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A Nonlinear Flux Approximation Scheme
for the Viscous Burgers Equation

N. Kumar, J.H.M. ten Thije Boonkkamp, B. Koren and A. Linke

Abstract We present a nonlinear flux approximation scheme for the spatial dis-
cretization of the viscous Burgers equation. We derive the numerical flux function
from a local two-point boundary value problem (BVP), which results in a nonlinear
equation that depends on the local boundary values and the diffusion constant. The
flux scheme is consistent and stable (does not introduce any spurious oscillations),
as demonstrated by the numerical results.
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1 Introduction

In this contribution we present a nonlinear flux approximation scheme for the spatial
discretization of the viscous Burgers equation. The Burgers equation is an ideal test
problem, as its spatial discretization can be carried over to the convective and viscous
fluxes involved in the Navier—Stokes equations. The expression for the flux is derived
from a local two-point BVP and is inspired by [5], where a local BVP is solved to
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derive an integral representation of the flux for the convection-diffusion-reaction
equation. The resulting numerical flux is expressed as a sum of a homogeneous part,
which depends on the Péclet number (local balance of convection and diffusion) and
an inhomogeneous part depending on the effects of the source term (associated with
the reaction). Note that the homogeneous flux approximation is similar to the approx-
imation methods described in [1, 3]. In this contribution, we extend the homogeneous
approximation to nonlinear problems.

In the vanishing viscosity limit, the viscous Burgers equation is a singularly per-
turbed problem. Moreover, the nonlinearity of the flux does not allow us to express
the homogeneous flux as linear combination of the convective and the viscous part,
which makes it cumbersome to have a consistent numerical flux. In this paper, we
extend the local BVP method to nonlinear problems, such that the resulting numeri-
cal flux is consistent, i.e., reduces to the correct flux in the limit case. A discussion
on nonlinear local two-point BVPs can be found in [2], where the authors show
(1) the solvability of some auxiliary local nonlinear two-point BVPs, and (ii) the
convergence of the discrete scheme to a weak solution of the continuous problem.

The paper is organized as follows: in Sect. 2 we formulate the local BVP for the
flux approximation. Sect.3 gives details of the derivation for the numerical fluxes.
In Sect.4 we compare the nonlinear scheme with the linearized homogeneous flux
scheme described in [5] as well as with other standard methods. Sect.5 gives the
concluding remarks.

2  Flux from Local Two-Point BVP

Consider the one-dimensional viscous Burgers equation
wt fluu)e =0, fuu) = 5u’ —vu, (1)

defined on £2(C R) x (0, T'), where v(> 0) is the diffusion coefficient. The spatial
discretization of the Burgers equation using a finite-volume method requires the
approximation of the flux function f(u, u,) at each interface between two control
volumes. The semi-discrete formulation of Eq. (1) is given by

A)Cl/'tj—"F‘j+1/2—F'j71/2:O7 L't;:u“ (2)
where Fji12 ~ f(u, uy)|x=x,,,,» see Fig.1. The derivation of the flux Fj,y is

based on the following model BVP, in which we ignore the time dependence of the
unknown:

fx = (%MZ - Vux)x = 0’ X € (xj’ xj+1)’ (38.)

u(x;) =u; =ur, u(xjr1) =ujy1 = Ug. (3b)
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Fig. 1 Spatial discretization
for the one-dimensional
Burgers equation

Fiip Fiwiga

—

Uj—1 uj Uj+1 Uj+2
Xj-1 Xj Xjr2 o Xl
—
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The solution of the nonlinear BVP (3) provides us the numerical flux function
F(ur,ug, v/Ax), which is constant on the interval (x;, x;41). Thus, the numer-
ical flux at the interface of the control volume Fji i = % (ur, ug, v/Ax). Using
the normalized coordinate o, o € [0, 1] and the parameter ¢, defined by

X =X v
o = , &= =,
Ax Ax
the BVP (3) can be expressed as
(5u* —eugs), =0, o €(0,1), (4a)
u) =ur, u(l)=ug. (4b)

Further, it can be shown that the above BVP has a monotonic solution.

Lemma 1 The nonlinear local boundary value problem (4) has a strictly monotonic
solution.

Proof Any solution u of the problem can be represented as

A(o)
A’

A d
(G) ()/ =,

M(Cf):(uR—ML)m, i

u(o) =up + (ug —ur)
for o € [0, 1], where the functions A, A : [0, 1] — R are given by
l g g
Ao) = exp(—/ u(n)dn) and A(o) :=/ A(E)dE.
& Jo 0

For u; > ug, u'(c) < 0 causing u(o) to be a monotonically decreasing function.
Similarly, if u; < ug, then u’(c) > 0 and u is monotonically increasing. 0O

3 The Numerical Flux Function

We now derive expressions for the numerical flux function using the BVP (4). As a
consequence of Lemma 1 we consider the cases: u; > ug and u; < ug.



460 N. Kumar et al.

3.1 The Caseuy > Ug

The solution of the BVP (4) in this case results in a (strictly) decreasing function,
i.e., u, < 0. Using the left boundary condition u(0) = u, we get that the numerical
flux at the interface, F; 11, is given by

1
Fivip = f(0) = Juj — eug (0). (5)

Alternatively, the flux can be determined using the right boundary condition

1
Fiyip= §u§ — euy (1). (6)
Since u, < 0, we conclude that F;,, > 0, therefore there exists a ¢ € R, such that

1 1
Fijip= Euz — Uy = Eui — euq (0) = uf — suy (1) = Ec2, (7)

with |c¢| > max(|ug|, |ug|). The above relation gives us the first-order differential

equation
du r 5,
_——=— — ]
o 28(u ¢, o€, ®)

which needs to satisfy both u(0) = u; and u(1) = ug. Integrating the differential
equation and connecting the left boundary condition with the right boundary condi-
tion results in the following nonlinear equation for the unknown ¢ with parameters
up,up and &

(up+c)ug—c)| ¢

o) =1 -
B =g unt o) 8

€))

Thus, Fj, is given by the non-trivial roots of the function H*(c), which is an odd
function. We restrict ourselves to ¢ > 0. Note that the nonlinear equation (9) can also
be expressed as

e (u + ) ug — O — > |(ur — ) ug + )| = 0. (10)
Let s = (uy +ug)/2, then for s > 0, we get that u; > |ug| and the non-trivial

solution of Eq.(10) satisfies ¢ > u; > |ug|. In the inviscid limit ¢ — 0, for s > 0
Eq. (10) reduces to

e (c—up)(cH+ug) =0=c=uy.
Similarly for s < 0, we have ug < 0, implying ¢ > —ug > |u| and the limit case

solution is then given by ¢ = —ug (> 0). Thus, the numerical flux in the inviscid
limit is given by
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1
Firip= ’ i (11)
2

which is actually the Godunov flux for the inviscid Burgers equation. Moreover, if
u;p =ug = u, then u, = 0 and the numerical flux is given by Fji» = % (u,u) =
%uz = f(u), for constant u. Hence the numerical flux function .% is consistent with

the continuous flux function f.

3.2 The Caseuy < Ug

From Lemma 1 we conclude that u, > Oforu; < ug.Thus Fj i, = u2/2 — €Uy 18
positive if eu, < u?/2 and negative if eu, > u>/2. Therefore, we split the derivation
of the numerical flux into two cases, depending on the sign of the flux.

Case 1: Positive flux

If the flux is positive, then the numerical flux is evaluated as for the case u; > ug
and is given by roots of the function H"(c), defined in Eq.(9), with ¢ € (0, M),
M = min(lur|, [ugl).

Case 2: Negative flux

If the flux is negative, then there exists a ¢ € R, such that

1
Fj+1/2 = Euz — EfUy; = —ECZ.
This relation gives rise to the first-order differential equation

d 1

L= 0P, oe. ), (12)

do 2e¢
with the boundary conditions (4b). Integrating the first-order differential equation
and connecting the left boundary condition with the right boundary condition gives
us another nonlinear equation for ¢, i.e.,

H™ (¢) := arctan (M—R) — arctan (M—L) Lo 0. (13)
c c 2¢
As before, the numerical value of F; 1, = —c?/2 is given by the non-trivial roots

of the function H~(c). We restrict ourselves to the case 0 < u; < ug.
We now formulate the conditions for which H*(¢) and H ~(c) have non-trivial
roots.

Lemma 2 For 0 < u; < ug, if the inequality

1 1 1
— >, (14)

ur Uupr 2¢e
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holds then H™(c) has a non-trivial solution, otherwise H¥(c) has a non-trivial
solution.

Proof Let a_(c) := arctan(ug/c) — arctan(uy /c) and B_(c) := c/2e, such that
H7(c) == a_(c) — B-(c). Using arctan(l/z) = — arctan(z) + wsgn(z)/2, a_(c)
can be expressed as

a_(c) = arctan (i) — arctan (i) + %(sgn(uR) — sgn(uL)).

Using the fact that o_(c) is an odd function we restrict ourselves to the case ¢ > 0.
For0O < u; < ug,a—(c)hasamaximumatc = /upug(< ug).Clearly H™ (c) hasa
non-trivial root whenever o_(c¢) = B_(c), i.e., the two functions intersect for ¢ > 0,
which is possible only if &’ (0) > B’ (0), or,

’ ] 1 ’ 1 !
a_(0) = P > B_(0) = %8’ () =—.

Thus, if the above condition holds then H(c¢) has a non-trivial solution, which

satisfies Jujur < c < ug.
Next, we investigate the condition under which H*(c) has a non-trivial root. Let

(ug —ug)c

z(0) = >
UruUr — C

suchthatz € [0, 1] withz(0) = 0,z(u.) = 1.Clearly, forc € (0, u;) wehave z(c) >
0. Using z(c) we can rewrite Eq. (9) as

1+ z(c)
1 —z(c)

c c
H*(c) = 1og( ) — S 2 Artanh(z(e)) — S, ¢ € (0,uy).

e e
Further, let a; (¢) := 2Artanh(z(c)) and B, (c) := c/e, such that HT (¢) = a(c) —
By (c).Forc € (0,ur), ay(c) is an increasing function, thus H*(c) has a non-trivial
root only if &/, (0) < B/, (0). The derivative o/, (c) is given by

1 upug + 2
1—22(c) (urug — ¢»*

oy (¢) =2(ug —ur)

The condition o, (0) < B1(0) translates to

1 1 1

uy upr 2e

Lastly, integrating the differential equation (8) with ¢ = 0 gives us the condition for
zero-flux: 1/uyp — 1/ug = 1/2¢, which is in agreement with the above criteria for
positive or negative flux. O
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Fig.2 H*(c) (a) and 80
H~(c) (b), foruy = 0.75,

ugp = 1.0and e = 0.1 w0

-40

-80

Fig.3 H*'(c)aand H™ (¢) 15
b, foru; =1,ug = 10 and
e=1

Figure 2 shows the plots of the functions H " (c) and H™ (c), foru; = 0.75, ug = 1
and ¢ = 0.1 not satisfying (14). Hence, H~(c) does not have a non-trivial root,
unlike H*(c) which has a non-trivial root at ¢ = 0.749(~ ug).In Fig.3, foru; =1,
ug = 10 and ¢ = 1, condition (14) is satisfied. Thus, H*(c) does not have a non-
trivial root, whereas H ~(c¢) has a non-trivial root, at ¢ = 1.7597.

4 Numerical Results

‘We compare the proposed nonlinear local BVP scheme with the upwind scheme and
the homogeneous flux scheme described in [4, 5]. In the homogeneous flux scheme,
the numerical flux F}ijﬁl /2 s derived from a linearized homogeneous local two-point
BVP and is given by

Fi%, =&(B(—P)u, — B(P)ug),
where B(z) := z/(e* — 1) is the Bernoulli function and P := U 1/»/2¢, is the grid

Péclet number. The interface velocity U1/, = (u + ug)/2 is given by the cen-
tral approximation. The availability of an analytical solution to the viscous Burgers
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equation defined on (0, 1) x (0, T), T € (0, 1] provides us a reference solution to
compare the schemes:

W () =1+ %tanh (%(x —0.1— %t)) (15)

We use the explicit fourth-order Runge—Kutta scheme for the temporal discretization
with At = 1073, For this test case, we have 0 < ug < u; throughout the computa-
tional domain, and the numerical flux is given by the roots of H*(c). The Newton
solver converges in 28 iteration steps (depending on the tolerance, ranging from
1073 to 107%), for a good initial guess. A fairly accurate initial guess can be derived
using the bounds on the derivative u,,, that can be obtained using Lemma 1. Figure 4
shows the convergence of the error e, := |u — u™f|; for v = 1073 over a family of
uniform grids. Grid refinement (for fixed v) causes ¢ to increase (for the test case,
e=2 %1072, i=1,2,...,6). Moreover, it is observed that the root-finder con-
verges faster for higher values of ¢ (= 1) than for smaller values of ¢. On coarse
grids all three schemes exhibit first-order accuracy, with the local BVP schemes
being slightly more accurate than the upwind scheme. However, on grid refinement
(increasing ¢) the nonlinear BVP scheme is found to be more accurate compared
to the upwind and the linearized local BVP scheme (Fig.4). Further, Richardson
extrapolation shows that for finer grids the nonlinear local BVP scheme exhibits
second-order convergence.

1072 3
= 1078F 3
<
104t —+— nonlinear local BVP | |
—&— linear local BVP
—%— upwind
1073 1072 107!

h

Fig. 4 Convergence of the 1-norm of the error e, for v = 10~3 for the proposed nonlinear local
BVP scheme, homogeneous linear local BVP scheme and the upwind scheme for a family of grids
(Ax=0.1x27"i=1,2,3,4,5,6)
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5 Conclusion

In this paper, we have presented a flux approximation scheme for the viscous Burgers
equation, in which the numerical flux function is given by the solution of a local
nonlinear two-point BVP, resulting in a locally exact approximation that corresponds
with the nonlinearity of the flux function. The resulting numerical flux is shown to
be consistent with the Godunov method in the inviscid limit and is more accurate
than the linearized homogeneous approximation scheme in [4, 5].

In the future, we plan to extend the scheme by including source terms and also
the time derivative into the local BVP, and by then solving the inhomogeneous BVP,
to get the nonlinear complete-flux scheme.
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