
communication channels and allows
fine-grained supervision techniques to
be applied to monitor an adversary’s
behaviour throughout his entire attack.
Figure 1 illustrates the overall concept
of the AutoHoney(I)IoT framework. As
input, the framework requires the
firmware of the device to be virtualised
as well as a database containing real
world device information of common
microcontrollers and system on a chips
(SoCs). The framework’s intended
functionality is to analyse a firmware
dump and find a Qemu [3] appliance
capable of executing the firmware.
Furthermore, external peripherals (e.g.,
network access) are attached as needed.

The analysis is based on a two-step
approach. The aim of the first step is to
detect the architecture (e.g., ARM,
MIPS, PowerPC, x86) of the firmware.
The main idea of the second step is to
apply fine-grained supervision tech-
niques during the execution to identify
the most appropriate processor.
Therefore, the firmware is executed
first on a generic processor correspon-
ding to the identified architecture. Most
likely this will result in an instruction
mismatch, memory mismatch or
internal peripheral mismatch, since
there is a plethora of different
embedded processors from various ven-
dors with a wide variety of technical
characteristics (e.g., central processing
unit types, memory maps). During the
emulation an algorithm attempts to
identify an admissible embedded
processor that is capable of executing
the firmware dump. For this purpose,

we create a database containing the real
world technical characteristics of
microcontrollers and SoCs from various
vendors. The execution and fine-
grained processor selection is repeated
until a suitable processor is identified.

Since a convincing (I)IoT honeypot
needs to expose authentic system
behaviour and communicate with the
outside world, the AutoHoney(I)IoT
framework will provide: (i) a method to
attach communication interfaces to the
emulated embedded processor and
bridge them to physical as well as simu-
lated hardware, and (ii) a method to
attach custom external peripheral
device models to a communication
interface whose behaviour can be
scripted in a simple way.

The FFG funded project started in July
2019 and is expected to conclude in
December 2021. It is jointly realised by
SBA Research, FH Technikum Wien,
TU Wien and Trustworks GmbH, all sit-
uated in Vienna, Austria.

Link:

[L1] https://kwz.me/hEt

References:

[1] K. Angrishi: “Turning Internet of
Things(IoT) into Internet of
Vulnerabilities (IoV): IoT Botnets”,
arXiv Prepr. ArXiv1702.03681,
2017.

[2] A. Spognardi et al.: “Analysis of
DDoS-Capable IoT Malwares”, in
Proc. of INSERT, 2017.

[3] F. Bellard: “QEMU, a fast and
portable dynamic translator”,
USENIX Annual Technical
Conference, FREENIX Track. Vol.
41. 2005.

Please contact:

Christian Kudera, Georg Merzdovnik,
Edgar Weippl, SBA Research, Austria
ckudera@sba-research.org, ,
gmerzdovnik@sba-research.org,
eweippl@sba-research.org

ERCIM NEWS 119 October 201930

Special Theme: Smart Things Everywhere

Figure 1: Overview of the AutoHoney(I)IoT framework.

“Yogurt” is an object-oriented declara-
tive programming language for the
Internet of Things (IoT). It allows the
end-user to program their entire IoT
ecosystem through one environment by
leveraging the capabilities of Igor
[L1], an architecture for unified access

to IoT [1]. The language offers high
expressiveness by incorporating
mechanisms from traditional program-
ming paradigms. Furthermore, the
underlying programming model
adopts a metaphor close to the users’
real-life experience, thus reducing the

learning effort required to adopt the
language.

Traditionally IoT devices are pro-
grammed through a variety of high-
level languages. This, however, requires
an in-depth knowledge of computer

yogurt: A Programming Language

for the Internet of Things (IoT)

by Ivan H. Gorbanov, Jack Jansen and Steven Pemberton (CWI)

As IoT moves from the hands of professionals and academics into those of the general consumers,

it becomes increasingly important to provide them with the appropriate tools for interaction. Yogurt

is a domain-specific programming language for IoT, designed to tackle the disparity between

powerful but complex languages and user-friendly environments with restricted capabilities.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301633204?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ERCIM NEWS 119 October 2019 31

programming which often takes years
of training and practice to develop. In
addition, the decentralised nature of the
development of these technologies has
led to the incorporation of many com-
munication protocols and formal lan-
guages. Therefore, managing a com-
plete system often requires knowledge
of multiple programming environ-
ments. Both the consumer industry and
academia have tried to address this
problem by introducing systems which
act as a central control point for the cus-
tomer’s IoT systems. Through these all
of the user ’s devices can be pro-
grammed through one language. These
programming facilities, however, are
mostly optimised for usability in order
to reduce the learning curve for inexpe-
rienced users. This, therefore, leaves a
gap between highly expressive but diffi-
cult programming languages and user-
friendly environments, which lack suf-
ficient expressive power. Consequently,
the main purpose of this work is
twofold: to extend the work of Jansen
and Pemberton [1] by providing a
viable programming language for Igor,
and to fill the abovementioned gap that
currently exists in the programming
facilities for IoT devices.

Yogurt’s underlying programming
model (Figure 1) achieves simplicity by
providing abstractions analogous to the
real world in order to reduce the gap

between what the programmer is trying
to achieve and how to achieve it. The
“actor” abstraction represents all
devices which would make up an IoT
system. Each “actor” has a state, which
represents what the device is doing in
the real world and can perform
“actions” which change that state. An
“action” gets triggered by a change in
the state of its own corresponding actor
or that of another one. Conditions can
also be added in the form of “guards” to
allow the device’s behaviour to vary
based on its environment. This small set
of general abstractions is at a high
enough level so as to be easy to concep-
tualise. Furthermore, they are general
enough to be applicable in the increas-
ingly heterogenous collection of
devices part of IoT.

The proposed model utilises several
mechanisms from established program-
ming paradigms to allow it to tackle the
use cases that have come to be expected
by users of this technology. The actor
abstraction works as a class in object-
oriented programming in order to allow
the reuse of code, making writing
Yogurt programs more efficient.
Furthermore, it allows for the use of
encapsulation and inheritance. This
makes it easier to program more com-
plex devices as a collection of simpler
ones. In addition, by forcing the pro-
grammer to keep data and correspon-

ding methods together, it is easier to
keep track of dependencies and spot any
conflicts that may arise from different
methods trying to change the same data
at the same time. Last but not least, the
language is declarative, meaning that
the user needs to specify what the result
of the program needs to be rather than
how exactly to achieve it. This feature
brings two major advantages: it further
reduces the learning curve as the pro-
grammer does not have to worry about
concepts such as memory management
and it makes the language context inde-
pendent, meaning that a program which
switches the lights on and off would
remain the same regardless of the hard-
ware devices used to implement the
solution as the result will be the same.

The proposed textual representation of
Yogurt uses human readable keywords
to reduce the barrier to adoption and
increase code readability. Here is a
simple example of a light which turns
on with a presence detector (PD) only
when a day light sensor senses that it is
dark outside:
on(PD.present):

whenall(PD.present = True,

dayLight_sensor.night = True):

on <- True

The current version has been tested
using the Discount method for program-
ming language evaluation [2].
Participants confirmed that the lan-
guage was easy to pick and use because
it allows them to think about the task in
a way in which they would in the phys-
ical world, while suggesting changes
that could be made to increase effi-
ciency.

Links:

[L1] https://github.com/cwi-dis/igor
[L2] https://www.dis.cwi.nl/

References:

[1] J. Jansen, S. Pemberton: “An
architecture for unified access to
the internet of things”, XML
LONDON 2017 (2017).

[2] S. Kurtev, T. A. Christensen, B.
Thomsen: “Discount method for
programming language
evaluation”, in PLATEAU @
SPLASH. 1-8, 2016.

Please contact:

Jack Jansen
CWI, Netherlands
jack.jansen@cwi.nl

Figure 1: Yogurt programming model abstractions.

Figure 2: Light, presence sensor, daylight sensor example model.

	Special theme
	Smart Things Everywhere
	Blockchain and AI – Cyber-Physical Production Systems
	by Philipp Sprenger and Dominik Sparer (Fraunhofer IML)
	Product Quality Prediction in Batch Processes with Small Sample Sizes Using Siamese Networks
	by Christian Kühnert, Johannes Sailer (Fraunhofer IOSB) and Patrick Weiß (Fraunhofer ICT)
	Acoustic Quality Monitoring for Smart Manufacturing
	by Sara Kepplinger (Fraunhofer IDMT)
	Smart Pick-by-Light for Efficient Storage and Production Processes,
	by Hanna Herger and Thomas Windisch (Fraunhofer IIS)
	Efficient Supply Chain Traceability Using IoT Technologies,
	by Alexandros Fragkiadakis (FORTH), Theoharis Moysiadis and Nikolaos Zotos (Future Intelligence Ltd)
	Components and Tools for Large Scale, Complex Cyber-Physical �Systems Based on Industrial Internet of Things Technologies
	by Apostolos P. Fournaris and Christos Koulamas (ISI/RC ATHENA)
	Smart Municipality
	by Jennifer Wolfgeher (FH Burgenland), Mario Zsilak (Forschung Burgenland) and Markus Tauber (FH Burgenland)
	Teaching Sustainability and Energy Efficiency with the GAIA Project
	by Georgios Mylonas (Computer Technology Institute & Press “Diophantus”) and Ioannis Chatzigiannakis (Sapienza University of Rome)
	Smart Intersections Improve Traffic Flow and Road Safety
	by Martin Striegel (Fraunhofer AISEC) and Thomas Otto (Fraunhofer IVI)
	Smart Solutions to Cope with Urban Noise Pollution
	by Jakob Abeßer and Sara Kepplinger (Fraunhofer IDMT)
	Transforming Everyday Life through Ambient Intelligence
	by Constantine Stephanidis (FORTH-ICS)
	Managing the Trade-off between Security and Power Consumption for Smart CPS-IoT Networks
	by Patrizia Sailer (Forschung Burgenland), Christoph Schmittner (AIT) and Markus Tauber (FH Burgenland)
	ISaFe - Injecting Security Features into Constrained Embedded Firmware
	by Matthias Wenzl (Technikum Wien), Georg Merzdovnik and Edgar Weippl (SBA Research)
	Enabling Smart Safe Behaviour through Cooperative Risk Management
	by Rasmus Adler (Fraunhofer IESE) and Patrik Feth (SICK AG)
	Assessing the Quality of Smart Objects
	by Ivana Šenk (Inria and University of Novi Sad) and James Crowley (Inria)
	AutoHoney(I)IoT - Automated Device Independent Honeypot Generation of IoT and Industrial IoT Devices
	by Christian Kudera, Georg Merzdovnik and Edgar Weippl (SBA Research)
	Yogurt: A Programming Language for the Internet of Things (IoT)
	by Ivan H. Gorbanov, Jack Jansen and Steven Pemberton (CWI)
	Smart End-to-end Massive IoT Interoperability, Connectivity and Security (SEMIoTICS)
	by Nikolaos Petroulakis (FORTH),

	Index
	High Performance Software Defined Storage for the Cloud
	by Thomas Lorünser (AIT), Stephan Krenn (AIT) and Roland Kammerer (Linbit HA-Solutions GmbH)
	The Battle of the Video Codecs in Healthcare,
	by Andreas S. Panayides (Sigint Solutions and Univ. of Cyprus), Marios S. Pattichis (Univ. of New Mexico) and Constantinos S. Pattichis (Univ. of Cyprus)
	The VR4REHAB Interreg Project: Five Hackathons for Virtual and Augmented Rehabilitation
	by Daniele Spoladore, Sonia Lorini and Marco Sacco (STIIMA-CNR, EUROVR)

	Special theme
	Towards Improved Mobility Support in Wireless Sensor Networks
	by Amel Achour, Lotfi Guedria and Christophe Ponsard (CETIC)
	Designing IoT Architectures: Learning from Massive Spacecraft Telemetry Data Analytics
	by Olivier Parisot, Philippe Pinheiro and Patrik Hitzelberger (Luxembourg Institute of Science and Technology)
	Autonomous Collaborative Wireless Weather Stations: A Helping Hand for Farmers
	by Brandon Foubert and Nathalie Mitton (Inria)
	Automatic Detection of Allergic Rhinitis
	by Gregory Stainhaouer, Stelios Bakamidis and Ioannis Dologlou (RC ATHENA)
	Supporting the Wellness at Work and Productivity of Ageing Employees in Industrial Environments: The sustAGE Project
	by Maria Pateraki (FORTH-ICS)

