STICHTING MATHEMATISCH CENTRUM 2e BOERHAAVESTRAAT 49 AMSTERDAM

AFDELING ZUIVERE WISKUNDE

ZW 1963-005

Topological semigroups II

by

Aïda Paalman - de Miranda

May 1963

BIBLIOTHEEK MATHEMATISCH CENTRUM AMSTERDAM

CHAPTER II

Semigroups with zero and identity.

§ 1. Semigroups with zero.

Let S be a mob with O, and a an element of S. If $a^n \rightarrow 0$, i.e. if for every neighbourhood U of O there exists an integer n, such that $a^n \epsilon U$ if $n \ge n_0$, then a is termed a nilpotent element. We denote by N the set of all nilpotent elements of S. An ideal (right, left) A of S with the property $A^n \rightarrow 0$ is called a nilpotent ideal. A nil-ideal A is an ideal consisting entirely of nilpotent elements. Then it is clear that every nilpotent ideal is a nil-ideal, and that the join of a family of (right, left) nilideals is again a (right, left) nilideal of S. Example: Let S be the unit interval with the usual multiplication. Then $I = \begin{bmatrix} 0,1 \end{bmatrix}$ is an ideal consisting entirely of nilpotent elements. I is not a nilpotent ideal, since $I^n = I$ for all n. Lemma 1: Every right (left) nilideal of S is contained in some nilideal of S. Proof: Let A be a right nilideal of S. Then SA is an ideal of S. Suppose $x = sa \in SA$, and let U be any neighbourhood of O. Then there exists a neighbourhood V of O such that s V a C U. As A is a right nilideal of S, $as \in A$, and $(as)^n \in V$ for $n \ge n$. Hence if $m \ge n_{c}+1$ we have $(sa)^{m} = s(as)^{m-1} a \in s \vee a \in U$. Therefore S A is a nilideal of S, and hence AUS A, is a nilideal of S containing A.

<u>Definition 1:</u> The join R of all nil-ideals of a mob S with zero is called the radical of S.

-27-

Lemma 1 implies that R is a nil-ideal, which contains every right and every left nilideal of S. Hence R is the maximal right and the maximal left nil-ideal. If S = R i.e if S consists only of nilpotent elements, then S is called a nil - semigroup. Let a εS , then we shall denote by $\Gamma(a)$, the closure of the set $\left\{a^n\right\}_{n=1}^{\infty}$. $\Gamma(a)=\left\{a^n\right\}_{n=1}^{\infty}$ Lemma 2: Let S be a mob and let A be a compact part of S such that $Ax \subset A$, with $\Gamma(x)$ compact. Then $\bigwedge_{n=1}^{\infty} A x^n = Ae$, with $e=e^2 \in \Gamma(x)$. <u>Proof:</u> Let $p \in \bigcap_{n=1}^{\infty} Ax^n$ Then $p = a_1 x = a_2 x^2 =$ Hence from $\S1$ lemma 2 it follows that there is an element. $a \in \{a_i\}^T$ such that p = a e, where $e = e^2 \in \Gamma(x)$ (see § 1 th. 4). This implies $\bigwedge^{\infty} A x^n c A e$. Now let $a_1 \in \mathcal{A} \times \mathbb{R}^k$. Then we can find a neighbourhood V of e such that $a_1 V \cap A x^k = \emptyset$. But since $e \in \Gamma(x)$, there is a $K_0 \gg k$ such that $x \in V$ and hence $a_1 x \in A \times k$. This is a contradiction, since A x c A implies A $x^{k} c A x^{k}$. Hence A e c A $x^{k} \Rightarrow \bigcap_{n=1}^{\infty} A x^{n} = A e$. Theorem 1: Let S be an element - wise compact mob with zero (i.e for every a, $\Gamma(a)$ is compact). Then every (right, left) ideal of S is either a nil-ideal or contains non - zero idempotents. <u>Proof:</u> Let a be a non-nilpotent element of the ideal A. Then the identity e of the group $D = \bigcap_{n=1}^{\infty} \{a^{i}\}_{i} \ge n\}^{-}$ is

not equal to zero.

-29-Furthermore a $D \subseteq D$, and a $D \subseteq A \supset CA$, since A is an ideal. Hence DAA. $\neq \emptyset$, so that DCA, since no group can properly contain an ideal. Thus e ∈ A. Theorem 2: Let e be a non-zero idempotent of the compact mob S with zero. Then these are equivalent. 1) e S e \ N is a group 2) e is prinitive 3) S e is a minimal non-nil left ideal 4) S e S is a minimal non-nil ideal 5) each idempotent of S e S is primitive. **Proof**: $(1 \rightarrow 2)$: If e S e \setminus N is a group, then e is the only idempotent in e S e $\{0\}$, since no idempotent $\neq 0$, can be nilpotent. Hence e is primitive $(2 \rightarrow 3)$: Let L be a non-nil left ideal LcS e. Then by theorem 1 there is an idempotent $f \in L$, $f \neq 0$. Since $f \in Se$, we have fe = f, and (ef)(ef) = ef. Thus ef is an idempotent \neq 0 and ef \in eSe. Hence since e is primitive ef = e. This implies that $ef = e \in eL \subset L$. $\implies L = Se$. $(3 \rightarrow 4)$ Let I be a non-nil ideal I \leq SeS. Then there exists an idempotent $f \in I$ $f \neq 0$, and elements $a, b \in S$, such that aeb=f. We can choose b such that bf = b. Let g=bae. Then $g^2=baebae=bfae=g$. Furthermore $g\neq 0$, since otherwise 0=gb=baeb=bf=b. Now $g \in Se$ and $g \in SfS$. Hence by (3) Se = Sg \subset SfS, and we conclude SeS=SfS=I. $(4 \rightarrow 5)$ Let f be a non-zero idempotent of SeS, and let $g=g^2 \neq 0 \epsilon fSf$. Since f,g ∈ SeS, we have SgS=SfS=SeS and f ∈ SgS. Hence f=agb,

and we may assume ag = a, gb = b. Since gf = fg = g, this implies afb = agfb = agb = f. Hence $f = a^n g b^n$. It follows from $\S1$ lemma 2 that there is an idempotent $g^* \in \Gamma(a) \notin Sg$ and b' $\in \Gamma(b)$ such that $f = g^* gb'$. We note that $g^*g = g^*$, hence $g^*f = f = g^*gf = g^*$, and $\mathbf{f} = \mathbf{g}^{\dagger} = \mathbf{g}^{\dagger} \mathbf{g} = \mathbf{f} \mathbf{g} = \mathbf{g}$ $(5 \rightarrow 1)$ Since every idempotent in SeS is primitive, e is primitive and hence Sellis a minimal non-nil left ideal. Now let a ϵ eSe \setminus N, then a ϵ Se \cap eS $\{ \setminus N$. Since L is minimal. $a = ea \in La = L$. Hence there is $\overline{a} \in L$ such that $\overline{a}a = e$. Let $e\overline{a} = a'$, then $a' \in eSe$ and a'a = e. (aa')(aa') = aea' = aa'. Hence aa' is an idempotent and aa'é eSe \ N. Since e is primitive aa' = e. So we can find for every a @ eSe > N an element a' @ eSe such that aa' = e = a'a. This implies that eSe \setminus N is a group, since a' \notin N. For if a' \in N, then $\bigwedge_{n=1}^{\infty}$ S(a')ⁿ = S.O = O by lemma 2. This is in contradiction with $aa' = a^2(a')^2 = a^n(a')^n = e$.

<u>Definition:</u> A mob S with zero is said to be an N-semigroup if its nilpotent elements form an open set.

Lemma <u>3</u>: Let S be a mob with zero, and let a ∈ S. If aⁿ is nilpotent for some n ≥ O, then a itself is a nilpotent element.

<u>Proof:</u> Let U be an arbitrary neighbourhood of O, then since $e^{i}O = O$, there is a neighbourhood V of O, such that $a^{j}V \subset U$ (j = 1, 2, ..., n). Since a^{n} is nilpotent there exists an integer $k_{o} \ge 0$ such that $(a^{n})^{k} \in V$ for $k \ge k_{o}$. Thus $a^{j}a^{nk} = a^{nk+j} \in U$. $j = 1, 2, ..., n \quad k \gg k_0$. This implies that for $N \gg nk_0 \quad a^N \in U$. Hence a is nilpotent.

Theorem 3: If a mob S with O has a neighbourhood U of O, which consists entirely of nilpotent elements, then S is an N-semigroup.

<u>Proof:</u> Let $p \in N$, then there is an n such that $p^n \in U$. Therefore there is a neighbourhood V of p, such that $V^n \subset U$. Hence every point of V^n is nilpotent. Lemma 3 then implies that $V \subset N$.

<u>Theorem 4:</u> A locally compact mob S with O having a neighbourhood U of O which contains no non-zero idempotents is an N-semigroup.

<u>Proof</u>: Since S is locally compact and Hausdorff. S is regular, and we can find a neighbourhood W of O, such that $\overline{W} \subset U$, and \overline{W} is compact.

The continuity of multiplication and the compactness of \overline{W} imply, that there is a neighbourhood V of O, with $V \ \overline{W} \subset W$ V $\subset W$.

Hence $\nabla^2 \in \nabla$, $\overline{\Psi} \subseteq \Psi$, and $\nabla^n \in \Psi$.

The set $A = \bigcup_{i=0}^{\infty} V^i$ is a mob contained in W.

Therefore \overline{A} is a compact mob contained in U.

Since \overline{A} contains no non-zero idempotents \overline{A} is a nil-semigroup (theorem 1).

Hence V consists entirely of nilpotent elements, and by theorem 3 S is an N-semigroup.

<u>Corollary</u>: A locally compact semigroup with O, which is not an N-semigroup contains a set of non-zero idempotents with clusterpoint O.

Theorem 5: The radical of a compact N-semigroup is open. Proof: Let $a \in \mathbb{R}$, then for every $s \in S$ sa $\in \mathbb{R} \subset \mathbb{N}$. Since N is open and S compact, there exists a neighbourhood V of a such that SVCN, VCN. Since $V \cup SV$ is a left nil-ideal, $V \cup SV \subset R$. Hence V C R and R is open. Theorem 6: Let S be a compact N-semigroup which is not a nil-semigroup. Then any non-nilideal I of S contains a minimal non-nil ideal I^{*}, such that I^{*}/R^{*} is completely simple, where R^{*} = I^{*} \cap R is the radical of I* Proof: Since I is a non-nilideal of S, I contains non-zero idempotents. Let $E^* = E - \{0\}$. Then E^* is closed, since N is open and E is closed. Let $E_{\lambda} = E^* \cap Se_{\lambda}S_{\beta} e_{\lambda} \in E^* \cap I_{\beta}$ Then E_{λ} is closed and non-empty. Suppose E is a minimal member of $\{E_{\lambda}\}$. E exists since S is compact. We shall now prove that e, is a primitive idempotent. Suppose $0 \neq f = f^2 \epsilon \epsilon$, Se, $\Rightarrow f \epsilon$ I. Then SfS $c \in Se$, S. Since E, is minimal; $E^{*} \cap SfS = E^{*} \cap Se_{p}S$. Hence $e_{p} = s_{1}fs_{2}$, with $e_{p}s_{1} = s_{1}s_{1}f = s_{1}$. $s_1^n f s_2^n = s_1^{n-1} s_1 f s_2 s_2^{n-1} = s_1^{n-1} f s_1 f s_2 s_2^{n-1} = s_1^{n-1} f e_{y} s_2^{n-1} =$ $= s_1^{n-1} f s_2^{n-1}$ Hence $s_1^n e_v s_2^n = e_v$. Thus there is an idempotent $g \in \Gamma(s_1)$ and an element $s \in \Gamma(s_2)$ so that $ge_s = e_v$. We note that since $\Gamma(s_1) \in Sf^{m}$ gf = g. Hence $e_{\nu} = ge_{\nu} = gfe_{\nu} = gf = g \implies f = e_{\nu}f = gf = g = e_{\nu}$.

Thus e, is a non-zero primitive idempotent. Theorem 2 then implies that $Se_{a}S=I^{*}c$ I is a minimal non nil-ideal. Now we shall prove that $R^* = I^* \cap R$. Since $I^{*}_{\Lambda}R$ is a nil-ideal of I^{*} we have $I^{*}_{\Lambda}R \subset R^{*}$. Furthermore SR*ScSI*ScI*. If $SR^*S = I^*$, then $I^*SR^*SI^* = I^{*3} = I^*$, and so I = I SR SI c I R I c R. This contradicts the fact that I* is a non nil-ideal. Hence SR^{*}S is an ideal of S properly contained in I^{*}. This implies that SR^{*}S must be a nil-ideal i.e SR^{*}S \subset R^{*} \Longrightarrow R^* is a nil-ideal of $S \Rightarrow R^* < I^* hR$. Since R^* is a maximal proper ideal of I^* , §3 th.3 implies that I^* / R^* is completely simple. Corollary: Let S be a compact mob with zero; then S contains a non-zero primitive idempotent if and only if there is a non-zero idempotent e with $(eSe) \times N$ closed. Proof: If $e = e^2 \neq 0$, e primitive eSe $\setminus N$ is a maximal subgroup. (th.2). On the other hand if (eSe) \setminus N is closed and $e \neq 0$, then $eSe \setminus N$ is the set of nilpotent elements of eSe, and eSe∩N is open in eSe. We conclude from theorem 6 that eSe contains a non-zero primitive idempotent. Hence so does S. Theorem 7: Let e be a non-zero primitive idempotent of the compact mob S with zero. Then $Se \setminus N$ and $(Se) \cap N$ are submobs and Se \ N is the disjoint union of the maximal groups $e_{\alpha}^{Se} \setminus N$ where e_{α} runs over the non-zero idempotents of Se. Proof: Suppose $a, b \in Se \setminus N$, then $a^n, b^n \in Se \setminus N$. Let $ab \in N$. Then since Se is a minimal non-nil left ideal, we know that $Sa = Sb = Se \implies Sa^n = Sb^n = Se$. Hence Sab = Sb^2 = Se \implies S(ab)ⁿ = Se.

Thus Se = $\bigcap_{n} S(ab)^{n} = SO = O$ (lemma 2). This is a contradiction with $e \neq 0$. Suppose now a, b & Se n N and ab & N. Then $(ab)^2 \notin N$ and hence Sab = Se, since Se is a minimal nonnil left ideal. Since a & Se, we have SacSe = Sab. Hence Sac Sab c Sab² c Sab³ c But since $ab^n \in Se$, $Sab^n = Se$. This implies that $Se = \Omega$ $Sab^n = Sa.0 = 0$, a contradiction. Finally let $a \in Se \setminus N$. Then Sa = Se. Choose an idempotent f in $\int (a)$; then Sf = Se = Sa, and f is a right unit for Se. Let D be the subgroup of S contained in $\Gamma(a)$. Then D is an ideal of $\Gamma(a)$ (§ 1 th.4). Hence $\Gamma(a)$ f c D. $\Rightarrow \Gamma(a) = D$ and Γ (a) is a group. Thus Se $\ N$ is the union of groups. For any $e_{\alpha} = e_{\alpha}^2 \neq 0$, $e_{\alpha} \in Se$, $Se_{\alpha} = Se$, so that e_{α} is primitive and $e_{\alpha}Se_{\alpha} \setminus N$ is a group. Now the maximal group containing e_{α} is contained in $e_{\alpha}Se_{\alpha}$, moreover since any group which meets N must be zero, we conclude that $e_{\alpha} Se_{\alpha} \setminus N$ is a maximal group.

-34-

§ 2. <u>0 - simple semigroups</u>.

As in Ch.1 § 3 we call a semigroup S simple if it does not contain a proper non-zero ideal.

By a O-simple semigroup we mean a simple semigroup containing a zero element.

A completely O-simple semigroup is a completely simple semigroup with a zero element.

If S is completely O-simple then S contains a non-zero idempotent and this implies that S cannot be a nil-semigroup. On the other hand if S is not a nil-semigroup and S is O-simple, then every right or left nilideal of S is the zero ideal $\{0\}$, since $(\{0\}, 1\}$ lemma 1) every right (left) nilideal of S is contained in some nilideal of S. We shall call a (left, right) ideal I of a mob S with zero O-minimal if $I \neq \{0\}$ and $\{0\}$ is the only (left, right) ideal of S properly contained in I.

Hence every minimal non-nil left ideal of a O-simple mob is a O-minimal left ideal.

Lemma 1: Let L be a O-minimal left ideal of a O-simple mob S and let $a \in L \setminus O$. Then Sa = L.

<u>Proof</u>: Since Sa is a left ideal of S contained in L, it follows that Sa = 0 or Sa = L.

If Sa = 0, then SaS = 0, in contradiction with SaS = S.

If S is an element-wise compact mob with zero, then every non-nil (left, right) ideal of S, contains a non-zero idempotent.

So in this case if L is a minimal non-nil left ideal of S, then there is an idempotent $e \in L$, with Se = L.

Lemma 2: Let L be a O-minimal left ideal of a O-simple mob S, and let $s \in S$. Then Ls is either $\{0\}$ or a O-minimal left ideal of S.

Proof: Assume Ls \neq 0. Evidently Ls is a left ideal of S. Now let L be a left ideal of S contained in Ls. L c Ls. Let A be the set of all $a \in L$ with $a \in L_{o}$. Then $As = L_{o}$, and $A < L_{o}$ Furthermore $SAs \subset SL_{c} \subset L_{c}$ and $SA \subset SL \subset L$. Hence SA<A and A is a left ideal of S. From the minimality of L, either A = 0 or A = L, and we have corresponding $L_{0} = 0$ or $L_{0} = Ls$. Theorem 1: Let S be a compact O-simple mob. Then S is the union of all minimal (i.e minimal non-nil) left ideals of S. Proof: Since S is compact, S is completely O-simple and hence contains a non-zero primitive idempotent e. From δ 1 th.2 it then follows that Se is a minimal non-nil left ideal, and hence a O-minimal left ideal. Now let A be the union of all the O-minimal left ideals of S. Clearly A is a left ideal of S and A $\neq \{0\}$. Now we show that A is, also a right ideal. Let $a \in A$ and $s \in S$. Then $a \in L$ for some O-minimal left ideal L of S. By lemma 2 Ls = 0 or Ls is a 0-minimal left ideal. Hence LscA and as & A. Thus A is a non-zero ideal of S, whence A = S. An analoguous result holds for O-minimal right ideals. Lemma 3: Let L and R be O-minimal left and right ideals of a O-simple mob, such that LR \neq O. Then $RL = R \cap L$ is a group with zero and the identity e of $RL \setminus \{0\}$ is a primitive idempotent of S. Proof: Since LR is a non-zero ideal of S, we must have LR = S. Furthermore RL \neq 0, since S = S² = LRLR. Now let $a \in RL \setminus 0$, then $a \in L \setminus 0$ and $a \in R \setminus 0$, and hence $Sa \equiv L$ (lemma 1), and aR = 0 or aR = R.

Since S = LR = SaR, it follows that aR \neq O. Consequently aRL = RL. In the same way we can prove that RLa = RL. From this we conclude that RL is a group with zero. Now let e be the identity of RL. Then since R = eS and L = Se, we have $R \cap L = eS \cap Se = eSe$ and RL = eSSe = eSe. Since eSe is a group with zero, e is primitive. Theorem 2: Let S be a compact O-simple mob and let e and f be non-zero primitive idempotents of S. Then the maximal subgroups H(e) and H(f) containing e and f respectively are topological isomorphic compact groups. Proof: Since Se and Sf are O-minimal left ideals and eS and fS O-minimal right ideals (\S 1 th.2) it follows from lemma 3 that eSe $\setminus \{0\}$ and fSf $\setminus \{0\}$ are groups. Since $H(e) \subset eSe \setminus \{0\}$ we have $H(e) = eSe \setminus \{0\}$, $H(f) = fSf \setminus \{0\}$. Now eSSf \neq 0, since eSSfS = eS² = eS. Hence $eS \wedge Sf \neq 0$. Let $a \neq 0 \in eS \cap Sf$. Then ea = a = af. Since eS = aS and Sf = Sa (lemma 1), there exists a_1 and $a_2 \in S$ such that $e = aa_1$ $f = a_2a$. Now let $b = fa_1 e$, then $b \neq 0$ and $ab = afa_1e = aa_1e = ee = e$; $ba = fba = a_2aba = a_2ea = f$. Furthermore bS = fS, Sb = Se. We now proof that the mappings φ : x \rightarrow bxa and ψ : y \rightarrow ayb are mutually inverse one-to-one mappings of H(e) and H(f) upon each other. For let $x \in H(e)$ then bxa $\in bS \cap Sa = fS \cap SF = H(f) \cup \{0\}$. Simularly $y \in H(f)$ implies $ayb \in aS \land Sb = eS \land Se = H(e) \cup \{0\}$. And if $x \in H(e)$ a(bxa)b = exe = x. φ is an isomorphism since $(bx_1a)(bx_2a) = bx_1ex_2a = bx_1x_2a$. Since φ is continuous and one-to-one φ is topological.

Corollary: Let S be a compact O-simple mob. Then S is the disjoint union of isomorphic compact groups H(e) and of sets A_{α} with the property $A_{\alpha}^2 = 0$. Corollary: Let S be a commutative compact O-simple mob. Then S is a group with zero. Proof: By lemma 3 we have $S^2 = S \land S = S$ is a group with zero since S is both a O-minimal left and right ideal. Theorem 3: Let J be a maximal proper ideal of the compact mob S. Then the following are equivalent. 1[°]) S-J is the disjoint union of groups. 2⁰) for each element of S-J, there exists a unit element 3°) a & S-J implies a² & S-J 4⁰) J is a completely prime ideal 5°) S-J contains an idempotent, and the product of two idempotents of S-J lies in S-J. Proof: (1) clearly inplies (2). (2) \rightarrow (3). Let a \in S-J and ax = xa = a. Then ae = ea = a, with e = $e^2 \epsilon \Gamma(x)$ and $e \epsilon S-J$. Hence since $S - J \cup \{0\} = \bigcup H(e_{\alpha}) \cup \bigcup A_{\alpha}$, we have $a \in H(e)$ which implies $a^2 \in H(e) \implies a^2 \in S - J$. $(3) \rightarrow (4)$ Let a, b \in S-J and suppose ab \in J. Then $I = \{x | x \in S \quad xb \in J\}$ is a left ideal with $I \supset J$. Now let $x \in I$, $x \notin I$, then $x \otimes \not \in J$, and hence $x \otimes x \otimes \not \in J \implies$

bx $\notin J \Rightarrow bxbx \notin J \Rightarrow xb \notin J$ a contradiction. Since I is an ideal containing J, we have $I = S \Rightarrow b^2 \in J$ a contradiction.

(4) \rightarrow (5) This follows from the fact that $J = J_0(S-e)$. (5) \rightarrow (1) Since $e \in S-J$, we have $S \not\subset J$ completely simple and $S/J = U \mathrel{\mathbb{H}}(e_{\alpha}) \cup U \mathrel{\mathbb{A}}_{\beta}$. Now let $a \neq 0 \in A_{\beta}$, then $a \in Se$ and $a \in fS$. with SefS = 0, or else it would follow from lemma 3 that $a \in SenfS=H(e_{\alpha}) \cup \{0\}$. Since $ef \notin J$, we have however $SefS \neq 0$, a contradiction. Hence $A_{\beta} = \emptyset$ and $S-J = \bigcup H(e_{\alpha})$.

From theorem 3 it follows that S-J is a group if and only S-J contains a unique idempotent.

-40-

§ 3. Connected semigroups

Lemma 1: If S is connected, then each minimal (left,right) ideal of S is connected.

Proof:

Let L be a minimal left ideal of S, then for any $a \in L$, Sa = L and hence L is connected.

If K is the minimal ideal of S, then K = SaS for each a ϵK . Hence $K = \bigcup_{S_{\alpha} \epsilon S} \text{Sas}_{\alpha}$: Since each Sas_{α} is connected and meets the connected set aaS it follows that K is connected.

Lemma 2: If S is connected, then each ideal of S is connected, provided S has a left or right unit.

Proof:

Let I be an ideal of S. Then $I = \bigcup_{x \in I} Sx$ if e is a left unit of S. Since each Sx meets aS with a eI we have that I is connected.

<u>Example:</u> Let $S = \{(x,y) \mid 0 \le x \le 1 \quad 0 \le y \le 1\}$. For (x_1,y_1) and $(x_2,y_2) \le S$ define the product $(x_1,y_1) \cdot (x_2,y_2)$ to be $(0,y_1y_2)$. Then S is a compact connected commutative mob. Let $I = \{(x,y) \mid x = 0, 1 \quad 0 \le y \le 1\}$. And $I^* = \{(x,y) \mid 0 \le x < \frac{1}{4} \quad \frac{3}{4} < x \le 1 \quad 0 \le y < 1\}$. Then I is a disconnected closed ideal, and I^* is a disconnected open ideal.

<u>Theorem 1:</u> If S is connected and I an ideal of S, then one and only one component of I is an ideal of S.

Proof:

Let $I^* = SI \cup IS$. Then I^* is connected and the component of I which contains I^* is an ideal of S. Furthermore it is readily seen that this is the only component of S which is an ideal. This ideal will be called the component ideal of I.

Lemma 3: Let S be a compact connected mob and U a proper open subset of S with $J_{O}(U) \neq \emptyset$. Let C be the component ideal of $J_{O}(U)$, then C intersects Ū∖U. Proof: If $\overline{C}_{O} \cap \overline{U} \setminus U = \emptyset$, then $\overline{C}_{O} \in U$, and since \overline{C}_{O} is an ideal, we have $\overline{C}_{O} \subset J_{O}(U)$ and $C_{O} = \overline{C}_{O}$. Furthermore $J_{O}(U)$ is open and hence we can find an open set V, with $C_{O} \subset V \subset \overline{V} \subset J_{O}(U)$. Since C is a component of the compact set \overline{V} of the connected set S, we have $C_{n} \overline{V} \setminus V \neq \emptyset$ a contradiction. Corollary 1: Let S be a compact connected mob and F a closed subset of $S \setminus K$, with the property that if $F \cap I \neq \emptyset$, then $F \subset I$ for any ideal I of S. Then if C is the component of $S \setminus F$ which contains K then F =<u></u>CΛC. Proof: Since C is closed in SNF we have $\overline{C} \cap SNF = C \Rightarrow F \supset \overline{C}NC$. Furthermore it follows from lemma 3 that if C is the component ideal of J_{O} (SNF), then $K \in C_{O}$ and \overline{C}_{O} intersects $\overline{S \setminus F} \setminus \overline{S \setminus F}$ SNFC F Hence $F \subset \overline{C} \subset \overline{C}$. Since $F \cap C = \emptyset$ we have $F \subset \overline{C} \setminus C$. If we take in corollary 1 F = H(e) with $e \in E \setminus K$ and if C is the component of S H(e) which contains K, then $H(e) = \overline{C} C$. This follows immediately from corollary 1, since if $H(e) \ I \neq \emptyset$, then $H(e) \subset I$ for any ideal I of S. Furthermore it follows that H(e) with $e \in E \setminus K$ can contain no innerpoints.

Theorem 2: Let S be a compact connected mob. If K is not the cartesian product of two non-degenerate connected sets, then

either K is a group or the multiplication in K is of type (a) or (b). (a) xy = x all $x, y \in S$ (b) xy = y all $x, y \in S$. Proof: From Ch I. §2 lemma 4 we know that $K = \{ SenE \}$. eSe. $\{ eSnE \}$ $e \in E \cap K$. Now let $K^* = (Se \cap E) \times (eSe) \times (eSnE)$ and $\phi : K^* \rightarrow K$ $\varphi(x, y, z) = xyz.$ Then φ is clearly a continuous mapping of K^{*} onto K. Now let $x_1y_1z_1 = x_2y_2z_2$ with $x_1, x_2 \in Se \cap E$, $z_1, z_2 \in Se \cap E$ y1,y2eeSe. Then since x_1S and x_2S are minimal ideals with $x_1S \land x_2S \neq \emptyset$ we have $x_1 x_2 = x_2$. Furthermore since $x_1, x_2 \in Se$, $Se = Sx_1 = Sx_2 \implies x_1e = x_1, x_2e = x_2, ex_1 = ex_2 = e$. Hence $x_2 = x_1 x_2 = x_1(ex_2) = x_1 e = x_1$. In the same way we can prove $z_1 = z_2$. Since $x_1y_1z_1 = x_2y_2z_2$ we have $ex_1y_1z_1e = ex_2y_2z_2e \Rightarrow ey_1e =$ $= ey_2 e \implies y_1 = y_2.$ Hence φ is one to one and K is homeomorphic to K^{*}. Since K is connected, each of eSe, SenE and eSnE must be connected. Hence at least two of the factors must consist of single elements. If eSnE = SenE = e, then K = eSe and hence a group. If eSnE = eSe = e, then K = Se, and if x, yeK we have xy = = (xe)(ye) = x(eye) = xe = x.If SerE and eSe are both e, then the multiplication is of type (b). Corollary: Let S be a compact connected mob. If K contains

a cutpoint, then the multiplication in K is of type (a) or (b).

Proof:

If K contains a cutpoint, then K is not the cartesian product of two non-degenerate connected sets.

Hence from theorem 2 it follows that K is a group or the multiplication is of type (a) or (b).

Since a compact connected group, contains no cutpoints, the corollary follows.

<u>Definition 1:</u> A clan is a compact connected mob with a unit element.

Lemma 4: Let B be the solid unit ball in Euclidean n-space and let f be a map of B into itself, such that $|x - f(x)| < \frac{1}{2}$ for all xeB. Then $0 \in f(B)$.

Proof:

Let $x = (x_1, \dots, x_n)$ $f(x) = (f_1(x), \dots, f_n(x))$. We now consider the mapping $h(x) = (x_1, \dots, x_n) - (f_1(x), \dots, f_n(x))$. This mapping transforms the ball $|x| \le \frac{1}{2}$ into itself and hence by Brouwers fixed point theorem there is a point x^* for which $h(x^*) = x^*$. i.e. $(x_1^*, \dots, x_n^*) = (x_1^*, \dots, x_n^*) - (f_1(x^*) \dots f_n(x^*)) = f(x) = 0$. <u>Theorem 3</u>: Let S be a mob with unit element u having an Euclidean neighbourhood U of u. Then H(u) is an open subset of S and is a Lie group.

Proof:

We identify U with Eⁿ and let $F_{\varepsilon} = \{x \mid , |u-x| \le \varepsilon\}$. Since the multiplication on F is uniformly continuous there is a δ such that $|x-xy| < \frac{\varepsilon}{2}$, $|x-yx| < \frac{\varepsilon}{2}$ whenever $|u-y| < \delta$. By lemma 4 $u \in F_{\varepsilon} y$ and $u \in yF_{\varepsilon}$, hence y has an inverse y^{-1} in F_{ε} and the mapping $y \rightarrow y^{-1}$ is continuous. Therefore H(u) is a topological group, and since it contains an open set it must be open in S. Furthermore H(u) is locally Euclidean and hence a Lie group. <u>Corollary 1:</u> If S is a clan having a Euclidean neighbourhood of the identity then S is a Lie group.

Proof:

By theorem 3 H(u) is open. H(u) is closed since S is compact, and hence H(u), must be all of S. Thus if S is a clan and S is an n-sphere, then S is a topological group, and hence n = 0,1 or 3.

In general a compact manifold which admits a continuous associative multiplication with identity must be a group.

<u>Corollary 2:</u> Let S be a clan and F a closed subset of S such that S-F is locally Euclidean.

Then either S is a group or $H(u) \subset F$.

Proof:

Let $h \in H(u)$ and $h \notin F$. Then h has a Euclidean neighbourhood V. Since h^{-1} V is a Euclidean neighbourhood of u, it follows from corollary 1 that S is a group.

In case S is a subset of Euclidean space, then it follows from corollary 2 that $H(u) \subset$ boundary of S or S a top.group. If S contains interior points, then it cannot be a group and we have $H(u) \subset Bd(S)$.

<u>Definition 2:</u> A subset C of a space X is a C-set provided that $C \neq X$ and if M is a continuum with $C \cap M \neq \emptyset$ then M < C or C < M. It can easely be shown that if C is a C- set of a compact connected Hausd. Space, then the interior of C is empty and C is connected.

For let x be an interior point of C, then there is an open set V with $x \in V \subset \overline{V} \subset C$.

Now let $y \in X-C$. Then the component M of y in X-V has a nonempty intersection with the boundary of $X-V \subset \overline{V}$.

Hence M is a continuum with $M \cap C \neq \emptyset$ and $C \notin M$, $M \notin C$.

Let G be a compact Lie group which acts on a completely regular space X. Let $p \in X$ such that $g(p) \neq p$ unless g is the identity; $g \in G$.

Theorem 4: (Gleason).

Then there exists a closed neighbourhood N of p and a closed subset C of N, such that the orbit of every point of N has exactly one point in common with C.

Proof: See Gleason Pr A.M.S.1 1950.

Lemma 5: Let G be a compact group and let U be an open neighbourhood of the identity. Then U contains an invariant subgroup H of G such that G/H is a Lie group.

<u>Proof:</u> See Montgomery Zippin: Topological transformation groups. <u>Theorem 5:</u> Let S be a clan, S no group G a compact invariant subgroup of H(u) = H, such that H/G is a Lie group. Then S contains a continuum M such that M meets H and the complement of H, and such that $u \in M \cap H \subseteq G$.

Proof:

We can consider H as transformation group acting on S. Let H' = H/G and S' the space of orbits of G. Then H' is a compact Lie group acting on S'.

By theorem 4 there exists a closed neighbourhood N of u'=u.G and a closed set C \subset N such that n H' \cap C is a single point for each n \in N.

Now let S'' be the space of orbits under H. Then we have the following canonical mappings $\alpha: S \rightarrow S'$, $\beta: S' \rightarrow S''$ $f: S \rightarrow S''$, with $f = \alpha.\beta$. Since α and f are open maps, β is also open. Let N^O be the interior of N then βN^O is open and $\beta(u') \in \beta(N^O)$. Let P be the component of $\beta(N)$ which contains $\beta(u')$. Then P meets the boundary of $\beta(N)$ and hence P is non-degenerate.

Now let $\beta^* = \beta \mid C$. Then since n H' C is a single point for each n N it follows that β^* is a homeomorphism between C and N β . $\beta^{*-1}(P)$ is a continuum which meets H' only at C \cap H', and hence $\beta^{*-1}(P)$ also meets the complement of H'. Now let K be a component of $\alpha^{-1} \beta^{*-1}(P)$. Since α is an open mapping we have $\alpha(K) = \beta^{*-1}(P)$. Hence K is a continuum which meets H and the complement of H and $K \cap H \subset \alpha^{-1}(c)$, where $c = C \cap M$. Let $h \in K \cap H$, then $K \cap H \in hG$. Suppose now $M = h^{-1} K$, then $m \in M \cap H$ and $M \cap H \subset G$ and if $k \in K$, $k \notin H$, then $h^{-1}k \in M$; $h^{-1} \in k \notin H$, since S-H is an ideal of S. q.e.d. Theorem 6: Let S be a clan which is no group. Then the identity u of S belongs to no non-trivial C-set. Proof: Let $u \in C$, with C = C-set. We first prove that $C \subset H(u)$. If $x \in C$, then since xS is a continuum which meets C, we have $C \subset xS$ or $xS \subset C$. If $u \in xS$, then x has an inverse and is thus included in H(u). Now let $u \notin xS$, then $xS \subset C$; $xS \neq C$, and there is an open set V with $xS \subset V$; $C \setminus V \neq \emptyset$. Since $xK \subset K$ we have $K \cap C \neq \emptyset$. If u ∈ K then S is a group, hence u ∉ K ⇒ K ⊂ C. We can find now an open set W with x & WS eV. Since C contains no interior points there exists a y & W \C with yScV. Clearly yS is a continuum which meets both C and SNC and $C \not \subset yS$ a contradiction. Hence $u \in xS$ and thus $x \in H(u) \implies C \subset H(u)$. Now let U be a neighbourhood of u such that $C \not\subset U$. Then by lemma 5 there is a subgroup GCU such that H/G is a Lie group and $C \not\in G$. Theorem 5 implies that we can find a continuum M such that ueMoHcG and such that M meets the complement of H.

Hence MAC $\neq \emptyset$ and since CCH M meets the complement of C. \Rightarrow C \subset M. Since $M \cap H \subset G$ and $C \not = G \implies C \not = M$ a contradiction. q.e.d. Example: Let A = {(x,y) | y = sin $\frac{1}{x}$ 0 < x < 1} B = {(2-x,y) | (x,y) \in A}. C = {(0,y) U (2,y) | -1 $\leq y \leq 1$ }. and let $S = A \cup B \cup C$. We will show that S does not admits the structure of a clan. For suppose that S is a clan. Since S is not homogeneous, S cannot be a topological group and hence $S \neq H(u)$. Then $S \setminus H(u) = J \neq \emptyset$ is the maximal proper ideal of S. Since J is open, dense and connected we have $A \cup B \subset J$ and hence $u \in C$. But since C is the union of two C- sets, u cannot be in C. Lemma 6: Let S be a clan and CaC-set of S. If g is an idempotent with $g \notin K$, then $g \notin C$. Proof: Suppose g & C. Since gSg is a continuum we have C = gSg or gSg CC. g is the identity of the clan gSg and gSg is not a group since $g \notin K$ (Ch I. § 3 th.6). Hence theorem 6 implies that $C \notin gSg$. Now suppose $gSg \in C \implies K \cap C \neq \emptyset$ and since $g \in C \quad C \setminus K \neq \emptyset$. Let U and V be neighbourhoods of K with $SK=K \subset U \subset \overline{U} \subset V$. while $g \notin V$. Since S is compact there is a neighbourhood W of K such that SWGU \overline{SW} is a continuum and hence $\overline{SW} \subset \mathbb{C}$. Furthermore $W \subset S\overline{W}$ and this would imply that C contains inner points; a contradiction. Theorem 7: Let S be a clan and C a C-set of S, then C SK.

Proof:

From the proof of lemma 6 it follows that if K α C $\neq \emptyset$, then $C \leq K$. Suppose now $C \cap K = \emptyset$ and let $x \in C$ and U a neighbourhood of x with $C\setminus U \neq \emptyset$. Let e be a minimal member of the partial ordered set E with xe = x. e exists since $E_x = \{e \mid e^2 = e \quad xe = x\} \neq \emptyset$ and compact. Furthermore $e \notin K$ since $x \notin K$. Hence $H(e) \neq eSe$ and we can find a neighbourhood V of e such that xV c U and a continuum M c eSe such that e c M c V and $M \cap \{eSe \setminus H(e)\} \neq \emptyset.$ Since $x \in xM$ we have $xM \in C$. Let $m \ \varepsilon \ Mn \big\{ eSe \ H(e) \big\}$, then $C \subset xSm.$ This implies that x = xsm = xesem = xp with $p \in \{eSe \setminus H(e)\}$. since $\{ eSe \setminus H(e) \}$ is an ideal of eSe. Hence x = xf with $f = f^2 \epsilon \Gamma(p) c$ eSe, and thus $ef = f e = f \Rightarrow f \epsilon e$. But since e is minimal we have f = e. Furthermore $pe = p = ep \Longrightarrow pf = p = fp \Longrightarrow p \in H(f) = H(e);$ contradiction. Theorem 8: If S is a clan and if K is a C-set, then K is a maximal subgroup of S. Proof: If S = K, then S is a group and the result follows. If $S \neq K$, then K has no interior points since K is a C-set. Let $\{a_{\lambda} | \lambda \in \lambda\}$ be a directed set of points of SNK with $a_{\lambda} \rightarrow e$ where $e = e^2 \in K$. Since $K \cap a_{\lambda}S \neq \emptyset$ $K \cap Sa_{\lambda} \neq \emptyset$ and $a_{\lambda} \in a_{\lambda}S \cap Sa_{\lambda}$ we have $K \subset a_{\lambda} S \cap S a_{\lambda} \implies K \subset e S \cap S e = e S e$. Now $e \in K$ gives H(e) = eSe and thus K = H(e). Theorem 9: If a clan is an indecomposable continuum it is a group.

Proof:

If S = K, then S is a group. Suppose now $K \neq S$. Then there exists an open set V with $K < V < \overline{V} \neq S$. Let J_0 (V) be the union of all ideals of S contained in V, then $J_0(V)$ is open and connected and $K < J_0(V) < J_0(\overline{V}) \neq S$. Since $S = J_0(V) \cup S - \overline{J_0(V)}$ and S is indecomposable we have $S - J_0(V)$ not connected. Let $S - \overline{J_0(V)} = A \cup B$ $A \cap B = \emptyset$ A, B open. Then we have $\overline{J_0(V)} \cup A$ connected and $\overline{J_0(V)} \cup B$ connected and hence S not indecomposable; a contradiction.

§ 4. I-semigroups

Definition 1:

Let J = [a,b] denote a closed interval on the real line. If J is a mob such that a acts as a zero-element and b as an identity then J will be called an I-semigroup. We will identify J usually with [0,1], so that 0x = x0 = 0and 1x = x1 = x for all $x \in I$. Example: $J_1 = [0,1]$ under the usual multiplication $J_2 = \left[\frac{1}{2}, 1\right]$ with multiplication defined by xoy = max $(\frac{1}{2},xy)$ where xy denotes the usual multiplication of real numbers. $J_2 = [0,1]$ with multiplication defined by xoy = min (\mathbf{x},\mathbf{y}) . ${\rm J}_{\, 1}$ and ${\rm J}_{\, 2}$ have just the two idempotents zero and identity, but in ${\rm J}_{3}$ every element is an idempotent. Furthermore every non-idempotent element in Jo is algebraically nil-potent i.e. for every x & J, there exists an n such that x is equal to zero. Lemma 1: If J is an I-semigroup, then xJ = Jx = [0,x] for all xεJ。 Proof: Since xJ is connected and $0, x \in xJ$ we have $[0, x] \subset xJ$ and by the same argument $Jx \supset [0,x]$. J_{0} ([0,x)) = J_{0} is open and connected and hence $x \in \overline{J}_{0}$ and \overline{J}_{0} an ideal of J. Hence $Jx \in J\overline{J}_{O} \in \overline{J}_{O} \in [0, x]$ and $xJ \in [0, x]$. Thus xJ = Jx = [0,x]. Corollary: If J is an I-semigroup, then $x \le y$ and $w \le v \Rightarrow$ xw ≼ yv.

```
Proof: Since x \le y there is a z such that x = zy.
 Hence xw = z(yw) \leq yw.
 In the same way we can prove yw \le yv \Rightarrow xw \le yv.
 Theorem 1: If J is an I-semigroup with just the two idem-
 potents 0 and 1 and with no nilpotent elements, then J is
 isomorphic to J_1.
Proof: We first show that if xy = xz \neq 0 then y = z.
Assume y < z. Then by lemma 1 there is a w such that y = zw.
Hence xy = x(zw) = xyw \implies xy = (xy)w^n for every n > 0.
Thus xy = (xy)e, with e = e^2 \epsilon \Gamma(w).
Since 1 \notin \Gamma(w), we have e = 0 \implies xy = 0 a contradiction.
We now prove that if x \neq 0, then x has a unique square root.
The function f_{x} \rightarrow J defined by f(x) = x^{2} is continuous and
leaves 0 and 1 fixed. Hence f is a map of J onto J so that
square roots exist for every element.
Assume a^2 = b^2 \neq 0 and let a \leq b.
Then by lemma 1 a^2 \le ab \le b^2. Hence ab = a^2 \implies b = a.
This establishes that for x \neq 0, x has a unique square root
and by induction that x has unique 2^{n} the roots.
Let x be the 2<sup>n</sup>-th root of x \neq 0 and for r = p/2^n define x^r = x_n^p.
Then it is easy to prove that x^{r} \cdot x^{s} = x^{r+s}, where r,s are
positive dyadic rationals.
Furthermore if r < s, then x^r > x^s. For by lemma 1 x^r \ge x^s, and
if x^{r} = x^{s}, then x^{r-s} = 1. a contradiction.
This implies that \lim x_n = 1.
Since x_n < x_{n+1} lim x_n exist. Assume lim x_n - y \neq 1.
Then since y \rightarrow 0 there is an n such that y^{n_0} < x.
Hence y < x a contradiction.
Now let D = \{x^r \mid r \text{ a positive dyadic rational}\}.
Then D is a commutative submob of J and \overline{D} = J.
Assume \overline{D} \neq J. Then there is an open interval P \subset J \setminus \overline{D}.
```

P = (a,b) and $b \in \overline{D}$. Now since $x_n \rightarrow 1$, $x_n b \rightarrow b$, and $x_n b \le b$ by lemma 1. If $x_n b = b$, then $x_n = 1$ a contradiction. Hence $x_n b < b$ and $x_n b \in P$ for n sufficiently large. Since $b \in \overline{D}$ and $x_n \in \overline{D}$, we have $x_n b \in \overline{D}$ a contradiction And thus $\overline{D} = J$. Now let g: $D \rightarrow J_1$ be defined by $g(x^r) = \frac{1}{2}r$. g(D) is dense in J₁ and g is one- to one continuous and order preserving. Hence g can be extended to an iseomorphism of J onto J_{1} . Theorem 2: If J is an I-semigroup with just the two idempotents 0 and 1 and with at least one nilpotent, then J is is comorphic to J_1 . Proof: Let d = sup $\{x \mid x^2 = 0\}$. Then d $\neq 0$. For let $y \neq 0$ be nilpotent, then $y^n = 0$, $y^{n-1} \neq 0$ for some n > 1. Clearly $(y^{n-1})^2 = 0$. Hence $d \ge y^{n-1}$. As shown in theorem 1, d has a unique 2ⁿth root, and if r and s are positive dyadic rationals, then $d^r < d^s$ if r > s and $d^{s} \neq 0$, and $d^{r}d^{s} = d^{r+s}$. Now let $D = \{ d^r \mid r \text{ a positive dyadic rational } \}$. Then by the same type of argument used 1.) the proof of theorem 1, \overline{D} = J. We define g: $D \rightarrow J_2$ by $g(d^r) = (\sqrt{\frac{1}{2}})^r$. Then g is one to one and continuous and g(D) is dense in J_2 . Since g is order preserving it can be extended to an iseomorphism of J onto J2. Theorem 3: Let J be an I-semigroup. Then E is closed and if e, $f \in E$, then e.f = min (e,f). The complement of E is the union of disjoint intervals. Let P be the closure of one of these. Then P is iseomorphic to either J_1 or J_2 . Furthermore if $x \in P$, $y \notin P$ then xy = min(x,y).

Proof: Let e, $f \in E$ e < f. Then by lemma 1 e.e \leq ef \Rightarrow e \leq ef. Since $ef \leq e$, we have e = ef. Now let Q = [e, f]. Then for any $x, y \in [e, f]$ we have $e \cdot e \leq x \cdot y \leq f \cdot f$. Hence Q is a submob of J. Furthermore if $e \leq x$, then $e \geq ex \geq e = e \Rightarrow ex = e$. In other words e acts as a zero for [e,1]. If $x \leq f$, then by lemma 1 x = fy and thus fx = x. f acts as an identity for [0,f]. So we have in particular P an I-semigroup with only two idempotents and hence P is isoemorphic either to J_{+} or J_{-2} . If $x \in P$, $y \notin P$, $x \leq y$ then there is an $e \in E$, with $x \leq e \leq y$. Hence xy = (xe)y = x(ey) + xe = x. It follows from theorem 3, that every I-semigroup is commutative. Theorem 4: Let S be the closed interval [a,b]. If S is a mob such that a and b are idempotents and S contains no other idempotents, then S is abelian. Proof: Let $e \in E \cap k$. Then H(e) = eSe. Since S has the fixed point property and H(e) is a retract of S, H(e) has the fixed point property and hence H(e) = e. Consequently every element of K is idempotent. Since K is connected, K = a or K = b. If K = a, then a is a zero for S and g an identity since $gS = Sg = S_{\circ}$ Hence S is an I-semigroup and abelian. Theorem 5:Let S be the closed interval [a,b]. If S is a clan such that both a and b are idempotents, then S is abelian if

and only if S has a zero.

Proof:

Let S be commutative, then K is a group and by the same argument used in the proof of th. 4, the maximal subgroups in K are single elements, hence K consists of only one element, a zero. Now let S have a zero. If either a or b is the zero element, then the other is obviously a unit and the result follows by theorem 3. Now let a < 0 < b. Then S' = [a, 0] is a submob of S. For suppose there exists $x, y \in S'$ with $xy \in (0, b]$. Then since a acts as a unit on S', we have $x, xy \in x [a, y]$. Hence there is an $s^{*} \in [a, y]$ with $xs^{*} = 0$. Since $0, s^* \in s^* S'$, we have $y = s^* q$. Hence $xy = xs^*q = 0q = 0$ a contradiction. In the same way we can prove that S'' = [0,b] is a submob of S and both S' and S" are commutative since they are I-semigroups. It also follows that the unit of S is either a or b. Suppose b is the unit element. Then in the same way as above we can prove that aS'' = S''a = [0,a]. Hence if $x'' \in S''$ then ax'' = y''a = (y''a)a = a(x''a) = a(az'') == az'' = x''a. Furthermore if $x' \in S'$ and $x'' \in S''$, then x'x'' = (x'a)x'' =x'(ax'') = (ax'')x' = (x''a)x' = x''x'.Theorem 6: Let S be the closed interval [a,b]. If S is a mob such that a and b are idempotents, then S is abelian if and only if S has a zero and ab = ba. Proof: If S is commutative, S has a zero by the same argument as in theorem 5, and obviously ab = ba. Now let S have a zero and let ab = ba. Then again the result follows if either a or b is a zero. If a < 0 < b, then S' = [a, 0] and S'' = [0, b] are abelian submobs of S.

Suppose now $ab \in S'$, then bS' = baS' = abS' = [ab,0] by lemma 1. Hence bS = Sb = [ab,b], and [ab,b] is an abelian submob by theorem 5. To prove the theorem it suffices to show that if $x \in [0,ab]$ and $y \in [ab,b]$ then xy = yx. Now xy = (xa)(by) = (xab)y, and $xab \in [ab,0]$. Hence (xab)y = y(xab) = y(xb) = (yb) xb = y(bxb) = ybbx = yx.