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0. PREFACE 
This research on citation counts of scientific publications resulted from a co-operation with H.F. 
MOED and A.F.J. VAN RAAN of the REsEARCH POLICY UNIT OF THE UNIVERSITY OF LEIDEN. 

1. INTRODUCTION 

1.1. 
The pattern of the series of yearly citation coup.ts that a paper in a certain scientific field receives, 
expresses in some way the importance of that paper. Therefore it is important to analyse and describe 
this pattern. Since it is reasonable to assume that there is arbitrariness in the series of citation counts 
one should give such a description by a (discrete time) stochastic process. 

The aim of this paper is to model the series of (yearly) citation counts of a paper from a certain 
scientific field as a discrete time process with a conditional distribution dependent on a few parame­
ters characterizing that scientific field. 

1.2. 
Although several authors tried to model such series of citation counts by a discrete time stochastic 
process, it seems to us that either their assumptions made are too simple, or no explicit reference to 
time is made. We recall the papers of CHANG (1975) and DE SOILA PRICE (1976). 

Chang modelled the series of citation counts by an inhomogeneous Poisson process in discrete time: 
the yearly number of citations has a Poisson distribution with mean decreasing exponentially fast as 
time proceeds. Thus between different years the citation counts are independent, which seems to be 
unrealistic. (In the case of so called key papers the process should be homogeneous as Chang claims, 
but then the field of application is very limited.) 

De Solla Price tries to model the citation counts as a (stochastic) pure birth process, but 'without 
explicit reference to time as a variable' as he remarks (seep. 303 of DE SoLLA PRICE (1976)). So the 
dependence structure of the process over time is in fact not analysed. It should be noted however that 
his aim was to explain the marginal stationary distribution of citation counts. 
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1.3. 
We propose a model that satisfies some obvious heuristic requirements. 

Set the publication year of a paper equal to zero. Denote by N, the number of citations, also called 

the citation count, received by a scientific paper in year t + I after publication and let 

S,=N0 +N1 + · · · +N, for t=0,1,2,. ... 
Heuristic reasoning leads to the following requirements that a model for citation counts of a paper 

should minimally satisfy. 

1.3.1. 
The yearly number of citations tends to increase in the first years after publication and to decrease 

afterwards. More precisely, there exists a positive integer T such that the expected number of citations 

JEN, increases fort increasing and t~-r and decreases fort increasing and t>-r. 

The series (JEN0,Jf.Ni, ... ) is often called the expected citation pattern. We will call the series 

(N0,Ni, ... ) the citation pattern of a paper. 

1.3.2. 
Only a small number of publications within a particular scientific field will during a long time period 

receive each year a positive number of citations, so one should discriminate between two possible cita­

tion patterns of a paper. In the following the type of the pattern will be indicated by a dummy sto­

chastic variable Z. Note that Z is not known beforehand, but that the history of citations will reveal 

the citation pattern of a paper and thus Z as time t tends to infinity. 
It should be clear that a publication receiving each year a small, but positive number of citations 

could belong to the small group of papers positively cited during a long time period, while a publica­

tion that receives a big total amount of citations but with a citation pattern that decreases rapidly to 

zero in the tail, will be expected to belong to the other group. We mention here that the small group 

of papers exhibiting a pattern with a long positive tail were called 'key papers' by CHANG (1975). 

1.3.3. 
The citation count N, received by a paper at time t depends on the series of citation counts of that 

paper received before time t in such a way that 'succes breeds success'. More specifically we assume 

that the conditional expectation of N, given the history of citation counts (N0,N1, ••• ,N,_ 1) and 

given Z is a positive real valued function of s,_ 1 and Z for t=l,2, ... , increasing in s,_ 1 and Z for 

fixed t. 
Note that given Z this conditional expectation of the citation count at t depends on the sum of all 

previous citation counts, i.e. all previous citations have the same impact on the conditional expected 

citation count at t. One may object against such a simplifying assumption. However, since the total 

length of each available series of citation counts is in most cases relatively short (about 10 years), this 

assumption seems to be reasonable. 

1.4. 
The above mentioned requirements (1.3.1) and (1.3.3) allow for a first rudimentary statistical analysis. 

For all the statistical analysis in this paper we will use a dataset of the Subfaculty of Chemistry of the 

University of Leiden, consisting of citation counts of 320 publications over a time period of eleven 

years. (For a short description of the dataset see MoED et al. (1985) and see MOED et al. (1983) for an 

extensive description.) 
In Table (1.4.1) a random sample of 40 .publications from this dataset is shown. We observe that 

most time series of citation counts have a very irregular pattern and that many zero counts occur. 
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TABLE 1.4.1. Forty series of citation counts 

Year 

0 1 2 3 4 5 6 7 8 9 10 

0 5 0 1 1 2 0 1 2 1 1 
0 2 5 4 3 2 1 1 2 0 6 
0 2 2 0 0 0 0 0 1 0 0 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 2 I 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 1 0 0 1 
0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 I 0 0 
0 0 0 2 2 0 I 2 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 
1 0 1 2 2 0 2 0 0 2 2 
1 2 3 1 4 1 I 0 I 0 0 
0 0 0 3 2 I 0 2 0 0 0 
0 I I I 2 I 1 0 2 1 2 
0 3 6 1 2 2 0 0 0 0 0 
2 1 4 5 3 2 2 0 0 2 I 
1 0 1 0 I 0 0 0 I 0 0 
0 3 6 4 8 3 0 1 2 0 I 
1 1 4 7 6 8 7 3 6 8 5 
0 1 4 0 0 3 1 1 0 2 0 
0 1 2 4 2 1 3 1 I 2 0 
0 1 1 1 1 0 1 0 1 0 0 
0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 
0 1 0 0 0 0 0 I 2 0 0 
0 0 0 0 0 0 0 1 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 
I 4 1 0 2 2 2 0 0 2 0 
3 12 15 13 18 18 20 14 10 13 8 
0 0 I 1 I 1 0 2 0 0 0 
0 2 0 3 1 I 1 2 2 0 3 
I 0 0 0 1 0 0 0 1 3 I 
0 0 2 0 0 0 1 1 1 0 0 
0 2 1 1 0 1 0 1 1 0 I 
3 0 3 6 4 2 2 1 1 I 0 
1 0 0 0 1 1 1 0 0 0 0 
2 0 0 1 1 I 1 0 1 0 I 
0 1 0 0 0 0 0 0 0 1 0 

If we assume that the time series of citation counts are stochastically independent, then the average 

citation count at time t is a good estimate for the expectation of the number of citations at t for 

t =O, 1,2, .... Calculating these averages with our sample of 320 publications the expected pattern of 

requirement (1.3.1) is seen to be confirmed for t~3 (see Figure (1.4.2)). 
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FIGURE 1.4.2. The average citation pattern 
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Requirement (1.3.3) implies a positive correlation between N1 and S, - I for t = 1,2,.... Calculation of 
the sample correlation p1 between N, and s,_ 1 shows a positive correlation for all t;t=1,2, ... , 10 
(see Table (1.4.3)). 

TABLE 1.4.3. Correlation Pt between N, and s,_ 1 

t l 2 3 4 5 6 7 8 9 10 

Pt .3863 .6432 .6991 .7413 .7361 .7468 .7436 .7459 .6919 .6739 

A rudimentary statistical analysis of requirement (1.3.2) is possible, but quite difficult. Of course 
(t + 1)- 1 • S1 should be a good indicator for Z, but unfortunately the length of the series of citation 
eounts for our dataset are too short. 

1.5. 
We will now come to some comments of a theoretical and/ or practical nature in modelling series of 
yearly citation counts. 
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1.5.1. 
For several reasons it seems impossible to construct a parametric model for the citation counts 
received by a paper in the first years after publication, i.e. the so called 'head' of the series of citation 
counts. We mention that the real date of publication of a paper is not known (see also APPENDIX 
(7.2)) and that some authors of papers are more well-known then others within a scientific commun­
ity, which may especially influence the citation counts of a paper in the first years after publication. 
Note also that requirement (1.3.1) is only confirmed for t;;;.3 for our dataset. So, the statistical model 
for the series of citation counts received by a paper should be of the semi-parametric type, i.e. a sta­
tistical model with a non-parametric part for the head and a parametric part for the rest of the pat­
tern. (For a general overview of semi-parametric models see WELLNER (1985)). 

1.5.2. 
Observing that the probability of one citation of a paper is small for each year and the number of 
possible citers is large we are now ready to formulate the parametric part of a statistical model that 
satisfies the requirements (1.3.1) to (1.3.3) and the above remarks. 

Let µ,a,/1>0 and suppose for given to (e.g. t 0 =3) that (N0,Ni. ... ,N,
0

) with an arbitrary proba­

bility distribution forms the head of the citation pattern, then recursively for t =to+ l,t0 +2, ... the 
number of citations N, given the history of citation counts (N0,Ni. ... ,N,_ 1) and Z has a (condi­
tional) Poisson distribution with expectation 

t-1 

A1(Z)=µZ+a exp (-{1t) · ~Ns. 
s=O 

Note that for t>to the conditional probability distribution of N, given (N0,Ni. ... ,N,_i) and Z is 
t-1 

equal to the conditional probability distribution of N, given S, - l = ~ N3 and Z, i.e. given Z all pre-
s =O 

vious citations have the same impact on the probability distribution of N,. (See also (1.3.~).) 

1.6. 
This paper is further organized as follows. In Chapter 2 we formulate the model, discuss several pro­
babilistic properties and make several remarks .on the identification of the parameters. In Chapter 3 
the estimation procedure is described and the results are given. Chapter 4 deals with testing of the 
model. In Chapter 5 several methods to improve the model are discussed. Finally we briefly discuss 
some applications to scientometry in Chapter 6. 

2. THE MODEL 

2.1. 
In this chapter we give a mathematical formulation of the model and give a precise reformulation of 
the contents in the requirements (1.3.1) and (1.3.2) of the INTRODUCTION. These requirements are 
consequences of the constructed model, the interested reader is refered to VAN DER PLAs (1988) for 
proofs. In section (2.5) we mention that the parameters are identified and in section (2.6) we give 
some formulas that we need for later computations. 

2.2. Construction of the stochastic process N 
Set the publication year of a scientific paper equal to zero. Denote by N, the number of citations 
received by a scientific paper in year t + 1 after publication for t=O, 1,2, .... We will interpret the pub­
lication of a paper as one citation in year one, i.e. N 0 ;;a. I. We consider a stochastic process of cita­
tion counts N={N,;t=0,1,2, ... } with values in the non-negative integers for each t. 

Let N1=(N0,Ni. ... ,N,) for t=0,1,2, ... , i.e. the history of the stochastic process of citation counts 
up to and including time t. 

Suppose that for each particular scientific field there exists a fixed t0(t0 >0) such that the 
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configuration N,
0 

constitutes the head of the citation pattern of a paper from that scientific field. Let 
N,

0 
have probability distribution F such that the mathematical expectation IE(N0+N1 + ... +N,

0
)<00 

and such that N0 ~1 with probability l (w.p. 1). 
Let Z be an unobservable zero-one stochastic variable with P[Z= l]=E for fixed EE(O, 1). 
We assume that Z and N,

0 
are independent, i.e. the conditional probability 

P[Z=l jN,
0
]=P[Z=l]=E. (2.2.1) 

Finally let for t=t0 +1,t0 +2, ... the conditional distribution of N, given N,_1 and Z be Poisson­
~1(Z), where 

t-1 

~,(Z)=µZ+a exp (-/Jt) · ~Ns for µ,a,/3>0. (2.2.2) 
s=O 

We have constructed the stochastic process N, since we are now able to calculate the probability dis­
tribution of N, for each t for given probability distribution F of N,

0 
and for given parameter 

fJ=(E,µ,a,/3). 
For n3 =0, 1,2, ... if s~l, n0 =1,2, ... and setting n, =(n0 ,ni, ... ,n,) for t=O, 1,2, ... we have 

P 8,F£Nt = n,] = P p[N,
0 

= n,
0

] • IP 8,F[N, = n, I N,
0 

= n,
0

] 

I 
=Pp[N,

0 
=n,

0
] ~ P([Z=z I N,

0 
=n,.]P(Jl,a,p)[N,=n, I N,

0 
=n,

0 
/\Z=z] (2.2.3) 

z=O 

I t 
=Pp[N10 =n10 ] ~ P([Z=z] II P(p,a,p)[N3 =n3 jNs-I =Ds-1 /\Z=z] 

z =O s=t0 + l 

where 

(2.2.4) 

2.3. Some remarks on the model 

2.3.1. 
The assumption of the independence of the zero-one random variable Z and the stochastic vector N,

0
, 

and therefore of Z and N 0 + N 1 + ... + N10 is really a simplification and heuristically seen to be unreal­
istic, since one expects that the sum of the number of citations in the head of the pattern will be posi­
tively correlated with Z. Nevertheless to avoid serious complications in the statistical analysis of the 
model we will stick to this assumption (see also chapter 5). 

2.3.2. 
In our model five parameters occur: the distribution function F of N,

0
,EE(O, 1) and the positive real 

valued parameters µ,a and /J. Such a statistical model is called 'semi-parametric' since the parameter 
Fis 'non-parametric'. (See WELLNER (1985) for an overview of semi-parametric models). 

From a statistical point of view the parameters of interest are £,µ,a and /J. The estimation of µ,a, 
and f3 is made easy by the assumption that the random variable Z and the random vector N10 are 
independent, implying that we may work conditionally on N,

0
• The infinite dimensional parameter F 

then disappears from the probability density of the data. 
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2.3.3. 
From the above construction of the stochastic process N it should be clear that the conditional proba­
bility distribution of N1 given N1 - l is a mixture of (conditional) Poisson distributions for t > t 0 • This 
observation greatly simplifies the solution of the identification problem of the parameters £,µ,a and f:J, 
since the mixing distribution of a mixture of Poisson distributions is identified. (See FELLER (1943) or 
for a more general treatment of identification problems of mixtures TEICHNER (1961).) 

Note that for t=t0 +1 and given £E(0,l) the mixing distribution is given by IP[Z=l]=£ and that 
fort =to+ l,t0 +2, ... and given £,µ,a and fJ the mixing distribution may be computed by the formulas 
(2.6.5), (2.6.6) and (2.6. 7) given below. 

2.3.4. 
Since N0 ;;;;i.I we have N0 +N1 + ... +N1 ;;;;i.1 for all t and therefore A1(Z)>O for t>to , implying that 
the conditional probability that N1 =O given (N1 - 1,Z) is strictly smaller then l, i.e. 
IP[N1 =O I N1 _1,Z]< 1 for t>t0• Apart from theoretical reasons to take N 0 at least positive, i.e. publi­
cation of a scientific paper should be rewarded in some sense, the mathematical reason should now be 
obvious. For suppose N 0 =O with positive probability, then N 0 +N1 + ... + N10 =O with positive pro­
bability and in that case A10 +1 takes the value 0 for Z=O, implying that N10 + 1 =O w.p.l. on 
{Z=O, N0 +N1 + ... +N10 =O}. Iterating we find that N1=0 w.p.l. for t>to on 
{Z=O, No+N1 + ... +N10 =O}. 

2.4. Mathematica/formulation of the requirements (1.3.1) and (1.3.2) 
Let the conditional expectation of N1-µZ given Z be denoted by g1(Z), i.e. g1(Z)=E[N,-µZIZ1 for 
t =O, 1,2, .... We have the following results: 

2.4.1. 
For each Z there exists a positive finite C=C(Z) such that 

g1(Z)<C t exp (-{:Jt) 

This result shows that 1im E[N, I Z]=µZ w.p.l. exponentially fast. 
1-+00 

2.4.2. 
For each Z there is a time T(Z) such that g1(Z) is increasing in t for t0 <t:s;;;;T(Z) and decreasing in t 
for t>T(Z). (T(Z) may equal t0 +1, but is finite.) 

H we define g1=Eg,(Z)=E[N1-µZ] then we have an unconditional, analogous result for g1 as 
described in (2.4.1) with Z replaced by £=1P[Z =I]. Furthermore there is a finite time T such that g1 

is increasing in t for t0 <t:s;;;;-r and decreasing in t for t>-r. These unconditional results concerning g1 

were roughly spoken confirmed for t>2 by the statistical analysis in (1.4) of the Introduction. 

2.4.3. 
For given ~ g3 (Z) and given (µ,a,f:J) one can calculate T(Z); similarly given ~ gs and given (£,µ,a,f:J) 

s..;;10 

one can calculate -r. For t>to we have 
1-1 

IE(Nr!N1-i.Z]=µZ+ exp (-{:Jt) ~Ns 
s=O 

and so 
t-1 

IE[N1 I Z] = µZ + exp ( - f:Jt) ~ IE[Ns I Z] , 
s=O 
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or 
t-1 

g,(Z)= exp (-Pt)~ {gs(Z)+µZ}, 
s=O 

yielding for t >t 0 + 1 the recursion formula 

or 

g,(Z)= exp (-P) · Kr-1(Z)+a exp (-Pt){g,-1(Z)+µZ} 

={exp (-P)+a exp (-pt)}g1- 1(Z)+a exp (-Pt)· µZ, 

g,(Z):-g1- 1(Z)={-1 +exp (-P)+a exp (-Pt)}g1-1(Z)+ exp (-pt)· µZ. (2.4.4) 
Remark that g,(Z)>O for t>to and that the map f(t)= -1 + exp (-P)+a exp (-Pt) is decreasing 
as t increases to - 1 + exp ( - P)<O. 
On { Z = O} one easily finds 

T(O) = entier [p-1 1n a(l - exp ( - p))-1], 

and on { Z = I} a numerical approximation algorithm will give T(l ). Note that from (2.4.4) follows 
T(I);;;i.T(O) and note also that T(Z) is decreasing in P and increasing in a, as should be expected. 
Taking the mathematical expectation with respect to Z in (2.4.3) will give the recursion formula for 
computation of T. We note here that T is approximately equal to T(O) since µ£=f.µZ~ max Ks in prac-

s 
tice. 

2.4.4. 
In requirement (1.3.2) it was stated that Z will be revealed as t~oo and in fact our model will predict 
Z exponentially fast as t~oo. Obviously r 1 · (N 1+N2 + ... + N,) for a large observation time t of a 
series of citations will give a prediction for p.Z and indeed it can be shown that 

1im t-1(N1 +N2+ ... +N1)=µ Z w.p. I. (2.4.5) 
1-+00 

However the 'natural' prediction of Z is f.[Z I N,]=.P[Z= 1 IN,] and this prediction can be shown to 
converge exponentially fast to Z. We have 

limsupt-1 log IZ-f.[ZIN,JI=-µ w.p.1. (2.4.6) 
t-+OO 

Roughly speaking f.(Z IN,] converges faster to Z as µincreases, where p.=A1(1)-A1(0) for t>t0, i.e. 
the difference between the conditional expectations of N, given (N, - I, Z = 1) and (N, - i. Z = 0) for 
t>to. 

2.5. 
We are interested in a consistent estimator for the parameter 8=(£,p.,a,/J) in our model and thus the 
parameter 8 should be at least identifiable, i.e. different values of the parameter lead to different con­
ditional probability distributions of N, given N,

0
• We observe a sequence N,=(N0,Ni. ... ,N,) for 

some given observation time t>t0 since Z is unobservable. Therefore for given 8 and for t>to the 
conditional probability distribution of N, given N,

0 
is a mixture of the conditional probability distri­

butions of N, given N,
0 

and Z= 1, respectively N,
0 

and Z=O with, mixing probability distribution 
given by £=P[Z = 1) (see section (2.2)), and one should really be concerned about ~e identification 
of 8. Here, we only note that it can be shown that 8 is identified if and only if the observation time 
t ;;;i.t0 + 2 (see also the remark (2.3.3)). 
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2.6. 
In this section we give some formulas, which we will freely use in the following chapters. Since N1 

given (N, _ 1, Z) is Poisson-A,( Z) distributed for t > t 0 with 
t-1 

A1(Z)=µZ+a exp (-{3t) · ~Ns, for given µ,a,{3>0 
s=O 

we have 

(2.6.1) 

Therefore 
t-1 

IE[N, IN,_i]=µE[ZIN,_i]+a exp (-{3t) ~ Ns (2.6.2) 
s=O 

and 

t-1 

=IE[IE(N, IN1-i.Z)IN,_i]+ var [µZ+a exp (-{3t) · ~Ns IN,_i] 
s=O 

t-1 

Note that the second term after the second equality sign equals var [µZ I N, - l] since ~ Ns given 

N, -1 is fixed. 
Note also that 

IE[Z I N,-1]=P[Z = l I N1-1] 

since ZE{O,l} and so 

var[ZIN,_i]=IE[ZjN,_i] · {1-IE[ZIN,_i]} 

where IE[Z IN, - I] may be computed by 

P[Z=l IN,_i]=£. P(J.i,a,p)(N1-1). {Pe{N1-1n-1 

with 

and 

for t>t0• 

3. EsTIMATION OF 0 

3.1. 

s=I 

(2.6.3) 

(2.6.4) 

(2.6.5) 

(2.6.6) 

(2.6.7) 

In this chapter we describe the estimation procedure and the asymptotic behaviour of the estimator 
for the parameter 0 of the model based on n i.i.d. (independent and identically distributed) copies of 
an observation sequence N1 of citation counts, t is fixed (see section (3.2)). Since 0 is identified if and 
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only if t';;!!:t0 +2 (see (2.5)) we will always assume that the fixed observation time t';;!!:t0 +2. 
In section (3.3) we give the results. 

3.2. 
Consider the stochastic process N constructed in chapter 2 with parameter (O,F); O=(f.,µ.,a,/3) and let 
N, be a finite observation sequence of the process for fixed t. 
Now from (2.2.3) it follows that 

\ 
Po,F[N, =n,]=PF[N,

0 
=n,

0
] • Po[N, =n, I N,

0 
=n,

0
] 

implying that for one observation sequence N, of citation counts the log likelihood for (J given the 
head of the citation pattern N,

0 
contains all information about 0. Using (2.2.3) again this (condi­

tional) log likelihood is easily seen to be proportional to 
t t 

log [f.· IT {l\(l)}N, ·exp {-A8 (1)}+(1-f.} IT {As(O)}N, ·exp {-A8(0)}]. 
s=t0 +1 s=t0 +1 

For fixed t let {N,,k}Z=i be an i.i.d. sample of order n of the model with parameters 0 and F. Denote 
for the k-th observation sequence Nr,k the log likelihood for 0 given N,

0
,k by MO;N,,k), then the log 

likelihood ln(O;t) of 0 for the total sample {Nr,dZ=I given {N,
0
,k}Z=i is given by 

n 
ln (O;t}= ~ MO;N,,k} 

k=I 

where lk(O;N,,k) is proportional to 

t N t 
log [f.· IT {As,k(l)} " ·exp {-As,k(l)}+(l-f.) · IT {As,k(O)}N,,. exp {-As,k(O)}] 

s=t0 +1 s=t0 +1 

with 
s-1 

As,k(z)=µ.z +ae-Ps ~ Nu,k for s>to and z =O, 1 . 
u=O 

Let 00 be the true parameter value and denote by On(t) the maximum likelihood estimator (MLE) for 
0 based on ln(O;t) for ... arbitrarily fixed t';;!!:t0 +2. According to standard statistical theory we have that 
for fixed t the MLE On(t) for (J is a strongly consistent, efficient and asymptotically normal estimator 
for 00 as n~oo, i.e. for fixed t we have 

A 

1im On(t)=Oo w.p. 1. and 
n-+OO 

(3.2.1) 

1im £[Vn(On(t)-Oo)]=~(O,I- 1 (0o)), 
n-+OO 

where 

is the Fisher information matrix. 
Note that the expansion for /(00) is complicated for our model. However by (3.2.1) and since 

/(00)= -E 'i)(J~(JT I (00,N,) also, we may approximate the information matrix in practical situations 

by the observed Fisher information matrix, i.e. 

n- 1 times the matrix of second derivatives of ln(O;t) computed for O=On(t). 

In the results in section (3.3) the variance-covariance matrix of Vn(On(t)-00) is estimated by the 
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inverse of the above mentioned observed information matrix. 

3.3. 
We computed the MLE for 8 with an optimization procedure for the log likelihood that used the 
analytically given first derivatives and numerically computed the second derivatives of the log likeli­
hood. Note that these second derivatives immediately gives the observed information matrix. 
For the dataset we used, consisting of 320 series of citation counts of length 11, we .. t<><}k t0 =2 (see 
also section (1.4)). The results for the maximum likelihood estimator (MLE) 8=8320(10) with 
estimated standard deviations (DEV) are shown in Table (3.3.1). The estimated correlation matrix 
CORR for 8 is shown in Table (3.3.2). 

f p. a /3 

MLE .0406 2.4040 .7217 .2961 
DEV .0152 .4709 .0439 .0102 

TABLE 3.3.1. MLE and DEV for 8=(£,p.,a,/J) 

f p. a /3 
f 1 
p. -0.5827 1 

a -0.0255 -0.0613 1 

/3 .1375 .1390 .9197 1 

TABLE 3.3.2. CORR for 8 

From Table (3.3.1) we observe that the parameters a and /3 are well estimated and nonsurprisingly 
that the parameters £ and p. of the mixing distribution are less well estimated. Note that the parameter 
p. is estimated by the (estimated) fraction 0.0406 of a total number of 320 series of citation counts, i.e. 
p. is estimated by 13 series of citation counts. 
From the construction of the model, see also the likelihood in (3.2), it should be clear that the param­
eters £ and p. will be negatively correlated, resp. that the parameters a and p. will be positively corre­
lated. Indeed Table (3.3.2) shows a negative correlation -0.5827 between £ and p. and unfortunately a 
very high positive correlation .9197 between a and /J. 

3.4. 
To get a first impression if the model will possibly fit in some sense we compared the sample mean of 
N, wiill the sample mean of IE[N1 IN, - 1 ], i.e. the conditional expectation of N, given N, - I computed 
for 8=8 for t=3,4, ... , 10. 

. 1 n " " 
Note that lim- ~E[N1,klN1 -1,k]=EN1 w.p. I., since limlE[NtlN1-iJ=IEo[NtlN,_i] w.p. l. 

n-+oo n k = 1 n-+oo 

because E[N, IN,_i] is continuous in 8 and lim0n=8 w.p.1. and lim _!_ ± IE[N1,k jN1-1,k]=IEN1 
R-+00 n...+oo n k =I 

w.p.1. (Eo[N1 I N1 -il means here computation of this conditional expectation under the true parameter 
value 80). 

The results are encouraging and shown in figure (3.4.1 ). 
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f - 0.0406, p. - 2.404, a - 0.7217; f3 - 0.2961 

FIGURE 3.4.1. Sample mean of N1 indicated by o and estimated sample mean of IE[N1 I N1 - I] in­
dicated by* 

3.5. 
Approximating g,(Z)=E[N1 -p.ZIZJ by (fa(Z)=[E[N,-j&ZIZJ one can estimate T(Z) by T(Z) for 
Z=O, 1 and t>2 (i.e. the finite time T(Z) such that .fa(Z) is increasing for 2<t~T(Z) and decreasing 
for t>T(Z)). " 
Similarly approximating g1 = E[N1 - p.Z] by g1 = IE[N1 - p.Z] for t > 2 one can estimate -r by 1-. Observing 
that ii £=0.0976«1.4< max g1 we expect that 1-=T(O). Indeed computation gives 1-=7{0)=3, this 

t 
confirming the note at the end of section (2.4.3). 
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4. TusTING THE MODEL 

4.1. 
To establish 'reasonable' tests for goodness of fit for complicated statistical models like this for 
sequences of citation counts is of course difficult. Therefore we will test the model with different test 
statistics based on the so called conditional residuals of the citation counts. 
Firstly we develop tests based on summarizing the conditional residuals over all publications of the 
dataset for each time t. Secondly we construct tests more 'natural' for the model since these tests are 
based on summarizing the whole sequence of conditional residuals for one publication. Moreover we 
choose a basic statistic sensitive for outliers. 
Since asymptotic distributions for the latter test statistics are hard to obtain we relied for these tests 
on the so called bootstrap method, for which numerous simulations of sequences of citation counts 
were needed. In fact we made 1000 simulations of the dataset consisting of 320 series of citation 
counts. (For a description of the procedure for the simulations the reader is refered to APPENDIX 

(6.1) and for an overview of the bootstrap method to EFRON (1979) or to BICKEL and FREEDMAN 
(1981)). Without loss of generality and in accordance with the choice for the head of the citation 
counts for the dataset used we will take t 0 = 2. 

4.2. 
Define for t=3,4, ... the conditional residual Ur of the citation count Nr by 

U,=a( 1 • {N,-A,}, where 

llr=IE[A1(Z) I Nr-iJ=IE[N, I Nr-i1 and 

a1 = "\fi[ with at= var [Nr I Nr - I] . 

Note that Ar and a, can be computed by the formulas given in (2.6). 

The meaning of the conditional residuals as a basis for constructing tests for the model is given by the 
absolute value of these residuals Ur, which may be interpreted as a distance between N1 and the con­
ditional expectation of N1 given the history of citation counts Nr - 1, relative to the conditional vari-
ance of Nr given N, - I· · 

Note also that the sequence {U,;t=3,4,. .. } is a martingale difference sequence since IE[UrlN1-iJ=O 
w.p.l. and that moreover var [Ur I U1-iJ= I w.p.l. because var [Ur I Nr-iJ=IE[Ut I Nr-d= 1 w.p.l. 
with V1=(U3,U4, ••• , U,) for t=3,4, .... 

4.3. 
For fixed t let {Nr,k}Z=i be an i.i.d. sample from the model with matched series of conditional resi­
duals {Ur,dZ =i. where V1,k = ( U 3,k> U 4,k> ••• , Ur,k) for k = 1,2, ... , n. 

n 
It is standard that lim n - l ~ Ur,k = 0 w.p. 1. and taking into account the latter note that 

n-+oo k=l 
n 

limn-* ~ V1,k is asymptotically distributed as a standaard multivariate normal distribution with 
n-+oo k=l 

covariance matrix 11-2· 
n 

For large n therefore Vs := {n-* ~ Us,kY for s~3 is approximatily distributed as a chi-square dis­
k=I 

r 
tribution with one degree of freedom and W = ~ V8 as a chi-square distribution with (t -2)-degrees 

s=3 
of freedom. The first tests we perform are based on Vn s=3,4, ... ,t and W. 
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4.4. 
A more 'natural' test for the model should be based on a statistic that summarizes over the sequence 
of conditional residuals for one publication. We choose for that basic statistic M = max I U1 I and for 

t 
the test statistics the sample mean of M and the sample median of M. Note that M should detect 
outliers and that the sample mean of M is much more sensitive for outliers then the sample median. 
Since asymptotic distributions for these statistics are hard to obtain we relied for these tests on the 
above mentioned bootstrap method. 

4.5. 
As mentioned in the introduction ( 4.1) we have to rely on the bootstrap method for some tests, for 
which numerous simulations of sequences of citation counts are needed. 
Now by the formulation of the model we may work with sequences of observations (S2,N3, ••• ,N1) 

with S 2 =N0 +N1 +N2 • Therefore it suffices to simulate sequences (S2,N3 , ••• ,N1) for some fixed 
observation time t and it is convenient to set N,=(S2,N3, ••• ,N1) and to let§ indicate the probabil-
ity distribution of S 2 in this and further sections. ,.. 
For a dataset {Nr . .t}Z=;;.1 of n i.i.d. copies of N, let §n be the empirical distribution function of 
{S2,klZ=1 and let (Jn =On(t) be the MLE for (J obtained from maximizing the log likelihood ln(IJ,t) of 
section (3.2). ,.. ,.. 
Denote for m=l,2, ... the m-th simulation of the dataset {Nr,dZ=I under On and §n by {N~:z>}Z=I· So 
N~:z>=(sr,l,Mr;i,l, ... ,M'Jc>) is the k-th simulated sequence of citation counts in the m-th simulation 
of the dataset. (For a description of the simulation procedure see APPENDIX (6.1)). Furthermore indi­
cate the conditional residuals and all derived statistics for the m-th simulated sample with an upper­
index m betw~ brackets. For instance cfs:z> is the conditionitlmresip~ of NS:z> given N~~I,k com­
puted for IJ=On at times, ~m) =max I u's:z> I etc. Finally let (J~ ) =(J~ (t) be the MLE for (J for the 

s 
m-th simulated dataset based on the log likelihood "fnm>(O,t). 

4.6. 
Since we do not know the real parameter value 90 we have to approximate the conditiona) residuals 
and therefore all test statistics derived from these residuals by computing them for (J=fJn. This is 
justified because lim On = 90 w.p. l. Consequently we should compare these test statistics computed in 
,.,. n~oo 

(Jn with the test statistics obtained from the simulated samples comput~ in their matched MLE­
values for 9, so in the m-th simulation of the dataset computed under (J~m>. We will indicate these 
'approximate' J~t ~ta£8tics by pl~9J,yg a 'hat' on the original test statistic. So [fs"J means u's:z> com­
puted for O=d' , _Mi = max I~,';: ls,k etc. 

S A 

We computed the so called p-values for the test statistics. Note that if Tisa test statistic based on the 
original dataset and Tm) the matched test statistic for the m-th simulation of that dataset, then the 
(estimated) p-value is the prof.orpon of T(m) greater or equal to T, i.e. for a 1000 simulations this p­
value is (1000)-1 · # {m:T(m ;;:;a.T}. 

4.7. 
In this section we give the results for the tests of the first type of section (4.3). Note that the asymp­
totic distributions for these statistics are derived under the true, but unknown parameter v¥ue 90 and 
that we have not derived the asymptotic distribution for these statistics under the MLE (Jn for e. If 
possible we will therefore test nonconservatively and for comparison we also computed the simulated 
p-values (see the last paragraph at the end of section (4.6)). 
Note again that the dataset we used, consists of 320 series of citation counts over a time period of 
eleven years and that to= 2. ,.. 
The first tests are based on Vi for t=3,4, •• . , 10. Comparing Vi wjth a chi-square distribu!ion with 
one degree of freedom we find the p-value Px and also comparing Vi with the simulated {"Vim)}~~1 
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we find the simulated p-value Psim· The results are shown in table (4.7.1). Note that fax>Psim as we 
should expect. 

t 3 4 5 6 7 8 9 10 
A 

Vi .1929 .0691 .3715 .1852 2.1680 .0175 .0460 1.9211 
A 

.6605 .7921 .5422 .6669 .1409 .8948 .8302 .1657 Px 
A 

.5400 .7500 .4960 .6590 .1160 .8790 .81110 .1170 Psim 

TABLE 4.7.1. p-values for Vi 
w A 

The second test statistic is based on W= ~ V3 • Nonconservatively testing W=4.9712 with a chi-
s=3 

square ,..distribution with 8-4=4 degr~ of freedopi J:4 is the number of parameters in U) gives the p-
value Px=;,..2903 and also comparitJg W with {W >}~~1 gives the simulated p-value Psim=.588. 
Note that P sim is much bigger than P x· 

4.8. 
To get a first impression about tests of the second type of section (4.4) we made a histogram of 
M = max I U, I based on the original sample and for comparison a histogram based on all simulated 

t 
samples. ,.. 
Let g=cg(I), g(2), ... , g(8)), where g(i) denote the relative freqency of {Mkn=i with values greater 

7 

or equal to i -1 and smaller then i for i= 1,2, ... , 7 and g(8)= 1- ~g(i). Similarly let 
i =l 

g=(g(l), g(2), ... , g(8)) denote the vector of relative frequencies obtained from the simulated sam-
1000 

pies, e.g. for 1000 simulations of the dataset we have g(l)=(I000)- 1 ~ g.<m>(l) with 
A m=l 

g<m>(l)=n- 1 • #{k: o~_M1m><l}. Note thatg(i) is approximately equal to 1?8
0
,6.[Me[i-l, i>] for 

a large number of simulations of the dataset (i = 1,2, ... , 8). 
For our dataset with n = 320 the results for g and for g for the 1 OOO performed simulations are shown 
in figure (4.8.1): g dashed. 
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FIGURE 4.8.1. Histograms of M 
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The figure shows a good resemblance between g and g except for the classes i > 3, where g is obvi-
ously much bigger then g (in a relative sense). _ 
These observations are confinqed by using the sample mean M of M and the sample median MED of 

Mas test statistics. We find M= 1.9054 with p-value Pmean =0.0160 and MED= 1.5974 with p-value 
Pmed =0.2440. A histogram of the median provid~ by the thousand simulations of the dataset is 
shown in firgure (4.7.2) with the computed value MED = 1.5979 drawn dashed. 
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FIGURE 4.8.2. Histogram of median of M 
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We conclude that the model seems to fit the data quite well. The results of the test statistics in the 
latter section (4.7) indicate that the model assumes too much homogeneity. We were however not able 
to detect outliers on qualitative or quantitative grounds. On the other hand qualitative reasoning 
points to some deficiencies in the model itself (see (2.3.1)) and chapter 5). 

5. SOME REMARKS 

Although we believe that the model is reasonable from a theoretical and practical point of view, we 
will discuss in this section several ways to improve the model. 
One method would be to incorporate covariates in the model and so to be able to cope with the obvi­
ous heterogeneity in datasets with a number n of citation series large enough to allow for sensible esti­
mates of the parameters. However, as already indicated by the remark about outliers in section (4.8), 
we were not able to incorporate covariates. This is certainly an important theoretical question for cita­
tion analysts. 
Another way should be to improve the existing model itself. The assumption of the stochastic 
independence between the unobserved stochastic variable Z and the head of the citation pattern N,

0
, 

and thus between Zand 810 , is certainly not realistic (see also (2.3.1) and in fact rejected by the used 
dataset, as we shall now show. 

,. 
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A A 

If we de{ine Zk =IE[Zk I N,,k] fork= 1,2, ... , n for aA sample of n observp.tion seq~nces of length t + 1 
and let Q}-E indicate the (1-tj Sample quantile Of z(l) .s:;;;z(2) .s:;;; • • • .s:;;;z(n)> then Zk defined by 

A A 

~ -{l if Zk>Q1-( 
zk - 0 otherwise 

is a good estjmator of, or good prediction for Zk for k = 1,2, ... , n. Calculating the sample correla­
tion r of (Zk>S2,k)k~I for the used sample with n=320, t=lO and t0 =2 gives r~0.2, while 
bootstrapping gives r =0.0. 
So the assumption of independence between Zand N10 should be disgarded. We note that the proper­
ties of the model reviewed in section (2.4) do not depend on this assumption (see VAN DER PLAs 
(1988)). It should be clear however, that efficient estimation of the parameters µ.,a and {J is a much 
more complicated matter for this extension. 

A second serious objection against the model is that Z is a dummy stochastic variable, implying 
that all papers with Z = 1 have for large t about the same yearly expected number of citations. An 
immediate extension is to let Z take a finite or countable number of nonnegative values (Z<oo). 
Most of the properties of the original model (see section (2.4)) are easily seen to hold for this exten­
sion (see VAN DER PLAs (1988)). It should be noted however that most series of citation counts will 
soon become extinct, i.e. most papers have Z =O and the length of the available series is quite short 
in practice. Therefore from a practical point of view we do not expect that this extension of the model 
is useful. 

6.APPUCATIONSTOSCIBNTOMETRY 
In this chapter we will briefly discuss the contribution of the stochastic model to questions in scien­
tometry. Firstly scientometrists are interested in so-called different expected citation patterns. (See e.g. 
VLACHY (1985).) Now according to the constructed model we have a mean expected citation pattern 
(IEN0,ENi. ... ) for a certain scientific field (see (1.3.1) and Figure (1.4.2)) and different expected cita­
tion patterns for Z =O, resp Z = 1, i.e. the series (IE[N 0 I Z =O], E[N 1 I Z =O] , ... ), resp. the series 
(IE[NolZ=l], IE[N1 IZ=l], ... ). 
For the dataset used "!e computed these different expected citation patterns as follq,_ws. Estimate Z for 
each publication by Zk for k= 1,2, ... ,320 (see Chapter 5 for the definition of Zk). Then estimate 
IE[N1 I Z] for Z =O, I and 1.s:;;;2 by the average citation count of the group with Z =O, resp. Z = 1 and 
for t>2 by the formula p.Z+a exp (-{Jt) · IE[S1- 1 IZ1 with the estimated values p.=2.404, a=.7217 
and {J = .2961. Moreover using the above computed IE[Ntl Z] for t .s:;;;2 and Z = 0, I we computed 
expected citation patterns for fixed p.=2.404 and different values for (a,{J), namely (2.0, .25); (2.0, 
.2961) resp. (.7217, .15). The results are presented in Figure (6.1.1) for Z =O resp. Figure (6.1.2) for 
Z = 1. Note that these pictures clearly show that Z and S 2 are positively correlated and that 
'1'(1)>7(0) for fixed {a, {J). 
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FIGURE 6.1.2. Expected citation patterns for Z = 1 
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A second important question for scientometrists is the so-called lifetime distribution of citation counts 
for 'ordinary' publications, i.e. the publications with Z =O. Defining the lifetime of citation counts by 
the stochastic varialble T = min {I : Nu =O for u;;;;. I} we have 

P(TE;;;I I Z=O] = E[ exp {-r,s,_i} I Z=O] for 1;;;;.10 , 

where f1 =~aexp {-,8u}. (See VAN DER PLAs (1988).) In other words P(TE;;llZ=O] equals the 
u;;.1 

Laplace transform of s,_1 in the point r, for 1;;;;.10• So the expected lifetime of citation counts for 
ordinary publications, and all other moments of T are in principle computable. Note that from the 
expected pattern with Z =O for the estimated model we have IE[T I Z=0]=20. 

Another important question called impact evaluation (see MoED et al. (1985)) can be analyzed by 
the probability distribution of the total number of citations for ordinary publications, i.e. the 
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probability distribution of limS, on {Z=O}. We only mention here that S, tends exponentially fast 
t-+OO 

to S= limS, in probability. (See VAN DER PLAs (1988)). For practical purposes the probability distri-
t-+oo 

bution of S may be approximated via the formula 

{ 

0 for s<S1-1 

P[S,=slS1-i. Z=O] = P[N1
=s-S1-1 IS1-i. Z=O] for s;a.S,-1 

(see also the formulas in (2.2)). 

7. APPENDIX 

7.1. Description of simulation procedure 
Let N={N,;t=0,1,2, ... } be the stochastic process defined in chapter 2 with parameters (fJ,F), where 
fJ=(E,µ,a,fJ) and where Fis the probability distribution of the so called head N,

0 
of N. Let§ be the 

probability distribution of S,
0 

= N 0 + N 1 + ... + N,
0

• 

The simulation procedure works as follows: 

7.1.1. 
Sample S,

0 
from§ and Z from P[Z=l]=E. 

7.1.2. 
Recursively for t=to+l,t0 +2, ... sample N, given s,_1 =N0 +N1 + ... +N,_1 and given Z from a 
Poisson-distribution with expectation ~,(Z)=µZ +ae-Pt ~N8 • 

s<t 

7.2. 
To appoint the real date of publication of a paper in respect to citations is a serious problem since a 
paper may be known before the calendar date of publication in a journal and thus may be cited 
already before that calendar date. Note that the available dataset we used consists of citation counts 
over calendar years, so even the calendar data of publications are not known. 
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