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Abstract
In the Convex Body Chasing problem, we are given an initial point v0 ∈ R

d and an
online sequence of n convex bodies F1, . . . , Fn . When we receive Ft , we are required
tomove inside Ft . Our goal is tominimize the total distance traveled. This fundamental
online problem was first studied by Friedman and Linial (DCG 1993). They proved an
Ω(

√
d) lower bound on the competitive ratio, and conjectured that a competitive ratio

depending only on d is possible. However, despite much interest in the problem, the
conjecture remains wide open. We consider the setting in which the convex bodies are
nested: F1 ⊃ · · · ⊃ Fn . The nested setting is closely related to extending the online
LP framework of Buchbinder and Naor (ESA 2005) to arbitrary linear constraints.
Moreover, this setting retains much of the difficulty of the general setting and captures
an essential obstacle in resolving Friedman and Linial’s conjecture. In this work, we
give a f (d)-competitive algorithm for chasing nested convex bodies in R

d .

Keywords Convex body chasing · Nested convex body chasing · Online algorithms ·
Competitive analysis

1 Introduction

In the convex body chasing problem, introduced by Friedman and Linial [19], we are
given an initial position v0 ∈ R

d . At each time step t ≥ 1, we receive a convex set
Ft ⊂ R

d as a request, and to serve the request, we must move to some point vt ∈ Ft .
The goal is to minimize the total distance traveled to serve the requests. The distance
can be measured using an arbitrary norm, but unless stated otherwise, it is measured
using the Euclidean norm. As any convex body can be approximated arbitrarily well
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by intersection of halfspaces, one can assume that Ft are halfspaces1 and hence this
problem is also known as halfspace chasing.

This problem belongs to a very rich class of problems called Metrical Service
Systems (MSS) [11]. In an MSS, we are given an arbitrary metric space (V , ρ) and
an initial position v0 ∈ V . At each time t , a request set Ft ⊂ V arrives and we must
serve it by moving to some vt ∈ Ft . MSS captures several interesting online problems
such as the k-server problem. While almost tight bounds are known for general MSS
[9,11,18], these bounds are not so interesting as typical online problems correspond
to MSS with highly structured requests Ft and metric space (V , ρ). There has been
a lot of interesting work on particular cases of MSS, e.g. [10,16,17,20,23,24], but
understanding the role of structure in MSS instances is a major long-term goal in
online computation with far-reaching consequences.

Indeed, the main motivation of [19] for considering the convex body chasing prob-
lem was to express the competitive ratio of MSS in terms of geometric properties of
the request sets Ft . For the convex body chasing problem, they obtained an O(1)-
competitive algorithm for d = 2; for d > 2, they gave an Ω(

√
d) lower bound and

conjectured that a competitive ratio depending only on d is possible. However, despite
much interest, the conjecture remains open.

Nested Convex Body Chasing. In this paper, we consider the nested convex body
chasing problem where the requested convex bodies are nested, i.e., Ft ⊂ Ft−1 for
each t ≥ 2. This natural special case is closely related to many fundamental questions
in online algorithms and online learning, and has been of interest in recent years.
However, prior to our work, nothing was known for it beyond the results of Friedman
and Linial [19] for the general case.

1.1 Connections and RelatedWork

A useful equivalent formulation of the nested problem is the following: Given an
initial position v0, at each time step t , we receive some arbitrary convex body Ft (not
necessarily nested), and we must move to some point vt that is contained in every
convex body seen so far, i.e. vt ∈ F1 ∩ · · · ∩ Ft . The goal is to minimize the total
distance traveled. Indeed, this is equivalent to convex body chasing with requests
F ′
t = F1 ∩ · · · ∩ Ft , which form a nested sequence.

Online Covering LP. The influential primal-dual framework of Buchbinder and Naor
for online covering LPs [15] can now be seen as a special case of nested convex body
chasing with the �1-norm. In the former problem, the algorithm starts at the origin
v0 = 0, and at each time t , a linear constraint a	

t x ≥ bt with non-negative at and bt
arrives. The goal is to maintain a feasible point xt that satisfies all previous requests
while the coordinates of xt are only allowed to increase over time. The objective
function c	x (where c is non-negative) can be assumed to be ‖x‖1 by scaling. Finally,
note that in nested convex body chasing with covering constraints, it never helps to

1 If F is the intersection of halfspaces H1, . . . , Hs , to simulate the request for F , the adversary can give
H1, . . . , Hs several times in a round-robin manner until the online algorithmmoves inside F . Not revealing
F directly can only hurt the online algorithm and does not affect the offline solution.

123



Algorithmica

decrease any variable and hence online covering LP is indeed a special case of nested
convex body chasing.

While the online primal-dual framework [15] has been applied successfully tomany
online problems, so far it is limited to LPs with covering and packing constraints, and
minor tweaks thereof. An important goal is to extend the online LP framework more
broadly beyond packing and covering LPs. For example, it is unclear how to do this
even for seemingly simple formulations such as Metrical Task Systems on a line.
Since the nested convex body chasing problem corresponds to solving online LPs
with arbitrary constraints (with both positive and negative entries) and a specific type
of objective, understanding the nested convex body chasing problem is an essential
step towards this goal. Indeed, this is one of our main motivations to consider this
problem.

General Convex Body Chasing.Another motivation for studying the nested case is that
it captures much of the inherent hardness of the general convex body chasing problem.
For example, the Ω(

√
d) lower bound [19] for the general problem also holds in the

nested setting. Moreover, several natural algorithms also fail for the nested case.

Other Special Cases.The only known algorithms for chasing convex bodies inRd with
d > 2 are for certain restricted families of convex bodies Ft such as lines and affine
subspaces. For chasing lines, Friedman and Linial [19] gave an O(1)-competitive
algorithm. For chasing lines and half-lines, Sitters [23] showed that the generalized
work function algorithm (WFA) is also O(1)-competitive; this is interesting as the
WFA is a generic algorithm that attains nearly-optimal competitive ratios for many
MSS and is a natural candidate to be f (d)-competitive for convex body chasing.
Recently, Antoniadis et al. [3] gave an elegant and simple O(1)-competitive algorithm
for chasing lines, and a 2O(d)-competitive algorithm for chasing affine subspaces.
However, all these results crucially rely on the fact that the requests Ft have a lower
dimension and do not seem to apply to our problem.

Connections to Online Learning. The convex body chasing problem is also closely
related to recent work combining aspects of competitive analysis and online learning.
One such work is the Smoothed Online Convex Optimization setting of Andrew et al.
[1,2] which incorporates movement cost into the well-studied online learning setting
of online convex optimization. The problem is well-understood for d = 1 [4,8], but
nothing is known for larger d. Another related work is that of Buchbinder, Chen and
Naor [14] which combines online covering LPs with movement cost.

1.2 Our Results

Our main result is the following.

Theorem 1 There is an algorithm for chasing nested convex bodies inRd with compet-
itive ratio that only depends on d. In particular, it has competitive ratio O(6d(d!)2).
The algorithm is described in Sect. 3 and is based on two ideas. First we show that to
design an Od(1)-competitive algorithm for chasing nested convex bodies, it suffices
to make an algorithm for r -bounded instances, where all the bodies Ft are completely
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Fig. 1 A few steps of the ellipsoid algorithm

contained in some ball B(v, r) with radius r and center v. Moreover, even though
competitive ratio is a relative guarantee, it suffices to bound the total movement of
the algorithm on any r -bounded instance by Od(r). Proving an absolute bound on
the distance moved makes the algorithmic task easier and we design such a bounded
chasing algorithm in Sect. 3.1.

Surprisingly, the natural approaches for r -bounded instances based on the Ellipsoid
Method or the centroid approach do not work. In particular, consider a 1-bounded
instance where the initial body is F1 = B(0, 1), and the algorithm starts at the origin.
As nested convex bodies arrive, if the current point vt−1 is infeasible for the request
Ft , a natural approach might be to move to the centroid of Ft or to the center of the
minimum volume ellipsoid enclosing Ft (see Fig. 1). In Sect. 4, we describe a simple
1-bounded instance inR2 onwhich the above algorithms travel an unbounded distance.

Wedesign our d-dimensional bounded chasing algorithm inSect. 3 based on a recur-
sive approach together with some simple geometric properties. It iteratively invokes
the (d − 1)-dimensional algorithm on at most d bounded instances defined on some
suitably chosen hyperplanes. When these instances end, we can argue that the future
requests must lie in some smaller ball B(v′, γ r), for some fixed γ < 1. Roughly,
this allows us to bound the competitive ratio by g(d), that satisfies the recurrence
g(d) ≤ dg(d − 1)/(1 − γ ).

1.3 Recent Developments

Since the initial announcement of this work [7], a lot of work was done on this prob-
lem with very exciting results. Argue et al. [5] announced an O(d log d)-competitive
algorithm for the nested convex body chasing problem. This was further improved by
Bubeck et al. [12] who achieved a competitive ratio of O(min(d,

√
d log n)), where

n is the length of the sequence.
Later, Bubeck et al. [13] obtained an exponential ratio for the general non-nested

case. This was subsequently improved to O(min(d,
√
d log n)) independently by

Argue et al. [6] and Sellke [22].
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2 Preliminaries

We define some notation and recall some basic facts from geometry.

Definition 1 (NestedConvexBodyChasing) In the nested convex body chasing prob-
lem inRd , the algorithm starts at some position v0, and an online sequence of n nested
convex bodies F1 ⊃ · · · ⊃ Fn arrive one by one. When convex body Ft arrives, the
algorithm must move to a point vt that lies in Ft . The goal is to minimize the total
distance traveled

∑n
t=1 ‖vt − vt−1‖2.

Note that the choice of measuring distance using the �2-norm—as opposed to some
other symmetric norm, say the �1-norm—has a negligible effect on the competitive
ratio that we obtain because all symmetric norms on R

d are within a d1/2 factor of
each other.

We say that an online deterministic algorithm ALG for some cost-minimization
problem P is c-competitive if, for any instance I ∈ P , we have

ALG(I) ≤ c · OPT(I) + α,

whereALG(I)denotes the cost of the solution toI produced by the algorithm,OPT(I)

denotes the cost of the optimal solution computed offline (i.e. with prior knowledge
of the whole input), and α is some absolute constant independent of the length of the
instance I. The constant c is called the competitive ratio of ALG. In the case of nested
convex body chasing, the cost corresponds to the distance travelled.

Let B(v, r) denote the ball of radius r centered at v. The following useful fact is
a variant of John’s theorem for balls instead of ellipsoids (for a proof, see e.g. [21,
Lemma 8.7.3]):

Proposition 1 (Minimum-volume enclosing ball) Let F be a bounded convex body
and suppose B(v, r) is the minimum-volume ball enclosing F. Then, the center v of
the ball B(v, r) is contained in F.

Next we need the following standard fact that we prove here for completeness. We
will use it to show that either we can reduce to a (d − 1)-dimensional instance or a
d-dimensional instance that is contained in a ball with smaller radius. We use 0 to
denote the origin.

Proposition 2 (Dimension reduction or radius reduction) Let d ≥ 2 and F be a
bounded convex body in R

d contained in B(0, r). Then, either F intersects some
axis-aligned hyperplane passing through 0, or it is contained in some orthant of
B(0, r). Moreover, in the latter case, the smallest ball B(s, r ′) enclosing F has radius
r ′ ≤ r(1 − 1/d)1/2.

Proof The first part immediately follows by convexity. For the second part, we assume,
without loss of generality, that r = 1 and that F is contained in the positive orthant of
B(0, 1). We now show that every point x in the positive orthant of B(0, 1) is within
distance at most r ′ := (1−1/d)1/2 from the point s = (1/d, . . . , 1/d). There are two
cases: (1) ‖x‖1 ≤ 1; (2) ‖x‖1 > 1.
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In case (1), x is in the convex hull of e1, . . . , ed , and 0, where ek denotes the k-th
vector of the standard basis with 1 in the k-th coordinate and 0 elsewhere. Therefore, it
suffices to prove that 0 and e1, . . . , ed arewithin distance r ′ from s. Indeed, ‖s − 0‖2 =
(1/d)1/2 ≤ r ′ (as d ≥ 2) and ‖s − ek‖2 = r ′ for each k ∈ [d].

In case (2), we have

‖s − x‖22 =
d∑

k=1

(

xk − 1

d

)2

=
d∑

k=1

(

x2k − 2xk
d

+ 1

d2

)

= ‖x‖22 − 2 ‖x‖1
d

+ 1

d
≤ 1 − 1/d,

where the inequality uses that x ∈ B(0, 1) and hence ‖x‖2 ≤ 1 and ‖x‖1 > 1. Thus,
the positive orthant of B(0, 1) is contained in B(s, r(1 − 1/d)1/2). �

3 Algorithm

We now describe our algorithm and prove Theorem 1. We first show, using a guess-
and-double approach, that finding a good algorithm for the general nested convex body
chasing problem can be reduced to an easier problem of designing an algorithm for
which we can upper bound the absolute distance traveled, on bounded instances of
the following type.

Definition 2 (r -Bounded Instances) An instance with starting point v0 and requests
F1 ⊃ · · · ⊃ Fn is said to be r -bounded if every request Ft is contained in B(v0, r).

Note that a general instancemay not be r -bounded for any finite r , e.g. in a covering
LP where all the Ft are halfspaces of the type a	

t x ≥ 1 where at has all entries non-
negative.

As we shall see, the task of showing an absolute bound on the distance traveled
(instead of a relative bound needed for competitive ratio) makes the problem cleaner.
We now describe the reduction.

Lemma 1 (Reduction to Bounded Chasing) Suppose there exists an algorithm
Chased that travels a total distance of at most g(d) · r on r-bounded instances for
every r > 0. Then there exists an f (d)-competitive algorithm for general instances
with f (d) = 8g(d).

Proof Consider a general instancewith starting point v0. Let δt be the distance between
v0 and the closest point in Ft ; note that δt is non-decreasing in t because Ft ’s are nested.
Without loss of generality, we can assume that v0 /∈ F1 and δ1 = 1 (by scaling).

The algorithm for the general instance proceeds in stages. For j = 1, 2, . . ., stage
j consists of all requests Ft for which δt ∈ (2 j−1, 2 j ], i.e., stage j begins with the
first request Ft that intersects with B(v0, 2 j ) but not with B(v0, 2 j−1), and ends with
the last request Ft ′ that intersects with B(v0, 2 j ).

The algorithm will run a new instance of Chased at each stage j . Let Fs( j) be the
first request of stage j and F�( j) be the last. At the start of stage j , the algorithm starts
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at the point v0, and begins an instantiation of Chased with input sequence

σ j = (Fs( j) ∩ B(v0, 2
j ), Fs( j)+1 ∩ B(v0, 2

j ), . . . , F�( j) ∩ B(v0, 2
j )).

After serving the last request F�( j), the algorithm returns to v0. Note that σ j is a
2 j -bounded instance.

We now bound the performance of the algorithm. Clearly, OPT = δn . Let j∗ denote
the index of the final stage, and hence OPT ≥ 2 j∗−1.

For each 1 ≤ j ≤ j∗, the movement cost during stage j has two parts and can be
bounded as follows:

– The movement of Chased on input σ j . This is at most g(d) · 2 j by the assumed
guarantee on Chased .

– Returning to v0 at the end of stage j . This cost is at most 2 j since every request
of σ j is contained in B(v0, 2 j ).

So the total distance traveled by our algorithm is at most

∑

j≤ j∗
2 j (g(d) + 1) ≤ 2 j∗+1(g(d) + 1) ≤ 4(g(d) + 1)OPT .

The lemma now follows from the fact that g(d) ≥ 1 as the algorithm might need to
travel a distance of r . �

3.1 Bounded Chasing Algorithm

We now focus on designing an algorithm for r -bounded instances. The following
theorem is our main technical result.

Theorem 2 (Bounded Chasing Theorem) There is an algorithm Chased that travels
at most g(d) · r distance on r-bounded instances where g(d) = 6d−1(d!)2.

Before we prove Theorem 2, let us note that Theorem 1 immediately follows by
combining Theorem 2 and Lemma 1.

We now construct the algorithm Chased and prove Theorem 2. The proof is by
induction on d. The base case (d = 1) is trivial: the requests form nested intervals and
the greedy algorithm that always moves to the closest feasible point is 1-competitive,
so g(d) = 1. In the remainder of this section, we focus on the d ≥ 2 case and
assume that there exists a (d − 1)-dimensional algorithm Chased−1 with the required
properties.

Algorithm. Consider an r0-bounded instance with starting point s0. The high level
idea of the algorithm is to reduce the instance into a sequence of (d − 1)-dimensional
instances and run Chased−1 on these instances.

The algorithm runs in phases. Each phase starts at some center s with radius param-
eter r ≤ r0. The first phase starts at s = s0 with radius r = r0. In each phase, we run
Chased−1 with center s and radius r on the (d − 1)-dimensional instances induced
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F1 F2 F3

B(s′, r′)

v1(1)

v2(2)
s′

H1

H2

B(s, r)

s H1

H2

B(s, r)

s H1

H2

B(s, r)

s

s′

Fig. 2 A phase of Chase2, that starts at s. The first request F1 is served using Chase1 in H1. The second
request F2 does not intersect H1 so it is served using Chase1 in H2. Finally, F3 does not intersect H2 either
and a recentering step is performed

by the d axis-aligned hyperplanes H1, . . . , Hd containing s. These are called hyper-
plane steps. When some request Ft arrives that does not intersect with any of these
hyperplanes H1, . . . , Hd , we perform a recentering step by computing the smallest
ball B(s′, r ′) enclosing Ft and moving to s′; the current phase then ends, and a new
phase starts with center s′ and radius r ′. A key property we will use in the analysis
(based on Proposition 2) is that r ′ ≤ r(1− 1/d)1/2, which will allow us to argue that
the algorithm makes progress.

Description of a phase. We now describe how a phase works. The reader may find it
helpful to refer to Fig. 2 while reading the description below.

Consider a phase that starts at center s and radius r . For notational convenience,
we reindex the requests so that the first request of the phase is F1. Let H1, . . . , Hd

denote the axis-aligned hyperplanes passing through s.

Hyperplane steps. Initially at request F1, we choose the axis-aligned hyperplane Hk

with the smallest index k ∈ [d] that intersects F1 (if no such hyperplane exists, we
move to the Recentering step below), and run Chased−1 on the (d − 1)-dimensional
instance induced by Hk and follow it for as long as we can. More specifically, we run
Chased−1 on the (d − 1)-dimensional instance with starting point s and radius r , and
requests

F1 ∩ Hk, . . . , F�(k) ∩ Hk,

where F�(k) is the last request in the current phase that intersects Hk ; for t ≤ �(k),
we serve request Ft by moving to vk(t) where vk(t) is the location of Chased−1 on
request Ft ∩ Hk .

When the first request Ft arrives that does not intersect the current Hk , i.e., Ft =
F�(k)+1, then we change the hyperplane and repeat the above process. That is, we pick
Hk′ that intersects Ft , with the smallest index k′ (if it exists), and run Chased−1 on
Hk′ starting at position s with radius r and requests F�(k)+1 ∩ Hk′ , . . . and follow it
for as long as we can.

Recentering step. If a request Ft arrives that does not intersect any Hk for k ∈ [d],
we compute the smallest ball B(s′, r ′) containing Ft , move to s′ and serve Ft (note
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that s′ ∈ Ft by Proposition 1). The current phase ends, and a new phase with center
s′ and radius r ′ starts.

This completes the description of a phase and we now turn to analyzing the algo-
rithm.

Analysis. We need to show that Chased is feasible (Claim 1) and bound the distance
it travels (Claim 2). These claims give us Theorem 2.

Claim 1 (Feasibility) The algorithm Chased is feasible, i.e., we have vt ∈ Ft for all t .

Proof We prove the claim by induction on d. For d = 1, the algorithm is trivial and
it is always feasible. Assume that the claim is true for d − 1. Consider some request
Ft . Observe that Chased either performs a hyperplane step or a recentering step. In
the former, since we follow Chased−1 on some hyperplane Hk and Chased−1 stays
feasible (by induction), we have that vt ∈ Ft ∩ Hk . In the latter, vt is the center of the
smallest ball containing Ft so vt ∈ Ft by Proposition 1. Thus, in both cases, vt ∈ Ft .
�

Next, we bound the distance traveled by Chased .

Claim 2 (Cost) The total distance traveled by Chased on an r-bounded instance is at
most g(d) · r , where g(d) = 6d−1(d!)2.
Proof We now bound the distance traveled during each phase. Consider phase j . Let
Bj denote Chased ’s enclosing ball during the phase and r j be its radius. Note that
during the phase, the algorithm stays within Bj and all requests Ft in the phase are
contained in Bj . The movement in phase j consists of:

– Movement due to hyperplane steps. On each hyperplane Hk , we move at most
g(d − 1) · r j by following Chased−1. Thus, the total movement due to hyperplane
steps is at most d · g(d − 1) · r j .

– Movement due to switching hyperplanes. We switch hyperplanes at most d − 1
times, so this is at most (d − 1) · 2r j .

– Movement due to recentering. This is at most 2r j .

Thus, the total distance traveled in phase j is at most

d · (g(d − 1) + 2) · r j ≤ 3d · g(d − 1) · r j ,

since g(d − 1) ≥ 1.
We now bound the sum of r j over all phases. By Proposition 1, the radii of the

enclosing balls decrease geometrically across phases: r j ≤ r j−1 ·√1 − 1/d for j > 1.

Thus, the sum of r j over all phases is at most r1 ·∑∞
j=1

(√
1 − 1/d

) j = r1 · 1
1−√

1−1/d
.

As r1 = r , the total distance traveled by Chased over all phases is at most

3d · g(d − 1) · r

1 − (1 − 1/d)1/2
≤ 3d · g(d − 1) · 2dr
= 6d2g(d − 1)r ,
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where we use that 1− (1−1/d)1/2 ≥ 1/(2d), as (1− x)α ≤ 1−αx for any x ∈ [0, 1]
and α ∈ [0, 1].

Thus, we conclude that Chased travels at most g(d) · r , where g(d) = 6d−1(d!)2 is
the solution to the recurrence relation g(d) = 6d2 · g(d − 1) with base case g(1) = 1.

�

4 Lower Bounds for Ellipsoid and Centroid

In this section, we consider some natural ellipsoid-based and centroid-based algo-
rithms for chasing nested bodies in the r -bounded setting, and show that they are not
competitive, i.e., their competitive ratio can be arbitrarily large if the length of the
input sequence approaches inifinty. The main reason these algorithms fail is that for
(relatively) flat convex bodies, the center of the bounding ellipsoid, or the centroid,
can move by a large distance in directions that do not matter.

Henceforth, for a set S ⊂ R
d , let E(S) denote the smallest-volume ellipsoid con-

taining S. Consider the following ellipsoid-based algorithm Ellipsoid: for each request
Ft , if the current position is not in Ft , move to the center of E(Ft ).

We now construct an R
2 instance in which Ellipsoid travels an arbitrarily large

distance while the optimal offline cost is at most 1. In the following, we will use the
notation (x, y) for a point in R2.

The starting point of the instance is (0, 1). Each request Ft is an intersection of four
halfspaces A, B,C, Ht . The first three halfspaces A, B,C are y ≥ 0, x ≥ −1, and
x ≤ 1, respectively. The last halfspace Ht will be different for each Ft .

For the first request F1, we set

H1 = {(x, y) | 2y ≤ (1 − α)x + (1 + α)},

for some parameter α. Note that the boundary of H1 passes through the points (−1, α)

and (1, 1), as seen in Fig. 3. The parameter α is chosen so that the center of E(F1) is
strictly to the right of the y axis, as guaranteed by the following lemma:

Lemma 2 There exists 0 < α < 1 such that the center of the smallest ellipsoid
containing F1 has a strictly positive x-coordinate. More precisely, its center is (c, b)
with c, b > 0.

0
-1 1

1

α
F1

A

B

C
H1

Fig. 3 The first request F1
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FtRi

Li−1

Ri−1

α2i−1

α2i−2

α2i

α2i+1

1

(c, bα2i−2)

(−c, bα2i−1)

−1

E(F1 ∩ Li−1)

E(F1 ∩ Ri−1)

Fig. 4 Constructing the sequence of Ri and Li for i = 1, 2, . . .

We postpone the proof of Lemma 2 and continue with the description of the request
sequence. The remaining nested bodies {Ft | t ≥ 2} are created so that the x-coordinate
of the center of E(Ft ) oscillates between c and −c. To this end, we construct two
infinite families of halfspaces Ri and Li : for i ≥ 0, we define

Ri := {(x, y) | 2y ≤ (α2i − α2i+1)x + (α2i + α2i+1)}
Li := {(x, y) | 2y ≤ (α2i+2 − α2i+1)x + (α2i+2 + α2i+1)}.

Now observe that the boundary of Ri passes through the points (1, α2i ) and
(−1, α2i+1), and the boundary of Li passes through (−1, α2i+1) and (1, α2i+2). See
Fig. 4 for an illustration.

We now describe the requests Ft for t ≥ 2. For even t , we set Ht to be Li , where i is
the smallest index such that Li does not contain the current position of the algorithm.
For odd t , we select Ht to be Ri in a similar fashion. This completes our description
of the requests Ft . Looking at Fig. 4, one can easily observe that our requests Ft are
indeed nested.

The following lemma describes the position of the center of each ellipsoid E(Ft ).
Note that c and b are the strictly positive constants from Lemma 2.

Lemma 3 When t is odd, the center of E(Ft ) is (c, bα2i ) for some i . When t is even,
the center of E(Ft ) is (−c, bα2i+1) for some i .

Proof Recall that Ft = A ∩ B ∩ C ∩ Ht . First, consider odd t , where Ht = Ri . We
define a map f : (x, y) → (x, y/α2i ), which rescales the y-coordinate. Note that it
maps Ft to F1. Moreover, f preserves ratios between volumes, and therefore the map
of the smallest ellipsoid containing Ft is the smallest ellipsoid containing F1.We know
that its center is at (c, b), and therefore the center of E(Ft ) is at (c, bα2i ).

For t even, we have Ht = Li for some i . We define g : (x, y) → (−x, y/α2i+1),
which first mirrors Ft with respect to the y axis, and then rescales the y-coordinate, so
that g(Ft ) = F1. Clearly, mirroring preserves the volumes, while rescaling preserves
their ratios. Therefore, f maps E(Ft ) to E(F1)whose center is at (c, b) and the center
of E(Ft ) is at (−c, bα2i+1). �

Let us now estimate the competitive ratio of Ellipsoid. At each time step, it incurs
cost at least 2c, since it moves between two points with x-coordinates c and−c respec-
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tively. Therefore, if N is the total number of requests, the total cost incurred by Ellipsoid
is at least N ·2c, which can be arbitrarily large.On the other hand, the point (0, 0) is con-
tained in every Ft , since it belongs to F1 and also to every halfspace Ri and Li . There-
fore, the cost of OPT is at most 1 and the competitive ratio of Ellipsoid is unbounded.

Proof of Lemma 2 Using a computer algebra system, we computed that for α = 1/2
the center of E(F1) is at (0.24568, 0.40571). This can be calculated, e.g., using the
function ellipsoidhull in R, but similar functions are also available forMATLAB.
This shows that α = 1/2 satisfies the requirements of the lemma.

The manual computation of E(F1) for α = 1/2 is laborious, but we can still give a
formal proof of the existence of a suitable α. Let F1(α) denote F1 with parameter α.
Observe that F1(0) is a triangle with vertices (1, 0), (1, 1), and (−1, 0); and F1(1) is a
rectanglewith vertices (1, 0), (1, 1), (−1, 0) and (−1, 1). Since the center of E(F1(α))

evolves continuously with α, it suffices to show that the center of the smallest ellipsoid
containing the triangle F1(0) lies strictly to the right of the y-axis. By continuity, this
implies that there exists α > 0 such that the x-coordinate of the center of E(F1(α))

is still strictly positive.
We define the affine map f : (x, y) → ( 1 −1

0
√
3

)
(x, y)	. Let T = F1(0). This trans-

formation makes T equilateral by first shearing it to the left to be symmetric with
respect to the y-axis and then shrinking the y-coordinate. The smallest ellipsoid con-
taining an equilateral triangle is its circumcircle, whose center lies in the intersection
of its altitudes. Since one of the altitudes lies on the y-axis, the x-coordinate of the
center of E( f (T )) is 0, and its y-coordinate is strictly positive. Since f preserves
ratios between volumes, we have f (E(T )) = E( f (T )). Therefore, applying f −1 to
the center of E( f (T )), we know that the center of E(T ) has both coordinates strictly
positive. �
Lower bound for the centroid algorithm. Similar to the ellipsoid-based algorithm, one
can consider the following centroid-based algorithm: for each request Ft , if the current
position is not in Ft , move to the centroid (center of mass) of Ft .

The same sequence of requests Ft as above also shows that this algorithm is not
competitive either. In fact, the analysis here is much easier, as we can compute the
centroids using simple geometry (the input convex bodies can be partitioned into a
right triangle and a rectangle, as seen e.g. in Fig. 3).

A simple calculation shows that for α = 1/2, the centroid of F1 is (1/9, 7/9).
For the convex bodies requested later, the x-coordinate of the centroid will oscillate
between−1/9 and 1/9, again showing that the total distance traveled by the algorithm
can be made arbitrarily large.
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