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Forced prey-predator oscillations*) 

by 

J.G. Blom, R. de Bruin, J. Grasman & J.G. Verwer 

ABSTRACT 

In this paper existence and stability of subharmonic solutions of the 

Volterra-Verhulst equations with a periodic coefficient are analyzed by the 

method of Urabe. The study supports the view that the observed 4- and 10-yr 

cycles of prey-predator systems are due to seasonal fluctuations. 

KEY WORDS & PHRASES: Volterra-Verhulst equations, periodically forced 

systems, subharmonic solutions 
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1 . INTRODUC'.rION 

In ecology there are many examples of populations having a prey-pred­

ator relation for which the densities fluctuate with a more or less fixed 

period. The example of the snowshoe hare and Canadian lynx with its 10-yr 

cycle is classical. For other examples, such as the 4-yr cycle of the 

coloured fox, we refer to BULMER [3]. For the analysis of density fluctua­

tions use is made of mathematical models such as systems of differential 

equations describing the dynamics of interacting populations. The Volterra­

Lotka equations are known as the simplest model of a prey-predator system 

with periodic solutions. Let x and y denote, respectively, the prey- and 

predator density. Then the system of Volterra-Lotka equations reads 

( 1. la) 
dx 

bxy, -- = ax -
dt 

( 1. lb) ~ly = -cy + dxy, 
dt 

where a,b,c and d denote the parameters of the system. Equations (1.1) have 

a one parameter family of periodic solutions depending on the initial values 

of the system. At this point we touch upon one of the shortcomings of this 

model: the amplitude and period of a solution depend upon the initial values, 

which is unnatural in view of the problem's ecological background. Further­

more, the solutions turn out to be neutrally stable. As a result of this the 

system will not return in its cycle after some perturbation. It is clear 

that this model cannot explain the observed well defined period of prey­

predator oscillations. A third objection against the model concerns its 

structural instability. Structural stability is a mathematical concept that 

can be understood by extending the model (1.1) with a Verhulst term as 

follows 

( 1. 2a) 
dx 

bxy 
2 -- = ax - - ex I dt 

(1. 2b) ~x. = -cy + dxy. 
dt 

Then fore~ 0, the solution behaves qualitatively different and, therefore, 
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the system is called structurally unstable fore= 0. 

The objective of this paper is to formulate a model for prey-predator 

oscillations that comes as close as possible to the Volterra-Lotka equations 

and that meets the above objections. BULMER [3] gives conditions for the 

system 

( 1. 3a) 

(1..3b) 

dx 
-= 
dt 
dy = 
dt 

xf(x,y), 

yg(x,y) 

in order to satisfy a set of ecological constraints with relation to prey­

predator interaction. These conditions are violated by (1.1); the Volterra­

Verhulst system (1.2) with positive parameter values meets all requirements. 

However, oscillating solutions of (1.2) tend to damp out, so that the model 

in this form is unsuitable for our study. 

It is suggested that the answer to this problem may lie in the exist­

ence of a cycle due to the interaction of the prey with its food, e.g. a 

plant-herbivore relation, see [3]. However, this argument means a shift of 

the problem to a lower level, since such a system has the same interaction 

mechanism as a prey-predator system. After analyzing a series of alternatives 

for (1.2), ROUGHGARDEN [9, p449] concludes: "So the issue of exactly what 

mix of mechanisms causes the lynx oscillations is still open, ••• ". In this 

paper we will continue the mathematical investigations on the system (1.2) 

and consider the case where one of the parameters is periodic in time. Our 

aim is to prove the existence of asymptotically stable periodic solutions 

with a period being a multiple of the period of the driving term. A biol­

ogical motivation for choosing periodically varying parameters is found in 

the influence of seasonal conditions. Let us assume that the growth rate of 

the prey is periodic with period 1. Since we are mainly interested in 

qualitative features of the system we take 

( 1.4) 

instead of constructing a periodic function fitting data of observations. 

Thus, we consider the system (1.2) with the parameter a given by (1.4), 

that is we have a system driven by an external periodic force. 
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It has been proved, that in general systems of periodically forced 

differential equations have a periodic solution with a period equal to the 

driving period. It is, however, not commonly known that such systems may 

have stable subharmonic solutions with a period being a multiple of the 

driving period. In certain cases stable subharmonics with a different period 

may be found for the same set of parameter values. By taking such a 

parameter set and a specific initial point and by integrating the system 

nu,merically one will find a solution which over a large time interval will 

tend to a stable oscillatory state. From this approach it is not clear, how­

ever, that for other initial values the solution will tend to the same or 

a different oscillatory state. In order to eliminate such arbitrariness and 

to trace more subharmonics at the same time, we will handle the problem more 

systematically and integrate the equations for a sufficiently large set of 

initial points in the positive quadrant of the phase-plane. However, 

numerical integration of the system for each initial point over a large 

time interval is practically impossible, and, as we will see, also not 

necessary. Integration of the system over one period of the driving force 

relates an initial point to an end point. This mapping of the phase plane 

into itself, the so-called Poincare mapping, will be studied in the next 

section. There, we construct an approximation of this mapping by which we 

are able to find, in an efficient numerical way, approximations to various 

subharmonics. 

In section 3 the existence of periodic solutions near such approxima­

tions will be investigated by making use of a theorem of URABE [10]. This 

theorem yields a practical method of proving the existence of isolated 

periodic solutions in the neighbourhood of periodic functions satisfying 

the differential system with a sufficient accuracy. The theorem provides us 

with error bounds for these approximations and gives also a decisive answer 

on the stability of the periodic solutions. In section 4 the method is 

worked out for two specific examples. 

In section 5 we discuss possible implications of these results in 

the modelling of periodic phenomena in population dynamics. Besides the 

prey-predator oscillations mentioned above we refer to the observed cycles 

in the densities of rodent populations and the periodic outbursts of 

epidemic diseases. 
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2. THE POINCARE MAPPING 

By an appropriate scaling of the dependent variables the system (1.2), 

(1.4) is transformed into 

( 2. 1 a) 

(2°. lb) 
dx2 
--= 
dt 

In order to trace periodic solutions of this system for a specific choice of 

the parameters we consider the Poincare mapping 

( 2. 2) P:x(O) ➔ x(1). 

Furthermore, we introduce the sequence of functionals 

(2.3) V 1(x) = II Pnx-xll , 
n 

n = 1,2, ... , 

where 11°11 denotes the Euclidian norm of a vector. Apparently V is positive 
n 

semi-definite and vanishes at a fixed point of Pn, which corresponds to a 

periodic solution of period k with k such that n/k is a positive integer. 

Comparing the occurrence of zeroes of V for different values of none may 
n 

conclude about the period of a solution at such a point. For the approximation 

of V in a certain domain of the phase plane we adapted the following 
n 

strategy. Let A1 c JR 2 be a compact domain and define 

( 2. 4) B. = {yly = Px, x EA.}. 
i i 

If we let A. 1 = A. n B., then for a given domain A1 , we compute Vn(x) 
i+ i i 

for x E An from a numerical approximation of Pon A1 . This approximation of 

Pis based on a numerical integration of the system over the interval (0,1] 

f~r a set of initial points x 0 on a lattice L covering A1 . Since for n > 1 

Pix, i = 1,2, ..• ,n-1 is not a point of the lattice L we interpolate P over 

h 1 . . f' d i+1 h . f i+1 t e nearest attice points to in P x. Thus t e construction o P x 

from Pix for i > 0 is completely based on interpolation, so that expensive 



numerical integration of the system is avoided. Once we have a global pic­

ture of the approximate values of the zeroes of V, we refine the result 
n 
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by stepping locally along the path of steepest descent to the minimum being 

a zero of V, while taking this stepsize sufficiently small and the numer­
n 

ical integration sufficiently accurate in order to attain the accuracy 

required for a successfull application of Urabe's method. The value of V in n 
the last point is a measure for the accuracy in approximating the initial 

potnt of the corresponding periodic solution. 

3. EXISTENCE AND STABILITY OF SUBHARMONIC SOLUTIONS 

For the proof of existence of a periodic solution in the neighbourhood 

of an approximate solution we use a method developed by URABE [10]. Let us 

sketch how we apply this method to the class of problems (2.1). We consider 

the periodic nonlinear system of differential equations 

(3.1) dx 
dt = f(x,t), f(x,t) = f(x,t+2n), 

and assume that f(x,t) and its partial derivatives with respect to x are 

continuously differentiable to x. and tot in a region D x L, where Dis 
i 

a bounded closed set in the state space and L the t-axis. The following 

theorem (Proposition 3 of [10]) enables us to investigate, in a numerical 

way, the existence of an isolated 2n-periodic solution in a neighbourhood 

of an arbitrary 2n-periodic approximation. 

THEOREM 3.1. Let x = x(t), lying within D, be a 2n-periodic approximate 

solution of (3.1). Let A(t) be some continuous 2n-periodic matrix such that 

the multipliers of y' = A(t)y are all different from one. Let ~(t) be its 

fundamental matrix satisfying ~(O) = E, Ethe unit matrix, and define 

H(t,s) as the piecewise continuous matrix 

(3.2a) H(t,s) = ~(t) [E - ~(2n)]-l ~-l(s) for O ~ s ~ t ~ 2n 

(3.2b) H(t,s) = -1 -1 
~(t)[E - ~(2TT)] ~(2n) ~ (s) for O ~ t < s ~ 2n. 
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Let II 0 11 denote the Euclidian norm, and further, let Mand r be positive 

constants such that 

( 3. 3) 

(3. 4) 

2 
M p,q<t, s) ds 

max llx' (t) - f(x(t) ,t) II s r. 
0StS27T 

Finally, let f(x,t) 

0 < K < 1 such that 

= f (x,t). Now, if there exist constants o > 0 and 
X 

( 3. Sa) Do= {xlllx-x(t)ll so for all t e L} c D, 

(3.Sb) llf(x,t) - A(t)II s K/M forte Land all x e D0 , 

(3.Sc) Mr/ (1-K) S o, 

then (3.1) has a unique 27r-periodic solution x = x(t) in D0 and this solution 

is isolated. Further, we have 

( 3. 6) max llx(t) - i(t)~ s Mr/(1-K). 
0StS27T 

□ 

It is noted that this theorem yields an error bound for the approximation 

x(t). Because of the fact that the theorem requires a 27r-periodic system 

we transform our prey-predator equations (2.1) to 

(3. 7a) 
dx1 
--= 
dt 

(3. 7b) 
dx2 
--= 
dt 

+ where TE IN. Obviously this system of differential equations is 27r-periodic 
" int and if it has a 27r-periodic solution x = x(t) then x = ~(27rt/T) is a 

periodic solution of (2.1) with period T, that is, a subharmonic of order T. 
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The conditions (3.5) are verified for the system (3.7) as follows. Let 

the matrix A(t) be given by 

(3. 8) 

with! being the Jacobian matrix of (3.7). An elementary calculation yields 

2 -1 2 2 - - 2 
(4n) T {a (2n(x1-x1 (t))+x2-x2 (t)) + 

2 2 - 2 2 - 2 
+(a +B) (x1-x1 (t)) +B (x2-x2 (t)) } ~ 

2 -1 2 2 2 2 2 2 2 - 2 - 2 
(4n ) T max (2a +B ,a +B +Sn a ) { (x1-x1 (t)) + (x2-x2 (t)) }. 

Consequently, for any (x1 ,x2 ) lying in 

we have 

D!(x,t)-!(i(t) ,t)U ~ 
-1 -

(2n) oTlq, 2 2 2 2 2 2 
q = max(2a +B ,a +B +Bn a). 

If we succeed in finding a o > 0 and a K, 0 < K < 1, such that 

(3.9ab) 

then we have completed the proof of existence of a unique isolated subhar­

monic solution of (2.1), provided the condition on the multipliers is 

satisfied. For convenience we set 

(3.10) O = Mr/ (1-K). 

Then condition (3.9a) reads 

(3.11) 
-1 2 ,-

(2n) rTM vq ~ K(l-K) 
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Hence, this condition is satisfied if 

(3.12) 

It is observed that for a given set of parameters the magnitude of rM2 is 

of crucial importance. Since the accuracy of the approximation x(t) deter­

mines the ma~rnitude of the residual constant r, a successful application 

of Urabe's theorem can only be realized if the approximation is sufficiently 

accurate. 

To conclude this section we now discuss some computational aspects of 

Urabe's theorem. It shall be clear that, apart from very simple cases, ·this 

theorem cannot be applied without the use of numerical techniques and an 

electronic computing device (see URABE and REITER [12] for a detailed 

discussion). For a 2w-periodic approximation of the 2w-periodic solution 

of (3.7) we use the trigonometric vector polynomial 

(3.13) 
m 

x(t;m) = ao + r a2n-1 sin nt + a2n cos nt. 
n=l 

By application of quadrature rules (see [12]) its Fourier coefficients are 

determined from the numerical solution that starts in the fixed point of the 

iterated Poincare mapping (see foregoing section). In order to obtain an 

estimate for M, the initial value problem 

(3.14ab) ~· = f(x(t;m) ,t)~, ~(0) = E, . 0 ~ t ~ 2w 

is solved numerically and the integration of (3.3) is carried out. As 

proposed by Urabe and Reiter, the standard 4th-order Runge-Kutta method 

and the quadrature rule of Simpson are used. The bound r is estimated from 

the maximum of the residual function over a sufficiently large number of 

points. It is emphasized that rand M must be safely upper estimated. Since 

(3.14) approximates the first variational equation of the exact solution, we 

can investigate the asymptotic stability of a periodic solution from this 

equation. The eigenvalues of the matrix ~(2w), being the multipliers of the 

linear system (3.14), can be computed by hand. 
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4. NUMERICAL SOLUTIONS 

In this section we restrict ourselves to the class of systems (2.1) with 

a small Verhulst term (0 < n << 1). For an autonomous system (y=0) this 

would lead to oscillatory solutions damping out very slowly. Near the 

equilibrium (x1 ,x2 ) = (1,1-n) These oscillations will have an approximate 

period of 2w/laS and the period will increase with the amplitude of the 

oscillations. By introduction of a sufficiently large forcing term there 

will appear asymptotically stable periodic solutions of period 

T = 1,k,k+l,k+2, ... with k depending on the value of the product aS (see 

Figure 4.1). We computed such periodic solutions for two specific examples 

(see Table 4.1). The results are presented in the Tables 4.2 and 4.3, 

1-n 

0 

n > o 
y = 0 

Fig. 4 .. la Damped oscillatory 
solution of autonomous Volterra­
Verhulst system 

a s 

Example I 4.539 1.068 

Example II 3.4 .8 

T=Jc+l n > o 
> 0 

1-n 

0 X ➔ 
1 

Fig. 4.lb. Stable subharmonic 
solutions of forced Volterra­
Verhulst system 

y n 2w ✓as 

.25 .0025 2.85 

.25 .0025 I 3.81 

Table 4.1. The parameter values for the two examples. 
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x 1 (0) Multi-
T M r ~(<\) 

x 2 (0) pliers 

1 0.98961058 -0.59±0.80i 8.5 210-9 1.510-7 
0.963138653 .6Ubl.e 

3 0.407008521 0.76±0.62i 67 10-8 1.410-4 
1.484111304 .6Ubl.e 

3 0.40555853 1. 51,0.64 54 610-9 1.810-5 
1.05763779 un6;ta.bl.e 

4 0.095179161 -0.37±0.90i 1245 10-8 1.610-2 
0.2697495821 .6Uble 

Table 4.2. Initial values of 4 approximate periodic solutions of 

Example I. In all 4 cases the existence of an exact solution has been 

proved. 

x 1 (0) Multi- I T M r ~ (<\) 
x2 (0) pliers 

1 0.9948671 -0.08±0.99i 10 10-6 7.810-5 
0.9791929 .6Ubl.e 

4 0.682447607 0.93±0.32i 145 · 10-7 6.610-3 
1.528681362 .6Ubl.e 

4 0.447779739 1.32,0.73 162 210-9 1.610-4 
1.3060312(52 un6;ta.ble 

5 0.0415914697 0.20±0.96i 657 510-9 8.410-3 
0.5085066681 .6Uble 

Table 4.3. Initial values of 4 approximate periodic solution of 

Example II. In all 4 cases the existence of an exact solution has been 

proved. 



In figure 4.2 we depicted the functional (2.3) for Example I. By the 

method of HAYASHI [7] we constructed the domains of attraction of the 

stable periodic solutions for the two examples, see Figure 4.3. Asymptot­

ically stable periodic solutions of Example II are given as a function of 

time in Figure 4.4. 

~·· , .. 

0 0 

(a) v1 (x) 

2 

0 2 4 5 6 7 

Figure 4.2. Level lines of the functional V, n = 1,2,3,4 for n 
Example I. 
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2 

0 

2 

0 l 

2 
(a) Example I 

2 
(b) Example II 

3 

3 

~ order 3 

7///, order 4 

111111 I order 5 

~ order 4 

1/////, order 5 

order 6 

Figure 4.3. Domains of attraction in the phase plane at time t = 0. 
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0 
0 5 10 t-+ 15 

2 T 4 

0 
0 5 10 t-+ 15 

6 

5 

T = 5 

4 

3 

2 

0 

0 5 10 t+ 15 

Figure 4.4. Sub(harmonic solutions of Example II 
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5. PERIODIC PHENOMENA IN POPULATION DYNAMICS 

In the foregoing sections we have proved the existence of asymptoti­

cally stable subharmonic solutions of the Volterra-Verhulst system (1.2) 

with the parameter a satisfying (1.4). This model is proposed for describing 

the existence of fluctuations in the densities of interacting preys and 

predators with a well defined period. In the model we incorporated the 

changing influence of the season acting upon the growth rate of the prey. 

The existence of asymptotically stable subharmonic solutions supports the 

view that thei observed 4- and 1O-yr cycles in prey-predator systems arise 

as a result of seasonal effects. Similarly, the model may explain the 5:-yr 

cycle of the hare (a plant-herbivore interaction), see [3,p.148]. From 

our mathematical investigations we conclude that for given parameter values 

several stable solutions with different periods are possible. This result 

meets Bulmer's objections against a model with a driving periodic force as 

it gives a possible explanation for the existence of different lynx cycles 

in European Russia (8-yr) and Siberia (10-yr). 

We expect a similar qualitative behavior of the system if other para­

meters are varied periodically as well. For example, if we let a and c of 

( 1. 2) be periodic in time, we arrive at a model studied by DEKKER [4] 

describing the existence of rodent cycles. Dekker explains the possible 

lengthening of the period from a critical passage in the phase plane. 

Taking the parameters band d periodic in time the model (1.2) may be of 

use for describing the periodic outbursts of epidemical diseases in popula­

tions. For this type of problem x and y denote, respectively, the densities 

of the susceptible and the infective population. The periodicity in band d 

account for seasonal variations in the contagion. In this respect the 2-yr 

cycle in the occurence of measles [5] and the 3-yr cylce of rabies under 

foxes [l,p.91.] should be mentioned. 

6. CONCLUDING REMARKS 

In our mathematical analysis we left several interesting aspects of 

the mathematical problem untouched. First of all it is worth to investigate 

the way in which the lower subharmonics of (2.1) disappear near the equi-



librium of the autonomous system as the product aS decreases and the 

expression 2n//ai3 passes an integer value. The KBM-method [2] of 
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analyzing almost linear systems would provide the appropriate tools for such 

a study. Furthermore, one may compute the conditions on y and n in order 

to have existency and stability of subharmonic solutions. Besides the 

periodic solutions with an integer rotation number, see HALE [6, p.66], 

there may also exist solutions with a fractional rotation number. As an 

i1lustration one may consider example I of section 4 and look for solutions 

of period 7 consisting of one cycle of about 3 years which, instead of 

closing its orbit, first makes another cycle of 4 years. Such a solution 

may explain the existence of 3.5-yr cycles. However, since it is expected 

that these solutions have a small domain of attraction we should also take 

into consideration the influence of stochastic effects making the system 

switch between the 3-yr cycle and the 4-yr cycle. Such arguments also 

apply to the 10-yr cycle of the Canadian lynx, as its observed period 

actually comes closer to a 9.5~yr cycle. KANNAN [8] has studied the 

influence of small stochastic effects upon the system (1.2) with periodic 

coefficients-near the harmonic solution. Since solutions of such a system 

will leave any bounded domain with probability one in a finite time, it is 

also worthwhile to concentrate on global results for stochastic systems 

for which the corresponding deterministic system has several stable periodic 

solutions with different periods. 
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