
communication channels and allows
fine-grained supervision techniques to
be applied to monitor an adversary’s
behaviour throughout his entire attack.
Figure 1 illustrates the overall concept
of the AutoHoney(I)IoT framework. As
input, the framework requires the
firmware of the device to be virtualised
as well as a database containing real
world device information of common
microcontrollers and system on a chips
(SoCs). The framework’s intended
functionality is to analyse a firmware
dump and find a Qemu [3] appliance
capable of executing the firmware.
Furthermore, external peripherals (e.g.,
network access) are attached as needed.

The analysis is based on a two-step
approach. The aim of the first step is to
detect the architecture (e.g., ARM,
MIPS, PowerPC, x86) of the firmware.
The main idea of the second step is to
apply fine-grained supervision tech-
niques during the execution to identify
the most appropriate processor.
Therefore, the firmware is executed
first on a generic processor correspon-
ding to the identified architecture. Most
likely this will result in an instruction
mismatch, memory mismatch or
internal peripheral mismatch, since
there is a plethora of different
embedded processors from various ven-
dors with a wide variety of technical
characteristics (e.g., central processing
unit types, memory maps). During the
emulation an algorithm attempts to
identify an admissible embedded
processor that is capable of executing
the firmware dump. For this purpose,

we create a database containing the real
world technical characteristics of
microcontrollers and SoCs from various
vendors. The execution and fine-
grained processor selection is repeated
until a suitable processor is identified.

Since a convincing (I)IoT honeypot
needs to expose authentic system
behaviour and communicate with the
outside world, the AutoHoney(I)IoT
framework will provide: (i) a method to
attach communication interfaces to the
emulated embedded processor and
bridge them to physical as well as simu-
lated hardware, and (ii) a method to
attach custom external peripheral
device models to a communication
interface whose behaviour can be
scripted in a simple way.

The FFG funded project started in July
2019 and is expected to conclude in
December 2021. It is jointly realised by
SBA Research, FH Technikum Wien,
TU Wien and Trustworks GmbH, all sit-
uated in Vienna, Austria.
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[L1] https://kwz.me/hEt

References:

[1] K. Angrishi: “Turning Internet of
Things(IoT) into Internet of
Vulnerabilities (IoV): IoT Botnets”,
arXiv Prepr. ArXiv1702.03681,
2017.

[2] A. Spognardi et al.: “Analysis of
DDoS-Capable IoT Malwares”, in
Proc. of INSERT, 2017.

[3] F. Bellard: “QEMU, a fast and
portable dynamic translator”,
USENIX Annual Technical
Conference, FREENIX Track. Vol.
41. 2005.

Please contact: 

Christian Kudera, Georg Merzdovnik,
Edgar Weippl, SBA Research, Austria
ckudera@sba-research.org, ,
gmerzdovnik@sba-research.org,
eweippl@sba-research.org

ERCIM NEWS 119   October 201930

Special Theme: Smart Things Everywhere

Figure 1: Overview of the AutoHoney(I)IoT framework.

“Yogurt” is an object-oriented declara-
tive programming language for the
Internet of Things (IoT). It allows the
end-user to program their entire IoT
ecosystem through one environment by
leveraging the capabilities of Igor
[L1], an architecture for unified access

to IoT [1]. The language offers high
expressiveness by incorporating
mechanisms from traditional program-
ming paradigms. Furthermore, the
underlying programming model
adopts a metaphor close to the users’
real-life experience, thus reducing the

learning effort required to adopt the
language. 

Traditionally IoT devices are pro-
grammed through a variety of high-
level languages. This, however, requires
an in-depth knowledge of computer
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programming which often takes years
of training and practice to develop. In
addition, the decentralised nature of the
development of these technologies has
led to the incorporation of many com-
munication protocols and formal lan-
guages. Therefore, managing a com-
plete system often requires knowledge
of multiple programming environ-
ments. Both the consumer industry and
academia have tried to address this
problem by introducing systems which
act as a central control point for the cus-
tomer’s IoT systems. Through these all
of the user ’s devices can be pro-
grammed through one language. These
programming facilities, however, are
mostly optimised for usability in order
to reduce the learning curve for inexpe-
rienced users. This, therefore, leaves a
gap between highly expressive but diffi-
cult programming languages and user-
friendly environments, which lack suf-
ficient expressive power. Consequently,
the main purpose of this work is
twofold: to extend the work of Jansen
and Pemberton [1] by providing a
viable programming language for Igor,
and to fill the abovementioned gap that
currently exists in the programming
facilities for IoT devices. 

Yogurt’s underlying programming
model (Figure 1) achieves simplicity by
providing abstractions analogous to the
real world in order to reduce the gap

between what the programmer is trying
to achieve and how to achieve it. The
“actor” abstraction represents all
devices which would make up an IoT
system. Each “actor” has a state, which
represents what the device is doing in
the real world and can perform
“actions” which change that state. An
“action” gets triggered by a change in
the state of its own corresponding actor
or that of another one. Conditions can
also be added in the form of “guards” to
allow the device’s behaviour to vary
based on its environment. This small set
of general abstractions is at a high
enough level so as to be easy to concep-
tualise. Furthermore, they are general
enough to be applicable in the increas-
ingly heterogenous collection of
devices part of IoT. 

The proposed model utilises several
mechanisms from established program-
ming paradigms to allow it to tackle the
use cases that have come to be expected
by users of this technology. The actor
abstraction works as a class in object-
oriented programming in order to allow
the reuse of code, making writing
Yogurt programs more efficient.
Furthermore, it allows for the use of
encapsulation and inheritance. This
makes it easier to program more com-
plex devices as a collection of simpler
ones. In addition, by forcing the pro-
grammer to keep data and correspon-

ding methods together, it is easier to
keep track of dependencies and spot any
conflicts that may arise from different
methods trying to change the same data
at the same time. Last but not least, the
language is declarative, meaning that
the user needs to specify what the result
of the program needs to be rather than
how exactly to achieve it. This feature
brings two major advantages: it further
reduces the learning curve as the pro-
grammer does not have to worry about
concepts such as memory management
and it makes the language context inde-
pendent, meaning that a program which
switches the lights on and off would
remain the same regardless of the hard-
ware devices used to implement the
solution as the result will be the same. 

The proposed textual representation of
Yogurt uses human readable keywords
to reduce the barrier to adoption and
increase code readability. Here is a
simple example of a light which turns
on with a presence detector (PD) only
when a day light sensor senses that it is
dark outside:
on(PD.present):

whenall(PD.present = True,

dayLight_sensor.night = True):

on <- True

The current version has been tested
using the Discount method for program-
ming language evaluation [2].
Participants confirmed that the lan-
guage was easy to pick and use because
it allows them to think about the task in
a way in which they would in the phys-
ical world, while suggesting changes
that could be made to increase effi-
ciency. 

Links:

[L1] https://github.com/cwi-dis/igor
[L2] https://www.dis.cwi.nl/
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Figure 1: Yogurt programming model abstractions.

Figure 2: Light, presence sensor, daylight sensor example model.
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