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Relaxation oscillations of a van der Pol equation with large critical 

forcing term 

by 

*) J. Grasman 

ABSTRACT 

A van der Pol equation with sinusoidal forcing term is analyzed with 

singular perturbation methods for large values of the parameter. Asymp

totic approximations of (sub)harmonic solutions with period T =2TT(2n-I), 

n = 1,2, ••• can be constructed when the amplitude of the forcing term is 

within an interval that depends on n. These intervals overlap so that two 

periodic solutions with period T = 2TT(2n±I) may coexist. 

KEYWORDS & PHRASES: Van der PoZ equation, reZa.xation osciZZation, sub

harmonic entrainment, singu.Zar perturbation. 

*) This report will be submitted for publication elsewhere. 





I • INTRODUCTION 

In this paper we consider a Van der Pol equation for large parameter 

values with a periodic forcing term of a same order of ·magnitude 

(1. 1) 
ix 2 d -- + v (x -1) 2 + x = b(v)cost, 
dt2 dt 

V >> 1 

with b(v) = O(v). This equation was first investigated with analytical-to

pological methods by LITTLEWOOD [6], who proved the existence of (sub)

harmonic solutions of period 

(1. 2) T = 2ir(2n-1), n= 1,2, ••.• 

Littlewood stated that for b = av, a> 2/3 only globally asymptotically 

stable solutions of period 2,r are found, see also [7]. The proof of 

this statement has been given by LLOYD [8]. For decreasing a there also 

occur solutions of period 6,r. As a further decreases the 2ir-periodic solu

tion dissappear; alternately a passes intervals where one subharmonic so

lution of period T = 2ir(2n-1) exists and intervals where two subharmonic 

solutions of period T = 2ir(2n±l) coexist, n = 1,2, .•.. 

We will analyse the problem (1. I) for a specific choice of b (,;) and 

write 

(I. 3) b = a v + S. 

Using singular perturbation techniques we will construct asymptotic ap

proximations of (sub)harmonic solutions of (1.1), (1.3) with a= 2/3. 

The periods of these solutions satisfy (1.2) with n independent of v. In 

the process of construction of the approximation we will have to impose 

conditions upon S of- the type 

(1.4) s . n 

It turns out that 
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(I. 5) S < S l = S < S • --n n+ --n-1 n 

This overlapping of invervals differs slightly from Littlewoods results and 

from numerical results by FLAHERTY and HOPPENSTEADT [2], as we only find 

intervals with two subharmonic solutions of period T = 2TI(2n±l). This dif

ference is explicable for one part from the fact that we study the case 

a= 2/3 instead of a< 2/3 in the limit v + 00 , while also the dependence 

upon the initial values may play a role. We found s2 = 11/6v'3 which refines 

Littlewood's statement about the existence of solely 2TI-periodic solutions 

for b sufficiently large. In [3,4] the case a= 0 was also analyzed with 

asymptotic techniques. There the subharmonics had a period T = 2Tim with 

m = O(v). The choice a= 0 or a= 2/3 leads to solutions with a completely 

different asymptotic behaviour, which makes it necessary to consider them 

as separate problems. In [3] we met an unusual structure of two-variable 

expansions matched with boundary layer solutions. We will see here that 

the case a= 2/3 also exhibits an exceptional structure. The global behav

iour of the solution depends strongly on local conditions: each time the 

solutions passes a neighbourhood of the lines x = ± 1 some quantity is in

creased with a given value. When it reaches a threshold value the solution 

enters a phase of rapid change characteristic for a relaxation oscillation. 

This part of the solution is.approximated by a boundary layer type of so

lution. For the regions sketched in figure I separate local approximations 

have been constructed from the differential equation. Integration constants 

in there local asymptotic solutions are determined by matching pairs of 

local solutions of adjacent regions. 

Thus, in this paper we investigate the equation 

( 1.6) 
2 

d x 2 dx 2 
--2 + v(x -1) dt + x = (3 v + S)cost. 
dt 

It is expected that the study of this problem with a critical forcing term 

may bring u:s in the position to deal succesfully with the more complicated 

problem of O <a< 2/3, It is anticipated that periodic solutions of this 

problem have a behaviour in which elements of both the case a= 0 and 

a= 2/3 are present. A formal asymptotic analysis may help us to get a 

bette~ understanding of the essentials of this problem, which has the 





reputation of being hard to investigate by rigourous analytical methods, 

see [2,5 and 7]. 
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Fig. I Characteristic regions for a periodi~ solution of (1.6) 

2. ASYMPTOTIC SOLUTIONS FOR THE REGIONS A 
m 

It is supposed that 1.n the regions A where I < x < 2 the solution 
m 

can be expanded as 

(2. I) :x(t;E:) 
-1 

= xm0 (t) + v xml (t) + •••• 

3 

Substituting (2.1) into equation (1.6) and equating the terms of order O(v) 

and O ( I) we obtain 

(2. 2) 
2 = 3 cost, 
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(2. 3) 
di ·mO 

- --2- - xmO + S cost. 
dt 

Integration of equation (2.2) gives 

(2 .4) 1 3 = ~3 s1.'nt + co(m). 3 xmO - xmO 

Since in the regions A the value of the left-hand side of this equation 
m 

varies from -2/3 to 2/3, we have to take c0 (m) = 0. For this value of c0 (m) 

the solution of (2.4) reads 

(2.5) xm0 (t) = 2 cos{½ arccos(sint)}. 

Integrating (2.3), while making use of (2.2), we obtain 

(2 .6) 

(2. 7) 

2 cost 
2 

3(xm0-t) t m-1 

() d + 0 s1.'nt + C (m) xmO T T ~ 1 , 

When t approaches tm from below, xmO and xml behave as 

(2 .Bab) 

where 

(2.9ab) Km= - ½ + ½ 13 ( -c 1 (m)+ I), I= Jtm xmO(t) dt = 6 13. 
tm-1 

Thus, fort t t the asymptotic solution (2.1) looses its validity. 
m 

3. ASYMPTOTIC SOLUTION FOR THE REGIONS B 
m 

We analyse the local behaviour of the solution near (x,t) = (1,t ), 
m 

m = 1,2, ••• by introducing a stretching transformation in both the depen-

dent and independent variable 





(3. lab) x = 1 + V (~)v-y, 
m 

t = t 
m 

-a. 
+ ~ V 

Substitution into the differential equation yields 

iv I-2y+a. dV 
(3.2) -y+2a. m (2V +v -Yv 2) --1!! + I + V --:7 + V 

d~ m m d~ 

3 -3a. 
2 -a. ~ V ... ) . (3 v+S) (~v . - 3! 

+ 

5 

V V 
-y 

= m 

We see that for a.= y = 1/2 the second derivative becomes of the same order 

of magnitude in v as the leading terms constituting equation (2.2). Multi-

1 ' h ' ' h -l / 2 d 1 ' ' f. ' b . h p ying t e equation wit v an etting v to in inity, we o taint e 

limit equation 

(3. 3) 

The function vm0 (~) expresses the local limit behaviour of the solution for 

v-+ 00 • In order to match the solution of region A it must satisfy 
m 

(3.4) 

for~-+ 00 , see (2.8). Such a function indeed exists and has the form 

(3.5) 
= a D~m (-a~) 

VmO (~) D (-a~) ' 
Km 

a = ~4/3, 

where Dµ(z) is the so-called parabolic cylinder function of orderµ, see 

WHITTAKER and WATSON [9,p.347]. For z-+ 00 we have that 

-lz2 µ 
{ 1 µ(µ-I) ... } , D (z) = e 4 z -

2z2 
+ µ 

while for z-+ - 00 

-lz 2 µ (µ-1) 
D (z) = e 4 zµ {1-

2z2 
+ ... } + 

µ 

rz; lz 2 -µ-1 {1+ (µ+1) <r2) 
r(-µ) 

e4 z + ... } . 
2z 





Assuming that Km~ 0 the function Vmn(I;) will be regular for finite I;, 

while for I; + 00 

(3.6) 

On the other hand at region A 1 the solution is approximated by m+ 

(t-t) -½+½v'3(c1(m+l)_S) 
m -3 

x(t) =I+ --- + (t-t) + O((t-tm) ) 
13 m 

as t ~ t. Consequently, (3.6) matches the local solution for region A 
m ~I 

if 

K = -
m 

Y3 (S-C (m+ I)) 
I 

or using (2. 9a) 

(3. 7) C (m+l) 
1 

= C (m) - I 
I 

with I= 6/J, see (2.). Obviously, we will arrive in the situation that 

for some m, say m = n, 

(3.8) K I ~ 0 < K ~ ½ v'3 I n- n 

(if n = I, inequality (3.8) reads K1 > 0). The parabolic cylinder function 

Dµ(z) withµ> 0 vanishes for certain value(s) of the argument z. Let z0 
be the largest zero. For I; t 1;0 with z0 = a 1;0 we have 

(3.9) V (r:) (t"-t"o)-1 + .!. a2 cla2r:2_K -.!.) er: r:) 
mO "' R$ "' "' 3 4 "'O n 2 .,,-.,,0 ' 
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so VnO + - 00 and the local solution at region Bn becomes singular at I;= 1;0• 

4. ASYMPTOTIC SOLUTION FOR REGION C 

At this point the solution enters the boundary layer region C with 

local coordinate 





(4. 1) 

We assume that the solution can be expanded as 

(4. 2) 

Substituting (4.1) and (4.2) into (1.6) and equating the terms of order 
2 O(v) and of O(v) we obtain, respectively, 

(4. 3) 
iw 

cw/-1) 
dW0 __ o_ + 
-- = o, 

dn2 dTl 

(4 .4) 
iw 

<w/-1) 
dW1 dW0 __ 1 + 
--+ 2 WO w -= o. 

dn 2 dn 1 dn 

The solution of the first equation matches the local solution for region 

B if 
n 

(4.5) w0 (n) ~ 1 + 1/n 

as n + - 00 , see (3.9). This condition is satisfied by the class of solu

tions 

(4.6) 
I I W0+2 

1-W + 3 log 1-W = - n + HO' 
0 0 
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where the integration constant H0 is found from matching with higher order 

terms of the asymptotic solution for region B. It turns out that 
n 

(4. 7) 
I I H0 = 6 log v + 3 log 3. 

From (3.9) we also deduce that w1 should behave as 

(4 .8) 

for n + - 00 , so that the integrated equation (4.4) will have the form 





(4.9) 

On the other hand for n >> 1/6 log v we have 

(4. IOa) w0 (n) = -2 + O(v 112e-3n) 

(4. IOb) 
I 2 1 2 2 1 -3n w 1 ( n) = 3 a c-4 a ~0 -Kn - 2) + O ( e ) • 

The boundary layer solution matches the solution for region A1 if 

(4.11) 

-I -1 
v ·+o(v ), 

where x1i(t) are the coefficients of an expansion for region A1 of the 

form (2. I). 

5. PERIODICITY CONDITIONS 

8. 

Let us assume that the periodic solutions we are looking for are 
I symmetric in the sense that x(t) =-x(t-2T). Then we have completed the local 

(4.11) to the complementary phase t = t 1 - TT+ approximations. Transposing 

+ r v-1/2 . . A h ~o in region 1 we ave 

(5. I) 

2 - .!_ a2 (.!_ a2 e- 2 -K - .!_) v-1 ( - I ) 
3 4 "'O n 2 + O V 

or 

(5 .2) K = - .!_ + .!_ v'3 (S+C 1 (1) __ 2I I). 
n 2 2 

Using (2.9a), (3.7) and (5.2) we find 

(5. 3) S=-1 (2K+l) 
v'3 n 

I . 1 
2 (n-2) I. 





From (3. 8) we know that K ranges from O to 9, so S has to satisfy 
n 

(5. 4) 3 I 3 ( ! ! -n) < S ~ 3 I 3 Ci~ -n) n = 2,3, •.•• 

Solutions of period 2TI are found for S > - 7/6 13. 

6. SOME REMARKS 

9 

We havi~ found an interval for S, see (5.4), where an asymptotic 

approximation of a synnnetric periodic solution of period 2TI(2n-1) can be 

constructed. The lower bounds S agree quite well with the numerical results 
-n 

of FLAHERTY and HOPPENSTEADT [2,fig.3], see table I. They took (a,S) 

(.475,0) and varied the value of v. In this way intervals for 1/v were 

constructed, where numerical solutions of period T = 2TI(2n-1) exist. Our S 

relates to their v as f3 = -.192v. In the limit v -+ 00 this problem differs 

from the one we study with (a,S) = (2/3,S), but for finite (large) values 

of v one may expect some agreement. However, our upperbounds S are sys-
n 

tematically above their values. It is possible that there are more condi-

tions to be imposed upon (3. They may be of a type we do not meet in our 

construction procedure. Apart from the different choice of a, we also 

expect complications because of the strong dependence upon the initial 

values. It is possible that for S just below S 1 the set of initial n+ 
values leading to solutions of period T = 2TI(2n+l) becomes so small, that 

only solutions of period T = 2TI(2n-1) are found in numerical experiments. 

Our results as given in formula (1.5) support the view that a= 2/3 is a 

critical value (no subharmonics above this value). We see that for a= 2/3 

the system is at the point to have overlap by three S-intervals. 
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Asympt. bounds Numeric. bounds 
of intervals of intervals 

n T 13 sn 1/v ·~ 13 11v ~ sn --n --n --n _n 

2 61T - 7.2 3.2 .028 - 6.8 • 148 - 1.3 

3 101T -12.4 - 2.0 .016 -12.0 .041 - 4.7. 

4 14,r -17.6 - 7.2 .012 -16.0 .018 -10.7 

5 181T -22.8 -12.4 .009 -21. 3 .012 -16.0 

Table I 
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