuum which meets H and the complement of H
and Kanoz“/!(c)g where ¢ = Ca M .

Let heKnH, then KnHehG.

%

Suppose now M= h™ K, then neMnH and MaHcG and if k €K,
k¢H, then h™ ke, h™ " k¢H, since S-H is an ideal of S. g.e.d.

Theorem 6: Let S ke a clan which is no group.
Then the identity u of S belongs to no non-trivial C-set.

Proof:

Let ueC, with C aC-set., We first prove that C<H(u).

If xeC, then since xS is a cortinuum which meets C, we have
CexS or xSeC.,

If uexS, then x has an inverse and is thus included in H(u).
Now let u%xsg then xScC; xS £ C, and there is an open set V
with xSeV; C\V # ¢ . Since xKeK we have KnC # ¢.

If ueK then S is a group, hence u¢K = KcC.

We can find now an open set W with xeW WS eV,

Since C contains no interior points there exists a yeWNC with
yScV,

Clearly yS is a continuum which meets both C and S\NC and

C ¢ yS a contradiction.

Hence uexS and thus x¢ H(u, = C cH(u).

Now let U be a neighbourhooc of u such that C{U.

Then by lemma 5 there is a subgroup GeU such that H/G is a
Lie group and C 4G,

Thecrem 5 implies that we can find a continuum M such that
ueMn He G and such that M meets the complement of H.
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Hence MnC # ¢ and since CcH M meets the complement of C.
= CcM,

Since MnHe G and C 4G =»C¢M a contradiction. gq.e.d.

{(x,y) | v = sin% 0 <xs’l§’

B={(2-x,y) | (x,y)eA},

c {(Osy) u (29Y)‘ "1537"1}0
and let S = AuBuC.
We wlll show that S does not admits the structure of a clan.
For suppose that S is a qlan.
Since S 1s not homogeneous, S cannot be a topological group
and hence S # H(u).
Then S\H(u) = J # ¢ is the maximal proper ideal of S. Since
J 18 open, dense and connected we have AUB cJ and hence ueC.
| But since C is the union of two C- sets, u cannot be in C.

il

Example: Let A

i

it

Lemma 6: Let S be a clan and CaC-set of S. If g is an idem-
potent with g ¢ K, then g#C.

Proof's

Suppose g eC. Since g3Sg is a continuum we have C e gSg or
gSgeC.

g is the identity of the clan gSg and gSg 1s not a group since
gdK (Ch I.§3 th.6). Hence theorem 6 implies that C ¢ gSg.
Now suppose gSge C =2KnC # ¢ and since geC C K # (.

Let U and V be neilghbourhoods of K with SK=KeU<cTU V.

while g ¢ V.

Since S 1s compact there 1ls a neighbourhood W of X such that
SWe U

SW is a continuum and hence SWeC.

Furthermore W« SW and this would imply that C contains inner
polnts; a contradiction.

Theorem 7: Let S be a clan and C a C-set of S, then C&K.
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Procofs

From the proof of lemmz 6 it follows that if KaC £ ¢, then
C K.

Suppose now CAK = @ and let xe C and U a neighbourhood of x
with C\U # ¢.

Let e be 2 minimal member of the partial ordered set E with
Xe = X,

e exists since E_ ={e ieg = e xe = x} 4 ¢ and compact.
Furthermore e ¢ K since xdK.

Hence H(e) # eSe and we can find a neighbourhood V of e such
that xVe U and a continuum M« eSe such that ee McV and
Mnfese \H{e)} # ¢.

Since x € xM we have zMc(C,

Let m ¢ Mn{eSe \H(e)} , then C< xSm.

This implies that x = xsm = xesem = xp with p e-{eSe N H(e)}
since { eSe‘\H(e)} is an ideal of eSe.

Hence x = xf with f = fge M(p)c eSe, and thus ef=fe=f = fsge.
But since e is minimal we have f = e,

Furthermore pe = p = ep=pf = p = fp=>peH(f) = H(e} &
contradiction.

Theorem 8: If S is a clan and if X is a C-set, then X is a

maximal subgroup of S.

Proof's

If S = K, then S is a group and the result follows,

If S # K, then K has nc interior points since K is a C-set.
Let { aX‘XéX§ be a directed set of points of S\K with a,—»e
where e = e2€ K.

Since Kna,S # ¢ KnSa, # ¢ and a,e a,5nSa, we have
KcaxSnSax =» KceSn Se = ele.

Now eeK gives H(e) = eSe and thus K = H{e).

Theorem 9: If a clan is an indecomposable continuum it is

a group.
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Proof's

If S =K, then S is a group.

Suppose now K # S. Then there exists an open set V with
KeVeVT # S. Let I (V) be the union of all ideals of S
contained in V, then JO(V) is open and connected and
KcJo(v)c; ;\ﬂ 4 S,

Since 8 = JO(V)(tJ S- JO(V) and S is indecomposable we have
S- JO(YE_EPt connected.

Let S-J (V) = AuB AnB = g A,B open._

Then we have JO(V)&JA connected and JO(V)gaB connected and
hence S not indecomposable; & contradictilon.




§ L., I-semigroups

Definition 1:

Let J =[a,b] dencte a closed interval on the real line.
If J is a mcb such that a acts zs a zero-element and b as an
identity then J will be called an I-semigroup.

We will identify J usually with [091] > 80 that Ox = x0 = O

and 1x = x1 x for all xe 1,

il

Example: J, = [0,1] under the usual multiplication
Iy = [£,1] with multiplication defined by xoy = max
(3,xy) where xy denotes the usual multiplication of
real numbers,

Iy = [0,1] with multiplication defined by xoy = min
(XQY>°
J1 and J2 have Jjust the two idempotents zerc and identity, but

in J3 every element is an idempotent.
Furthermore every non-idempotent element in J, is algebralcally

nil-potent 1.0, for ewmyy;c&ag Lhere exists an n such that
xn is equal to zero.

Lemma 1: If J is an I-semigroup, then xJ = Jx = [0,x]for all
x e, '

Proof:

Since xJ is ccnnected and O,x exJ we have [O,x]ecxJ and by the
same argument Jx o> [0,x7 .

I ([O0,x)) = J, 1s open and connected and hence xe.io and 3;
an ideal of J.

Hence Jx ¢ 5355366 [0,x] and xJelO,x].

Thus xJ = Jx =[0,x] .

Corcllarys If J is an I-semigrcup, then x<€vy and weé v =

XW £ YV,
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Procofs Since x<£y there is a z such that x = zy.

Hence xw=2z(yw) < yw.

In the same way we can prove yws yv =>xXw € 3yV,

Theorem 13 If J is an I-semigroup with Jjust the two idem-
potents O and 1 and with no nilpotent elements, thern J is

isomorphic to J1°

Proof: We fPirst show that if xy = %2 # 0 then v = z,
Assume y <z, Then by lemma 1 there is a w such that Vo= ZW,
Hence xy = x{(zwW)= xyw =>xy = (xy)w" for every n>0.

Thus xy = (xy)e, with e = efe niw).

Since 1 € '(w), we have e = 0 =>xy = 0 a contradiction.

We now prove that if x # O, then x has a unique sguare root.
The function f; J=»J defined by f(x) = x2 is continuocus and
leaves O and 1 fixed. Hence f is a map of J onto J so that
square roots exist for every element,

Assume a° = b £ 0 and let as<b,

Then by lemma 41 aeé ab:Sbeo Hence ab = az=9 b = a,

This establishes that for x £ O, x has a unique square root
and by induction that x has unique 2Z2¢n roots,

Let x, be the 2".th root of x £ 0 and for r = p/2" define

r P
X" o= x0T
. N A r _s r+s
Then it 1is easy %o prove that x .x° = x s Where r,s are
positive dyadic rationals,

Furthermore if r< s, then xp> ng For by lemma 1 xpa xsg and

if x¥ = x%, then x™® = 1. a contradiction.
This implies that lim X, = 1.

. <x KiSt . .
Since X — 1im X, exist. Assume 1lim x

Then since y —O0 there is an nj such that vilo ¢ x,
Hence y < Xy a contradiction,

Yy £t

&=

3

o
Ncw let D = { xpl r a positive dyadic pational} .
Then D is a commutative submob of J and D = J.
Assume D # J. Then there is an open interval Pc J\D.



P = (a,b) and beD,
Now since xn->19 pr-—yhg and xnb§:b by lemma 1.
If an = b, then x_ = 1 a contradiction.

Hence xnb<t3 and Eﬁbéf’fop n sufficiently large.
Since b €D and xneﬁs we have xnbeﬁ a contradiction
And thus D = J,

Now let g: D=+J, be defined by g{x’) = &F
g(D) is dense in J, and g is one- fo one continuous and order

o

preserving.
Hence g can be extended to an isecmorphism of J onto 510

Thecrem 2Z: If J is an I-semigrcup with just the two idem-
potemts O and 1 and with a%t least one nilpotent, then J is

iseomorphic to J1°

Prcoof:

Let d = sup{x|x" = 0}. Then a # 0.
For let y £ O be nilpotent, then y = 0, yn"1 £ 0 for some
n>1,
Clearly (y = 0, Hence d 2 y
As shown in thecrem 1, d has a unigue 2%th rocot . and if r and
s are positive dyadic rationals, then d¥ <« 4% 1f r>s and

® 40, and a"a° = ¢""",

na1)2 ri--

Now let D :'{dp| r a positive dyadic ratﬁonal.} Then by the
same type of argument used L. the proof of theorem 1, D = J,

We define g: D—>J, by g{d") = (Vi)'. Then g is one to one
and continuocus and g(D) is dense in J?o
Since g 1is corder preserving 1t can he extended tc an iseomor-

phi=m of J onto Jgu

Theorem 3: Let J be an I-semigroup. Then E is closed and if

e, P€E, then e.f = min (e,f).

The complement of E is the union of disjoint intervals.

Let P be the clcsure of one of these, Then P 1ls iseomorphic
to elther J, or J,. Furthermore if xeP, y¢ P then xy = min

(x,¥).



Proof:

let e; feE e<f, Then by lemma 1 e.e< ef=de < ef,

Since ef ¢ e, we have e = ef,

Now let Q@ =[e,f].

Then for any x,ye [e,f] we have e,.esx.ys f.f,

Hence Q 1is a submob of J,.

Furthermore if e< %, then ez exze.e = € =ex = €,

In cther words e acts as a zero for [e,1].,

If 2 £ £, then by lemma 1 x = fy and thus fx = %,

f acts as an identity for LO,f].

So we have in particular P an I-semigroup with only two idem-
potents and hence P is iseomorphic either to J% or Jgo

If x e P, yfém % €y then there is an ee E, with 2 e€y.
Hence xy = (xe)y = x{ey, xe = %,

It follows from theorem 3, that every I-semigroup is commu-
tative.

Theorem 4: Let S be the closed interval [a,b]. If S is a
mob such that a and b are idempotents and S cénta*ns no other
idempotents, then S 1s abelian.

Proof':

let eeEn k, Then hie) = eSe.

Since S has the fixed point property and Hle) is a retract
of S, H(e) has the fixed point property and hence H(e) = e.
Consequently every element of K is idempctent.

Since K is connected, K = a3 or K = b,

If K = a, then a is a zerc for S aznd g an identity since
g5 = Sg = S,

Hence S is an I-semigrcup and abelian.

Theorem 5:let S be the closed interval [a,b] . If S is a clan
such that both a2 and b are idempotents, then S is abelian if

and only if S has a zero.



Proof':

Let S be commutative, then K is a group and by thes same
argument used in the proof of th. 4, the maximal subgroups

in K are single elements, hence K consists of only one element,
a zero.

Now let S have a zero. If either a or b is the zero element,
then the other is obviously a unit and the result follows by
theorem 3.

Now let a <0<b. Then S' = [a,0] is a submob of S,

For suppose there exists x,ye S' with xye{(0,b] .

Then since a acts as a unit on 8', we have x,xyex [a,v]-
Hence there is an s e [a,y] with xs* = 0.

Since 0,s%e s*S', we have v = s*q.

Hence xy = xs*q = 0g = 0 a contradiction.

In the same way we can prove that S" = [0,b] is a submcb of S
and both 3' and 3" are commutative since they are I-semi-
groups. It also follows that the unit of S is either a or b.
Suppose b is the unit element. Then in the same way as above

we can prove that asS" = 8"a = [0,a] .

Hence if x" € 8" then ax" = y"a = (y"a)a = a(x"a) = a(az") =
= az” = x"aa .

Furthermore if x'e S' and x"e 3", then x'x" = (x'a)x" =
Xﬁ(ax?i> - (aX?Y!)Xﬂ - <X??a}xﬂ - X??XV"

Theorem 6: Let S be the closed interval [a,b] . If S is a mob
such that a and b are idempotents, then S is abelian if and

only if S has a zero and ab = ba.

Proof s

If S is commutative, S has a zero by the same argument as in
theorem 5, and okviously ab = ba.

Now let S have a zero and let ab = ba.

Then again tle result fellows if either a or b is a zero,

If a<0<b, then 8’ =[a,0] and 8" = [0,b] are abelian sub-

mobs of S.
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Suppose now abe S', then bS' = baS' = abS' =[ab,0] .by lem-
ma 1,

Hence bS = Sb = [ab,b], and [ab,b] is an abelian submob by
theorem 5,

To prove the theorem it suffices to show that if xe [OgabJ
and ye[ab,b] then xy = yx.

Now xy = (xa)(by) = (xab)y, and xabe [ab,0] .

Hence (xab)y = y(xab) = y(xb) = (yb) xb = y(bxb) = ybbx = yx.



