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Chapter 1

Introduction

Some of the most important physical phenomena essential for sustainable growth in
recent times are described by subsurface flow processes. Perhaps the most significant
example is the efficient management of earth’s depleting groundwater reserves. Suc-
cessful management essentially requires modelling of groundwater hydrological systems,
which yields the information imperative for groundwater remediation, helps monitor
level of pollutants in the subsurface and quantify thresholds for sustainable use. An-
other example is CO4 storage in the subsurface repositories. Such COs storage helps to
reduce emission of greenhouse gases into the atmosphere but introduces a potential dan-
ger of COy leakage to habitated areas or into fresh-water aquifers. Thus, it is essential
to estimate the leakage rate of CO2 which depends on accurate subsurface flow models
describing the geological properties. Some other examples highlighting the importance
of an accurate mathematical modelling of subsurface flow are exploring deep geothermal
energy, ensuring safe storage of nuclear waste, improving technologies to remove con-
taminants from the subsurface, etc. In this thesis, we focus on improving predictions of
petroleum production for oil/gas reservoirs. With the reduced rate of new major discov-

eries and severity of environment degradation, optimal utilization of current production
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fields and efficient exploration measures is of utmost importance to meet the world’s
energy demands. All of these examples require an accurate mathematical model of sub-
surface flow. This is a challenging task, since geological properties of the subsurface are

often uncertain.

1.1 Subsurface Reservoir Modelling

An oil/gas reservoir represents a natural accumulation of hydrocarbons within different
lithological structures. The oil and gas are collected in small, connected pore spaces of
the rocks and trapped within the reservoir by surrounding impermeable layers of rocks.
Figure 1.1 shows a pictorial representation of a typical reservoir model. Different col-
ors represent layers with different geophysical properties and the vertical displacements
of layer are termed faults. The upward arrows represent production wells, which are
used to extract oil/gas from subsurface deposits, while the downward arrows represent
injection wells. These are used to place fluid deep underneath the surface into porous
rock formations, either for safe storage purposes or to maintain reservoir pressure. One
of the main struggles of reservoir management is to check early water breakthrough, in
which the fluid injected via the injection well to maintain the pressure comes out of the

production well and effects the quality of hydrocarbon recovery.

Figure 1.1: Pictorial representation of generic reservoir model.



Chapter 1 1.1. Subsurface Reservoir Modelling

By knowing the location of a reservoir, its structure and geological properties, we
can develop a mathematical model which describes subsurface flow. Using a numerical
approximation of the model, we can predict the reservoir performance. This is called
solving a forward problem. However, even if the location of the reservoir is known, its
structure and geological properties are often uncertain. This is because the subsurface
reservoirs are buried thousands of feet below the earth surface and exhibit a highly
heterogeneous structure. Usually prior information about the parameters is given, which
still needs to be corrected by observations of pressure and production rates. This is called

solving an inverse problem.

1.1.1 Forward Problem

If we denote the model parameter by a random variable u € U then the forward model
is simply presented as

z =F(u), (1.1)

where z € Z is the model state. Here, F : 4 — Z represents the set of differential
equations forming the mathematical model which maps model parameter to model state,
and U and Z are separable Banach spaces (B, ]| -||). The assumption of separability is
necessary for a random variable to be integrable [21]. In this thesis, we consider a
reservoir model defined over domain D C R? with Lipschitz boundary dD. We represent
the subset of strictly positive L functions on D by X. A single phase steady state

forward model is given as

—V(k’(x,y)VP(x,y)) :f(xay)v (.T,y) €D (12)

where V = (9/0x 0/0y)T, - denotes the dot product, P(z,y) the pressure, k(z,y) the
permeability and f(z,y) the source term. The forward problem of this second order
elliptical equation is to find the solution of pressure P(x,y) for given f(z,y) and k(z,y)
under provided boundary conditions. We implement a cell-centered finite difference
method to discretize the domain on a finite grid n?, the details of which are shown
later in Appendix A. Thus, the model state P; ;, ¢, = 1,...,n can be evaluated from
equation (1.32), given in Appendix A, for a given stimulus f; j, ¢, = 1,...,n and model
parameters permeability k; ;, 1,7 =1,...,n.

In 1902, J. Hadamard formulated the concept of well-posedness of problems [37].
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According to Hadamard, a problem is well-posed if:

C1 : Existence. There is at least one solution.
Cy : Uniqueness. There is at most one solution.

C3 : Stability. The solution depends continuously on parameters.

Under certain regularity conditions a forward problem is well-posed [28].

1.1.2 Inverse Problem

The inverse problem is concerned with finding u given an observation of the model state

z. Let us denote an observation operator L : Z — ), then we can define observations as
Yobs = L<Z) +n, (13)

where yobs € ) is an observation, ) represents a subset of the separable Banach space
(B,]| - |]) and n € ) represents observational noise. The inverse problem can be formu-

lated as finding u such that
Yobs = L(F(u)) + 1. (14)

If we define an operator H which maps the parameter space to the observation space,
ie. H:U — Y by H = Lo F. Then, employing operator H we can rewrite the inverse
problem as

Yobs = H(u) +1. (1.5)

In this thesis, u in equation (1.5) is parametrization of permeability k, and yops is
observations of the pressure at a few well locations.

As for a forward problem, well-posedness of an inverse problem needs to be estab-
lished. For an inverse problem the conditions C; and Co are identical to the ones for a

forward problem. The condition Cs3, however, is
Cs Stability. The solution depends continuously on data.

An inverse problem fails to satisfy at least one of the well-posedness conditions Ci,Cs
or C3. Hence, unlike the forward problems which are mostly well-posed, the inverse

problems are ill-posed. This makes the problem in hand challenging.
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The formal study of ill-posed inverse problems started somewhere around the early
20th century. Early work of A. N. Tikhonov addresses the importance of inverse prob-
lems and presents regularization techniques to introduce stability in ill-posed problems
which is famously known as the Tikhonov regularization [86-88|. The essence of the
regularization techniques is to replace the ill-posed problem by a family of nearby well-
posed problems. This is achieved by rewriting the inverse problem. A series of different
regularization techniques have appeared since then, e.g. reducing the number of pa-
rameters to lessen the sensitivity towards data fluctuations, introducing constraints in
order to obtain only physically viable values, etc. Over the years, geophysicists and en-
gineers in their quest to understand the structure and internal behavior of Earth using
sparse observations, contributed highly towards the development of various approaches
for solving inverse problems. Around 1970, G. Backus and F. Gilbert introduced the
reconstruction method, now known as Backus-Gilbert, which is frequently employed for
the inversion of seismic data to achieve density profiles at the interior of the Earth. In
[3, 4], these authors delve into the structure of the mathematical formulation of inverse
problems which helps catapult the development of many methods of data interpretation
in geosciences.

For groundwater and petroleum reservoirs in particular, numerous inverse problem
approaches have been formulated. A. C. Reynolds and co-authors presented in [76] the
implementation of the Gauss-Newton method for estimation of reservoir parameters. In
[15, 82| authors showed the application of the neighborhood algorithm which approxi-
mates the posterior distribution by partitioning the model parameter space into regions
of roughly uniform distribution. The authors of [72| implement a representer method
to estimate states and parameters for a 1-D two-phase reservoir model. This approach
expands all the unknown variables using a finite sum of representer functions weighted
by the representer coefficients. The representer function describes the influence of the
corresponding measurement on the solution and the representer coefficients determine
how strong each representer should be accounted for in the final solution. In [90] re-
searchers used the Levenberg-Marquardt method to characterize reservoir pore pressure
and permeability. Another approach is presented in [50], which introduces a parameteric
level-set technique to estimate subsurface properties using seismic data. They mitigate
the ill-posedness of the problem by expanding the level-set function in some basis, hence
reducing the number of parameters characterizing the subsurface. Thus, replacing the

original least-square problem with a better behaving optimization problem. In [32, 92]
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the authors reviewed methods for solving the output least-squares problem using gradi-
ent and sensitivity-based techniques. However, in this thesis we focus on the Bayesian
approach to inverse problems, which has been pioneered by Andrew Stuart [21]. In the
next section we describe the Bayesian approach to inverse problems in detail and discuss

its role in alleviating the ill-posedness of the problem.

1.2 Bayesian Framework

The Bayesian approach determines the uncertain parameter u by evaluating the prob-
ability distribution of u given observation yops, denoted u|yons, and referred to as the
posterior distribution. Let us consider u to be a random variable and define our prior
knowledge about u in terms of a probability measure py on a measurable space (U, F),
where F denotes the g-algebra on Y. Assume observational noise 7 is an independent
random variable with Gaussian distribution N'(0, R) denoted by Q. Therefore, using
equation (1.5) the conditional distribution of yobs|u ~ N (H(u), R). Thus, we can define
the negative log likelihood as

1
(1 Yobs) = 5 [yons — H ()% (1.6)

Define v to be a probability measure on U x Y as v(du,dy) = po(du)Qo(dy). Bayes’

theorem implies the existence of the conditional distribution wu|yops-

Theorem 1. (Theorem 14 from [21]) Assume that [ : &/ x ) — R is v measurable and
that, for yops Qo-almost surely (a.s.),

Z = / exp(—1(u; Yobs ) ) pro(w) du > 0. (1.7)
u

Then the conditional distribution of u|y,ps exists and is denoted by p. Furthermore, u

is absolutely continuous with respect to g, i.e. u < po and, for yops Qo-a.s.

() = oxp(—1(0 1)) (1.9

To ensure the well-posedness of the posterior distribution, the key ingredient is the
continuity of I(+;¥yobs), which in turn depends on the forward map F. From Section
1.1.1 we see that if u € L°(D) with lower bound ki, > 0 for every f € H~!(D), then

6
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according to Lax-Milgram theory there exists a unique solution P € Hg (D) to expression

(1.2), satisfying
1

1Pl <

I£115 (1.9)

Kmin
where H = (L?(D), (-,-),|| - ||) is the Hilbert space and H}(D) is Sobolev space [7, 21].
This setting ensures that the forward map is well-defined, see [21]. Further, a com-
prehensive study of the continuity property of the posterior distribution demonstrates
that for the Bayesian posterior distribution small changes in the observation y.s lead
to only small changes in pu, proving well-posedness [21, 81]. That is, let us denote an
approximation of H(u) by H'(u), and denote the resulting modified posterior measure
from p to x/. Then Bayesian approach ensures that under some assumptions a small

change in forward error leads to a small change in inverse error. That is
[H(u) —H'(u)| = O(6) = d(u, 1) = O(3),

for small enough ¢ > 0 and some metric d(-, -) on probability densities [80]. In this thesis,
we have considered parametrization of both continuous and discontinuous permeability
fields. The latter one is typical for faults or channels in the subsurface. Well-posedness
of these parametrizations has been studied in |21, 46, 81|

In the next section we discuss numerical methods to approximate equation (1.8).

1.3 Data Assimilation

Data assimilation in essence minimizes the square of the mismatch between the observa-
tions and the model state to give more accurate estimations. Though data assimilation
had originally been employed in the field of meteorology and oceanography for state
prediction by correcting initial conditions [35], now it is one of the frequently employed
approaches for parameter estimation in subsurface flow models as well [67], since it can
easily be extended to estimate model parameters by implementing the method of state
augmentation [48]. The idea here is to expand the state space by adding the uncertain
parameters so that parameters act as the model variables in the data assimilation system
and the chosen assimilation algorithm can then be applied to the augmented system in
a usual way.

Considerable efforts have been devoted to develop robust data assimilation tech-
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niques which could provide better assessment of state at affordable computational costs.
There are mainly two classes of methods in data assimilation: the variational approach
[83], which is based on minimization of an appropriate cost functional subjected to model
constraints providing a single estimate; and the ensemble approach, which provides an
ensemble of estimates whose variability can directly be used to evaluate the uncertainty.
In this thesis, we focus on the ensemble-based approach.

Among the ensemble data assimilation methods, the ensemble Kalman filter (EnKF)
is the most employed approach for parameter estimation in subsurface flow models. It
was introduced by Evensen in 1994 [29] and was developed to handle non-linear models
at low computational cost. EnKF updates the model states based on the assumption of
Gaussian distribution, as it corrects only the mean and the variance. Initial application
of EnKF in the field of groundwater hydrology is used for soil moisture estimation and
is demonstrated in [75]. In petroleum engineering, [55] presented the first implemen-
tation of the ensemble Kalman filter using a dynamic two-phase model of fluid flow in
a well. Since then it has been investigated by a variety of researchers in subsurface
flow models, e.g. [13, 34, 67]. A detailed review of the application of ensemble Kalman
filter developments in reservoir modeling can be found in [1]. As shown in these papers,
the resulting updated ensemble for ensemble Kalman filters efficiently approximates the
theoretical posterior distribution if the ensemble size is sufficiently large and the distri-
butions are not far from Gaussian. However, the update equations are of the form of the
Kalman filter equation that corrects only the mean and covariance matrix, which limits
the performance of EnKF for models with multimodal distributions, see |25, 94].

On the other hand, particle filters [24], otherwise known as sequential Monte Carlo
methods, prove to be promising for such physical systems. They are also ensemble based
methods in which the probability density function is represented by a number of particles
(also called samples or ensemble members) and their evolution is computed by solving
the forward model for each particle. These particles are then assigned weights based
on the information present in the observations of the true physical system. However,
particle filtering in its original form faces the issue of ensemble collapse and also struggles
to represent the actual state of the physical systems if a majority of the particles are far
away from the observation. Due to these reasons particle filters were earlier assumed to
be impractical for high-dimensional systems as they required a large number of particles
making the process computationally very expensive. However, recent developments help

to overcome these shortcomings by generating computationally efficient particle filtering
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methods for high-dimensional systems as discussed in details in the review paper [89].
In this thesis, we introduce novel strategies to overcome the limitations of particle filters
with the aim of approximating model parameters of different nonlinear models with

strongly non-Gaussian posterior.

1.3.1 Markov chain Monte Carlo

The quantity of interest in this thesis remains the best representation of the posterior
distribution of the model parameter. If we have knowledge about the target (poste-
rior) distribution and it is rather straightforward to sample from it, then the idea of
Monte Carlo simulation is simply to draw an i.i.d.set of samples {u,,}M_, and estimate
expectations by sample averages. These M samples can be used to approximate the

distribution with the following empirical point-mass function

M
pM =" 6w,
m=1
which converges to y as M — oo. Here §,, denotes the Dirac measure at u. The Monte
Carlo approach is beneficial when generating random samples is easier than solving the
distribution’s equations to evaluate any statistical property of interest. However, it
cannot be used when the distribution is too complex to generate independent samples,
as often happens in high-dimensional systems. In this case, combining the Markov chain
property with Monte Carlo (MCMC) has proved to be highly advantageous, see [81].
The Markov chain property ensures that every sample in a chain depends only on a
previous sample. It allows the random samples to be generated in a sequential manner.
The basic idea of MCMC methods is to simulate a long run of an ergodic Markov chain
that is p-invariant, and after a few iterations (burn-in) the samples of the chain can be
treated as approximate samples from p.

There are many variants of MCMC methods tuned according to the particular struc-
ture of the desired target distribution. Here, we will focus on a particular class of MCMC
methods known as Metropolis-Hastings (MH) methods. An MH method first proposes
a move from an arbitrary transition kernel Q. Then it accepts or rejects the move
based on the criterion which depends on the target distribution. We specifically focus
on the MH approach which is designed for finite high dimensional problems stemming

from the discretization of infinite dimensional systems. Otherwise, if the MH method
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is tailored categorically for finite dimensional problems it might not work in the infi-
nite dimensional limit. The reason for this is that the measures in infinite dimensions
have a tendency to be mutually singular. This becomes an issue for MH methods, since
their acceptance probability depends on the existence of the Radon-Nikodym derivative
between two measures. Therefore, it is beneficial to design algorithms for the infinite
dimensional setting, which can be expected to perform satisfactorily under refinement
of finite dimensional approximations [81].

Let us assume we have a proposal kernel @ from which it is easy to sample. We
however need to sample from a P kernel that is invariant under the measure pu.

Definition: Let P(u,dv) denote a Markov transition kernel so that P(u,-) is a prob-
ability measure on (U, F) for each uw € U. This transition kernel P will be invariant with

respect to the target density p if

/ u(duP(u, ) = (),
U

with shorthand uP = p as measures on (U, F), where the integral on lefthand side is
with respect to du.

A sufficient condition for p to be an invariant measure for P is the detailed balance
condition between P and pu. The Markov transition kernel P relates to the proposal

kernel O as

P(u,dv) = Q(u, dv)a(u,v) + d,(dv) /u(l —a(u,w))Q(u, dw), (1.10)

where a denotes the acceptance probability and should be chosen such that P(u,dv)

satisfies the essential condition of detailed balance with respect to p.

Theorem 2. (Theorem 21 from [21]): We define the measures on U x U with proposal
kernel Q and target density u as

v(du,dv) = Q(u, dv)u(du), (1.11)
v (du, dv) = Q(v, du)p(dv),

with v (du, dv) = v(dv, du), Yu,v € U. We further assume that v and v7 are equivalent
as measures on U x U, and that v(du,dv) = r(u,v)vT (du, dv). Then P satisfies detailed

10
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balance if and only if

r(u,v)a(u,v) = a(v,u),

thus, defining a(u, uprop) as

a(u, Uprop) = min{1, r(u, Uprop) }
. dv™
= min {1, dy(u,uprop)} , (1.12)
implies detailed balance, see [21, 85| for details.

Furthermore, we assume that the Markov chain is ergodic. Therefore after n, num-
ber of moves the total variation distance between P™*(u,-) and p approaches zero [84].
Hence, after a sufficiently long burn-in period we generate samples which are approx-
imately distributed according to p. One of the popular choices of the proposal kernel
@ is the classical random walk algorithm in which the difference between the current
and proposed states is taken to be a centered Gaussian distribution. Hence, if the
prior measure pg is Gaussian N(0,C), then according to the random walk algorithm

Q(u,-) = N(u, p?0), i.e.
Uprop = U+ p¢, where (¢~ N(0,C). (1.13)

However, this proposal fails to fulfill the absolute continuity condition vT < v, and
hence the MH algorithm degenerates under mesh refinement [81]. In this thesis we use
the preconditioned Crank-Nicolson (pCN) algorithm of [17] which tackles this issue by
slightly modifying the proposal of the random walk algorithm as

Uprop = V1 — p?u+ p¢, where (¢~ N(0,0). (1.14)

If u ~ N(0,0), then from (1.13) v ~ N(0, (1 + p*)C), which does not preserve the
underlying reference measure pg. If the proposal density is constructed using pCN
(1.14), then the reference measure i is preserved, since uprop ~ N(0,C). It is important
to note that since the posterior has a density with respect to the infinite-dimensional
prior Gaussian measure [, constructing a proposal as in (1.14), which is reversible with
respect to this measure, leads to the necessary condition of absolute continuity between

vI and v.

11
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The parameter p in (1.13) and (1.14) controls the size of the move. Its value is
adjusted so that the acceptance rate lies within 20 — 35%. It can be observed that
smaller values of p produce proposals that do not move far from the current state and
hence the acceptance is higher. This leads to a slow convergence of a chain as the chain
moves slowly through the state space. On the other hand, large values of p lead to
proposals that are unlikely to be accepted. Therefore, we need to construct moves that
are large enough to probe the state space efficiently, while at the same time to keep
acceptance rates high. Identifying appropriate values of p between these extremes is the
key to making effective algorithms.

Although MCMC methods provide much more accurate solutions compared to other
Bayesian data assimilation approaches, this accuracy comes at an extremely higher com-
putational expense. Therefore, their applications are mostly limited to providing bench-

marks for evaluating practically viable data assimilation algorithms.

1.3.2 Sequential Monte Carlo

Sequential Monte Carlo (SMC) is a recursive Monte Carlo method which provides a
computationally cheaper technique to approximate the sequence of Bayesian posteriors.
SMC methods came into existence to handle filtering in dynamical systems. However,
with time they also found their ground in parameter estimation problems. The idea be-
hind the standard sequential Monte Carlo approach uses the Bayes’s theorem (Theorem
1) to transform a set of particles that approximate the prior pg into a set of particles
that approximate the posterior p. This is done by means of an importance sampling

step with ug being the proposal distribution and u the target distribution.

Importance Sampling

Our aim is to generate samples from the posterior distribution, but it is infeasible to
directly sample from this distribution because it is unknown. The importance sampling
approach [60] proposes that we generate samples from a prior distribution that is known.

Assume we have M particles (i.e. samples) of the model parameter {ug"* %:1 drawn

independently from the proposal or prior distribution pg, which approximate g as
| M
M
m' =17 > Sup. (1.15)
m=1

12
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Then by employing the Theorem 1, available observations and log likelihood (1.6), we

obtain an approximation of the posterior distribution u as

M
M = Z WSy, (1.16)
m=1

where so-called importance weights are

W™ = eXP(—l(USI;yobs)) ) (1.17)

S exp(—1(ug; Yobs))

Approximation of the normalization factor Z as defined in Bayes’ theorem (Theorem 1)

is
M
Z ~ ) exp(—1(u; Yobs))- (1.18)
m=1

Thus, the importance sampling does not change the samples but changes the probability,
from which they are sampled. This is the major drawback of the importance sampling.
For a successful application of the importance sampling approach the posterior distri-
bution g and the prior distribution pg should be reasonably close. If p and pg are
not sufficiently similar, this algorithm performs poorly. In such situations the algorithm
shows high variance in weights, i.e. a few particles have large weights, while all the other
particles have weights close to zero. This is called weight degeneracy. Hence, the entire
statistics of the system gets influenced by those few particles, which might be far away

from the true state and hence provide poor approximation of the posterior distribution.

Iterative sequential Monte Carlo

An iterative approach tackles the weight degeneracy issues by constructing a smooth
transition between the measures pg and p using a sequence of intermediate measures
{Mt}?:o such that pi—o = pg and pupr = p. To specify the iteration, we need to define the
intermediate measures {y;}_, and the total number of iterations 7. We first focus on
defining the intermediate measures.

As these measures are mutually absolutely continuous, we can define the transition

13
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between consecutive measures by employing (1.8)

dpgyr, 2y
u

exp <_11-,l(u§yobs)> ; (1.19)

dpu i
where J .
t
M) = groxp (= plluinn) ) (1.20)
and

2= [[exp (~ftusnne) ) )

Now, for convenience let us denote the likelihood for transition between consecutive
measures by £ = exp(—1(u; Yobs)/T).

Further, let us denote the us-invariant Markov kernel by 7T; which produces new
proposals. An example of the Markov kernel T; is an identity map. This choice results
in unchanged particles as ¢ changes and thus a classical particle filter [21]. In this thesis
we use the Markov kernel of pPCN-MCMC (1.14). Thus the particles change as t changes.

Then we can write down the measure evolution from p; to p41 as

far1 = Tepe, (1.21)
pi1 = Lilet1. (1.22)
Since, T; preserves p; we can write
dprgs1 Z ( 1 >
~ u) = exp | —=1(u; Yobs) | - 1.23
dﬂt+1( ) Zi1 T (4} Yobs) ( )

Theorem 3. (Theorem 23 from [21]): We assume that the negative log likelihood
[(u; Yobs) is bounded above and below for Vu € U, i.e. there exists ¢ € (0,1) such that

g < exp(=1(u; yons) /T) < ¢ (1.24)
Then a distance metric d(ud, ur) between measures pd and pr is

T
A pr) < 3202 (1.25)
wr s ; ) A

The above condition ensures that as M — oo, SMC converges to the true posterior

14



Chapter 1 1.3. Data Assimilation

measure p. A more detailed study of convergence of SMC methods is given by D. Crisan
and A. Doucet in [18].
In iterative SMC we can predefine or tune the total number of iterations 7" and have a

uniform step in the measure update (1.22), e.g. [27, 79]. An iterative SMC method runs

M

as following: we approximate p; using M particles {uj"};_; with importance weights

{w™IM_, . The approximation p is defined as

M
e " = w o, (1.26)
m=1

M
m=1

M

The particles {u}" are modified into new particles {4;"},7_; from the Markov kernel

T; according to (1.21). This forms an approximation of fi;+1 which acts as the prior

distribution in (1.23). Then an approximation of py41 is

M
Hert N pip = ) witidap (1.27)
m=1
where i T .
exp(—=I(a ; ; w W
wﬁl — — p t+1 yObb t _ t+1 ' (128)

St (UG5 Yos) /T Yoy @y
At this stage a resampling is often required in an algorithm: when particles with low
weights are abandoned and particles with high weights are dublicated. The higher the
weight of a particle the more copies are generated, in order to restore the total number
of particles M. There are different means of performing resampling, e.g. multimonial
resampling, residual resampling, etc. However, in this thesis we advocate a resampling
based on solving an optimal linear transport problem [73]|. This approach to resampling
maximizes correlations between particles and as a result requires much fewer samples to
approximate the posterior. It has been successfully applied in dynamical systems, e.g.
see [73, 74]. In this thesis we investigate its applicability for parameter estimation in

elliptic inverse problems. In Section 2.2.2 we explain the method in more detail.

Adaptive sequential Monte Carlo

In this thesis, we select the sequence of measures {Mt}tT:o adaptively based on the an-
nealing approach of [64] as implemented in [52]. This is known as adaptive SMC.

The idea of simulated annealing was first proposed in [53] exploiting the analogy be-
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tween optimization and the physical process of annealing. The annealing approach
presented in [64] and [24] bridges the sequence of measure using tempering parameters
0=¢g < ¢p1... < ¢ < 1. We evaluate these parameters based on Effective Sample Size

(ESS), defined as
1

S (wm)?’

ESS takes a value between 1 and M. The parameters are found such that ESS remains

ESS = (1.29)

above a predefined threshold limit. This allows to mitigate the weight degeneracy issue.
Once the tempering parameter ¢; is equal to one, the iterative algorithm stops. A
potential problem of the annealing approach is that the total number of iterations 7' is
not predefined. For high-dimensional problems it can be very high due to high variance
in weights. In [7], the authors present an application of an adaptive SMC method which
employs tempering to deal with weight degeneracy. They show that an adaptive SMC
with MCMC mutation step provides encouraging results for high-dimensional problems.

We discuss adaptive SMC in more detail in Section 3.3.1.

Overview of thesis

In Chapter 2, we consider parameter estimation for a low-dimensional and a high-
dimensional nonlinear problem. We present a particle filtering method which employs
an optimal linear transport problem to introduce deterministic resampling. We examine
the performance of the Ensemble Transform Particle Filter and Ensemble Transform
Kalman Filter for estimating uncertain parameters and compare them to importance
sampling.

In Chapter 3, we introduce optimal transport-based resampling in adaptive SMC. We
consider two nonlinear problems, one with Gaussian posterior distribution and another
with multimodal posterior distribution. We compare performance of the novel optimal
transport-based adaptive SMC with ensemble Kalman inversion with mutation, while
employing MCMC as a benchmark.

In Chapter 4, we consider a more realistic set-up, where uncertainty is introduced
in the model but we do not account for it in data assimilation. We employ MCMC
as the benchmark and compare performance of optimal transport-based adaptive SMC
with regularized ensemble Kalman filter. The regularized Kalman filter is an iterative

ensemble Kalman filter that implements discrepancy principle to control iterations and
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prevents overfiting of observations.
The Chapters 2, 3 and 4 are based on the publications 1, 2 and 3, respectively,

mentioned on the List of Publications 5. I apologize to the reader for the inconsistency

in notation.
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Appendix A

Cell-centered discretization

We employ a cell-centered finite difference method for discretization by implementing

the grid point cluster shown below in figure 1.2, see e.g. [68].

Yy
oN
Xi,j+1
OE
Xi+1,j
Ax
[ ]

T

Figure 1.2: Grid point cluster
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We divide the entire domain D uniformly (Az = Ay) in n x n axis-parallel cells
of size Az?. Each of these cells is denoted by Xijs % J = 1,...,n, and has a value of
pressure F; ; at its center. For the shaded cell ; ; as shown in Figure 1.2, the grid point
C is the interior point as it is surrounded by cells x;+1,j, Xi—1,j, Xi,j+1 and x; j—1 in all
directions. For C the grid point in its east side, F, has a value of pressure Py ;, the
grid point W in west side has a value of pressure F;_1 ;, the grid point N on the north
side has a value of pressure P; ;1 and the grid point S in south has a value of pressure

P; j_1. Integrating (1.2) by parts for cell x; ; and replacing the normal derivative on the

or\ P, =Ry (0PN _ PPy
oz ) ¢ Ax ’ oz ) ¢ w Az ’

<3P> _ P — By (3P> _ PPy
Y ) en Ay ’ 9 )ec.s Ay ’

gives the finite difference equation for the interior points as

edges by

—ki—125(Pic1j — Pij) — kig12,(Piv1,; — Pij)
- ki,jfl/2(Pi7j—1 - Pw) - ki,j+1/2(Pi,j+1 - Pi,j) = fz}jAﬁ- (130)

Here k;_1/0; = k(x;_q /2 y;) is the value of permeability on the edge between grid points
W and C. If k is discontinuous along the interface we take k;_ /5 ; as the harmonic mean

of the neighboring grid points as

2ki—1,jki;

) 1.31
ki—l,j + kiyj ( )

k171/27.] =
and similarly k;iq/9 j, k; j_1/2 and k; j1/o are defined. The given boundary conditions
are used with the discretized equation (1.30) to derive finite difference equations for the

grid points near boundaries, and finally end up with a set of linear equations of the form

KP =F, (1.32)

2

where K is a sparse, symmetric, positive definite matrix of size n? x n?, P is a vector

with entries of P; ;, 4,7 = 1,...,n and F is a vector with entries f; ; fori,j =1,...,n.
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Chapter 2

Ensemble transform data

assimilation for inverse problems

2.1 Introduction

An accurate estimation of subsurface geological properties like permeability, porosity etc.
is essential for many fields specially where such predictions can have large economic or
environmental impact, for instance prediction of oil or gas reservoir locations. Knowing
the geological parameters a so-called forward model is solved for the model state and
a prediction can be made. The subsurface reservoirs, however, are buried thousands of
feet below the earth surface and exhibit a highly heterogeneous structure, which makes
it difficult to obtain their geological parameters. Usually prior information about the
parameters is given, which still needs to be corrected by observations of pressure and
production rates. These observations are, however, known only at well locations that
are often hundreds of meters apart and corrupted by errors. This gives instead of a well-

posed forward problem an ill-posed inverse problem of estimating uncertain parameters,
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Chapter 2 2.1. Introduction

since many possible combinations of parameters can result in equally good matches to
the observations.

Different inverse problem approaches for groundwater and petroleum reservoir mod-
elling, generally termed as history matching, have been developed over the past years, e.g.
in [67] the authors implemented Markov chain Monte Carlo methods with different per-
turbations and tested it on a 2-D reservoir model; [90] used the Levenberg-Marquardt
method to characterize reservoir pore pressure and permeability. A review of history
matching developments is written in the review paper [66].

For reservoir models the term data assimilation and history matching are used in-
terchangeably, as the goal of data assimilation is the same as that of history matching,
where observations are used to improve a solution of a model. Ensemble data assimi-
lation methods such as Ensemble Kalman filters [30] have been originally developed in
meteorology and oceanography for the state estimation. Now it is one of the frequently
employed approaches for parameter estimation in subsurface flow models as well |e.g.
67]. A detailed review of ensemble Kalman filter developments in reservoir engineering
can be found in [1]. An ensemble Kalman filter efficiently approximates a true posterior
distribution if the distribution is not far from Gaussian, as it corrects only the mean and
the variance. For nonlinear models with multimodal distributions, however, an ensemble
Kalman filter fails to correctly estimate the posterior, as shown in [25].

Importance Sampling (IS) is quite promising for such models as it does not have any
assumptions of Gaussianity. It is also an ensemble based method in which the probability
density function is represented by a number of samples. One sample corresponds to one
configuration of uncertain model parameters. The forward model is solved for each
sample and predicted data is computed. The weight is assigned to samples based on
the observations of the true physical system and the predicted data. The drawback
of IS is that it does not update the uncertain parameters but only their weight, thus
a computationally unaffordable ensemble is required. In order to decrease this cost a
family of particle filters [24] has been developed where IS is supplied with resampling,
and each sample is called a 'particle’. Significant work on parameter estimation using
particle filtering has been done in hydrology. In [63] authors used it to estimate model
parameters and state posterior distributions for a rainfall-runoff model. [93| compared
an ensemble Kalman filter and a particle filter with different resampling strategies for a
rainfall-runoff forecast and observed that as the number of particles increases the particle

filter outperforms the ensemble Kalman filter. [36] employed particle filtering to correct
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Chapter 2 2.2. Data asstmilation methods

the soil moisture and to estimate hydraulic parameters.

The resampling in particle filtering is, however, stochastic. The Ensemble Transform
Particle Filter (ETPF) [74] is a particle filtering method that deterministically resamples
the particles based on their weights and covariance maximization among the particles.
ETPF has been used for initial condition estimations and for parameter estimations
in chaotic dynamical systems with a small number of uncertain parameters (Lorenz
63 model). It has not been applied, however, in subsurface reservoir modelling for
estimating a large number of uncertain parameters. In this chapter we employ it for
estimating uncertain parameters in subsurface reservoir modelling. ETPF provides the
equations that are solved in the space defined by the ensemble members. Therefore
for comparison we employ the Ensemble Transform Kalman Filter (ETKF) [8] that
also transforms the state from the model space to the ensemble space, minimises the
uncertainty in the ensemble space and transforms the estimation back to the model
space.

In this chapter we investigate the performance of ETPF and ETKF for parameter
estimation in nonlinear problems and compare them to IS with a large ensemble. This
chapter is organized as follows: in Sect. 2.2 we describe IS, ETPF, and ETKF for
parameter estimation. We apply these methods in Sect. 2.3 to a one parameter nonlinear
test case, where the posterior can be computed analytically, and in Sect. 2.4 to two cases
of single-phase Darcy flow, where the number of parameters is 5 and 2500, respectively.

In Sect. 2.5 we draw the conclusions.

2.2 Data assimilation methods

We implement an ensemble transform Kalman filter and an ensemble transform particle

filter for estimating parameters of subsurface flow. Both of these methods are based on

M

a Bayesian framework. Assume we have an ensemble of M model parameters {um },_;,

then according to this framework, the posterior distribution, which is the probability
distribution 7(w,|Yp,s) of the model parameters w,, given a set of observations ¥y, can
be estimated by the pointwise multiplication of the prior probability distribution 7 ()
of the model parameters u,, and the conditional probability distribution 7(yps|tm) of

the observations given the model parameters, which is also referred as the likelihood
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function,

7 (Yopaltm ) (11n)

ﬂ-(um‘yobs) = 7T(y b )
obs

The denominator 7(y,s) represents the marginal of observations and can be expressed

as:

M M
yobs E ™ yobs’um E ™ yobs‘um (um)7
m=1 m=1

which shows that m(y,,s) is just a normalisation factor.

2.2.1 Ensemble Transform Kalman Filter

Assume we have initially an ensemble of M model parameters {u® }M_  where b refers

m=1’
to a background (prior) ensemble, which are sampled from a chosen prior probability

density function, then the ensemble Kalman estimate (or analysis) {u%,}M_; is given

by:
M 1
u%:Z(slm—kql—M)u?, m:l,...,M,
=1
where s, is the (I, m) entry of a matrix S

1 —1/2
S = [I+ i (Ab)TR 1Ab} : (2.1)

and q; is the [-th entry of a column vector q

1 1 1,
q=q71m— ﬁs2(Ab)TR YW = Yobs)-

Here I is an identity matrix of size M x M, 1, is a vector of size M with all ones, g

is the mean of the predicted data defined by

1 M
= M Z ylrij
m=1
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A? is the background ensemble anomalies of the predicted data defined as

and R is the measurement error covariance. To ensure that the anomalies of analysis

remain zero-centered we check whether A%1,; = A’S1,, = 0, given S1); = 1, and
b _ b : b

A’1); = 0. The model parameters u,, and the predicted data vy,, are related by

y? = h(ul)), where h is a nonlinear function and here we assume that the function A is

known.

2.2.2 Ensemble Transform Particle Filter

In particle filtering we represent the probability distribution function using ensemble
members (also called particles) as in an ensemble Kalman filter. We start by assigning
prior (background) weights {w?, }*_, to M particles and then compute new (analysis)

weights {w? }M_, using the Bayes’ formula and observations y,

a __ 7I-(yobs |’u'l77n)w?n

wy = —222 e T (2.2)
" 7T(yobs)
We assume that initially all particles have equal weight, thus wi’n = 1/M for m =
1,..., M, and that the likelihood is Gaussian with error covariance matrix R. Then
from Eq. (2.2) w? is given by
1, TR—1(,b
wo = O3 W Vo) R W )] g

M _
> j=1€XD [—%(y? — Yons) TR (9 — yobs):|

In Importance Sampling (IS), which will be used in this chapter as a "ground" truth,

these weights define the posterior pdf. The mean parameter for IS is then

It is important to note that IS does not change the parameters u, it only modifies the
weight of the particles (samples). Therefore a resampling needs to be implemented for

parameter estimation, which is usually stochastic. Instead particle filtering has been
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modified using a deterministic coupling methodology which resulted in an ensemble
transform particle filter of [74]. ETPF looks for a coupling between two discrete random
variables By and Bs so as to convert the ensemble members belonging to the random
variable By with probability distribution 7(Bs = u? ) = w?, to the random variable B;
with uniform probability distribution w(B; = u%,) = 1/M. The coupling between these

two random variables is an M x M matrix T whose entries should satisfy

tmj >0, m,j=1,..., M, (2.4)
M 1
Ztmjiﬂ7 J=45 , M, (25)
m=1

M
D tmi=wlh, m=1,.. M (2.6)
j=1

An optimal coupling matrix T* with elements ty,; minimizes the squared Euclidean

distance
M

T(tmg) = Y tumglluag, — ] f? (2.7)

m,j=1

and the analysis model parameters are obtained by the linear transformation

MZth wl, j=1,...,M. (2.8)

Then the mean parameter for ETPF is

We use FastEMD algorithm of [69] to solve the linear transport problem and get the
optimal transport matrix.

Remark: An important property of ETPF is preservation of imposed interval
bounds on ensemble members. Consider an ensemble of parameters {u’ }M_, given
by

wl, = (a® o AN, m=1,..., M,

m mmm

where we assume all the parameters {a’ }M_, {6 IM_ and {c},}M_, are bounded
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between 0 and 1. Therefore, the following inequalities hold:

0<amin§afn§amax<1a m=1,...,M,
0<bmin§bly7n§bmax<1, m=1,...,M,
0<Cmingcl;n§cmax<1, m=1,...,M.

Now we assume two discrete random variables By and By have probability distributions
given by
m(By=u’)=1/M, n(By=1ub)=uw"

m m m?

with w@, >0, m=1,...,M and Zn]\le wd = 1. As ETPF looks for a matrix T* which
defines coupling between these two probability distributions, each entry of this coupling
matrix satisfies the conditions given by Eq. (2.4)-(2.6). These conditions assure that
each entry of the coupling matrix will be non-negative and less than 1. Since the analysis

given by Eq. (2.8) is

af (Mti,,) + a3 (Mts,,) + -+ aly (Mty,,)
upy, = | W8 (Mt;,,) + 05 (Mts,) + -+ b5, (Mt V|, m=1,...,M,
A (Mt5,,) + S (Mt5,,) + -+ chy (Mtyy,,)

these conditions lead to

0<amin§a%§amax<1, m:1,...,M,
0<bmin§bgn§bmax<l, mz].,...,M,
0<Cmin§C$n§Cmax<1, m:17...,M

Thus the coupling matrix bounds the analysis ensemble members to be in the desired
range. This is not observed in ETKF as the matrix S given by Eq. (2.1) does not impose

any of the non-equality and equality constraints, so it results in values outside the bound.

2.2.3 Localization

The achievable accuracy of both ensemble Kalman filter and particle filter are limited
by computational resources, i.e. memory and available processor time. The required

computational resources grow dramatically with increased ensemble size, which is nec-
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essary to improve accuracy. This limit of a small ensemble size introduces sampling
errors. To deal with this issue localized ETKF (LETKF) was introduced in [42] and
localized ETPF (LETPF) in [74]. More recent approaches to particle filter localization
include [70] and [71].

We implement distance-based localization that restricts the influence of all the ob-
servations outside a certain radius around the grid point in concern. As a consequence,
the actual data assimilation problem associated with each observation is of much smaller
dimension. For the local update of a model parameter u,,(X;) at a grid point X;, we

X Ny

introduce a diagonal matrix C; € RN in the observation space with an element

(Ciu=p <M> ; (2.9)

Tloc

where i = 1,...,n%, 1l =1,... , Ny, n? is the number of model parameters, Ny is the
dimension of the observation space, r; denotes the location of the observation, r. is a

localisation radius and p(-) is a taper function, such as Gaspari-Cohn function by [33]

1-3r2+ 303 4+ Lpt = 145, O<r<l,
pry =N —3rt+d=br+ 52450 —orid r®, 1<r <,
0, 2<r.

Then the estimated model parameter at the location X; is

a u 1 b
ur (X;) = Z <Slm(Xi) +q(X;) — M) Uy (X)), m=1,..., M,
=1

where s;,,(X;) is the (I, m) entry of the localized transformation matrix S(X;)

—-1/2

S(X;) = [I + (Ab)T(CiR‘l)Ab}

M—-1
and ¢;(X;) is the I-th entry of the localized column g(X;)

1 1
q(X;) = —1nm —

N2 AT —1/2b

Distance based localization reduces one m?-dimensional problem into n?-one di-
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mensional problems. LETPF updates each spatially varying parameter individually.
Hence, reducing the number of degrees of freedom enables application of ETPF to
spatially-extended systems. LETPF modifies the likelihood and thus the weights given
by Eq. (2.3) are computed locally at each grid X;

exp | =38 ~ Yob) (CRT)(Y) — Yobs)|

S exp [~ (0] = Yo (CR™) (W] = Y|

we (X;) = , m=1,...,M, (2.10)
where C; is the diagonal matrix given by Eq. (2.9). Then the estimated model parameter

uf(X;) at the grid X; is given by

M
wl(X;) = Mt (Xl j=1,..., M,
m=1
where t7*nj is an element of an optimal coupling matrix T which minimizes the squared

Euclidean distance at the grid point X;

M
T(tmg) = Y byl (X3) = u(X0)]7, (2.11)

m.j=1

which reduces LETPF to a univariate transport problem. It should be noted that local-

ization can be applied only for grid-dependent parameters.

2.3 One parameter nonlinear problem

First we consider a one parameter nonlinear problem from [12]. The prior distribution is
a Gaussian distribution with mean 4 and variance 1. The nonlinear observation function
is
h(u) = 1—72u3 — gu2 + 8u.

The system is deterministic and the true parameter "™ = 6 gives h(u'™"¢) = 48. The
observation error is drawn from a Gaussian distribution with zero mean and variance
16. Our aim here is to employ the noisy observation and estimate the parameter u using
ensemble data assimilation. Such a simple one-dimensional problem allows us to under-

stand the behavior of the methods and examine their performance in approximating the
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4 1e2 4 1e3 4 1e4
Prior Prior Prior
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Figure 2.1: Probability density functions for the one parameter nonlinear problem.
Top: ETPF, bottom: ETKF. Left: ensemble size 102, center: ensemble size 103,
right: ensemble size 10*. Prior is in red. True pdf obtained by IS with ensemble
size 10° is in black.

posterior distribution. In Fig. 2.1 we plot the posterior probability density functions
estimated by ETPF (top), ETKF (bottom) with ensemble sizes 10? (left), 10® (center),
and 10* (right). The prior distribution is shown in red and the posterior estimated by
IS with ensemble size 10° is shown in black. We implement IS solutions as benchmark
since IS is a Monte-Carlo method, and under weak assumptions the law of large number
applies. For linear models, ETKF is Monte-Carlo approximation of Kalman filter and
in the limit of large ensemble size the ensemble mean and covariance of ETKF con-
verges to exact Kalman filter [59]. However, for nonlinear models it is well-recognized
that ETKF need not asymptotically converge to the true posterior. On the other hand,
ETPF has been shown to converge to true posterior as M — oo for both linear and
nonlinear models [73]. We can see that ETPF provides better approximation of the
reference probability density function, and the approximation improves as we increase
the ensemble size. On the other hand, we observe that ETKF gives a skewed posterior.
Such behavior is associated with ETKF’s fundamental assumption of Gaussianity. It
should be noted that ETKF is able to give a non-Gaussian (though wrong) posterior

due to the nonlinearity of the map between the uncertain parameters and observations.
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Chapter 2 2.4. Single-phase Darcy flow

2.4 Single-phase Darcy flow

We consider a steady-state single-phase Darcy flow model defined over an aquifer of

two-dimensional physical domain D = [0, 1] x [0, 1], which is given by

—V(k:(x,y)VP(a:,y)) :f<$7y)7 (l’,y) €D
P(x,y) =0, (z,y)€ 0D

where V = (9/0x 0/0y)T, - denotes the dot product, P(z,y) the pressure, k(z,y) the
permeability, and 9D the boundary of domain D. Here f(z,y) is the source term, which
we assume is known and is given by by 2m2cos(mz)cos(my). The forward problem of
this second order elliptical equation is to find the solution of pressure P(x,y) for given
f(z,y) and k(z,y). We, however, are interested in finding permeability k(z,y) given
noisy observations of pressure at a few locations.

We perform numerical experiments with synthetic observations, where instead of a
measuring device a model is used to obtain observations. We implement a cell-centered
finite difference method to discretize the domain D into n x n grid cells X; of size Az?
and solve the forward model with the true parameters. Then the synthetic observations

are obtained by
Yobs = L(P) +n,

with an element of L(P) being a linear functional of pressure, namely

X; —
< I ”” )am?, lel,...,N,

Li(P

27ra

where n = 50, o = 0.01, r; denotes the location of the observation and N, = 16, which is
the number of observations. The observation locations are spread uniformly across the
domain D and 7 denotes the observation noise drawn from a normal distribution with
zero mean and standard deviation of 0.09. This form of the observation functional and
parametrization of the uncertain parameters given below guarantee the continuity of the
forward map from the uncertain parameters to the observations and thus the existence

of the posterior distribution as shown by [46].
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Chapter 2 2.4. Single-phase Darcy flow

2.4.1 Five parameter nonlinear problem

For our first numerical experiment with Darcy flow, we consider a low-dimensional prob-
lem where the permeability field is defined by mere 5 parameters similarly to [46]. We
assume that the entire domain D = [0, 1] x [0, 1] is divided into two subdomains Dy and
Dy as shown in Fig. 2.2. Each subdomain of D represents a layer and is assumed to have
a permeability function k(X), where an element of X is defined by X; for i = 1,...,n?.

Parameters a and b denote the thickness of the bottom layer on the left and the right
side, respectively, which correspondingly defines the slope of the interface. A parameter
¢ defines a vertical fault. The vertical fault displaces the layer up or down depending on

¢ < 0 or ¢ > 0, respectively, and its location is assumed to be fixed at z = 0.5.

16

Figure 2.2: True permeability of the 5 parameter nonlinear problem with dots
representing the observation locations.

Further, for this test case we assume piecewise constant permeability within each of

the subdomains, hence k(X) is given by
k(X) = k16D, (X) + k20D, (X),

where k1 and kg represent permeability of the subdomain D; and Ds, respectively, and
d is characteristic function. Then the parameters defining the permeability field for this

configuration are
u=(abc log(ky) log(k:))T.

We assume that the true parameters are a™"® = 0.6, "¢ = 0.3, ¢"™¢ = —0.15, k{™® = 12
and kiU = 5. These parameters are used to create synthetic observations. Figure 2.2

shows the true permeability with dots representing the observation locations. Next, we
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Chapter 2 2.4. Single-phase Darcy flow

assume that the five uncertain parameters are drawn from a uniform distribution over a
specified interval, namely a,b ~ U[0, 1], ¢ ~ U[—0.5,0.5], k1 ~ U[10,15] and ko ~ U[4,7].

As it was pointed out in Sect. 2.2.2, ETPF updates the parameters within the original
range of an initial ensemble, while ETKF does not. Therefore a change of variables has
to be performed for ETKF so that the updated parameters are physically viable. In
order to be consistent we perform the change of variables for ETPF as well. As the
domain D is [0, 1] x [0, 1], the parameters a and b should lie within the interval [0, 1].

To enforce this constraint we substitute a according to

:10g< a ), adeR
1—a

and similarly b is substituted by o’. Thus the uncertain parameters are now u' =
(a' ¥ ¢ log(ky) log(ks))™.
We first analyse the performance of ETPF and ETKF in estimation of the posterior

distribution of parameters using IS as the benchmark. In Fig. 2.3 we plot probability
density functions for parameters a (a)—(d), ¢ (e)—(h) and log(kz) (i)—(1), as the parameters
b and log(k;) show similar results. The posterior distribution obtained by IS with
ensemble size 109 is plotted as a black line and the true value of parameters is plotted as
a black line with crosses. The posterior of ETPF is shown at the top and the posterior
of ETKF at the bottom. ETPF and ETKF used 10 (odd columns) and 10* (even
columns) ensemble members. In order to perform an objective comparison between the
distribution we compute the Kullback-Leibler divergence of a posterior m obtained by
either ETPF or ETKF and the posterior 71> obtained by IS

Dk (7 || 7) = Zw (u;) log (( ))( —ui1), (2.12)

where N = 20 is the number of bins. The Kullback-Leibler divergence for parameters
a, ¢ and log(ko) is displayed in the titles of Fig. 2.3, where we observe that ETKF
outperforms ETPF.

In order to check the sensitivity of the results to the initial parameter ensemble we
perform R = 10 simulations based on a random draw of an initial ensemble from the
same prior distributions. We conduct the numerical experiments varying from 10 to 103,

with an increment of 50 in the interval 50 — 103. In Fig. 2.4 we plot the true parameters,
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Figure 2.3: Probability density functions for the parameters a (a)-(d), ¢ (e)—
(h), and log(ks) (i)-(1). The posterior obtained by IS with ensemble size 10° is
plotted as a black line and the true values of parameters are plotted as black
crosses. The posterior of ETPF is shown at the top and the posterior of ETKEF at
the bottom. ETPF and ETKF used 10® (odd columns) and 10? (even columns)
ensemble members.

the mean estimated by IS, the mean u” and the spread u” +ug,, of estimated parameters

averaged over 10 simulations

1 & 1] 1 Y
ﬂ? = R Z ,a?ﬂ", agtd = E M—1 Z (UZ’,;,L - ﬁg7r)27
r=1 r=1 m=1
| M
—a,r __ a,r o
where u;" = i Z Uiy T=1,..., R, (2.13)
m=1
M is ensemble size, i = 1,...,5 is parameter index, and the superscript a is for analysis.

We observe that all the methods including IS have a bias in the estimations of geomet-
rical parameters, which is due to a small number of observations. ETPF and ETKF
perform comparably in terms of mean estimation, though some are better estimated
by ETKF and other are better estimated by ETPF. Comparing the error in pressure
of the mean parameters we observe that the methods are equivalent (thus not shown),
which is a manifestation of the ill-posedness of the problem. In Fig. 2.4 we see that the
spread from ETPF is smaller than from ETKF for each parameter. Both methods are
slightly underdispersive as the spread to error ratio is below 1. For ensemble size 103
the the spread to error ratio for ETKF is (0.95 0.88 0.88 0.97 0.98) and for ETPF is
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Figure 2.4: u® and u” + u%, w.r.t ensemble size: (a) for the parameter a, (b) for
b, (c) for ¢, (d) for log(ky), (e) for log(ks). ETPF is shown in blue, ETKF in red,

the true parameters are in black and the mean of IS in magenta.

(0.92 0.81 0.84 0.99 0.86) for (a b ¢ log(k1) log(kz2)). Thus ETKF gives better ratio for
all the parameters but log(ky).

We compute an average of the relative error over all parameters

‘—CLT' _ true|

RE™" = Z e ,r=1,...,R,
and the data misfit
misfit®” = (§%" — yYope) B @Y = Yops), 7 =1,..., R (2.14)

after data assimilation. The same metrics are computed before data assimilation and
denoted by a superscript b. In Fig. 2.5(a)—(b) we plot (misfit®” — misfit>") and (RE" —
REb’T), respectively, for each simulation r as a function of ensemble size. ETPF is
shown in blue and ETKF in red. The black line is at the zero level. Positive values
of the differences mean an increase of either data mismatch or relative error after data
assimilation. We observe a data misfit decrease for both ETPF and ETKF except at an

ensemble size 10. RE does not always decrease for ETPF: for some simulations ETPF is
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Figure 2.5: misfit™ —misfit”" (a) and RE*" —RE"" (b) w.r.t ensemble size. ETPF
is shown in blue, ETKF in red and the zero level in black. One circle is for one
simulation.

at the zero level or slightly above it, while for ETKF the sole exception is at an ensemble

size 10.

2.4.2 High-dimensional nonlinear problem

Next, we consider a high-dimensional problem where the dimension of the uncertain
parameter is n? = 2500. The domain D is now not divided into subdomains. However,
unlike in the previous test case, here we implement a spatially varying permeability
field. We assume the log permeability is generated by a random draw from a Gaussian
distribution N (log(5), C). Here 5 is an n? vector with all elements 5. C is assumed to

be an exponential correlation elements
Cij = exp(=3(|hi l/v)), i,5 =1,..., 0%

Here h;; is the distance between two spatial locations and v is the correlation range

which is taken to be 0.5. For the log permeability we use Karhunen-Loeve expansions

of the form ,
log(k;) =log(5) + Y/ Awi;Zi, for j=1,...,n% (2.15)
i=1

where A and v are eigenvalues and eigenfunctions of C, respectively, and the vector Z of
dimension n? is drawn iid from a Gaussian distribution with zero mean and variance one.

Making sure that the eigenvalues are sorted in descending order Z; ~ N(0,1) produces
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Figure 2.6: Mean, minimum and maximum over 10 simulations after data assim-
ilation for the data misfit (a), RMSE (b), and variance (¢). ETPF is shown in
blue and ETKF in red.

log(k) ~ N(log(5),C). The uncertain parameter is thus v = Z with the dimension
n? = 2500.

We perform R = 10 different simulations based on a random draw of an initial en-
semble from the prior distribution. We conduct the numerical experiments for ensemble
sizes varying from 10 to 103, with an increment of 50 in the interval 50 — 103. We

compute the root mean square error (RMSE) of the log permeability field

RMSE"™* :\/(log(Ea’T) = log(ktrue))T (log(Ea’T) —log(k"™)), r=1,...,R,
and variance

1

4 r,a
variance " =
M—-1

M
> ((l0x(0sy) ~ lox(k"))" (log(cs?) ~ log(k"™)

m=1

r=1,...,R.

We also compute the data misfit for each simulation after data assimilation by Eq. (2.14).
In Fig. 2.6 we plot mean, minimum and maximum over 10 simulations after data assimi-
lation for the data misfit (left), RMSE (center), and variance (right). ETPF is shown in
blue and ETKF in red. We observe that ETPF is underdispersive compared to ETKF
as particle filters are highly degenerative compared to Kalman filters. The misfit given
by ETPF is smaller than the one given by ETKF for almost all simulations at ensemble
sizes greater than 150. The RMSE on the contrary is larger. In Fig. 2.7(a)—(b) we plot
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Figure 2.7: misfit™ —misfit”” (a) and RMSE®" — RMSE"" (b) w.r.t ensemble size.
ETPF is shown in blue, ETKF in red and zero level in black. One circle is for one
simulation. For ETPF % of simulations that result in (RMSE® — RMSE?) > 0
and a linear fit as a function of ensemble size are shown in (c).

(misfit®” — misfit®") and (RMSE®" — RMSE""), respectively, as a function of ensemble
size for a simulation » = 1,...,10. The superscript b is for the metrics before data as-
similation and the superscript a is for the metrics after data assimilation. ETKF always
provides a decrease in both the data misfit and RMSE except at ensemble size 10. ETPF
gives a decrease in the data misfit though an increase in RMSE, which indicates that
ETPF overfits the data. However, as the ensemble size increases this happens less often
as can be seen in Fig. 2.7(c), where we plot for ETPF a percentage of simulations that
result in (RMSE® — RMSE?) > 0 and a linear fit as a function of ensemble size.

In Fig. 2.8 we plot log permeability fields. In Fig. 2.8(a) the true permeability is
shown with dots representing the observation locations, and in Fig. 2.8(d) the mean
permeability field obtained by IS with ensemble size 10°. The RMSE provided by IS
is 32.62. In Fig. 2.8(b), (e) and Fig. 2.8(c), (f) we display mean permeability fields
obtained with ensemble size 102 by ETPF and ETKF, respectively. In Fig. 2.8(b-—c) we
plot the mean log permeabilities for the smallest RMSE over simulations, which is 30.51
for ETPF and 32.48 for ETKF. In Fig. 2.8(d—e) we plot the mean log permeabilities
for the largest RMSE over simulations, which is 39.2 for ETPF and 33.87 for ETKF.
We observe that ETKF as well as IS provide smooth mean permeability fields that have
smaller absolute values than the true permeability. ETPF gives higher variations of
the mean permeability field and is in an excellent agreement with the true permeability
for a good initial ensemble shown in Fig. 2.8(b). This means that ETPF sensitivity
to the initial sample is due to sampling error and that the spatial variability of ETPF
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Figure 2.8: Log permeability field with dots representing the observation locations.
Truth is shown in (a) and mean obtained by IS with ensemble size 10° in (d). Mean
obtained with ensemble size 10° by ETPF shown in (b), (e) and by ETKF in (c)
,(f), where (b—c) are at the smallest RMSE and (e-f) are at the largest RMSE
over simulations. The corresponding RMSE is given in brackets.

is a result of sampling error. It should be noted that IS with ensemble size 103 and
this good initial ensemble gives the RMSE 30.51 and the same mean log permeability
field as ETPF shown in Fig. 2.8(b). However, IS does not change the parameters, only
their weights, while ETPF does change the parameters. Therefore ETPF shares an
advantage of IS, namely representing the correct posterior, but does not suffer from its
lack of resampling. In Fig. 2.9 we plot the variance of the permeability fields obtained
with ensemble size 10 by IS (d), with ensemble size 10* by ETPF (b), (e) and ETKF (c)
,(f). Fig. 2.9(b—c) is for the smallest RMSE and Fig. 2.9(e—f) is for the largest RMSE.
ETKF provides smoother spatial variability of log-permeability than ETPF, complying
with the smooth mean permeability field obtained by ETKEF.

In Fig. 2.10 we show squared error (2 — 22 in blue for ETPF and in red for
ETKF for three leading modes Z; (a), 22 (b), and Z3 (c), where the solid line indicates
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Figure 2.9: Variance of log permeability fields: obtained with ensemble size 10°
by IS (d), with ensemble size 10* by ETPF (b), (e), and ETKF (c), (f). Variance
at the smallest RMSE (b—c) and at the largest RMSE (e—f) over simulations.

the median and shaded area is for 25 and 75 percentile over 10 simulations. We observe
that in terms of the estimation of the three leading modes ETPF attains lower squared
error as the ensemble size increases, with the lowest achieved error among 10 simulations
of ETPF outperforms that of ETKF even at smaller ensemble sizes. In Fig. 2.11 we plot
the posterior of Z; (left), Z2 (center), and Z3 (right) obtained by IS with ensemble size
10% and by ETPF (top) and ETKF (bottom) with ensemble size 10*. The posterior of
these modes is roughly approximated by ETPF as shown in Fig. 2.11 (a)-(c). ETKF
provides a skewed posterior of the modes shown in Fig. 2.11 (d)—(f), which was also
observed in the one parameter nonlinear problem, see Fig. 2.1(f). In order to perform
an objective comparison between the probabilities we compute the Kullback-Leibler
divergence of a posterior m obtained by either ETPF or ETKF and the posterior 75
obtained by IS according to Eq. (2.12). ETPF gives the Kullback-Leibler divergence
0.21, 0.42, and 0.6, while ETKF 0.16, 0.07, and 0.5 for the modes Zy, Z,, and Zg,

respectively. Thus ETKF gives a better approximation of the true pdf. Since the first
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Figure 2.10: Squared error between the true and the mean estimated modes for
Z; (a), Z5 (b), and Z3 (c) w.r.t ensemble size. ETPF is shown in blue and ETKF
in red with solid lines for median and shaded area for 25 and 75 percentile over
10 simulations. IS with ensemble size 10° is in black.

modes are well estimated by ETPF and last modes are not (not shown), we use only three
leading modes in the Karhunen-Loeve expansion given by Eq. (2.15) when computing
the estimated log permeability, keeping the number of uncertain parameters the same,
namely 2500. In Fig. 2.12(a) we observe that ETPF gives lower RMSE than ETKF for
large ensemble sizes independent of an initial sample. While at small ensemble sizes, the
lowest attained RMSE among the 10 simulations of ETPF outperforms that of ETKEF.
Moreover, ETPF is not overfitting the data anymore since RMSE always decreases after
data assimilation except at small ensemble sizes shown in Fig. 2.12(b). In Fig. 2.13
we show the mean fields for the best and worst initial samples of 10* size. ETPF gives
RMSE at the best sample 31.1 and the worst sample 32.98. By comparing it to 30.51 and
39.2 obtained using the full Karhunen-Loeve expansions, we observe that the maximum
RMSE over simulations decreased substantially, while the minimum RMSE only slightly
increased. ETKF gives RMSE at the best sample 32.27 and the worst sample 33.23.
(Compare to 32.48 and 33.9 using the full Karhunen-Loeve expansions). Thus ETKF
slightly decreases both maximum and minimum RMSE over simulations. ETPF is more
affected by sampling noise at small scales, so using a truncated representation of the
fields significantly improves the results for ETPF. ETKF is filtering out the small scales
that are not observed and thus is less affected by the truncation.

Next we apply LETPF and LETKF. The optimal localization radius between 0.2
and 1.2 was obtained in terms of the smallest RMSE and shown in Table 2.1. It should
be noted that smaller localization radius for LETPF than for LETKF was also observed
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Figure 2.11: The posterior probability density function of parameters Z; (left),
Z, (center), and Z3 (right). The posterior obtained by IS with ensemble size 10°
is plotted as a black line and the true parameter as a black cross. The posterior
of ETPF is shown at the top and the posterior of ETKF at the bottom. Both
ETPF and ETKF used 10* ensemble members. The Kullback-Leibler divergence
is in brackets.

by [14] and is probably related to more noisy approximation of the posterior by LETPF
than by LETKF. In Fig. 2.14 we plot misfit, RMSE and variance.

At small ensemble sizes both LETKF and LETPF give smaller misfit, smaller RMSE
but larger variance than ETKF and ETPF. For large ensembles LETKF performs worse
than ETKF, which is due to the imposed range on localization radius, meaning that
1.2 is not optimal. Comparing the performance of LETPF to (L)ETKF we observe
that at small ensemble sizes LETKF still outperforms ETPF but at large ensemble sizes
LETPF performs now comparably to ETKF. Moreover, LETPF overfits the data less
often than ETPF. That is, for ensemble size 10 LETPF overfits 40% of simulations and
ETPF overfits 90% of simulations (not shown). For ensemble size greater than 150 we
do not observe overfiting in LETPF, while ETPF still overfits though to much lesser
extent (not shown).

In Fig. 2.15-2.16 we plot mean and variance of the log permeability field at ensemble
size 103 for ETPF (b), (e) and ETKF (c), (f) with localization at the smallest RMSE
(b), (c) and largest RMSE (e), (f) over simulations, which are 32.29 and 34.08 for ETPF
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Figure 2.12: Using only three leading modes in the KL expansion. Panel (a):
RMSE after data assimilation w.r.t ensemble size with mean, minimum and max-
imum over 10 simulations for ETPF shown in blue and ETKF in red. Panel (b):
% of simulations that result in (RMSE®* — RMSE?) > 0 for ETPF.

Table 2.1: Optimal localization radius for LETPF and LETKF at different en-
semble sizes M.

M 10 110 210 ... 910
LETPF 02 06 06 ... 0.6
LETKF 02 12 12 ... 1.2

and 32.92 and 34.09 for ETKF, respectively. We observe that localization decreases
the sampling noise, and the spatial variability of the mean field obtained by ETPF at
ensemble size 103 resembles IS at ensemble size 10°. The variance obtained by ETPF
with localization shown in Fig. 2.16(b), (e) has also improved.

The posterior estimation of the leading mode Z1, however, degraded, while of Z5 and
Z3 improved. The Kullback-Leibler divergence for the leading mode is 0.73 (compare
to 0.21 without localization), and for second and third is 0.2 and 0.18, correspondingly
(compare to 0.42 and 0.6 without localization). Variance of the posteriors is larger when
localization is applied for both methods. The localized weights given by Eq. (2.10) vary
less than the non-localized weights given by Eq. (2.3). Therefore the localized pdf is

less noisy than the non-localized. Moreover unlike ETKF, LETPF does not converge
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Figure 2.13: Same as figure 2.8, but using only three leading modes in the KL
expansion.

to ETPF as the localization radius goes to infinity due to the transport problem being
univariate for LETPF and multivariate for ETPF.

2.5 Conclusions

MCMC methods remain the most reliable methods for estimating the posterior distri-
butions of uncertain model parameters and states. However, they also remain com-
putationally expensive. Ensemble Kalman filters (ETKF) provide computationally af-
fordable approximations but rely on the assumptions of Gaussian probabilities. For
nonlinear models even if the prior is Gaussian the posterior is not Gaussian anymore.
Particle filtering on the other hand does not have such an assumption but requires a
resampling step, which is usually stochastic. ETPF is a particle filtering method that de-
terministically resamples the particles based on their importance weights and covariance
maximization among the particles.

ETPF certainly outperforms ETKF for a one parameter nonlinear test case by giving
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Figure 2.14: Mean over 10 simulations after data assimilation for the data misfit
(a), RMSE (b), and variance (c). LETPF is shown in solid blue and LETKF in

400 600
Ensemble size

200 400 600

Ensemble size

800

200 400 600

Ensemble size

solid red. ETPF is shown in dashed blue and ETKF in dashed red.

Truth

(b)

LETPF (32.29)

LETKF (32.92)

(e)

-0.5

Figure 2.15: Same as figure 2.8, but with localization.

a better posterior estimation. For the five parameter test case, the mean estimations
obtained by ETPF are not consistently better than the ones obtained by ETKF and
the spread is smaller. The Kullback-Leibler divergence from ETKF is smaller than that

from ETPF for all the parameters. When the number of uncertain parameters is large
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Figure 2.16: Same as figure 2.9, but with localization.

(2500) a decrease in number of degrees of freedom is essential. This is attained by
localization. At large ensemble sizes LETPF performs as well as LETKF, while at small
ensemble sizes LETKF still outperforms LETPF. Even though LETPF overfits the data
less often than ETPF, localization destroys the property of ETPF to retain the imposed
bounds. This deteriorates a posterior estimation of the leading mode. Another plausible
drawback of localization is an assumption of observations being local, which might not be
the case for inverse modelling. An alternative approach to improve ETPF performance
is instead of applying localization to use only leading modes in the approximation of log
permeability, as they are better estimated by the method. However, one needs to know
at which mode to truncate and this is highly dependent on the covariance matrix of log
permeability.

To conclude, we believe ETPF is promising for inverse modelling. However, it strug-
gles for problems with prior substantially different from posterior and numerous accurate
observations. In Chapter 3 we introduce an annealing extension of ETPF which is for-

mulated to overcome these limitations.
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Chapter 3

Transform-based filtering for

Bayesian inverse problems

3.1 Introduction

We consider the inverse problem of inferring unknown parameters in models described by
partial differential equations (PDEs), given incomplete noisy data /observations of the
model outputs. We adopt the Bayesian approach where the unknowns are random func-
tions with a prescribed prior measure that encompasses our prior statistical knowledge
of the unknown. The solution to the Bayesian inversion problem is the posterior, i.e. the
conditional distribution of the unknown parameters given the observed data. We can
use the posterior to compute estimates of the unknown together with the degree of confi-
dence in those estimates. We are interested in problems where the parameter-to-output
map from the underlying PDE model is nonlinear. These are particularly challenging
problems since the resulting posterior cannot be obtained analytically even when the

prior and the noise distributions are assumed Gaussian. Hence, sampling methods are
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required to approximate (expectations under) the posterior which, in turn, is defined on
a very high dimensional space after discretisation of the PDEs that define the forward
problem.

Markov chain Monte Carlo (MCMC) is the method of choice to sample the Bayesian
posterior [51]. In particular, there is a class of MCMC methods constructed in func-
tional settings with mesh-invariant properties suitable for PDE-constrained identification
problems [17|. However, the most standard version of these methods often exhibit exces-
sively long correlations (e.g. up to 10* [46, 52|), a situation particularly exacerbated with
highly-peaked (possibly multimodal) posteriors such as those arising when observational
noise is small. Very long MCMC chains (e.g. over 107 steps) are thus required (i) to
ensure that MCMC fully explores the posterior measure thus capturing possibly multiple
modes and (ii) to produce sufficient independent samples to compute accurate posterior
statistics. Since every step of MCMC involves at least one PDE solve, these methods
become impractical for costly large-scale simulations. While more efficient MCMC can
be used to approximate the posterior [9, 61|, their proposals often required high-order
derivatives of the likelihood which are not available in many applications where the
simulator is accessible only in a black-box fashion.

Sequential Monte Carlo (SMC) samplers [23] offer a different sampling approach for
approximating the Bayesian posterior. In the context of large-scale Bayesian inversion,
adaptive SMC methods construct particle approximations of a sequence of intermediate
measures that interpolate (e.g. via tempering) between the prior and the posterior. Par-
ticle positions and their weights are adapted on-the-fly to enable a controlled transition
between those intermediate measures, thus facilitating to gradually move from a simple
prior to a possibly complex posterior. The transition between two intermediate mea-
sures involves an importance resampling (IR) step by which the particles are weighted
according to the tempered likelihood and then resampled according to those weights.
This step is then followed by mutation of particles induced by sampling from a kernel
with the IR measure as its invariant measure; this is typically conducted via running
MCMC chains with the aforementioned target measure.

Adaptive SMC samplers for solving Bayesian inverse problems have been proposed
in [52] and applied for the identification of the initial condition in the Navier-Stokes
equations. This work showed that SMC can produce accurate approximations of the
Bayesian posterior at a computational cost an order of magnitude smaller than those
obtained via state-of-the-art MCMC. The same adaptive SMC sampler was used in [44]
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to infer permeability in a moving boundary problem arising in porous media flow. A
theoretical framework for adaptive SMC framework was developed in [7] and tested
numerically by inferring hydraulic conductivity in a groundwater flow model.

Despite the computational advantages of using SMC samplers, their computational
cost still poses severe limitations for its application to practical large-scale inverse prob-
lems. The cost of a single iteration (IR-+mutation) within SMC is proportional to J x N,
where J is the number of particles and IV, is the number of mutation MCMC moves.
Therefore, each iteration could involve, say, over 10* PDE solves even for relatively small
Jand N, (e.g. J = 103 and N,, = 10). Hence, if the posterior is complex hence requiring
several intermediate measures, the cost of SMC is prohibited unless high performance
(HPC) resources are available to scale the cost of SMC with respect to J. While par-
allelisation is indeed one of the main advantages of SMC, the availability of HPC with
10* — 10° processors for typical engineering and geophysical (practical) applications is
the exception rather than norm. It is worth mentioning that reducing the cost of SMC
via using small number of samples and/or reducing the number of mutation steps can
be substantially detrimental to the accuracy of the particle approximation provided by
SMC; see for example the work of [44] where SMC with limited number of particles
(102 — 103) results in very poor approximations of the Bayesian posterior. Recent work
aimed at reducing the computational cost of SMC samplers includes the development of
multilevel versions [6, 49].

In this chapter we investigate the feasibility of an alternative, potentially more com-
putationally affordable approach to approximate the Bayesian posterior within the adap-
tive tempering SMC setting for Bayesian PDE-constrained inverse problems |7, 52|. The
proposed approach consists of replacing the resampling step in SMC with a deterministic
linear transformation that maps the system of particles that approximate two consecu-
tive measures. At each iteration step within SMC, the transformation is obtained via
solving an optimal transportation problem which, in turn, defines a deterministic cou-
pling between two discrete random variables with realisations defined by the particles
and with probabilities determined by their corresponding weights. Replacing resampling
by an optimal transformation within Bayesian algorithms was proposed in [73] where it
was shown that the linear transport map leads to samples that converge to the poste-
rior measures in large ensemble limit. In the context of data assimilation of partially
observed dynamic systems, the idea of replacing IR by optimal transport maps is at the
core of the so-called ensemble Transform Particle filter (ETPF) [73, 74]. The novelty
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of our approach lies in transferring the application of optimal transport to compute the
transition between measures in the tempering scheme within SMC.

Numerous work on data assimilation has shown that, when relatively small num-
bers of particles are used, ETPF provides more accurate state estimations compared to
standard IR-based particle filters due to the sampling errors introduced by resampling.
While methods such as ensemble Kalman filter (EnKF') can work well for small ensemble
sizes compared to IR-based methods, they rely on Gaussian approximations which are
often a severe limitation when the underlying distribution is, for example, multimodal.
In contrast, the optimal transport within ETPF does not rely on Gaussian approxima-
tions and has been shown to be first order consistent for the mean, and to converge to
the posterior measure in the large-ensemble size limit [73|. Here we investigate whether
those well known advantages of ETPF can be exploited within the setting of adaptive
SMC for Bayesian inversion. As a proof-of-concept we apply the proposed algorithm
to a Bayesian elliptic inverse problem arising in subsurface flow. The goal is to infer
hydraulic conductivity from pressure measurements. We consider two parameterisations
of the conductivity field aimed at assessing the method under two levels of complexity.
In the first one we assume that the log-conductivity is a smooth function characterised
by a Gaussian random field under the prior. The second parameterisation consists of
a channelised permeability that is described by a set of geometric parameters together
with two random fields in the regions inside and outside the channel. While the first pa-
rameterisation yields posteriors which are relatively well approximated by Gaussians, the
second parameterisation can result in multimodal distributions which are more difficult
to capture with Gaussian approximations.

We compared the performance of the proposed technique against a fully resolved
posterior computed by the preconditioned Crank-Nicolson (pen)-MCMC with sufficient
steps to ensure that a chain is properly converged. We then compare the proposed
technique against monomial based SMC as well as an ensemble Kalman inversion (EKI)
technique that arises naturally from the adaptive SMC setting. This EKI methodology
has been proposed in [11| as an alternative of [45]. Here this approach is modified to

incorporate a mutation with the invariant measure.
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3.2 Forward and Inverse Problem

We consider Bayesian inversion, which demands formulation of both a forward problem
and an inverse problem. The forward problem consists of finding pressure from hydraulic
conductivity. The "inverse" problem consists of two parts. The first part is parametriza-
tion of hydraulic conductivity by a random variable. The second part is employment of
the Bayes rule to obtain the posterior distribution of the random variable from a given
prior and a likelihood. The likelihood involves forward problem evaluation. Thus the

Bayesian inversion employs the forward problem within the inverse problem.

3.2.1 Forward Model

The forward problem consist of the identification of the hydraulic conductivity, x(x), of
a two-dimensional confined aquifer for which the physical domain is D = [0, 6] x [0, 6].
Assuming that the flow within the aquifer is single-phase steady-state Darcy flow, the
piezometric head h(x), is given by the solution of [5]

~V-kVh = in D (3.1)

where f represents a known recharge term. We use the benchmark from [10, 39, 45]

where f has the following form

0 if 0<uzy <4,
f(x1,29) =< 137 if 4 <z <5, (3.2)
274 if 5 <y <6.

and where the boundary conditions are given by

Oh Oh Oh
h(z1,0) =100, ——(6 =0, —r(0 =500, — 6) =0. 3.3
(xlv ) ) ax( 7[172) ) R&m( ,.’Eg) ) ay(xlv ) ( )
We wish to infer k € X := {L>°(D;R)l|essinf,ep f(x) > 0} from point observations of h
collected at M locations denoted by {x;}}£, C D. To this end, we consider smoothed

point observations defined by

1 .
bi(h) = /D 27762675(%12)2’1(56) dz
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where € > 0. Let us define the forward map G : X — RM by
G(k) = (b1(h),..., Lr(h)). (3.4)

which maps permeability into predictions of hydraulic head at measurement locations.

M

Assume that we have noisy measurements of {£;(h)};Z; of the form

yj:lj(h)+77j, j=1....M

where 7; represents measurement noise. Our aim is to reconstruct x € X given y =
(Y1, ym) € RM.
Parameterisation of permeability

We consider the following two parameterisations of the permeability function x(x) that

we wish to identify from observations of the Darcy flow model (3.1)-(3.3).

P1: For the first model the parameter that we consider is simply the natural logarithm

of k, i.e. u(z) =logk(x).

P2: The second model consist of parameterisation of a piecewise continuous perme-

ability of the form

k() = exp(ur())xp. (%) + exp(uz(z))xp\p, ()

where k1 = exp(u1(z)) and ko = exp(uz(x)) are continuous permeabilities inside
and outside a sinusoidal channel with channel domain denoted by D.. The ge-
ometry of the channel is parameterized by five parameters {di}?zl as described in

Figure 3.1. The lower boundary of the channel is given by
x9 = dy sin(dex1/6) + tan(dz)xi + dy

where we use the notation = (x1,x2) € D in terms of the horizontal and vertical
components. The upper boundary of the channel is given by x5 + d5. For this

permeability model the parameters of interest are comprised in

u = (dla'“ ,d5,U1,U2)
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where we assume that each d; is restricted to an interval 4; = [d;,d]].

We define the following parameter space

U= L>(D;R) for P1,
| TIZ, As x L®°(D;R?)  for P2,

with metric

‘u’U — HUHOO fOI' P17
Sizy ldil + llualloo + [Juzllse ~ for P2,

where Z?Zl |d;], ||u1|loo and ||uz||eo are of comparable magnitudes.

d, - amplitude
d, : frequency
d, :angle

d, :initial point

Figure 3.1: Geometrical configuration of channel flow.

The parameterizations described earlier define an abstract map F': U — X from the

space of parameters to the space of admissible permeabilities, via
F(u) = k. (3.5)

We define the parameter-to-observations map G : U — RM by G = GoF and reformulate
the inverse problem (3.4) in terms of finding the parameter u € U, given y € RM that

satisfies
y=G(u)+n (3.6)

for n = (n1,...,n70) € RM. The continuity of the parameter-to-observations map G for

this, and more general cases, has been established in [46, 81].
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3.2.2 The Bayesian Inverse Problem

In order to address the inverse problem formulated via (3.6) we adopt the Bayesian
framework [81] where 7 is a random vector and u is a random function. We put a
prior, po(u), on the unknown u, and define the random variable y|u under the standard
assumption that n ~ N(0,02I) independent of u. The solution to the inverse problem
in the Bayesian setting is the posterior measure on uly. In the following sections we
introduce the prior and likelihood which by the infinite-dimensional framework of [81]
ensure that the posterior measure exists and is continuous with respect to appropriate

metrics.

The Prior

For P1 we consider a Gaussian prior ug = N(m,C) with mean m and covariance C.

We define C' via a correlation function given by the Wittle-Matern correlation function

defined by [62]:
=v (e — Y T —
c<:c,y>=o—3§(y)(' /") m(‘ €y>, (3.7

where I' is the gamma function, £ is the characteristic length scale, ag is an amplitude

scale and K, is the modified Bessel function of the second kind of order v. The parameter
v controls the regularity of the samples.
For P2 we assume independence between geometric parameters and log- permeabil-

ities and thus consider a prior of the form

po(du) = T2_ md (di) @ N(my, Cy)N (mg, Co) (3.8)
where 7§'(x) is the uniform density defined by
A A zeA,
g (w) =9 (3.9)
0 z¢A.

In expression (3.8) N(m,C1) and N(mg, Cs) are two Gaussians such as those described

earlier in terms of the correlation function from (3.7).
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The likelihood

We assume the unknown u is independent of the observational noise n ~ N(0,02). We
note that y|u ~ N(G(u),02I), hence the likelihood is given by

Uu,y) o exp(—P(u,y)), (3.10)

where ®(u,y) is the data misfit defined by
1 2
®(u,y) = 55 ly — Gl (3.11)

The Posterior

The selection of prior measures from subsection 3.2.2 satisfies p10(U) = 1; i.e. samples
from po are in U almost surely [46, 81]. This property, together with the continuity of
the forward map defined in subsection 3.2.1, can be used in the Bayesian framework of
[46, 81] to conclude that (i) the posterior measure p(u) on uly exists and is absolutely
continuous with respect to the prior pp; and (ii) po and has a density with respect to po
given by the following Bayes’ rule

du 1

= 12

where

7= /U 1, ) (). (3.13)

3.3 Sequential Monte Carlo for Bayesian inversion

Since we consider a highly nonlinear model, an iterative approach to Bayesian inversion
is essential. In the framework of SMC it is performed by tempering (or annealing), when
the prior measure is bridged to the posterior measure not at once but through tempered
measures. It should be noted that the number of tempered measures is not predefined,
which could be a potential computational burden. In order to avoid filter degeneracy
both resampling and mutation (or jittering) has to be performed. In the "classical"

approach we perform monomial resampling, which we propose to replace by resampling
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based on optimal transport.

3.3.1 Adaptive SMC

The SMC approach to Bayesian inversion involves bridging the prior pg and the posterior

{1 via a sequence of intermediate artificial measures {u, }2_o, with uy = p, defined by

dpn

4 (u) o lp(u,y) = l(u,y)¢” (3.14)

where {<Z5n}£lvzo is a set of tempering parameters that satisfy 0 = ¢g < ¢1 < --- < ¢y = 1.
Expression (3.14) formally implies

dpn (v _ 1 (¢n—bn—1)
where
I = / L(w,y) @ =%n=1 1 (du) (3.16)
X

Let us then assume that at the iteration level n — 1, the tempering parameter ¢,,_1 has
been specified, and that a set of particles {un 1} _, provides the following approximation

(with equal weights) of the intermediate measure fi,—1:

g1 (u) = 7 Z5u(j> (w), (3.17)

which is similar or equal to p,—1(u), i.e. %Z;}:l 0 () (u) =~ pp—1(w). Then from (3.16)
n—1

it follows that

J
Zn = 3 1w y) O on) (3.18)

and thus, for any measurable f, we have that

Eun / f ,U'TL du / f u y ¢n bn—1) n—l(du)
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J
Z[Zl( ) yy(@n= ¢n1] S 1w ) @) pud)),

j=1 J=1
J . .
=> WP f). (3.19)
j=1

The importance weights for the approximation of u, are given by

n—

Wéj) = W7(z]—)1[¢n] = )
Zstl l(ufz)hy)% Pn-1

(3.20)

where ¢y, is to be chosen adaptively, as described below. From (3.19) we see that the

importance (normalized) weights W,(Lj ) assigned to each particle ufﬁl define the following

empirical (particle) approximation of fi,:

J

HOEDY W;g')augl (u). (3.21)

j=1
Selection-Resampling Step

From the previous subsection it follows that adaptive SMC requires us to select the tem-
pering parameters ¢, so that the two consecutive measures p,_1 and pu, are sufficiently
close for the IS approximating to be accurate. To this end, a common procedure [47]

involves imposing a threshold on the effective sample size (ESS) defined by

J

-1
ESS,(¢) = [Z(Wﬁ&[«b}f} : (3.22)

j=1
which, in turn, provides a measure of the quality of the population. In other words, ¢,
is defined by the solution to

ESS,(¢) = Jthresh, (3.23)

for a user-defined parameter Jinresn on the ESS. A bisection algorithm on the interval
(¢n—1,1] can be used to solve (3.23) [45]. If ESS, (1) > Jinresh, then we can simply set
¢n = 1 as no further tempering is thus required.

Once the tempering parameter ¢, has been computed via (3.23), normalised weights
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(3.20) can be computed. Since some of these can be very low, resampling with replace-
ment according to these weights is then required to discard particles associated with
those low weights. After resampling, a new set of equally-weighted particles denoted by

a% ) (j =1,...,J) provide a particle approximation of the measure f,,.

Mutation Phase

In order to add diversity to the resampled particles o) computed in the selection-
resampling step, a mutation step is included in most SMC methodologies. This mutation
consists of sampling from a Markov kernel K, with invariant distribution p,. This can
be achieved by running N, steps of an MCMC algorithm that has target distribution
equal to p,. An example of MCMC suitable for the parameterisation P1 of section 3.2.1
is the preconditioned Crank-Nicolson (pen)-MCMC [17] displayed in Algorithm 1. This

algorithm samples from the target p, with reference measure g = N(m,C); we recall

these two measures are related by (3.12). The resulting particles denoted by {uﬁf ) 3-]:1
(ugf ) lcn(aﬁf ), -)) provide a particle approximation of f, in the form
1 J

Convergence of (3.24) to w, in the large ensemble size limit can be found in [7]. The

complete adaptive SMC sampler is displayed in Algorithm 2.

3.3.2 Optimal Transport within SMC

In this section we assume that X = RX. We denote U,,_; a discrete random variable with
realisations {U££1 3-]:1 and probabilities {W,(l] ) 3-]:1. We denote U, the random variable
with samples {ﬂgz1}}']:1 with equal weights. The aim is to replace the resampling step
in the method above with resampling that maximizes the covariance between U,_; and
U,. Such a resampling is performed by finding a coupling (joint distribution) between
the posterior defined by the weights {Wéj )}3]:1 and the uniform probability density such
that it maximizes the covariance between U,_1 and U,. Let us assume that the two
consecutive measures pi,—1 and u, are defined on a measurable space (£, F). A coupling
of pip—1 and p,, consists of a pair (U,_1, U,,) of random variables such that p,_1 is the law

of Uy—1: Q = U and p,, is the law of U, : Q@ — U. A coupling is called deterministic if
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Algorithm 1 pen-MCMC to generate samples from a ju,,-invariant Markov kernel with
Mo = N(mv C)
Select B € (0,1) and an integer N,,.
for j=1,...,Jdo
Initialize @) (0) = 4y’
while « < N, do
(1) pcN proposal. Propose o from

Uprop = /1 — B2 (@) + (1 — /1 — B2)m + BE, with & ~ N(0,0)

(2) Set vU) (@4 1) = Uprep With probability a(vV)(a), u) and vV (a+1) =
v () with probability 1 — a(vY)(a), u), where

o uy)y .
= 1, ———— th [ defined 1
a(u,v) mln{ ’l(v,y)%}’ wi efined in (3.10)
B)a+—a+1
end while
end for

there exists a measurable function ¥ : U — U such that U,, = ¥(U,,—1). This measurable
function W is called transport map and leads to dependent random variables. Unlike
couplings, deterministic couplings do not always exist. On the other hand there may
be infinitely many deterministic couplings. An example of a deterministic coupling is
an optimal coupling. An optimal coupling is a solution of the Monge-Kantorovitch

miminization problem

1nf/ C(un—laan—l)dg(un—lvﬁn—1)7
UxuUu

where u,_1 € U and U,_1 € U. The infimum is taken over all joint probability measures
¢ on the product space U x U (also termed as transport plan) with marginals pi,,—;
and p, and ¢(up—1,Uy—1) is a cost function on U x U. The joint measures achieving
the infimum are called optimal transport plans. The optimal coupling is unique if the
measure (i, possesses some regularity properties and the cost function ¢(uy—1, Up—1) is
convex [91]. It appeared that such a coupling simultaneously minimizes the expectation

between ||u,_1 —1y,||? and is defined as the solution of the Monge-Kantorovitch problem
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Algorithm 2 SMC algorithm for High-Dimensional Inverse Problems

Let {u j 1 ~ Hp be the initial ensemble of J particles.
Define the tunable parameters Jipresh and N,.
Set n =0 and ¢y =0
while ¢, <1 do
n—n+1
Compute the likelihood (3.10) I(u £L Ly) (forj=1,...,J)
Compute the tempering parameter ¢,:
if min¢€(¢n71’1) ESSn(¢) > Jihresh then
set ¢, = 1.
else
compute ¢, such that ESS,(4) & Jinresh
using a bisection algorithm on (¢,_1, 1].
end if
Computing weights from expression (3.20) W) = WY [¢,]
Resample. Let (p,... p)) € R(W,gl), . ,WT(LJ)), where R denotes
multinomial resampling with replacement.

j

Set 4 = u'") and WY =
Mutation. Sample uf’ ~ lcn(uﬁf), -) via Algorithm 1.

end while
Approximate p, by p =437 18 )
with cost function c(uy_1,%,) = ||un—_1—1x||?. Here, 4, represents a new set of particles

after transformation.
For the coupling of the posterior defined by weights {I/V(J _, and the uniform
probability density, the above described coupling results in a J x J matrix T* with

non-negative entries 77, that satisfy

* 1 *
Y Ti=5 D Tp=Wi (3.25)
i=1 j=1
and minimizes
Z illul) = |2 (3.26)
1,j=1

for T;; = T;. This is a linear transport problem of finding J? unknowns. Then the
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linear transformation gives new samples according to
J .
aQ) =3Pl forj=1,...,J, (3.27)
i=1

where P;; = JT;;
The deterministic optimal transformation (3.27) converges weakly to the solution of
the underlying continuous Monge-Kantorovitch problem as J — oo [73]. ETPF is first

order consistent, since

Wéj)“gll-
1

J
Up =

J J J
i) = 53D Pkl = Y T =
j=1 Jj=11i=1 j i j

7j=11i=1 J

Sl

There also exists a second-order accurate ETPF [22], which however does not satisfy
17, > 0. The main difference between resampling based on optimal transport and mono-
mial resampling is that the former is optimal in the sense of the Monge-Kantorovitch
problem, while the latter is non-optimal in that sense.

The computational complexity of finding the minimizer of (3.27) is in general O(J3In J),
which has been reduced to O(J%1In J) in [69]. The wall clock time at J = 100 is 0.3 sec-
onds for SMC with optimal resampling, while 0.03 seconds for both SMC with monomial
resampling and EKI. It can be further improved by employing fast iterative methods
for finding approximate minimizers using the Sinkhorn distance [19], which was imple-
mented in [22] for the second-order accurate ETPF. The algorithm of earth’s moving
distances of [69] is available as both MATLAB and Python codes and is used here. The
complete adaptive optimal transport based SMC sampler is displayed in Algorithm 3.

3.3.3 Gaussian Approximation of SMC via ensemble Kalman

inversion

A natural approximation that arises from the adaptive SMC framework described in
subsection 3.3.1 involves ensemble Kalman inversion (EKI) [44]. More specifically, let us
assume that at the n — 1 iteration level, we approximate u,_1 with a Gaussian f,_1 =
N(mp—1,Cy—_1) where the mean m,_; and covariance C,_; are the empirial mean and

covariance of the particles (assumed with equal weights) at the current iteration level.
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Algorithm 3 Optimal transport based SMC algorithm for High-Dimensional
Inverse Problems

Let {u ] 1 ~ Hp be the initial ensemble of J particles.
Define the tunable parameters Jipresh and N,,.
Set n =0 and ¢y =0
while ¢, <1 do
n—-n+1 '
Compute the likelihood (3.10) (v, ) (for j =1,...,J)
Compute the tempering parameter ¢,,:
if min¢e(¢n7171) ESSn(gZﬁ) > Jinresh then
set ¢, =1
else
compute ¢, such that ESS,(¢) ~ Jinresn
using a bisection algorithm on (¢,_1, 1].
end if
Computing weights from expression (3.20) W) = WY [¢,]

Resample based on optimal transport. Compute D;; = ||u£f)_1 —u, |2

(for i,j = 1,...,.J). Supply {D;}/,_, and {W N to the earth’s moving
distances algorlthm of Pele & Werman. The output 1s the coupling {77

z] 1

Compute new samples @ ) (3.27) and set Wy = :

Mutation. Sample unj) ~ lCn(un), -) via Algorithm 1.
end while
Approximate i, by ] = =35 8 W9

That is,
= J A
1= Z 1= —— Z wy” ] —mp_1) @ ()] —ma_1)  (3.28)

If we now linearise the forward map around m,,_1 and replace Frechet derivatives of
the forward map with covariances/cross-covariances as in [45], it can be shown that the
application to Bayes’ rule yields an approximate posterior i, = N(my,, C),) with mean

and covariance given by

My = M1 +C%9(C99, + a, 1)y — Gno1), (3.29)
Cp=Chy —C",(CY, + a,T)"1C9" (3.30)

n—1°
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where I' is the observation error covariance.

J
1 : : _
Cnfy = 5= >y = mam) © (G y) = Gu). (3.31)
j=1
J
1 . _ . _
0% = = 2 (G())) = Gu) ® (G(u))y) = Guma), (3.32)
j=1

with G,,_1 = %23‘]:1 g(u,(jll) and where

_
¢n - ¢n—1 '

Qy =

(3.33)

Since we are interested in a particle approximation of i, = N(m,, C),), we can use the

following expression

i) = ully + O (O 4 0ul) M W) — Galw))), (3.34)
where

Standard Kalman filter arguments [54] can be used to show that the particle approxi-
mation provided by (3.34)-(3.35) converges to i, as J — 0o. We note in passing that,
within the adaptive SMC framework used here, the regularisation/inflation parameter
oy, in formulas (3.33) is computed based on the ESS criteria discussed in subsection
3.3.1.

It is important to emphasize that, in general, the approximate Gaussian measure fi,
coincides with u, only when the forward map is linear and the prior pg is Gaussian.
The approximation provided by EKI will deteriorate when we depart from Gaussian-
linear assumptions. Therefore, we propose to conduct MCMC mutations to each of the
particles in (3.34) with the aim of improving the approximation of each posterior measure
tn. The complete EKI-based algorithm is displayed in Algorithm 4. We recognise that
this is only an ad-hoc approach for which exact sampling of the posterior (as J — 00)
is not ensured. A more rigorous (i.e. fully-Bayesian approach) that we leave for future

work is to use EKI in the proposal design for the importance sampling step within SMC;
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this is done for data assimilation settings in [16].

Algorithm 4 EKI approximation to SMC

Let {u ] 1 ~ Mo be the initial ensemble of J particles.
Define the tunable parameters Jinresh and N,,.
Set n =0 and ¢g =0
while ¢, <1 do
n—n-+1
Compute the likelihood (3.10) l( W y) (for j=1,...,J)
Compute the tempering parameter ¢,,:
if minge(g, 1) ESSn(#) > Jinresn then
set ¢, = 1.
else
compute ¢, such that ESS,(¢) ~ Jinresn
using a bisection algorithm on (¢,_1, 1].
end if
Generate particles {u 4 accordmg to (3.34).
Mutation. Sample u$ ~ K, (un ,-) via Algorithm 1.
end while

Approximate p, by p =130 18 uG),

3.4 Numerical experiments

In this section we perform numerical experiments to infer P1 and P2 parameters. We
compare optimal transport based SMC to both monomial based SMC and EKI, which we
denote optimal, monomial, and Kalman, respectively. We analyze method performance
with respect to a pecn-MCMC solution, which we denote as reference. We combine 50
independent chains each of length 10° and 10° burn-in period and thinning 103.
Observations of pressure were obtained from the true permeability with observation
noise from normal distribution with zero mean and standard deviation of 2% of L?-norm
of the true pressure. We should note that both the true random variable and an initial

ensemble of parameterized permeability are drawn from the same prior distribution, as
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the prior includes knowledge about geological properties. However, the true solution is
computed on a fine grid and an initial guess on a coarse grid, which is half the resolution
of the fine grid. The uncertain parameter for P1 inference has the dimension of the
coarse grid, i.e. 4900 = 702. For P2 inference, we first define both inside and outside the
channel log-permeability over the entire domain and then by employing the geometrical
parameters generate the channel configurations. Since, we generate the log-permeability
based on the correlation function defined by equation (3.7), this approach helps us avoid
any additional error due to loss of regularity due to sudden jump in log-permeability
over adjacent grids. Thus, the uncertain parameter for P2 inference has the dimension
twice that of the coarse grid plus the dimension of the geometrical parameters, i.e.
5005 = 50% 4 502 + 5.

For log-permeability parameters, the prior is a normal distribution with mean 5
for P1, and for P2 with mean 15 outside the channel and 100 inside the channel. For
geometrical parameters, the prior is uniform: dy ~ U[0.05%x6, 0.35x6], do ~ Ulr/2, 67],
ds ~U[—7/2, 7/2], dy ~ UJ0, 6], d5s ~ U[0.02x6, 0.7x6]. For tempering we choose the
effective ensemble size threshold Jipresh = J/3 and for mutations the length of Markov
chain N, = 10 to save computational costs. For P2, we use the Metropolis-within-Gibbs
methodology of [46] to separate geometrical parameters and log-permeability parameters
within the mutation step, since it allows to better exploit the structure of the prior. The
proposal design for the geometric parameters within the Metropolis-within-Gibbs consist
of local moves within the intervals of the prior with a step size that we tune to achieve
acceptance rates between 20% and 30%. Geometrical parameters that fall outside those
intervals are projected back via a projection that preserves reversibility of the proposal
with respect to the prior [46]. We perform numerical experiments with different ensemble
sizes of 100, 500, and 1000. We perform 10 simulations with different realizations of the
initial ensemble to check the robustness of results.

For log-permeability, we compute the L? norm of the error in the mean with respect
to the reference p

1 ,
Error = ||a — @™®!||, where @ = i jzzlu(]).
We investigate the performance of the proposed approach to approximate the marginal
posterior, p(d;), of each geometric parameter d; (i = 1,...,5) defined in parameterisa-

tion P2. To this end, we compute the Kullback-Leibler divergence with respect to the
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reference/true posterior marginal (denoted by p™f(d;)) computed via MCMC:

ref d
Dkr(p™" || p) = Zpref d)log (C(lj)), (3.36)

where Jp, = J/10 is a chosen number of bins and p(dg ) is approximated by the weights.
The results (median, 25 and 75 percentiles) that we report below for both the error in
the mean and the KL divergence are computed over 10 experiments corresponding to

independent choices of the prior ensemble.

3.4.1 Numerical inference for P1

For P1, we perform a numerical experiment using 36 uniformly distributed observations.
In Figure 3.2, we plot error in the mean log-permeability with respect to reference. We
observe that while optimal transport based SMC outperforms monomial based SMC for
all ensemble sizes, EKI outperforms both SMC methods. This is due to the nature of
the P1 parametrization and only two degrees of freedom (mean and variance) of EKI.

In Figure 3.3, we plot mean log-permeability for a simulation with smallest error at

Log permeability
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Figure 3.2: Box plot of the error in the mean log-permeability for P1 inference.
Central mark is the median, edges of the box are the 25th and 75th percentiles,
whiskers extend to the most extreme datapoints over 10 independent simulations.
On x-axis numbers stand for ensemble sizes, M stands for monomial based SMC,
O for optimal transport based SMC, and K for EKI.

ensemble size 100 and reference mean log-permeability. We see that monomial based
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SMC gives a less smooth estimation compared to optimal transport based SMC, EKI,

and reference, which leads to larger error.

Reference 5 Kalman

0.6

0.4

10.2

1-0.2

-0.4

-0.6

Figure 3.3: Mean log-permeability for P1 inference for the lowest error at ensemble
size 100. Observation locations are shown in circles.

For ensemble sizes considered here, the number of tempering steps on average is 15
for optimal transport based SMC, and 17 for both monomial based SMC and EKI. Thus
in terms of computational cost optimal transport based SMC is equivalent to monomial
based SMC, since the computational complexity of the forward model is higher than

O(JIn J).

3.4.2 Numerical inference for P2

For P2, we perform a numerical experiment using 9 uniformly distributed observations.
For ensemble size considered here, the number of tempering steps on average is 8 for EKI,
and 7 for both optimal transport based SMC and monomial based SMC. In Figure 3.4,

we plot error in the mean log-permeability with respect to reference for permeability
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Chapter 3 3.4. Numerical experiments

outside channel on the left and for permeability inside channel on the right. We observe
that while optimal transport based SMC still outperforms monomial based SMC for
all ensemble sizes, it is now comparable to EKI. This is due to a small number of

observations. In Figures 3.5-3.6, we plot mean log-permeability for a simulation with

Log permeabilty outside Log permeabilty inside

- 12
|

121
‘ 10

< 107 c

@ . 3 gl T

(O] + (O]

E gt J 1S \ H

< T . s | 1=

| I L R

i I (T |

4 LE E+E 7 | éé

rl_j +

2t 5 7Y | 2| é%’
R Y T S
AR NSRS AR RERRS
SR EZNNGE NNRECTZNNGS

Figure 3.4: Box plot of the error in the mean log-permeability for P2 inference.
Central mark is the median, edges of the box are the 25th and 75th percentiles,
whiskers extend to the most extreme datapoints, and crosses are outliers over
10 independent simulations. On the left: outside channel, on the right: inside
channel. On x-axis numbers stand for ensemble sizes, M stands for monomial

based SMC, O for optimal transport based SMC, and K for EKI.

smallest error at ensemble size 100 and reference mean log-permeability for permeability
outside channel and for permeability inside channel, respectively. We see that monomial
based SMC gives a less smooth estimation compared to optimal transport based SMC,
EKI, and reference, which leads to larger error.

In Figure 3.7, we show posterior estimations of geometrical parameters. We see that
all the parameters except amplitude and width exhibit strongly non-Gaussian behaviour.
In Figure 3.9, we show a trace plot of the geometrical parameter frequency using a chain
of MCMC to ensure proper mixing of chain. We can observe from this figure that the
two modes are being sampled within each chain and that the chain is properly mixed.
In Figure 3.8, we plot KL divergence for geometrical parameters. We observe that EKI
performs better than optimal transport based SMC for amplitude and width, while
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Figure 3.5: Mean log-permeability outside channel for P2 inference for the lowest
error at ensemble size 100. Observation locations are shown in circles.

worse for other parameters. We should note that the two different modes of frequency
shown in Figure 3.7 provide two significantly different channel configurations, thus it
is important to correctly estimate the pdf. Monomial based SMC performs comparably
to optimal transport based SMC though not consistently better or worse. We should
recall, however, that optimal transport based SMC outperforms monomial based SMC
for log-permeability both inside and outside channel. In Figure 3.10, we show mean field

of permeability over the channelized domain for the lowest error at ensemble size 1000.

3.5 Conclusions

Accurate estimation of the posterior distribution of uncertain model parameters of
strongly nonlinear problems remains a challenging problem. Parameters are high dimen-

sional, they are not observed, and they do not have a dynamical equation. Moreover,
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Figure 3.6: Mean log-permeability inside channel for P2 inference for the lowest
error at ensemble size 100. Observation locations are shown in circles.

due to nonlinearity of models even a Gaussian prior of parameters might result in non-
Gaussian posterior. Since MCMC is computationally unfeasible for high-dimensional
problems, adaptive SMC is an alternative to estimate posterior distributions in the
Bayesian framework. However, adaptive SMC still requires large ensembles.

In order to reduce computational cost, we proposed to introduce optimal transport
based resampling from [73] to adaptive SMC. Optimal transport based resampling cre-
ates new samples by maximizing variance between prior and posterior. It has been
already shown for state estimation and parameter estimation with low dimension, that a
particle filter with optimal transport based resampling outperforms a particle filter with
monomial based resampling. As it was aimed to estimate time-evolving model states of
chaotic systems, simple inflation was sufficient to mutate particles.

Here we have adopted optimal transportation to elliptic Bayesian inverse problems.

We have shown that optimal transport-based SMC has a high potential for Bayesian
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inversion of high-dimensional parameters. The parameterisation of the channelised per-
meability was particularly useful since it involves geometric parameters with marginal
posteriors that display non-Gaussian features (e.g. bimodality in the frequency parame-
ter; see Figure 3.7) which are often difficult to characterise via EKI. Indeed, for this case
the proposed approach provides more accurate approximations to the marginal posteri-
ors (quantified via KL divergence) than those approximated with EKI. Compared to the
standard monomial-based SMC we did not observe substantial differences in the level of
approximation of the aforementioned marginals. However, the proposed transport-based
SMC outperforms the monomial-based version in approximating the high-dimensional
(marginal) posteriors of the two spatially-variable log-permeability fields that we infer
in the present setting (measured in terms of the error in the mean and variance).

Moreover, optimal transport based SMC still underestimates variance (not shown),
which could be improved by considering second order consistent optimal transport re-
sampling instead of first order. However, second order consistent optimal transport
resampling does not necessarily provide non-negative transformations. Finally, opti-
mal transport resampling does not need to be restricted to finite dimensions, at least
theoretically [14], with the challenge of finding such a minimizer computationally.

So far in this thesis, we have considered permeability being the only source of model
error. However, there exists more than one source of model error, e.g. model reduc-
tion, discretization error, etc. In Chapter 4, we consider the Darcy flow problem where
both permeability and boundary condition have uncertainties. We compare tempered

adaptive SMC to regularized ensemble Kalman filter.
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Figure 3.7: Posterior of geometrical parameters for P2 inference. In black is
reference, in green 10 simulations of ensemble size 100, in red 10 simulations of
ensemble size 1000. The true parameters are shown as black cross.
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Figure 3.8: Box plot of KL divergence for geometrical parameters for P2 inference.
Central mark is the median, edges of the box are the 25th and 75th percentiles,

whiskers extend to the most extreme datapoints, and crosses are outliers.

On

x-axis numbers stand for ensemble sizes, M stands for monomial based SMC, O
for optimal transport based SMC, and K for EKI.
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Figure 3.9: Trace plot of frequency from a pcn-MCMC chain.
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Figure 3.10: Mean permeability for P2 inference for the lowest error at ensemble
size 1000. Observation locations are shown in circles.
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Chapter 4

Tempered Particle filter for
Elliptical Inverse problem with

Uncertain Boundary Condition

4.1 Introduction

Ensemble-based data assimilation deals with estimation of uncertain parameters and
states of a model constrained by available observations using an ensemble. It is widely
employed in many fields, for example meteorology [40] and reservoir engineering [27].
In meteorology one is interested in estimation of uncertain initial conditions of a high-
dimensional chaotic system, in reservoir engineering—of estimating high-dimensional
uncertain parameters, of permeability for example, of a deterministic non-chaotic system.

However, sources of model error are not limited to random coefficients of a PDE. In
inverse problems, another source of model error is model reduction for example, where

a complex model is replaced by a simple one. It has been acknowledged, i.e [51], that
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accounting for model error in data assimilation greatly improves parameter-state esti-
mation. Recent advances in accounting for model error in ensemble-based data assimi-
lation include: extension of iterative ensemble Kalman filter to include additive model
error [79], addition of model error in the randomized maximum likelihood to correctly
sample the posterior without marginalization [65|, non-additive though Gaussian model
error update for Bayesian inversion [20], and adaptation of machine learning techniques
for data assimilation [56]. By additive model error we mean that if G is an erroneous
approximation of the true model G*™"¢, then G(-) = G*""(-) 4 q where ¢ is model error.

However, most of these works have considered either additive model error or Gaus-
sian model error, with the sole exception of [65] where Gaussian anamorphosis was
used. However, for high-dimensional problems finding a transformation to multivari-
ate Gaussian probability is computationally challenging. Though the assumption of
additive Gaussian model error simplifies an optimization problem, model error is not
limited to being additive nor Gaussian. Therefore, it is essential for a data assimilation
method to account for model error in a most general way. A straightforward example of
such a data assimilation method is Markov Chain Monte Carlo (MCMC). However, for
high-dimensional systems it is impractical.

An alternative to MCMC is particle filtering [24]. Particle filtering is based on
proposing an ensemble from a prior that is not necessarily close to the target posterior
and to correct for this mismatch by computing importance weights. The importance
weights are defined as a function of ensemble estimations and available observations.
The ensemble is then resampled according to the estimated posterior. Particle filtering
in its original form worked only for low-dimensional problems. However, due to recent
advances of employing localization [70, 71| it has been proven competitive for high-
dimensional problems as well.

There are different approaches to resampling in particle filtering, but most of them
are stochastic. An ensemble transform particle filter [74] employs deterministic resam-
pling, which reduces sampling error and thus needs a smaller ensemble than a typical
particle filter. It also has a localized version. In Chapter 2, we have employed the
method to solve an inverse problem of uncertain permeability. We have shown that
though localization makes the ensemble transform particle filter deteriorate a posterior
estimation of the leading modes, it makes the method applicable to high-dimensional
problems. In Chapter 3, instead of localization we have implemented tempering to the

ensemble transform particle filter (TETPF). We have shown that iterations based on
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temperatures [52, 64] handle notably strongly nonlinear cases and that TETPF is able
to predict multimodal distributions for high-dimensional problems.

In this chapter, we consider a steady-state single-phase Darcy flow model. This
groundwater model was first used as benchmark for inverse modelling in [10]. It has
been used as a test model for the identification of parameters, for example with iterative
regularization methods [39], an ensemble Kalman approach [45], and in our previous work
with particle filtering |77, 78|. In this chapter, in addition to uncertain log permeability
defined as a Gaussian process, we assume an error in boundary conditions that is non-
Gaussian distributed. We note that error in boundary conditions of the groundwater
model gives a nonlinear response, thus model error is non-additive. We compare TETPF
to a regularized ensemble Kalman filter [43].

The regularized ensemble Kalman filter is a robust ensemble-based data assimilation
method, which assumes Gaussian probabilities. It solves an optimization problem for the
mean and approximates variance with an ensemble. It has been employed for history
matching applications for example in [57, 58]. It has been shown that the ensemble
Kalman filter is able to estimate skewed probabilities with frequent observations [26, 31].
However, it fails to estimate multimodal probabilities, e.g. [78].

Our goal is to investigate whether pressure estimation is sensitive to uncertain bound-
ary conditions, and to compare T(L)ETPF to R(L)EnKF (with and without localiza-
tion). We assume that we have information regarding the sources of errors. That
is, we assume we have precise knowledge that the uncertainties arises from boundary
conditions and permeabilties. We further assume that we have information about the
statistical properties of errors and the prior probability density function. This is an
idealized setting, that however allows to check sensitivity of a data assimilation method

to uncertainty in boundary conditions, which is also relevant for practical applications.

4.1.1 Bayesian Inference

Both T(L)ETPF and R(L)EnKF are based on Bayesian inference. Assume u € U
and ¢ € Q are two independent random variables. Later on we will have different
assumptions on u and g. We denote by g: & x @ — YV the nonlinear forward operator
that arises from a model under consideration. In other words, g maps the space U x Q of

uncertain quantities to the observation space ) defined in terms of observable quantities,
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which are related to the solution of the model as

y=g(u,q).

Assume that y,o € YV is an observation of y. Then according to the Bayes’ formula

ﬂ-(uvqm/obs) X ﬂ-(yobs‘uvq)ﬂ-(u)ﬂ-(q) (41)

up to a constant of normalization, where 7 is a probability density function.

For any smooth function f: U — U, its expectation is defined as

Flu) = / duf (u) / degr (24, qlYons)- (4.2)

It is common, e.g. [31], to express the joint probability density function as

T(Yons| U, q) = /W(yobs,ylw q)dy = /ﬂ(yobsly)ﬂ(ylu, q)dy (4.3)

and 7(y|u,q) = 6(y — g(u, q)), where the transition density is the Dirac delta function.

4.2 Tempered Ensemble Transform Particle Filter

The goal of the Bayesian approach is to compute the posterior given by Eq. (4.1)—(4.3).
Sequential Monte Carlo (SMC) is an approximation of the Bayesian posterior. An SMC
method creates a finite sample from a prior, that is easy to sample from, and corrects for
the differences between the prior and the posterior by computing so-called importance
weights. Finally, a resampling is performed according to those weights in order to create

a new sample.

4.2.1 Importance weights

We consider discrete random variables and define Y = {u1,...,up} C U, u; € R", and
Q={q,....,qu} C Q, q; € R™. The model has unknown quantities u'%¢ € R" and
q"™° € R™ that we wish to estimate from noisy observations y.., € R, where K < n

and Kk < m.

Yobs := g(utrue’ qtrue) 4 n,
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where n ~ N (0, R) with R being a known covariance matrix of the observation noise.

The conditional probability density function is given by

1 _
T(Yobs|y) o exp [—Q(y — Yors) Ry — yobs):| :

Thus a discrete approximation to Eq. (4.3) is

T(Yobs|U, @) o exp [—; (9(u,q) = Yors) B (9(u, q) — yobs)] ,

where / denotes the transpose. We assume the priors w(u) and 7(q) are uniform, then

denoting v = [u q|’ the expectation of a function f of v is

Here the importance weights are

h(v;)
Zj]\/il h(v;)

w = . where h(v) = exp |~ (90.0) = o) B (000, - s

4.2.2 Tempering

An SMC method suffers when the likelihood h(v) Eq. (4.4) is peaked, which could be
due to very accurate data, amount of data or when the prior poorly approximates the
posterior. A tempering iterative approach tackles this problem by introducing temper-
atures 0 = ¢y < --- < ¢ = 1 and corresponding bridging likelihoods h(v)(®*—%:=1) for
t=1,...,T. A tempering parameter ¢; is typically chosen based on effective ensemble

size u .
ESS,(¢) := [Z w?(qﬁt)] , (4.5)
=1

such that ESS does not drop below a certain threshold 1 < Mipresh < M. A bisection
algorithm on the interval (¢;_1,1] can be used to solve (4.5) [45]. If ESS;(1) > Minresh,

then we can simply set ¢; = 1 as no further tempering is thus required.
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4.2.3 Deterministic resampling

In order to avoid filter degeneracy, each tempering iteration ¢ needs to be supplied
with resampling. Resampling is typically performed by a stochastic approach, which
introduces an additional error. In TETPF a tempering iteration ¢ is accompanied by a
deterministic resampling based on optimal transportation. This resampling transforms

particles with weights defined in terms of bridging likelihood

o_ () o

2

where h(v) is from 4.4, to particles with uniform weights 1/M by maximizing the cor-
relation between the particles. Thus, the optimal transport S is an M x M matrix with

si; that satisfy

(de—¢t—1)
M ) M h (’Uz-t)) t 1
545 2 0, Zsijzﬂa Zsij: Vi Gr—try)’ (4.6)
i=1 j=1 S h (v(.t)> et
=t N7
and minimizes the cost function
M 2
Z Sij Ugt) — Ug-t)H . (4.7)

1,j=1

This gives rise to a resampling with replacement and a stochastic transport matrix S. In

order to have a deterministic optimal transformation the following proposal is adopted
M

o;=MY vs; for j=1,..M, (4.8)
=1

where §;; is a solution to the optimization problem Eq. (4.6)—(4.7). To solve the linear
transport problem for multivariate variables Eq. (4.6)—(4.7), we use FastEMD algorithm
of [69]. Tts computational complexity is of order M?In M, and the algorithm is available
as a MATLAB and a Python subroutine.
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Localization

The Ensemble Transform Particle Filter, as any particle filter, does not have assumptions
about the posterior. Therefore it still demands a large ensemble. For high-dimensional
problems this is computationally unfeasible. Hence one has to decrease the number
of degrees of freedom, i.e. by distance-based localization of [74, 77| abbreviated here
LETPF.

Assume we have a numerical grid of N x N size with grid cells denoted by X'
for | = 1,...,N%. Assume that the uncertain parameter w is not grid-based. We
assume, however, that there exists a matrix .4 such that log(k) = Aw is grid-based, thus
log(k') = log[k(X")]. Then for the local update of an uncertain parameter log(k') we

introduce a diagonal matrix C' € R®** in the observation space with an element

R 1.0
(CNee=p (”XT”> for £=1,...5. (4.9)

rloc

lo

Here 7 denotes the location of the observation, r'°° is a localization radius and p(-) is a

taper function, such as Gaspari-Cohn function by [33]

1= 3724 38 4 1t — 1P, 0<r<1,
p(r)=Q=3rt+4—-5r+2r2+ 28 -2+ Lr5  1<r<2 (4.10)
0, 2<r.

C

The localization radius 7°° is typically tuned by a trial-and-error approach in terms of

estimation error.
LETPF modifies the likelihood Eq. (4.4) as following

o) = exp |5 (o) v (€D (o(wa) -] (@)

~ [l
where C is the diagonal matrix given by Eq. (4.9). Then the optimal transport S s

an M x M matrix with entries slij that satisfy

l M l . M l B (Ugt)>(¢t—¢t71)

i > 07 i s i = s 4.12

Sij ;3 j j;s j % y (Ivgt))(@*(i’t—l) ( )
7=1
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and minimizes the cost function

M

Z [log <kl ot )> —log (k;’(t))] ’ . (4.13)

i,j=1

The estimated parameter log(k!) is given by

log( kl MZsmlog< ) for j=1,..., M, (4.14)

where sl] is a solution to the optimization problem Eq. (4.12)-(4.13). We note that lo-
calization reduces LETPF to a univariate transport problem. Solving the optimal trans-
port problem for univariate variables Eq. (4.12)—(4.13) is computationally less expensive
than for multivariate variables Eq. (4.6)—(4.7), since the marginal computational cost is
in sorting M numbers. We use an algorithm described in [74] to solve the univariate
linear transport problem Eq. (4.12)-(4.13). LETPF, however, loses direct dependence
on the parameters at other grid cells. Update of the uncertain grid-based parameters
log(k') could be performed in parallel for each I = 1,..., N2. Then the estimated model
parameter is @ = A~ log(k).

To estimate g, we solve the optimal transport problem with s * that satisfy

h <[u qgt)}/) o

M 1 M
G G _ G _
Sz] 2 07 ZSU - M? ZSZJ - M (¢t*¢>t71)’ (415)
i=1 j=1 Z h <|:’ELJ q&t)} )
j=1
and minimize the cost function
S ) 0
G (-~ t t
Z Sij (Huz —4q; H ) : (4.16)
i,j=1
The estimated parameter q is given by
MZ qu . j=1,....M, (4.17)
where ES is a solution to the optimization problem Eq. (4.15)— (4.16). Finally, we set
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b=aq

4.2.4 Mutation

The advantage of deterministic resampling is that it reduces sampling noise. The disad-
vantage of deterministic resampling is that for a deterministic and non-chaotic system
the filter collapse is unavoidable unless particle mutation is introduced. The mutation is
performed over an index 1 < 7 < Tyax With prescribed Tnax. At the first inner iteration
7 =1 we assign v = v.

We denote by vf a component of v;, where 1 < £ < n+m. If vf has a Gaussian

prior, then we use the preconditioned Crank-Nicolson pecn-MCMC method from [17]

Ufyprop _ \/mvf +B& for i=1,...,M, (4.18)

where {51-}5‘11 is from normal distribution. The parameter g € [0, 1) is a free parameter.
For uniform prior Ula, b], we use random walk

U'E,Prop:vf+§i for i=1,..., M, (4.19)

K3
where & ~ Ula—b, b—a], and we project vf’pmp to [a, b] when necessary. The proposal
Eq. (4.18)- (4.19) is accepted

(4.20)

h(vpr0p)¢t+1
v = vPP  with the probability —min {1, } ,

h(v)®t+1

and the inner iteration 7 is increased by one. We choose 3 based on acceptance rate
being between 20% and 30% by the last iteration 7. The mutation Eq. (4.18)—(4.20) is
repeated until 7 = 7%, then we assign vt = g,

After that, the next tempering iteration proceeds by computing the weights Eq. (4.4),
computing the new temperature ¢ based on Eq. (4.5) ESS > Mipresn, performing de-
terministic resampling either by Eq. (4.6)—(4.8) for the non-localized method or by
Eq. (4.12)—(4.17) for the localized method, and concluding by mutation Eq. (4.18)-
(4.20) for Tyax iterations. The algorithms stops when the final temperature ¢ reaches
one. Recall that T is the total number of tempering iterations that corresponds to ¢
reaching one. Thus T is not predefined, which can lead to computationally unfeasible it-
eration times. TETPF demands T'M (Tyax +1) evaluations of the model g, and TLETPF
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demands T'M (Tmax + 2) evaluations of the model g.

4.3 Regularized Ensemble Kalman Filter

REnKF is based on the Ensemble Kalman Filter with perturbed observations
y? =Y TN for i=1....M,

where 7; ~ N (0, R) with R being a known covariance matrix of the observation noise.
We define an M-dimensional vector with all elements equal to 1 as 1;;. REnKF solves

the following set of equations for t = 0,...,T — 1 with v(9) being an initial ensemble

- S /
B — Ml— : (g(u(t),q(t)) _g(u(t)vq(t))1§w> (g(u(t),q(t)) _ g(u(t)’q(t))lljw) 7

B = g (v =01y, ) (g(u. ") — gfu g 1)

-1
vEtH) = vz(»t) + B"® (ng + ,u(t)R> (y? —g(u E ),qit))> for i=1,...,M. (4.21)

The regularized parameter 1) is chosen such that

e (o) (e =) 0 (e )|
(4.22)

for predefined 2 € (0,1). This is achieved by the bisection method p™*! = 2740 for
7 =0,..., Tmax and an initial guess x°. We assign p(!) = p™ax where Tmayx is the first

integer for which Eq. (4.22) holds.
Finally, REnKF is stopped based on discrepancy principle, namely when

| B2 (v — 9(w®,aM)) | < 1/02|| B2 (4.23)

with 1 being the observation noise. Thus the total number of iterations T is not prede-
fined, as in T(L)ETPF. A rule of thumb is to choose © € (0.5,1), and we choose 2 = 0.7

for all the numerical experiments. REnKF demands T'M + 1 evaluations of the model

g.
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4.3.1 Localization

In the Ensemble Kalman filter, covariance-based localization of the Kalman gain |38, 41|
can be applied in order to remove spurious correlations due to a small ensemble size.
We assume again having a numerical grid of N x N size with grid cells denoted by
X! for I = 1,...,N2. Assume that the uncertain parameter w is not grid-based. We
assume, however, that there exists a matrix A such that log(k) = Aw is grid-based,
thus log(k!) = log[k(X"')]. Then Eq. (4.21) for a localized EnKF, denoted here LEnKF

is rewritten as

log (kf.t“)) — log (kgﬂ) +Co B (ng n ;N)R)fl (y? — g(u?, qgt))) for i=1,...

i
-1
¢V =g+ B (B yOR)  (y) - g(wl” q\")) for i=1,...M.
Here o denotes the element-wise product and C is a distance-based correlation matrix,
an element of which is

R Xl _ ot
Cl,g:p(HH> for 1=1,...,N? and ¢=1,...,k, (4.24)

7,loc

loc

where 7¢ denotes the location of the observation, 71°° is a localization radius and p is

given by Eq. (4.10). The covariance matrices B% , B¥ and B% are

1 - - ’
B = (g(uu), a®) = g(u®, q<t>)1'M) (g(u(t), q") — g(ul®), q<t>)1’M) :
1 - - /
B — (log(k:(t)) - log(k(”)l'M) (g(u(t),q(t)) —~ g(u(t)vq(t))l’M) :
1 o - /
B = (q(t) — q(t)l’M> <9(u(t), q") — g(u®, q(t))l'M) :

RLEnKF also demands T'M + 1 evaluations of the model g, as REnKF.

4.4 Numerical experiment

We consider a test case of estimating uncertain Gaussian permeability. We consider a

steady-state single-phase Darcy flow model defined over an aquifer of a two-dimensional
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physical domain D = [0, 6] x [0, 6], which is given by
=V [k(z,y)VP(z,y)] = F(z,y) for (z,y) € D,

where V = (9/0z 90/0y)’, - is the dot product, P(z,y) is the pressure, k(z,y) is the

permeability, and the source term is

0 for 0<y <4,
F(r,y) =< 137 for 4 <y <5,
274 for 5 <y <6.

The boundary conditions are a combination of Dirichlet and Neumann boundary condi-

tions

OP oP oP
P(z,0) =100, —(6,y)=0, —k(0, 0, 500(1 —(z,6) =0
(2,0) 5, 69 =0, (0,9) 5 (0,y) = 500(1 + q), ﬁy(x’ ) =0,
where ¢ denotes error in boundary conditions.
We implement a cell-centred finite difference method to discretize the domain D

into N x N grid cells X' of size Az?. We solve the true forward model G on a fine grid
N = Ny = 140 for the true solution. Then the synthetic observations are obtained by

Yobs = L(Ptrue) + n.

An element of L(P"™"®) is a linear functional of pressure, namely
Lé(Ptrue _ Z HXl €”2 Ptrue,lA 2 £ /=1
2772 exp xf for £=1,...,k

where 7¢ denotes the location of the observation, x = 36 the number of observations,
Azs = 6/N¢, and o0 = 0.01. The observation locations are displayed in Fig. 4.4 as circles.

Observation noise is denoted by 1 and it is drawn from N(0, R). Observation error
covariance R is known, and we choose it such that the norm of the noise is 1% of the
norm of the data. Such a small noise makes the data assimilation problem hard to solve,
since the likelihood is very peaked and a non-iterative data assimilation approach fails.

Both the true permeability and an initial ensemble are drawn from the same prior

86



Chapter 4 4.4. Numerical experiment

distribution as the prior includes knowledge about geological properties. We assume log
permeability is generated by a random draw from a Gaussian distribution N (log(5), C).
Here 5 is an N2 vector with all elements being 5 and C is the Whittle-Matern correlation,

an element of which is given by

1 dlﬁ dlﬁ
c¥ = @71(1 <5> for 1,0=1,...,N°

Here d* is the distance between two spatial locations, § = 0.5 is the correlation length,
I' is the gamma function, and T is the modified Bessel function of the second kind
of order one. We denote by A\ and ~ eigenvalues and eigenfunctions of C, respectively.

Then, following a Karhunen-Loeve expansion, log permeability is

N2
log(k!) = log(5) + Z VAR for 1=1,...,N?,
=1

l 2

where u* is i.i.d. from a normal distribution for £ =1,..., N~°.

Therefore the initial parameter u is drawn from N (0, 1), while the initial boundary
condition error ¢ is drawn from a uniform distribution U[0 0.5]. We then solve the
incorrect forward model g on a coarse grid N = N, = 70. The uncertain parameter
u has the dimension n = 4900, which makes the dimension of v n + m = 4901. We
perform 40 numerical experiments with both T(L)ETPF and R(L)EnKF to check initial
sample sensitivity. We conduct numerical experiments with ensemble sizes 100 and 1000.
We compare the methods to a pecn-MCMC method without model error in boundary
conditions. An MCMC experiment was conducted using 100 chains with the lengths 10,
burn-in period 10°, and thinning period 10® each. For T(L)ETPF we choose Tax = 20
and 8 = 0.045 for mutation, since this choice gives good mixing with acceptance rate at
the final tempering iteration around 20%. We set the threshold for ESS to be Mipresh =
M/3.

We define the root mean square error (RMSE) of a mean field = = 1/M Zf\il =; as

RMSE(Z) :\/(E - EMCMC)T (E — gMoMe)

for either log permeability = = log(k) or pressure = = P. To choose a favouring

C

localization radius, we perform a numerical experiment with 7°¢ ranging from one to
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six with an increment of one. Then we define the favouring localization radius as a
localization radius that gives the smallest RMSE in terms of mean log permeability for
that numerical experiment. For TLETPF the favouring localization radius is r'°¢ = 1
for both ensemble sizes 100 and 1000. For RLEnKF the favouring localization radius is
rl°¢ = 3 for both ensemble sizes 100 and 1000.

4.4.1 Data assimilation without localization

In this section we compare REnKF to TETPF, thus without localization. In Fig. 4.1,
we plot RMSE of mean log permeability on the left and of mean pressure on the right
at different ensemble sizes for both TETPF and REnKF. When the uncertainty is only
in permeability, REnKF outperforms TETPF for estimation of log(k), and as a con-
sequence, for estimation of pressure, as can be seen in Fig. 4.1(a—b) and as has been
reported in the literature, e.g. [77, 78]. When uncertainty is in both permeability and
boundary conditions, we investigate the method’s performance for two numerical set-ups.
The first numerical set-up is when we account for model error in boundary conditions.
The second numerical set-up is when we do not account for model error in boundary
conditions. In both set-ups REnKF outperforms TETPF as seen in Fig. 4.1(c—f).

Let us now examine these numerical experiments in more detail. First, we compare
numerical experiments when we account for error in boundary conditions to numerical
experiments with no error in boundary conditions. Comparing Fig. 4.1(d) to Fig. 4.1(b),
we observe that the pressure estimation does not change. At the same time comparing
Fig. 4.1(c) to Fig. 4.1(a), we observe that the log permeability estimation becomes worse
when model error is present, as to be expected.

Next, we compare numerical experiments when we do not account for error in bound-
ary conditions to numerical experiments when we do account for error in boundary con-
ditions. Comparing Fig. 4.1(e) to Fig. 4.1(c), we observe that for REnKF at ensemble
size 1000 and TETPF at both ensemble sizes log permeability is better estimated when
a method does not account for error in boundary conditions. Pressure is also better
estimated by both methods when error in boundary conditions is not accounted for, as
seen from comparing Fig. 4.1(f) to Fig. 4.1(d).

In order to further investigate this result, we compare REnKF and TETPF to an
estimation from a pecn-MCMC with error in boundary conditions. In Fig. 4.2 we plot

the posterior approximations of q. We recall that the prior for ¢ is U[0 0.5]. We observe
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Figure 4.1: RMSE for log(k) is on the left. RMSE x10? for pressure is on the
right. A dashed line indicates the median, a shaded area indicates the 25 — 75
percentile range over 40 simulations. Ensemble size is on x-axis. REnKF is shown
in grey. TETPF is shown in blue. (a)-(b) no model error, (¢)—(d) accounting for
model error, and (e)—(f) not accounting for model error.

that MCMC gives a skewed posterior. TETPF has better resemblance to the posterior
obtained by MCMC, while REnKF gives negative values of ¢ (negative values of ¢ for
TETPF and MCMC are only due to kernel representation for plotting). We however
observed that pressure is better estimated by both methods when error in boundary

conditions is not accounted for. Thus by allowing for error in boundary conditions and
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not constraining it by data, we obtain a better pressure estimation.

TETPF REnKF
—100
6 1000

-0.2 0 0.2 0.4 0.6

Figure 4.2: Posterior of error in boundary conditions ¢q. On the left is TETPF
and on the right is REnKF. Results for the ensemble size 100 are shown in blue
and for 1000 in pink, where one line is for one simulation out of 40. MCMC is
shown in black.

4.4.2 Data assimilation with localization

Next we compare RLEnKF to TLETPF, thus with localization. In Fig. 4.3, we plot
RMSE of mean log permeability on the left and of mean pressure on the right at dif-
ferent ensemble sizes for both TLETPF and RLEnKF. When uncertainty is only in
permeability, TLETPF outperforms RLEnKF for estimation of log(k) and as a conse-
quence for estimation of pressure, as can be seen in Fig. 4.3(a-b). This shows that
localization drastically improves TETPF, such that it outperforms RLEnKF even for
normally distributed log(k).

Next, we compare numerical experiments when we account for error in boundary
conditions to numerical experiments with no error in boundary conditions. Comparing
Fig. 4.3(d) to Fig. 4.3(b), we observe that pressure estimation does not change. At the
same time comparing Fig. 4.3(c) to Fig. 4.3(a), we observe that the log permeability esti-
mation becomes worse when model error is present, as is to be expected. Here TLETPF
again outperforms RLEnKF but only at a large ensemble size 1000. For comparison, we
show results of MCMC, when error in boundary conditions is accounted for. In Fig. 4.4
we plot mean of log permeability at the top and variance of log permeability at the bot-
tom for MCMC, TLETPF, and RLEnKF at ensemble size 1000. We observe that both

methods give a reasonably good approximation of the MCMC mean log permeability.

90



Chapter J 4.4. Numerical experiment

13 (a) no error in BC 6.8 (b) no error in BC
RLENKF| = focccccccoccces=ssssss======
12 TLETPF |- 66" T T T T TTTTTTTTTTTT T TTTTT 3
RLEnKF
i 6.4 -

" - TLETPF
— =] 6 2 L 4
= = 6.

e 10 X
b e L e o o6-
€ == s
To-- 58
8 e T
T 5.6
7 S05 5
5.4-
6
100 1000 100 1000
(c) accounting for error in BC (d) accounting for error in BC

RLENKF S esoooooooooooos

12 TLETPF | L ——— ———
Rt RLENKF
ME T 1 6.4y TLETPF ||

mO
2T "_‘_-_.____ R 62"
] T~ &
) - gy
= 9 @
e« s
rs58-
8 L
5.6-
7
5.4-
6
100 1000 100 1000
13 (e) not accounting for error in BC 6.8 (f) not accounting for error in BC

RLENnKF
12 TLETPF |- 66" e

1 E—— -0 6.4
e S — o RLENKF
O — T 62 TLETPF
) =3 o
= b6
T 9 Q
=
rs58
8
5.6
7
5.4
6
100 1000 100 1000

Figure 4.3: RMSE for log(k) is on the left. RMSE x 102 for pressure is on the right.
A dashed line indicates the median, a shaded area indicates the 25 — 75 percentile
range over 40 simulations. Ensemble size is on x-axis. RLEnKF is shown in grey.
TLETPF is shown in blue. (a)—(b) no model error, (¢)—(d) accounting for model
error, and (e)—(f) not accounting for model error.

The variance, however, is underestimated.

Next, we compare numerical experiments when we do not account for error in bound-
ary conditions to numerical experiments when we do account for error in boundary con-
ditions. Comparing Fig. 4.3(e) to Fig. 4.3(c), we observe that for RLEnKF and TLETPF

log permeability is better estimated when a method accounts for error in boundary con-
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TLETPF, M=1000 RLEnKF, M=1000

0.6

TLETPF, M=1000 6 RLEnKF, M=1000

0.05 0.1 0.15

Figure 4.4: Mean log(k) at the top and variance of log(k) at the bottom for
a numerical experiment in which error in boundary conditions is accounted for.

MCMC is on the left, with circles for the observation locations. A simulation with
ensemble size 1000 is in the middle for TLETPF and on the right for RLEnKF.

ditions. This is opposite to results of REnKF and TETPF. When it comes to pressure
estimation, TLETPF gives equivalent performance for all three test cases. This means
that TLETPF is not sensitive to error in boundary conditions in terms of pressure
estimation. RLEnKF, however, better estimates pressure when error in boundary con-
ditions is not accounted for, as seen from comparing Fig. 4.3(f) to Fig. 4.3(d). The same
was observed in experiments with REnKF. When comparing RLEnKF and TLETPF in
terms of the posterior approximations of ¢ shown in Fig. 4.5, we observe that none of

the methods give estimations close to MCMC.

R(L)EnKF at large ensemble size

We further investigate R(L)EnKF (with and without localization) performance in the

case when error in boundary conditions is not accounted for. We increase ensemble
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TLETPF RLEnKF
—100 —100

6t 1000
—MCMC

Figure 4.5: Posterior of error in boundary conditions ¢g. On the left is TLETPF
and on the right is RLEnKF. Results for ensemble size 100 are shown in blue and
for 1000 in pink, where one line is for one simulation out of 40. MCMC is shown
in black.

size to M = 6000 for the localized version and to M = 7700 for the non-localized
version. We have tested localization radius between 1 and 8 with an increment of 1, and
rl°¢ = 6 gave the smallest RMSE. We compute RMSE of mean log permeability and
mean pressure and display them in Fig. 4.6 in grey for R(L)EnKF. We observe that as
ensemble size increases pressure becomes better estimated. For 1000 and 6000 members,
the improvement in P can be explained by the improvement in log(k), as seen on the left
of Fig. 4.6. Comparing RLEnKF with 6000 members to REnKF with 7700 members,
we observe that better pressure estimation can only be explained by better estimation
of ¢. In Fig. 4.6, we show TLETPF with ensemble size 1000 in pink. We observe that
R(L)EnKF outperforms TLETPF greatly. For TLETPF we were not able to increase

the ensemble size beyond 1000 due to high computational costs.

4.4.3 Computational costs

In Tab. 4.1, we show the number of iterations that a method takes on average. We should
note that for R(L)EnKF we put a limit of 20 iterations. When performing numerical
experiments where no model error is present or when model error is accounted for, we
observed that R(L)EnKF attains the stopping criterion (4.23) in less than 20 iterations
for 2 = 0.7. When performing numerical experiments when model error is not accounted
for, we observed that in the majority of experiments after 20 iterations the data misfit

starts to increase and the stopping criterion is not attained. Decreasing (2 to values
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Figure 4.6: RMSE for log(k) is on the left, and RMSE x10? for pressure is on
the right for the test case where error in boundary conditions is not accounted
for. A dashed line indicates the median, a shaded area indicates the 25 — 75
percentile range over 40 simulations. On the x-axis numbers stand for ensemble
sizes and L stands for a localized method. R(L)EnKF is shown in grey. TLETPF
for ensemble size 1000 is shown in pink.

less than 0.5 solves the issue of attaining the stopping criterion but the data misfit is
too high for sensible estimations. By the trial-and-error approach, we discovered that
it is preferable to keep © = 0.7 and put a limit of 20 total iterations. For T(L)ETPF
we do not put any limit on total number of iterations. The wall clock of one iteration
of TETPF is 70 seconds, of TLETPF is 78 seconds, of REnKF is 9 seconds, and of
RLEnKF is 10 seconds.

Table 4.1: Mean over 40 simulations of number of iterations for T(L)ETPF and
R(L)EnKF at ensemble size 1000.

TETPF TLETPF REnKF RLEnKF

no ME 13 28 8 11
accounting for ME 14 35 11 15
not accounting for ME 19 30 19 19

4.5 Conclusions

We have considered a 2D steady-state Darcy flow with uncertain permeability. Observa-

tions of pressure at 36 locations were used to infer permeability on a grid of 70 x 70. The
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corresponding inverse problem was solved using two methods: regularized (localized) en-
semble Kalman filter—R(L)EnKF-—and tempered (localized) ensemble transform parti-
cle filter—T(L)ETPF. The ensemble Kalman filter updates uncertain parameters based
on an assumption of Gaussian probabilities. Therefore mean and variance need to be
estimated. The ensemble Kalman filter makes further assumption that variance can be
approximated by an ensemble. Due to small ensemble size, variables exhibit spurious
correlations. Spurious correlations can be removed be employing localization—where
the covariance matrix in the Kalman gain is multiplied by a distance-based matrix, for
example. Moreover, it has been recognized that the ensemble Kalman filter overfits ob-
servations, and thus requires regularization. Therefore in our numerical experiments we
have used the regularized (localized) ensemble Kalman filter.

The ensemble transform particle filter makes an assumption that probability can
be approximated by an empirical measure. It employs optimal transport to transform
a prior measure into a posterior. It correctly estimates mean but not variance. The
ensemble transform particle filter is a computationally demanding algorithm, since its
complexity is of order M?1n M where M is the ensemble size. The ensemble transform
particle filter suffers from spurious correlations as does the ensemble Kalman filter, and
thus requires localization. There exists only one type of localization for the ensemble
transform particle filter, which requires solving a univariate optimal transport problem at
every grid, although that can be done in parallel. It has been also recognized that when
observations are very accurate or numerous, the ensemble transform particle filter needs
tempering—in which the prior is transformed into the posterior over several iterations.
Therefore in our numerical experiments we have used a tempered (localized) ensemble
transform particle filter.

We have performed experiments with ensemble sizes 100 and 1000 for both R(L)EnKF
and T(L)ETPF. We have shown that localization improves estimations obtained by
REnKF and TETPF in all considered numerical experiments with 2D steady-state Darcy
flow. First, we have considered uncertainty only in permeability. For ensemble sizes 100
and 1000, we have shown that TLETPF outperforms both REnKF and RLEnKF. Next,
we have considered uncertain permeability and uncertain boundary conditions. We have
shown that TLETPF outperforms both REnKF and RLEnKF but only at a large en-
semble size of 1000. Finally, we have considered uncertainty in both permeability and
boundary conditions, but we did not account for error in boundary conditions in the data
assimilation. In this set-up RLEnKF outperforms both TETPF and TLETPF. More-
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over, T(L)ETPF is computationally more demanding than R(L)EnKF and requires more
iterations than R(L)EnKF.
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Discussion and Outlook

This thesis investigates the ensemble data assimilation approach to accurately estimate
the probability of the petrophysical parameters defining the reservoir models. Among
the frequently employed ensemble data assimilation methods in reservoir modeling prob-
lems, variations of ensemble Kalman filter have proved to be highly efficient. However,
the ensemble Kalman filter approach corrects for the mean and the variance of the pa-
rameters and thus makes the assumption of Gaussian probability, which is not always
the case in practical scenarios. Such a fundamental assumption presents a severe draw-
back when addressing systems with non-Gaussian posteriors, e.g. reservoir models with
channel flow configurations (Section 3.4.2). In this thesis we explore another class of
ensemble data assimilation methods: particle filters. Particle filters have the advantage
of not making any assumption of Gaussianity regarding the posterior. They are capable
of handling non-linear systems and can provide more complete information rather than
the first two moments. For a long time particle filters have been overlooked as they are
known to suffer from the curse of dimensionality. The curse of dimensionality makes

it highly improbable that the samples will reach the high-probability areas of posterior
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distribution. In such situations the samples show high variance in weights (a posterior
approximation), i.e. a few samples have large weights, while all the other samples have
weights close to zero. This is termed as weight degeneracy, that is measured in terms
of effective ensemble size (ESS) and in scenarios of extreme weight degenracy ESS = 1.
Thus the posterior is approximated by a few (or even one) particles that might be far
away from the state. Therefore, particle filters appeared impractical even for systems
with dimensions 10, because the ESS quickly reduces to one, unless a very large en-
semble size is used [89]. However, with ongoing developments in particle filtering, they
are emerging as a promising data assimilation method. Examples of such developments
are: resampling (when samples with low weights are abandoned and samples with high
weight are duplicated to attenuate weight degeneracy), mutation (when Markov kernels
are used to modify the samples in order to maintain diversity in sample population)
and localization (when grid-dependent parameters are updated by taking into account
only nearby observations to reduce dimension of problem associated with each observa-
tion). This thesis in particular focuses on a deterministic resampling based on optimal
transportation, which is coined in [74] as ensemble transform particle filter (ETPF).
Unlike the standard resampling approaches, ETPF modifies the particles such that the
covariance between them is maximized.

To investigate the behavior of ETPF for parameter estimation problems, we under-
take a steady-state single-phase Darcy flow model with permeability as an uncertain
parameter. Such a simple test case allows for an in-depth examination of the method.
Since the parameter-to-output map from the underlying model is nonlinear, the resulting
posterior is non-Gaussian even if the prior and the noise distribution are Gaussian. The
results obtained in this thesis show that for a low-dimensional problem ETPF provides
a good approximation of the posterior. For a high-dimensional problem, ETPF requires
updating uncertain grid-dependent parameters locally due to otherwise occurring weight
degeneracy. A distance-based localization is performed such that each grid-dependent
parameter is updated one at a time by taking into account only nearby observations. Lo-
calization improves the mean and variance approximation, though worsens the posterior
distribution approximation.

When the prior differs substantially from the posterior or numerous accurate obser-
vations are available, then the issue of weight degeneracy in particle filtering becomes
more prominent. To handle such scenarios an iterative approach of particle filtering

based on tempering is advised. An adaptive sequential Monte Carlo (SMC) method is
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an iterative particle filtering approach which provides a particle approximation of inter-
mediate measures between the prior and the posterior, instead of the posterior measure
directly. As the iteration proceeds, the intermediate measure gets further away from the
prior but closer to the posterior. The intermediate measures are chosen based on ESS
being more than some predefined value, which handles the weight degeneracy issue. We
demonstrated that the deterministic resampling approach based on optimal transport in
adaptive SMC is promising for inverse modelling. The numerical experiments show that
the proposed approach estimates well both Gaussian and non-Gaussian distributions at
small ensemble size of 100. Adaptive SMC with ensemble Kalman filter does not con-
verge to the true non-Gaussian posterior, while with monomial resampling requires much
more samples than 100 to estimate well the true Gaussian posterior. However, more the-
oretical studies have to be performed before the optimal transport-based adaptive SMC
approach is ready for realistic applications, due to time-dependency of an underlying
flow model and the multiphase nature of a flow, for example.

Moreover, the ensemble transform particle filter we have used throughout this the-
sis is first-order accurate. Therefore, it underestimates the variance for finite ensemble
sizes. In 2017, [2] introduced the second-order accurate ensemble transform particle
filter which correctly estimates variance. This approach modifies the optimal trans-
portation map by adding a correction term based on the solution of a Riccati equation.
However, the second-order accurate ETPF loses the desirable property of non-negative
transformations. The numerical experiments, which are not presented in this thesis,
demonstrated that the additional computational burden of solving the Riccati equation
is not justifiable when compared with the gain in variance.

Last but not least, the ensemble transform particle filter is computationally demand-
ing. Sinkhorn approximation of the ETPF [19] alleviates the computational expense
but decreases the ensemble spread. Therefore, employing Sinkhorn approximation to
the second-order accurate ensemble transform particle filter both decreases computa-
tional costs and improves variance estimation [2]. Though, it is important to note that
Sinkhorn approximation modifies the original cost function by introducing a regulariza-
tion term and each different regularization parameter results in a different minimizer of
the cost function [2|. Thus, the resulting transportation map is not optimal. The per-
formance of this approximation requires tuning of the regularization parameter, which
impacts the quality of the transport map and hence the updated samples. Therefore,

the second-order accurate ETPF has a high potential for inverse problems in reservoir
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modeling but requires further investigation for its application for inverse problems in

reservoir modelling.
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Summary

Efficient utilization of oil/gas reservoirs is of paramount importance to meet increasing
global energy demand. The predictions of reservoir models have large economic and en-
vironmental impact, and hence, it becomes imperative to develop reliable mathematical
models to thoroughly describe their behavior. In this thesis, we investigate the ensemble
transform particle filter approach to accurately estimate the petrophysical parameters of
reservoir models. For this purpose, we undertake a steady-state single-phase Darcy flow
model with permeability as an uncertain parameter. In particular, we focus on prob-
lems where the posterior is non-Gaussian even if the prior and the noise distributions
are Gaussian.

The standard method of choice to tackle such problems is Markov chain Monte Carlo
(MCMC) sampling approach, which is known to be computationally expensive. In this
thesis we explore data assimilation alternatives that are computationally more affordable.
In Chapter 2, we investigate the performance of an Ensemble Transform Particle Filter
(ETPF) for inverse problems. The ETPF is developed on the backbone of a Bayesian
approach of sequential Monte Carlo with the framework of a linear transport problem.
We examine the performance of the ETPF and an Ensemble Kalman filter (EnKF) for
estimating uncertain parameters in low and high-dimensional systems and compare them
to importance sampling. The numerical experiments show that while the ETPF outper-

forms the EnKF for a low-dimensional system, it struggles for a high-dimensional system
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and requires localization to decrease the degrees of freedom. The localized version of
ETPF updates uncertain grid-dependent parameters locally due to otherwise occurring
weight degeneracy. Although localization helps in improving the estimation of mean and
variance, the Kullback-Leibler divergence shows that it deteriorates the approximation
of the posterior distribution. Moreover, the numerical experiments highlight that the
ETPF suffers from sampling error and the issue of weight degeneracy becomes prominent
when handling numerous accurate observations. Therefore, in Chapter 3, we introduce
an optimal transport-based resampling in an adaptive sequential Monte Carlo (SMC) to
tackle these shortcomings of ETPF. We study the behavior of the novel approach in an
elliptic inverse problem of inferring hydraulic conductivity from pressure measurements,
where we employ MCMC as a reference solution. Numerical experiments emphasize that
the optimal transport-based adaptive SMC is promising for high-dimensional systems
with non-Gaussian distributed parameters. Moreover, the results show that the optimal
transport-based adaptive SMC requires smaller ensemble sizes compared to a monomial-
based adaptive SMC to achieve a good estimation of the true non-Gaussian posterior.
Moreover, the results highlight that an adaptive SMC with ensemble Kalman filter does
not converge to the true non-Gaussian posterior. To further investigate the performance
of the proposed method in a more realistic set-up, in Chapter 4 we consider a steady-
state single-phase Darcy flow model, where permeability and boundary conditions are
uncertain. In this chapter we compare the optimal transport-based adaptive SMC to
a regularized ensemble Kalman filter (REnKF), which is an alternative to the adaptive
SMC with ensemble Kalman filter. The REnKF is an iterative ensemble Kalman method
that also introduces intermediate measures, which however are chosen not based on effec-
tive sample size (ESS) but on a discrepancy principle. The discrepancy principle ensures
that an ensemble approximation does not overfit observations, since it leads to increase
in error approximation otherwise. Additionally, we implement a distance-based localiza-
tion within the tempering approach for the optimal transport-based adaptive SMC and
a covariance localization for REnKF. We implement MCMC as a reference solution for
all the test cases. The numerical experiments demonstrate that localization improves
estimations obtained by the REnKF and the optimal transport-based adaptive SMC
in all considered scenarios. For the case when uncertainty is only in permeability, the
localised optimal transport-based adaptive SMC outperforms both localised and non-
localized REnKF for both considered ensemble size 100 and 1000. When uncertainty is

in both permeability and boundary conditions, the results show that the localized opti-
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mal transport-based adaptive SMC outperforms the localized and non-localized REnKF
but only at a large ensemble size of 1000. Furthermore, when uncertainty is both in per-
meability and in boundary conditions but error in boundary conditions is not accounted
for in the data assimilation, the localized REnKF outperforms both the localized and
non-localized optimal transport-based adaptive SMC. Moreover, the optimal transport-
based adaptive SMC is computationally more demanding than the REnKF and requires
more iterations than the REnKF.
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Samenvatting

Efficiént gebruik van olie- /gasreservoirs is van het grootste belang om aan de toenemende
wereldwijde vraag naar energie te voldoen. De voorspellingen van reservoirmodellen
hebben grote economische en ecologische gevolgen, en daarom wordt het noodzakelijk
betrouwbare wiskundige modellen te ontwikkelen om hun gedrag grondig te beschrijven.
In dit proefschrift onderzoeken we het Ensemble Transform Particle Filter om de petro-
fysische parameters van reservoirmodellen nauwkeurig te schatten. Daarvoor gebruiken
we een steady-state één-fase Darcy-stroommodel met permeabiliteit als een onzekere pa-
rameter. We richten ons in het bijzonder op problemen waarbij de a-posteriori-verdeling
niet-Gaussiaans is, zelfs als de a-priori-verdeling en de ruisverdelingen Gaussiaans zijn.

De standaardkeuze om dergelijke problemen aan te pakken is Markov Chain Monte
Carlo (MCMC) bemonstering, waarvan bekend is dat deze computationeel zwaar is. In
dit proefschrift onderzoeken we alternatieven voor data-assimilatie die computationeel
efficiénter zijn.

In Hoofdstuk 2 onderzoeken we de prestaties van een Ensemble Transform Particle
Filter (ETPF) voor inverse problemen. Het ETPF is ontwikkeld met een Bayesiaanse
aanpak van Sequentiéle Monte Carlo binnen het kader van een lineair transportprob-
leem. We onderzoeken de prestaties van het ETPF en een Ensemble-Kalman-Filter
(EnKF) voor het schatten van onzekere parameters in laag- en hoogdimensionale sys-

temen en vergelijken ze met Importance Sampling. De numerieke experimenten tonen
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aan dat hoewel het ETPF beter presteert dan het EnKF voor een laag-dimensionaal
systeem, het worstelt met een hoog-dimensionaal systeem en dat lokalisatie vereist is
om het aantal vrijheidsgraden te verminderen. De gelokaliseerde versie van het ETPF
werkt onzekere grid-afhankelijke parameters lokaal bij vanwege een anders optredende
gewichtsdegeneratie. Hoewel lokalisatie helpt bij het verbeteren van de schatting van
het gemiddelde en de variantie, blijkt uit de Kullback-Leibler-divergentie dat het de
benadering van de a-posteriori-verdeling verslechtert. Bovendien laten de numerieke ex-
perimenten zien dat het ETPF lijdt aan een bemonsteringsfout en dat het probleem
van gewichtsdegeneratie een prominente rol speelt bij het omgaan met grote aantallen
nauwkeurige waarnemingen.

Daarom introduceren we in Hoofdstuk 3 een herbemonstering gebaseerd op optimaal
transport in een adaptieve Sequentiéle Monte Carlo (SMC) om deze tekortkomingen van
ETPF aan te pakken. We bestuderen het gedrag van de nieuwe aanpak in een ellip-
tisch invers probleem van het afleiden van hydraulische geleidbaarheid uit drukmetin-
gen, waarbij we MCMC als referentieoplossing gebruiken. Numerieke experimenten to-
nen dat de optimaal transport adaptieve SMC veelbelovend is voor hoog-dimensionale
systemen met niet-Gaussiaans verdeelde parameters. Bovendien laten de resultaten zien
dat de optimaal transport adaptieve SMC een kleinere ensemblegrootte nodig heeft in
vergelijking met een monomiale adaptieve SMC om een goede schatting van de ware
niet-Gaussiaanse a-posteriori-verdeling te verkrijgen. Bovendien tonen de resultaten dat
een adaptieve SMC met Kalman-filter niet convergeert naar de ware niet-Gaussiaanse
a-posteriori-verdeling.

Om de prestaties van de voorgestelde methode in een meer realistische context
verder te onderzoeken, beschouwen we in Hoofdstuk 4 een steady-state één-fase Darcy-
stroommodel, waar permeabiliteit en randvoorwaarden onzeker zijn. In dit hoofdstuk
vergelijken we de optimaal transport adaptieve SMC met een geregulariseerd Ensemble-
Kalman-Filter (REnKF), dat een alternatief is voor de adaptieve SMC met Ensemble-
Kalman-Filter. De REnKF is een iteratieve ensemble-Kalman-methode die ook tussenti-
jdse maten introduceert, die echter niet worden gekozen op basis van effectieve steekproe-
fgrootte (ESS) maar op basis van een discrepantieprincipe. Het discrepantieprincipe
zorgt ervoor dat een ensemblebenadering de waarnemingen niet overfit, omdat het an-
ders tot een toename van de foutbenadering leidt. Daarnaast implementeren we een op
afstand gebaseerde lokalisatie binnen de temperingsaanpak voor de optimaal transport

adaptieve SMC en een covariantielokalisatie voor REnKF.
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We implementeren MCMC als een referentieoplossing voor alle testgevallen. De nu-
merieke experimenten tonen aan dat lokalisatie schattingen verbetert verkregen door de
REnKF en de optimaal transport adaptieve SMC in alle beschouwde scenario’s. Voor
het geval waarin alleen de permeabiliteit onzeker is, presteert de gelokaliseerde opti-
maal transport adaptieve SMC beter dan zowel gelokaliseerde als niet-gelokaliseerde
REnKF voor de beide beschouwde ensemble-groottes 100 en 1000. Wanneer zowel
de permeabiliteit als de randvoorwaarden onzeker zijn, tonen de resultaten dat de
gelokaliseerde optimaal transport adaptieve SMC de gelokaliseerde en niet-gelokaliseerde
REnKF overtreft, maar alleen bij een groot ensemble van 1000. Bovendien, wanneer
zowel permeabiliteit als randvoorwaarden onzeker zijn, maar de data-assimilatie geen
rekening houdt met de fout in de randvoorwaarden, overtreft de gelokaliseerde REnKF
zowel de gelokaliseerde als de niet-gelokaliseerde optimaal transport adaptieve SMC.
Bovendien is de optimaal transport adaptieve SMC computationeel zwaarder dan de

REnKF, en heeft deze meer iteraties nodig.
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