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CHAPTER II 

Semigroups with zero and identity. 

§ 1 . Semi.groups with zero. 

n Let S be a mob with o, and a an element of S. If a - • o, i.e. 
if for every neighbourhood U of O there exists an integer n0 ., 

such that aneu if n ~ n0 ., then a is termed a nilpotent ele­
ment. 
We denote by N the set of·all nilpotent elements of S. An ide­
al (right., left) A of S with the property An~ 0 is called a 
nilpotent ideal. 
A nil-ideal A is an ideal cotiisisting entirely of nilpotent 
elements. 
Then it is clear that every nilpotent ideal is a nil-ideal., 
and that the Join of a family of (right,left) nilideals is 
again a (right, left) nilideal of S. 

Example: L,et S be the unit interval with the usual multipli­
cation. Thien I = [ 0.,1 f is an ideal consisting entirely of 
nilpotent elements. 

n I is not a nilpotent ideal, since I = I for all n. 

Lemma 1~ Every right (left) nilideal of Sis contained in some 
nilideal of s. 
Proof: Let A be a right nilideal of S. Then SA is an ideal of S. 
Suppose x == sa e SA, and let U be any neighbourhood of O. Then 
there exists a neighbourhood V of Osuch thats Va c U. 
As A is a right nilideal of S., las E. A, and (as)n6 V for n ~ n • 
Hence if m • n +1 we have (sa)m = s(as)m-4 a~ s Va c U. 0 

0 
Therefore S A is a nilidea 1 of S, and hence A u S A., is a nil-
ideal of S containing A. 

Definition 1: The join R of all nil-ideals of a mob S with zero 
is called the radical of S. 
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Lem.ma 1 implies that R i~ ~ nil-ideal 9 which contains every 

right and every left ni "'.ideA 1 nf S 0 

Hence R i8 the maximal r1g:nt and the maxima 1 left nil-idea 1, 

If S; R loe if S consists only of nilpotent elements, then 
Sis called a nil - semigroup. 

Lemma 2~ Let S be a mob and let 

such that Ax c A 9 with 
Then I\ n 

.!-t X = Ae:; 

Proof g Let p Ea 

2 
Then p = a 1x = a 2x ~ .•• 

A be a compact part 

r (x) compact O 

with e=e 2 €- r ( x) " 

of S 

Hence from §1 lemma 2 it follows that there is an element. 

at. {a1 }= such that p ,,,,, a e 9 where e = e 2 6- r(x) (see § 1 

th. 4) " 
00) 

This implies n A xn c A e. 
n::ce1 k 

Now let a 1 e ¢ Ax. Then we can find a neighbourhood V of 
k 

e such that a 1 V rt .A x '"" (/ o k 

But since •~ E; r (x):; there is a K0 ~ k such that x 0 ~ V and 
h "o d A xk o ence a 1x r k

0 
k 

This is a contr0adiction» c.::;,:,_nce A x c A implies A x c A x o 

k 00 n Hence A e ,C A X ~ n A X = A e O 

n"" 1 

Theorem 1; Let S be an element - wise compact mob with zer-0 

(ioe for every ajl r (a) is compact)o 

Then every (righty left) ideal of Sis either a nil-ideal 
or contains non - zero idempotentso 

Proof g Let a be a non-nilpotent element of the idea 1 Ao 

Then the identity e of the group D = () t ai } i ~ n } - is 
n=.:1 not equal to zero. 
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Furthermore a DcD 9 and a DcA DcA 9 since A is an ideal. 

Hence D n A. /, r/ 1 so that D c. A :1 since no group can properly 

contain an ideal. Thus e ~ A. 

Theorem 2g Let e be a non-zero idempotent of the compact 

mob S with zero. 

Then these are equivalent. 

1) e Se\ N is a group 

2) e is prinitive 

3) 
4) 

5) 

Se is a minimal non-nil left ideal 

Se Sis a minimal non-nil ideal 

each idempotent of Se Sis primitiveo 

Proofg ( 1 -+ 2) g If e S e '\. N is a group,, then e is the only 

idempotent in e S e \ { 0 } 9 since no idempotent ,/ O 9 can be 

nilpotent. 

Hence e is primitive 

(2 -+3)g Let L be a non-nil left ideal Lc.S e. 

Then by theorem 1 there is an idempotent f c L, f "'f O. 

Since fE.Se 9 we have fe = f 9 and (ef)(ef) = ef. 

Thus ef is an idempotent,/ 0 and ef ~ eSe. 

Hence since e is primitive ef = e. 

This implies that ef = e £ eLcL. ~L = Se. 

( 3-=-+ 4) Let I be a non-nil ideal I c SeS. 

Then there exists an idempotent f £ I rlo 9 and elements 

a 9 b f1S. S 9 such that a e b=f. 

We can choose b such that bf= b. 
2 Let g=bae. Then g ~baebae=bfae=g. 

Furthermore g~0 9 since otherwise O=gb=baeb=bf=b. 

Now g 6 Se and g E:. SfS. 

Hence by (3) Se = Sg c: SfS 9 and we conclude SeS=SfS=I. 

( 4-=+ 5) Let f be a non-zero idempotent of SeS 9 and let 

g=g27'0 e rsr. 
Since r 9 g 6 SeS s we have SgS=SfS=SeS and f E. SgS. Hence f=agb, 
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and we may assume ag = 8 9 gb = bo 
Since gf = fg = g 9 this implies afb = agfb = agb = fo 
Hence f = angbno 

It follows from ~ 1 lemma 2 that there 
g *e:,. r (a) e. Sg and b 1 ~ lP1 (b) such that 

* it', ;t We note that g g = g 9 hence g f = f = 
* ·lit' f = g = g g = fg = go 

is an idempotent 
,;§ 

f = g gb 1 • 

* ·* g gf = g, and 

(5-=+1) Since every idempotent in SeS is primitive, e is pri­
mitive and hence Se::tLis a minimal non-nil left idealo 
Now let a ~ eSe , N 9 then a E- f Se n es ! \,No 
Since L is minima 1 o a = ea f, La = L. 
Hence there is a~ L such that aa = e 0 

Let ea= a 1 , then an~ eSe and a 1a = eo 
(aav)(aa 1 ) = aea 0 = aa'o Hence aa 1 is an idempotent and 
aa 1 ~ eSe \ N. Since e is primitive aa' = e. 
So we can find for every a E eSe ~Nan element a'~ eSe such 
that aa 1 = e = a 0a. 
This implies that eSe \. N is a group, since a 11 N 0 

For if a i 6 N 9 then n s ( a V ) n = s O O = 0 by lemma 2 0 

n=1 
Thi~ js in contradiction with aa 1 = a 2(a 1 ) 2 = an(a 1 )n = e. 

Definitiong A mob S with zero is said to be an N-semigroup 
. 

if its nilpotent elements form an open seto 

Lemma 3g Let S be a mob with zeroj and let ae.S. 
If an is nilpotent for some n ~ 0 9 then a itself is 
a nilpotent element. 

Proofg Let Ube an arbitrary neighbourhood of O, then since 
c ·1o = 0 9 there is a neighbourhood V of O, such that 
8JV CU (J = 1,2J1000 9n). 
Since an is nilpotent there exists an integer k0 ~ 0 such 
that (an)k E, V for k ~ k0 o 
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Thus aJank = ank+J ~ Uo j "" 1,2, o o o.l)n k • k0 o 

This implies that for N ~ nk0 aN ~ U o 
Hence a is nilpotento 

Theorem 3~ If a mob S with O has a neighbourhood U of o, 
which consists entirely of nilpotent elements, 
then Sis an N-semigroupo 

Proofg Let p ~ N, then there is an n such that_ pn~ u. 
Therefore there is a neighbourhood V of p, such that Vn c U. 
Hence every poin~ of Vn is nilpotent. 
Lemma 3 then implies that V c No 

Theorem 4g A locally compact mob S with O having a neigh­
bourhood U of O which contains no non-zero idem­
potents is an N-semigroupo 

Proofi Since Sis locally compact and ijausdorff. Sis regular, 
and we can find a neighbourhood W of O, such that W c U, and 
Wis compact. 
The continuity of multiplication and the compactness of W im­
ply, that there is a neighbourhood V of O, with V W c W 
Ve Wo 

2 - n Hence V c V" W c W, and V c W. 
The set A= 1~0 v1 is a mob contained in W. 
Therefore A is a canpact mob contained in Uo 
Since A contains no non-zero idempotents A is a nil-semigroup 
(theorem 1)o 
Hence V consists entirely of nilpotent elements, and by 
theorem 3 Sis an N-semigroupo 

Corollaryg A locally compact semigroup with O, which is not 
an N-semigroup contains a set of non-zero idempotents with 
clusterpoint O. 
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Theorem 5g The radical of a compact N-semigroup is openo 

Proof g Let a e. Rj) then for every s E- S sa e:. R c N. 
Since N is open and S compact:j) there exists a neighbourhood 
V of a such that sv C N ,J V C NO 

Since Vu SV is a left nil-ideal.11 Vu SV c. Ro 
Hence V c R and R is open 0 

Theorem 6g Let S be a compact N-semigroup which is not a 
nil-semigroupo 

Then any non-nilideal I of S contains a minimal non-nil ideal 
* ~ * * * I, such that I/ R is completely simple.11 where R = I nR 

is the radical of I *o 

Proofg Since I is a non-nilideal of S.11 I contains non-zero 
idem.potentso 
Let E• = E- { 0} o Then E* is closed:;; since N is open and E is 
closedo 

* .. 
Let E >. = E f'I Se>. S .11 ex_ e. E n Io 
Then E~ is closed and non-emptyo 
Suppose E"' is a minimal member of lE·x} o EY exists since S 
is compacto 
We shall now prove that e~ is a primitive idempotent. 

2 Suppose O -If= fee,, Se»=+fES I.Then SfScSe.,s.:-:r._, 
Since E~ is minimali 
* * En SfS = EnSe"'So Hence e 11 = s 1rs 2 0.lJ with e.,s 1 = s 1 ,?s 1f = s 1 o 

n n n-1 n-1 n-1 n-1 n-1 n-1 s 1 f s 2 = s 1 s 1rs 2s 2 = s 1 fs 1rs 2s 2 = s 1 fevs 2 

n n Hence s 1 evs2 = eyo 

= 

Thus there is an idempotent g e 11 (s 1 ) and an element s €. r(s2 ) 

so that geys = e~o 
We note that since r(s 1 )6 St'!lf gf = go 

Hence et> = gev = gfe >-' = gf = g .=;,- f =E\,f = gf = g = ev o 



Thus e y is a non-zero primitive idempotent o 

' if- 0 Theorem 2 then implies that SeyS=I c I is a minimal non 

nil-ideal o 

N ' 11 -'-·h t R* = I*" R . . ow we sna prove \,.a. = ,, " 
* ,;; * ·lfr Since In R is a nil-ideal of I we have In R c R o 

it I< * Furthermore SR Sc SI S c I o 

~ ·ii- • 9Fl!, .... * *3 'I< If SR S = I 9 then i SR SI = I =I I and so 
* .jr-f:" Ii' -If .... * lf ./f-' 

I= I SR SI c IR I c R • This contradicts the fact that I 

is a non nil-ideal. 

Hence SR*s is an ideal of S properly contained in r•. 
This implies that SR*s must be a nil-ldeal ioe SR*ScR*,:;=;> 

R ¼ is a nil-ideal of S ~ R"c I*nR" 

Since R* is a maximal proper :i.deal 
'Ii- .. * 

that I / R is ~ompletely simpleo 

* of I jJ § 3 th. 3 implies 

Corollary: Let S be a compact mob with zero; then S contains 

a non-zero primitive idempotent if and only if there is a 

non-zero idempotent e with (eSe), N closed, 
r. c:_, p 

Proof: If e = e yt 0.9 e pr>1mitive ese, N is a maximal subgroup. 

(th,2). On the other hand if (eSe), N is closed and e i O, 

then eSe '\ N is the set, of nilpotent elements of eSe, and 

eSe n N is open in eSe 0 

We conclude from theorem 6 that eSe contains a non-zero 

primitive idempotent. Hence so does S, 

Theorem 7: Let e be a non-zero primitive idempotent of the 

compact mob S with zero, Then Se\. N and (Se)n N 

are submobs and Se\ N is the disjoint union of the maximal 

groups e;e0,\ N where eO\. runs over the non-zero idempotents 

of Seo 

Proof:; Suppose a.j)bE-Se\N.j) then a.:r:\bne-: Se\No Let ab.sN. 

Then since Se is a minimal non-nil left ideals we know that 
Sa.""' Sb :o: Se~ San""' Sbn = Seo 
H S h rq.., 2 _, S _.... Si ~. h \ n - Se enc e a,.., -· 0 ._, - e ~ \ ::1 _, 1 - . o 



Thus Se= n S(ab)n =SO= 0 (lemma 2)o n 
This is a contradiction withe/ Oo 
Suppose now a-: b E- Sen N and ab t/, No 

2 ~ 
Then (ab) t/, N and hence Sab = Se, since Se is a minimal non-
nil left idealo 
Since a 6 Se 9 we have SacSe = Sabo 

2 3 Hence Sac:.Sabc.Sab c Sab c 000000 

But since abn£ Se, Sabn = Seo 

This implies that Se= (J Sabn = SaoO = O, a contradictiono 

Finally let a e Se \No Then Sa = Se. 
Choose an idempotent fin r(a); then Sf= Se= Sa, and f is 
a right unit for Seo 
Let D be the subgroup of S contained in P(a)o Then Dis an 
ideal of r(a) ( §1 th.4)o Hence P(a) fcD. ~r(c{)= D and 
r (a) is a group. Thus Se \ N is the union of groups. 

2 For any eol = e°' /, 0 9 eoc. E. Se 9 Seit = Se 9 so that eoc. is primi-
tive and eoc.Secx. \ N is a group. 
Now the maximal group containing eoc. is contained in e«Se~, 
moreover since any group which meets N must be zero, we 
conclude that e~Seoc.,N is a maximal groupo 
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§ 2. 0 -· simple semigroups o 

As in Ch. 1 §3 we call a semigroup S simple if it does not 

contain a proper non-zero ideala 

By a 0-simple semigroup we mean a simple semigroup containing 

a zero elemento 

A completely 0-simple semigroup is a completely simple 

semigroup with a zero elemento 

If Sis completely 0-simple then S contains a non-zero 

idempotent and this implies that S cannot be a nil-semigroupo 

On the other hand if Sis not a nil-semigroup and Sis 

0-simple, then every right or left nilideal of Sis the zero 

ideal { 0} » since ( § 1 lemma 1) every right (left) nilideal 

of Sis contained in some nilideal of Sa 

We shall call a (left» right) ideal I of a mob S with zero 

0-minimal if I :/ { 0} and £ 0} is the only ( left, right) 
ideal of S properly contained in I. 

Hence every minimal non-nil left ideal of a 0-simple mob is 

a 0-minimal left idealo 

Lemma 1i Let L be a 0-minimal le ideal of a 0-simple mob 

S and let a ~ L \ 0 o Then Sa = L. 

Proof: Since Sa is a le ideal of S contained in L1 it 

follows that Sa= O or Sa= L. 

If Sa - O, then Sas= o, in contradiction with Sas= s. 

S an element, se compact mob with zero,,. then every 

non-nil (lefts right ideal of S, contains a non-zero idem­

potent. 

So in this case if Lis a minimal non-nil left ideal of S 3 

then there is an idempotent eeL, with Se= L. 

Lemm.a 2g Let L 
Bnd 

a 0-minimal le ideal of a 0-simple mob S» 

s €SO Ls i.s either { 0} or a 0-minimal 

left ldeal S. 
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Proof: Assume Ls I O. Evident Ls is a left ideal of S. 
Now let L0 be a left ideal of' S contained in Ls. L0 c:Ls. 

Let A be the set of all a €.L with ase:L0 • 

Then As = L 0 3 a Ac Lo 

Furthermore SAs c.SL0 c L and SAc: SLc Lo 
. 0 

Hence SAcA and A is a left ideal of S. 

From the minimality of L» either A = 0 or A = L 3 and we have 

corresponding = 0 or L0 = Ls. 

Theorem 1~ Let S be a compact 0-simple mob. Then Sis the 

union of all minimal (1.e minimal non-nil) left ideals of S. 

Proof~ Si.nee S ls compact» Sis completely 0-simple and 

hence contains a non-zero primitive idempotent e. 

From §1 th,2 it then follows that Se is a minimal non-nil 

left ideal. and hence a 0-minimal left ideal. 

Now let A be the union of all the 0-minimal left ideals of S. 

Clearly A is a left ideal of S and A f, { 0} o 

Now we show that A , also a right ideal. 

Let a e.A and s e:. S . Then a EL for some 0-minimal left ideal 

L of So 

By lemma ~~ Ls = O or Ls is a 0-minima 1 left idea 10 

Hence Ls c A and as GA. 

Thus A is a non-zero ideal of S, whence A= S. 

An analoguous result holds for 0-minimal right ideals. 

Lemma Jg Let Land R be 0-minimal.left and right ideals of 

a 0-simple mob, such that LR ,/ 0. 

Then RL = RnL is a group with zero and the identity e of 

RL \ { 0} is a primitive idempotent of So 

Proofg Since LR is a non-zero ideal of S» we must have 
? 

LR = S. Furthermore RL I O since S = s- = LRLJL 

Now let a ,e:,RL \ O, then a EL\ 0 and a e R \,0, and hence Sa - L 

(lemma 1) ~ and aR = 0 or aR = Ro 
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Since S =LR= SaR"' it follows that aR IO. 
Consequently aRL = RL. 

In the same way we can prove that RLa = RL. 

From this 11ve conclude that RL is a group with zero. 

Now let e be the identity of RL. 

Then since R = es and L = Se:; we have Rn L = es ('I Se = eSe 

and RL = eSSe = eSe. 
Since eSe is a group with zero, e is primitive. 

Theorem 2i Let S be a compact 0-simple mob and let e and f 

be non-zero primitive idempotents of S. 

Then the maximal subgroups H(e) and H(f) containing e and f 

respectively are topological isomorphic compact groups. 

Proof: Smee~ Se and Sf are 0-minimal left ideals and es and rs 

0-minimal right ideals ( §1 th.2) it follows from lemma 3 
that eSe \ { o} and rsr \ f O} are groups. 

Since H{e)c.eSe\{o} we have H(e) = eSe'\{O} 9 H(f)= fSf\tO}. 
Now eSSf I Oj since eSSfS = es2 = es. 
Hence es "Sf I O. 

Let a 1 O i::. es n Sf. Then ea = a = af. 

Since es = as and Sf ""' Sa (lemma 1), there exists a 1 and 

a 2 E-Ssuchthate=aa 1 f=a 2a, 

Now let b = ra 1e • then bf O and 

ab= ara 1~ = aa 1e = ee = e; ba = fba = a 2aba = a 2ea = f. 

Furthermore bS = fS ,9 Sb = Se. 

We now proof that the mappings q, ~ x~ bxa and yr~ y ~ ayb 

are mutually inverse one-to-one mappings of H(e) and H(f) 

upon each othero 
For let x ~H(e) then bxa e. bSnSa = fS()SF = H(f) ulo}. 
Simularly ye. H(f) implies ayb E--aS n Sb = es ri Se = H( e) u f O} o 

And if x~H(e) a(bxa)b = exe = x. 

f is an isanorphism since (bx1a)(bx2a)= bx1ex2a = bx1x2a. 
Since~ is continuous and one-to-one ~ is topological. 
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Corollary~ Let S be a compact 0-simple mobo 

Then S is the dis,joint union of isomorphic compact groups 

H(e) and of sets Aoc with the property A!= O. 

Corollaryg Let S be a commutative compact 0-simple mob. 

Then Sis a group with zero. 

Proof~ By lemma 3 we have S 2 = S ri S = S is a group with zero 

since 3 is both a 0-minimal left and right ideal. 

Theorem Jg Let J be a maximal proper ideal of the compact 

mob S. 
Then the following are equivalent. 
1°) S-J is the disjoint union of grou~. 

2°) for each element of S-J, there exists a unit element 
. 2 

3°) aGS-J implies a e S-J 
4°) J is a completely prime ideal 

5°) S-J contains an idempotent, and the product of two 
i.dempotente: of S lies in S-J. 

Proofg 

(1) clearly inplies (2). 

( 2) ---'? ( 3)" Let a E: S and ax = xa = a • 
2 

Then ae = e:a = afj e = e e. r(x) and e€.S-J" 

Hence since S ufo} =U H{ea)uUA, we have ae.H(e) which 
0 l" 2 H 1 ' · 2 c, T CJ.. imp ies a E~ \8) =;., a c 0-uo 

( 3 ) ~ (-4 ) Let a ,i b 6 S and suppose ab "- J o 

Then I= { xix e,S xb t,J} is a left ideal 

Now let x€-I 2 xs,'-I, then xsb'f,J 9 and hence 

bx ¢Jq bxbx fJ ~xb f J a contradiction. 
Since I is an ideal containing J, we have I 

contradictiono 

with I ::::i J. 

xsbxsb </, J • 

from the fact that J = J (3-e). 
0 

a 

(4)~(5) 

{5)~(1) 

This 1 

Since e e S s we have stJ completely simple and 
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Now let a /.OE-A(&,, then a e; Se and a~ rs. with, SefS == O, or 

else it would follow from lemma 3 that a e. SenfS=H(e«)u { 0} . 

Since ef f JJ we have however SefS /. O, a contradiction. 

Hence A/3 = ~( and S-J =UH{eo<.), 

From theorem 3 it follows that S-J is a group if and only 

S-J contains a unique idempotent. 
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§ 3. Connected semi groups 

Lemma 1: If Sis connected, then each minimal (left,right) 

ideal of Sis connected. 

Proof~ 

Let L be a minimal left ideal of S, then for any a e. L, Sa = L 

and hence Lis connected. 

If K is the minimal ideal of S, then K = Sas for each a E. K. 

Hence K = US Sas~~ Since each Sas« is connected and meets 
Sec li-

the connected set aaS it follows that K is connected. 

Lemma 2g If Sis connected, then each ideal of Sis connected, 

provided S has a left or right unit. 

Proof: 

Let I be an ideal of S. Then I= U1 Sx if e is a left unit 
XE. 

of S. Since each Sx meets as with a er we have that I is con-

nected. 

o,y~1}. Example~ Let S = { (x.,y) I O ~ x ,1 

For (x1 ,y1 ) and (x2 ,y2 )~ S define 

to be (o,y1y2 ). 

the product (x1 ,y1 ).(x2 ,Y2 ) 

Then· Sis a.compact connected commutative mob. 

Let I = { ( x, y) I x = O, 1 0 , y ~ 1 } . 

And r• = { (x,y) I o ~ x < 1 t < x ~ 1 o, y < 1} . 
Then I is a disconnected closed ideal, and I* is 
ted open ideal. 

a disconnec-

Theorem 1: If Sis connected and I an ideal of S, then one 

and only one component of I is an ideal of S. 

Proof~ 
Let r* = SIU IS. Then r* is connected and the component of I 

• which contains I is an ideal of S. 

Furthermore it is readily seen that this is the only component 

of S which is an ideal. This ideal will be called the component 

ideal of I. 
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Lemma 3i Let S be a compact connected mob and U a proper 

open subset of S with J 0 (U) 1 ¢. 
Let C0 be the component ideal of J 0 (U), then C0 intersects 

u \ u 0 

Proof: 

If C0 n U \.U = ¢ , then C0cU, and since C0 is an ideal., we have 

Cl J O ( U) and CO = CO. 

Furthermore J 0 (U) is open and hence we can find an open set 

v., with cocvcvcJO(u). 

Since C0 is •" component of the compact set V of the connec­
ted set S., we have C0 n V \.VI¢ a contradiction. 

Corollary 1 ~ 

Let S be a compact connected mob and F a closed subset of S \. K., 

with the property that if Fn I 1 ¢, then F c I for any ideal 

I of S. 

Then if C is the component of S \ F which contains K then F = 

C \C. 

Proof~ 

Since C is closed in S\.F we have C n S\.F = C~F::, C'\C 

Furthermore it follows from lemma 3 that if C0 is the compo­

nent idea 1 of J O (S\F), then Kc CO and CO intersects S'\.F \. 

S\FC F 

Hence Fe C c: C . 
0 

Since F n C = ¢ we have Fe C\.C. 

If we take in corollary 1 F = H(e) with e6E\lt and if C is 

the component of S\H(e) which contains K., then H(e) = C\C. 

This follows immediately from corollary 1, since if H(e) I 1 ¢, 
then H(e) c I for any ideal I of S. Furthermore it follows that 

H(e) with eeE\~ can contain no innerpoints 0 

Theorem 2~ Let S be a compact connected mob. If K is not the 

cartesian product of two non-degenerate connected sets., then 
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either K is a group or the multiplication in K is of type 
(a) or (b). 

(a) xy = X all x,y 6 S 
(b) xy = y all x,ye..S. 

Proof: 

From Ch I. ~2 lemma 4 we know that 
K = { Se o E } . eSe. { eS n E } e EE f\ K.t 

Now let K~= (Se nE) X (eSe) X (eSnE) and q> 
<p ( x., y., z) = xyz , 

* Then~ is clearly a continuous mapping of K onto K. 

Now let X1Y1Z1 = X2Y2Z2 with x1,)1X2E.SenE, z1,z2eeSf\E 
y 1,)1y2e.ese 0 

Then since x 1s and x2s are minimal ideals with x1sn x2s f ¢ 

we have x1x2 = X2° 
Furthermore since 
x 13 x2 6 Se., Se = Sx1 = sx2 ~ x1e = x1 , x2e = x2, ex1 = ex 2 = e. 

Hence x2 = x1x2 = x1(ex2) = x1e = X1o 
In the same way we can prove z 1 = z2 . 
Since x1y1z 1 = x 2y 2z2 we have ex1y1z 1e = ex2y2z 2e • ey1e = 
= ey2e ~ y1 = Y2 , 

* Hence f is one to one and K is homeomorphic to K . 
Since K is connected., each of eSe,)1 SenE and eSnE must be 
connected. 
Hence at least two of the factors must consist of single 
elements. 
If eSnE = SenE = e., then K = eSe and hence a group. 
If eSnE = eSe = e, then K = Se, and if x.,y6K we have xy = 
= (xe)(ye)= x(eye) = xe = x. 
If SenE and eSe are both e, then the multiplication is of 
type (b). 

Corollaryg Let S be a compact connected mob. If K contains 
a cutpoint, then the multiplication in K is of type (a) or (b). 
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Proofg 

If K contains a cutpoint, then K is not the cartesian product 
of two non-degenerate connected sets. 
Hence from theorem 2 it follows that K is a group or the 
multiplication is of type (a) or (b). 

Since a compact connected group, contains no cutpoints, the 
corollary follows. 

Definition 1g A clan is a compact connected mob with a unit 
element. 

Lemma 4g Let B be the solij unit ball in Euclidean n-space 
and let f be a map of B into itself, such that Ix - f(x)I<½ 
for all xeB. Then O e.. f(B). 

Proofg 

Let x = (x1, ... ,xn) f(x) = (f1(x), ... fn(x)). 
We now consider the mapping h(x) = (x1 , ... ,xn)-(f1(x), ... fn(x)). 
This mapping transforms the ba 11 Ix I ~ ½ into itself and hence 
bJ Brouwers fixed point theorem there is a point x* for which 
h(x*) = x*. 

i.e. ( x; , ... , Xn* ) = ( x; s • 0 q x; ) -( f 1 ( X *). • . f n (":,f':<)) . f (X ) = 0 • 

Theorem 3g Let S be a mob with unit element u having an 
Euclidean neighbourhood U of u. 
Then H(u) is an open subset of Sand is a Lie group. 

Proofg 

We identify U with En and let Fe= { x I s I u-x I~ E. }. 

Since the multiplication on F is uniformly continuous there 

is a J such that I x-xy I < o/2 , I x-yx I < o/2 whenever I u-y I < J • _,,, 
By lemma 4 u E Ff y and u e. yFf j hence y has an inverse y ' 

-1 in F~ and the mapping y-+- y is continuous. 
Therefore H(u) is a topological group, and since it contains 
an open set it must be open in S. 
Furthermore H(u) is locally Euclidean and hence a Lie group. 
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Corollary 1~ If Sis a clan having a Euclidean neighbourhood 
of the identity then Sis a Lie group. 

Proofg 
By theorem 3 H(u) is open. H(u) is closed since Sis compact, 
and hence H(u), must be all of s. Thus if Sis a clan and S 
is an n-sphere, then Sis a topological group, and hence 
n = 0,1 or 3. 
In general a compact manifold which admits a continuous 
associative multiplication with identity must be a group. 

Corollary 2~ 

that S-F is 
Then either 

Proofg 

Let S be a clan and Fa 
locally Euclidean. 
S is a group or H(u) c F. 

closed subset of S such 

Let he H( u) and h 'f- F. Then h has a Euclidean neighbourhood V. 
Since h-1 Vis a Euclidean neighbourhood of u 2 it follows 
from corollary 1 that Sis a group. 

In case Sis a subset of Euclidean space, then it follows from 
corollary 2 that H(u) c boundary of S or Sa top.group. 
If S contains interior points, then it cannot be a group and 
we have H(u) c Bd(S). 

Definition 2~ A subset C of a space Xis a C-set provided that 
C -:/ X and if M is a continuum with C n M I- </ then Mc:C or Cc: M. 
It can easely be shown that if C is a C- set of a compact 
connected Hausd. ltP&oe, then the interior of C is empty and 
C :Ls connected . 
For let x be an interior point of C, then there is an open set 
V with x eV CV cC. 

Now let ye X-C. Then the component M of y in X-V has a non­
empty intersection with the boundary of X-V c. V. 
Hence M is a continuum with Mn C ,/. </ and C ¥=,M, M f!. C. 
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Theorem 4: (Gleason). 
Let G be a compact Lie group which acts on a completely 
regular space X. Let p eX such that g(p) f= p unless g is the 
identity; g e. G. 
Then there exists a closed neighbourhood N of panda closed 
subs~t C of N, such that the orbit of every point of N has 
exactly one point in common with C. 

Proof~ See Gleason Pr A.M.S. 1 1950. 

Lemma 5: Let G be a compact group and let Ube an open 
neighbourhood of the identity. 
Then U contains an invariant subgroup Hof G such that G/H is 
a Lie group. 

Proof: See Montgomery Zippin: Topological transformation groups. 

Theorem 5: Let S be a clan, S no group Ga compact invariant 
subgroup of H(u) = H9 such that H/G is a Lie group. 
Then S contains a continuum M such that M meets Hand the 
complement of H, and such that u e. M "H ~ G. 

Proof: 
We can consider Has transformation group acting on S. Let 
H' = H/G and s 1 the space of orbits of G. Then H' is a com­
pact Lie group acting on S 8 • 

By theorem 4 there exists a closed neighbourhood N of u 1 =ti. G 
and a closed set C c N such that n HI n C is a single point for 
each n e N. 
Now let S 11 be the space of orbits under H. 
Then we have the following canonica 1 mappings Ol: S• S 1 , 

(3 ~ s I~ s ii r: s-+ s i I J with I=«. (3. 

Since ex and dare open maps,~ is also open. 
Let N° be the interior of N then p N° is open and (3(u 1 ) e. ~(N°). 
Let P be the component of (3 ( N ) which contains (3 ( u 1 ) • 

Then P meets the boundary of ~(N) and hence Pis non-degenerate. 
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it 
Now let ~ = f' l Co 

Then since n H I n C :ls a single point for each n ~ N it follows 

is a homecmorph:i sm between C and N ~ • 

is a continuum which meets Hi on" at C n Hi 9 and hence 

also meets the complement of H1 0 

Now let K be a component of oc- 1 p4< -'1 ( P) " 

Since ot is an open mapping we have Oi. ( K) ""'l-1 ( P) 0 

Hence K is a contin· .. mm which meets H and the complement of H 

and Kn H c 0( - 1 ( c) 9 where c = C n M , 

Let he.KnH, then KriHchGo 
,;1 

Suppose now M= h- 1 K3 11 ~ Mm H and Mn HcG and if k ~ K, 

k1H.9 then h-1k~ M.; h- 1 k¢H 3 since S-H is an ideal of S. q.e.d. 

Theorem 6: Let S be a clan which is no group. 

Then the identity u of S belongs to no non-trivial C-set. 

Proofg 
Let ue.C,, with C aC-,set. We first prove that CcH(u). 

If x 6 C, then since xS is a cor:tinuum which meets C :i we have 

C c xS or xS c C " 

If u i.:. xS,j then x has an inverse and is thus included in H(u). 

Now let u f xS, then xS c C; xS /. C 9 and there is an open set V 

with xS cV; C\V I¢ 0 Since xKcK we have Koc c/ ()o 

If u e K then S is a group, hence u" K ~ Kc C. 

We can find now an open set W with x € W WS eV. 

Since C contains no interior points there exists a y c W'\C with 

yS cVo 

Clearly yS is a continuum which meets both C and S\C and 

C ¢ yS a contradiction. 

Hence u EXS and thus x E H(u: ~ C c.H(u) o 

Now let U be a neighbourhooc of u such that C 4 U. 

Then by lemma 5 there is a subgroup G c U such that H/G is a 

Lie group and C 4, G. 

Theorem 5 implies that we can find a continuum M such that 

u e; Mn H c G and such that M meets the complement of H. 
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Hence Mn C ,/ (J and since Cc H M meets the complement of C. 
==9 C c:M. 

Since MAHcG and C 1,G ~C ef.M a contradiction. 

Examplei Let A= {(x 9 y) l y =sin~ O < x ~1} 

B = {(2-x,y) j (x.,y) f:A}. 

C={(osy) U (2.11Y)l -1~y4'1} 

and let S = Au Bu C. 

q.e.d. 

We will show that S does not admits the structure of a clan. 

For suppose that Sis a ~lan. 

Since Sis not homogeneous, S cannot be a topological group 
and hence Si H(u). 

Then S\H(u) =JI¢ is the maximal proper ideal of s. Since 

J is open, dense and connected we have Au B c.J and hence u ~ C. 

But since C is the union of two C- sets, u cannot be in C. 

Lemma 6: Let S be a clan and C a C-set of S. If g is an idem­

potent with g t/ K., then g 'f C • 

Proof: 
Suppose g e. C. Since gSg is a continuum we have Cc.: gSg or 
gSg c:.C. 

g is the identity of the clan gSg and gSg is not a group since 

g t¥ K ( Ch L § 3 th. 6). Hence theorem 6 il'!1,plies that C ¢ gSg. 

Now suppose gSgc. C,,,,.. Kn C I ¢ and since g ~ C c,K i ¢. 
Let U and V be neighbourhoods of K with SK=K c Uc Uc. V. 

while g ¥V .. 
Since Sis compact there is a neighbourhood W of K such that 

SWc U 

SW is a continuum and hence SW c C. 
Furthermore! We SW and this would imply that C contains inner 

points,; a c ontrad ic tion. 

Theorem 7 g Let S be a clan and C a C-set of S, then C '= K. 
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Proofg 

From the proof of lemma 6 it follows that if Kt"! C f. ¢ 9 then 

C ~ K. 
Suppose now CnK = ¢ and let x 6 C and U a neighbourhood of x 

with C\.U ,/ ¢. 
Let e be a minimal member of the partial ordered s~t E with 

Xe= X. 

e exists since Ex = { e I e 2 = e xe = x} f. ¢ and compact. 
Furthermore e ¥ K since x r/, K. 

Hence H(e) f. eSe and we can find a neighbourhood V of e such 

that xVc U and a continuum Mc eSe such that e-£ Mc V and 

M " { eSe \ H ( e)} /, ¢. 
Since x~xM we have xMcC. 

Let m E. M~{ eSe '\ H( e) } j then Cc. xSm. 

This implies that' x = xsm = xesem = xp with p e. { eSe '\ H(e).} . 

since { eSe \ H( e)} is an idea 1 of eSe. 

Hence x = xf with f = f 2e. r ( p) c eSe 9 and thus ef=fe=f ~ f '- e. 

But since e is minimal we have f = e. 

Furthermore pe = p = ep ~pf= p = fp*p~H(f) = H(e); ~ 

contradiction. 

Theorem 8g If Sis a clan and if K is a C-set, then K is a 

maximal subgroup of S. 

Proof~ 

If S = K, then Sis a group and the result follows. 

If Sf. K, then K has no interior points since K is a C-set. 

Let { a.ii. I>.~\} be a directed set of points of S\K with a)I.~ e 

where e = e 2 ~ K. 

Since Kn a).S ,/ ¢ Kn Sax ,/ ¢ and a>. ..s. a>.. Sn Sa). we have 

Kc::. a). S n Sa>. ==9 Kc es -n Se - eSe . 
Now e .s K gives H(e) = eSe and thus K = H(e). 

Theorem 9g If a clan is an indecomposable continuum it is 

a group. 
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Proofi 

If S = K 3 then Sis a group. 

Suppose now K ~ S. Then there exists an open set V with 

KcVc.V ~ So Let J 0 (V) be the union of all ideals of S 

contained in V3 then J 0 (V) is open and connected and 

KcJO(V)cJO(V) ~ s ...... •--:=::;::::; 
Sin~= J 0 (V) u S- J 0 (V) and S is indecomposable we have 

S- J 0 (V) not connected. 

Let S-J (V) = Au B An B = </ A ,B open. 
0 --

Then we have J 0 (V) u A connected and J 0 (V.) v B connected and 
hence S not indecomposable; ~, contradiction, 



§ 4. I-semigr'ioups 

Definition 1g 

Let J = [a 9 b] denote a closed interval on the real line. 
If J is a mob such that a acts as a zero-element and bas an 
identity then J will be called an I-semigroup. 

We will identify J usually with [0,1],, so that Ox= xO = 0 

and 1x = x1 = x for all x E. I. 

Examplei J 1 = [ 0 9 1] under the usual multiplication 
J 2 = [ ½ 9 1] with multir,lication defined by xoy = max 
{½,,xy) where xy denotes the usual multiplication of 
real numbers. 
J 3 = [0,1] with multiplication defined by xoy = min 

{xsy) • 
J 1 and J 2 have just the two idempotents zero and identity, but 
in J 3 every element is an idempotent. 
Furthermore every non-idempotent element in J 2 is algebraically 
n:i,1-:-potent i .e, for ever•y x . .; J 0 there e.x:ist:::; an n .such that 

. c;_ 

xn is equal to zero. 

Lemma 1g If J is an I-semigroup 9 then xJ = Jx = [O,x]for all 
Xe Jo 

Proofg 
Since xJ is connected and 0 9 x ~xJ we have [O,,x] cxJ and by the 

same argument Jx .:::, (0 9 X J • 
J 0 ( C 0 9 x)) = J 0 is open and connected and hence XE. J 0 and J 0 

an ideal of J. 
Hence Jx c. JJ0c:.J0 c [0 9 x] and xJc[O,x]. 

Thus xJ = Jx = t O ,,x J . 
Corollaryg If J is an I-semigroup,, then x, y and w ~ v-=+ 

xw-' yv. 



Proof g Since x ~ y there is a z such that x _, zy 0 

Hence xw=z(yw}~ywo 
In the same way we can prove yw ~ yv ~ xw ~ yv 0 

Theorem 1g If J is an I-semigroup with just the two idem­

potents O and 1 and with no nilpotent elements» then J is 

isomorphic to J 1 o 

Proofg We first show that if xy = xz i O then y = z. 

Assume y <z. Then by lemma 1 there is aw such that y - zw. 

Hence xy = x( zw) = xyw -:::::::>- xy = (xy )wn for every n > 0. 

Thus xy = ( xy) e, with e == e 2 6 r ( w) " 

Since 1 f- fl(wL we have e = 0 =;i,,xy = 0 a contradiction. 

We now prove that if x :/ O» then x has a unique square root" 
? 

The function fg J • J defined by f(x) = x- is continuous and 

leaves O and 1 fixed" Hence f is a map of J onto J so that 

square roots exist for every element. 

Assume a 2 =• b2 :/ 0 and let a~ b. 
? 2 2 Then by lemma 1 a-~ ab-:Sb "Hence ab= a·~b = a. 

This establishes that for x :/ O, x has a unique square root 

and by induction that x has unique 2~th roots. 

Let xn be the 2n-th root of x f O and for r = p/2n define 
xr = P xn • 

r s Then it is easy to prove that x .x 

positive dyadic ratlonals o 

= xr+s 
3 where r;, s are 

r s r s Furthermore if r < s 2 then x > x . For by lemnm 1 x ~ x 3 and 
r s r-s if x = x M then x = 1. a contradiction. 

This implies that lim x = 1. n 
Since xn < xn+'l lim xn exist. Assume lim xn y :/4 1., 

Then since y-+ 0 there i.s an n0 such that '1o < .x. 

Hence y < x a contradiction. 
no 

Now let D - { xr I r a positive dyadic rational} 

Then D is a commutative submob of J and D = .J" 

Assume D f J" Then there is an open interva 1 Pc J \ D. 
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P = (asb) and b E.Do 
Now since xn ~ 1 » x b • b /i) and x b ~ b by lemma 1. n n 
If xnb = bj then xn = 1 a contradictiono 
Hence x b < b and xnb E. P for n sufficiently large. n i 

Since b 6 D and x e. D 9 we have x b E. D a contradiction n n 
And thus D = J. 
Now let gg D-+J1 be defined by g(xr) = ½r 0 

g(D) is dense in J 1 and g is one- to one continuous and order 
preserving o 
Hence g can be .extended to an iseomorphism of J onto J 1 o 

Theorem 2g If J is an I-semigroup with just the two idem­
pote~ts 0 and 1 and with at least one nilpotent» then J is 
iseomorphic to J 1 o 

Proof g 

Let d = sup { x l x2 = O } o Then a f O" 

For let y f 0 be nilpotent» then Yn= o, 

1 n-1)2 n-1 Clearly \Y = 0o Hence d ~ y o 

n-1 1 Y r 0 for some 

As shown in theorem 1, d has a unique 2nth root_ and if rand 
s are positive dyadic rationalss then dr < ds if r> s and 
ds f 0 9 and drds = dr+s" 

Now let D = { dr I r a positive dyadic rational} o Then by the 
same type of argument used 1..1 the proof of theorem 1 » D = Jo 

We define g~ D-J2 by g(dr) = ( V½.)ro Then g is one to one 

and continuous and g(D) is dense in J 2 " 
Since g is order preserving it can he extended to an iseomor­
phism of J onto J2 • 

Theorem Jg Let J be an I-semigroupo Then Eis closed and if 

e, f E. E j) then e cf = min ( e;, f) o 

The complement of Eis the union of disjoint intervalso 
Let P be the closure of one of theseo Then Pis iseomorphic 
to either J 1 or J 2 o Furthermore if x e. P, y 'i P then xy = min 

(x.,y)o 
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Proofg 

Let e., f 6E e < f'o Then by lemma 1 eoe, ef~e-$' ef. 
Since ef 4 e., we have e = efo 
Now let Q = [ e 9 f J o 

Then for any X9yE. [e9f] we have eoe~ XoY ~ fofo 
Hence Q is a submob of Jo 
Furthermore if e ~ x,, then e ~ ex~ e oe = e :+ ex -- e o 
In other words e acts as a zero for [ e 9 1] o 
If x ~ f 9 then by lemma 1 x = fy and thus fx = Xo 
f acts as an identity for [ O,f] 0 

So we have in particular Pan I-semigroup with only two idem­
potents and hence P is iseomorphic either to ,T .. 1 or ,T 2 o 
If x e P., y r/ P 3 x ~ y then there :ls an e cs. E, with f.:. ~ e ~ y. 

Hence xy = (xe)y = x(ey) Ae ~ x. 

It follows from theorem 3 9 that eyery I-semigroup is commu­

tative" 

Theorem 4 g Let S be the closed interva 1 [ a., b]" If S ls a 

mob such that a and bare idempotents and S contains no other 
idempotents, then Sis abeliano 

Proof g 

Let e "En k o Then B( e) = eSe. 

Since S has the fixed point property and H(e) is a retract 
of S., H(e) has the fixed point property and hence H(e) = e. 
Consequently every element of K is idempotent. 
Since K is connected 9 K = a or K = bo 

If K = 8 9 then a is a zero for Sand g an identity since 

gS = Sg = So 

Hence Sis an I-semigroup and abeliano 

Theorem 5gLet S be the closed interval [a.,b]. If Sis a clan 
such that both a and bare idempotents,then Sis abelian if 
and only if S has a zeroo 
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Proofg 

Let S be commutative, then K is a group and by t same 

argument used in the proof of th. 4:; the maximal subgroups 

in Kare single elements, hence K consists of only one element, 

a zero. 

Now let Shave a zero. If either a orb is the zero element, 

then the other is obviously a unit and the result follows by 

theorem 3. 
Now let a<: 0 < bo Then S 1 = [a,O] is a submob of S. 

For suppose there exi s x.,Y <:.S I with xy ~ (O,b] 

Then since a acts have x,xy e. x [ a, y J" as a unit on s i , we 

Hence there is an = 0. 
.Jt 

[a,y] with * s E. XS 
it" ·lt i Since O.,s E:• s S , have * we y - s q. 

* Hence xy = xs q - Oq - 0 a contradiction. 

In the same way we can prove that S 11 ""' [ O,b] is a submob of S 

and both S 1 and S11 are commutative since they are I-semi­

groups. It also follows that the unit of Sis either a orb. 

Suppose bis the unit element. Then in the same way as above 

we can prove that aS 11 = sna ,:, [0 1 a] . 
Hence if xii e s 11 then ax 11 _ y 11 a = y 1'a)a ·- a(x 1'a) """' a(az 11 ) = 
= az 11 = X II a. 

Furthermore if x' E. S I and x 11 e.. sii 9 then x 1x 19 -· x I a)x 11 -· 

x 1 ( ax !! ) = ( ax 11 ) x u = (x 1'a\x 1 = x'ixu . ) . . . . 
Theorem 6: Let S be the closed interval [a,b]. If Sis a mob 
such that a and bare idempotents, then Sis abelian if and 

only if S has a zero and ab= ba" 

Proof: 
If S is commutative, S has a zero by the same argument as in 

theorem 5, and obviously ab= ba. 

Now let Shave a zero and let ab= ba. 

Then again t~res~lt follows if either a orb is a zero. 

If a< O<b, then S 1 = [a 9 0] and S 11 ~ [0 9 b] are abelian sub­

mobs of S. 
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Suppose now ab E- S 1 9 then bS u = baS n = abS 1 = [ ab 9 0] ,, by lem-• 

ma 1. 

Hence bS =Sb= [~b,b], and [ab,b] is an abelian submob by 

theorem 5. 
To prove the theorem it suffices to show that if x£[0.,ab] 

and ye.[ab,b] then xy = yx. 

Now xy = (xa)(by) = (xab)y 9 and xabe [ab 30]. 

Hence (xab)y = y(xab) = y(xb) = (yb) xb = y(bxb) = ybbx = yx. 


