
A COOK'S TOUR OF COUNTABLE NONDETERMINISM

(extended abstract) by

K, R. Apt

Faculty of Economics, Erasmus University, Rotterdam

and

G. D. Plotkin

Dept. of Computer Science, University of Edinburgh

ABSTRACT

We provide four semantics for a small programming language involving un

bounded (but countable) nondeterminism. These comprise an operational one, two

denotational ones based on the Egli-Milner and Smyth orders, respectively, and a

weakest precondition semantics. Their equivalence is proved. We also introduce a

Hoare-I ike proof system for total correctness and show its soundness and comp I ete

ness in an appropriate sense. Admission of countable nondeterminism results in a

lack of continuity of various semantic functions; moreover some of the partial or

ders considered are in general not cpo1 s and in proofs of to ta I correctness one has

to resort to the use of (countable) ordinals. Proofs wil I appear in the full version

of the paper.

1. INTRODUCTION

One of the natural assumptions concerning the execution of a nondetermini-

stic or parallel program is that of fairness. In its simplest form it states that no

process is forever denied its turn for execution. The assumption of fairness implies

unbounded nondeterminism. To see this, consider the well-known ·program, b: = .!.!::!::!..§:;

x: = O; do b-> x: = x + 1 0 b-> b: =false ,22 (see Dijkstra [8], p. 76), which al

ways terminates, under the assumption of fairness, and assigns to x an arbitrary

natural number depending on the sequence of execution steps. What is more, every

nondeterministic program of this kind can be translated into an appropriate unbound

ed nondeterministic program using the random assignment command x: = ?

which sets x to an arbitrary integer. This close relation between fairness and un

bounded (but countable) nondeterminism motivates us to a thorough study of the latter.

480

As is also well-known, unbounded nondeterminism results in a lack of continuity of

various semantic functions. For example, in Dijkstra [8], Ch. 9, one can find an

argument showing that admitting unbounded nondeterminism results in a nonconti

nuity of the weakest precondition semantics. On the other hand, Boom [5] realized

that this weakest precondition semantics still can be straightforwardly defined by

considering least fixed-points of monotone but non-continuous functions. Both Broy

et al [6] and Back [4] gave semantics for unbounded nondeterminism, employing

variants of the discrete powerdomains in [15]. The former paper used least fixed

points but the latter (unfortunately). only used the first w iterates. Similar issues

are addressed in Park [14] where the assumption of fair merging is also analysed.

In other papers the issue of complexity of these properties is raised. In particular

Chandra [7] has shown that the halting problem for programs admitting unbounded

nondeterminism is of higher complexity than truth in the standard model of natural

numbers. Similar results concerning various assumptions of fairness and inevitabil

ity about simple nondeterministic programs were proved in Emerson and Clarke [9] •

. In the present paper we try to consider al I these issues together, concentrating on

a simple programming language with atomic commands allowing countable nondeter

mlnism (such as random assignment). In section 2 we define discrete powerdomains

considering both the Egli-Milner ordering and the Smyth ordering, where we no lon

ger obtain a cpo. The section concludes with a systematic presentation of predicate

transformers which adapts Dijkstra's healthiness conditions to the present frame-

work and shows the connection with Smyth powerdomains (in analogy with Plotkin [16]).

In section 3 we present two denotational semantics, a predicate transformer seman

tics and an operational one. The relationships between all four are shown. In section

4 we consider a Hoare-sty I e logic for total correctness and present soundness and

relative completeness results; this involves the use of countable ordinals in the asser

tions. In a fuller version of the paper we would like to integrate Chandra's ideas on

computabi Ii ty into our framework.

What we have shown here is that unbounded nondeterminism admits a simple and na

tural characterization which can be studied by generalizing techniques used for the

case of deterministic or bounded nondeterministic programs.

The present work can be easily extended to cover some other constructs omitted in

our analysis such as .2!: commands, Dijkstra's guarded commands or recursive pro

cedures. For example, the proof system we consider is a simple refinement of the

corresponding system for total correctness of while programs and an appropriate

system covering the case of recursion is a similar refinement of a system dealing

with total correctness of recursive procedures (see for example Apt [1]).

481

In principle our paper also provides a framework for studying fairness via tr-ansla

tion into a language for countable nondeterminism. A proof theoretic approach to the

problem of total correctness of fair nondeterministic programs based on this idea

has been recently worked out in Apt and Olderog [2]. Even though such methods are

operational in nature, they turn out to be natural and easy to apply in practice.

2. POV\ERDOMAINS AND PREDICATE TRANSFORMERS

In this section we gather some general information on fixed-points that we

will need later. Then we give the basic definitions and properties of discr-ete power-

domains, suitably adapted from these in Plotkin [16] and Smyth [17] to handle count

able non-determinism. Finally we consider adapting the pr-edicate transformers in

Dijkstra [8] to handle countable non-determinism and show, following the ideas in

Plotkin [16], how they connect up with the discrete Smyth powerdomain.

Definition 2. 1 Let P be a partial order and let A be subset of P. Then A is

directed if every finite subset of A has an upper bound in A; it is countably directed

(w-directed) if every countable subset of A has an upper bound in A. The par-tial order

P is a cpo (complete partial order) if ever-y directed subset, A, of P has a lub (least

upper bound), denoted by LJ A, and if P has a least element, denoted by _t. A sub

set of P is eventually constant if it contains its own least upper bound.

For example for any set, X, there is the flat cpo X.L which is the set X 1.:1 LiJ or

dered by : x 5 y iff x = .L or x = y.

Definition 2. 2 Let P, Q be partial orders and I et f : P..,. Q be a monotone func-

tion. Then f is continuous if whenever A>;; P is a directed subset with a lub, then

f(A) has a lub, namely f (LJ A) (i. e. f preserves lubs of directed subsets); f is

.2.!!:.!..£t whenever it preserves the I east element.

Definition 2. 3 Let P, Q be partial orders, X a countable set. Then P x 0. is

the Cartesian product of P and Q ordered coordinatewise; X..,. P is the partial or

der of al I functions from X to P ordered pointwise.

Fact 2. 1 If p is a cpo then so is X -+ Pj if P and Qare cpo 1s so is P x Q.

Fixed Points For any partial order P, any monotone f: P -.P and all ordinals

:>.., define f A by:

482

Of course fA need not exist since LJ< f k need not exist. If fA does not exist then
1 k A

for any ;>.1 >A, f\ does not exist either; fA is monotone in\. If [fA} A stabilizes at

k, then fk is the least (pre-)fixed-point of f. If Pisa cpo then f\ always exists and

[fA} stabilizes. If additionally f is continuous then [fA} stabilizes at w.
\ A

Discrete Powerdomains

We explore Egli-Milner and Smyth powerdomains of flat cpo 1s, X , with enough sub

sets to handle countable nondeterminism. To avoid some ticklish problems we re

strict X to being countable. Note that, even so, the Smyth powerdomain is not a

cpo; we do not understand what significance this has for a possible more general

theory of powerdomains for countable nondeterminism.

Egli-Milner Order

Let e (X ..l) be the set of non-empty subsets of X ordered by:

A :;:B iff ('v'a EA. 3 b E B.a 5b) 11 ('v'b E B. 3 a EA.a s;.b)

(which is the same as A= B (if ..l rf. A) or as A - [..L} ~ B (if ..l EA)).

Proposition 2.1 e (X..l) is a cpo with least element [..L} ; every w--directed subset

is eventually constant; it is closed under arbitrary unions. ~

Useful Functions

Singleton { • } : X.., e (X ..l)

Union U : e (X..l)2 -> e (X..l). It is continuous.

Extension For f: X-> e (y..l) define f+ ; e (X..l)-> e (Y..l) by:

f+ (A)= U f (A - {..L }) U f..L i ..LE A}

Proposition 2. 2 Every F is continuous. However, r is not continuous as a func-

tions off although it is monotonic. [l<l

Composition

f ; g g+ • f

483

Proposition 2. 3 The composition f; g is continuous in f and monotonic, but not con-

tinuous in g. Also it is associative with units the singleton functions (i. e. we get a

category).

It is the lack of continuity of f;g in g that will force us (in the semantics of

while commands) to consider least fixed-points of non-continuous functionals.

Smyth Order

Let J (X .1) be

[Ac; x I A I SZ)} u [X.l}

ordered by the superset ordering:

AS B iff A ;;i B

(for motivations for this definition see Plotkin [16].

Proposition 2. 4 J (X.1.) has least element X.1 but need not be a cpo (although if

ll has an upper bound, its lub exists and is llJ); every urdi rected subset is eventually

constant; it is dosed under arbitrary unions. Iii

.Note Greatest lower bounds of non-empty fami I ies, l), always exist being given by:

Usefu I Functions

Singleton [• } : X-> J (X.1)

Union U: J (X.1)3 -> J (X.1 }. It is continuous.

Extension For f: X _, J (Y.l.) define f': J (XJ_)-> J (YJ_) by:

Proposition 2. S

{
Uf (A)

f' (A)= y
J_

(..L ;_ A)

(..L € A)

Every f' is monotone, but .!:22! necessarily continuous; function

extension, (•)+ is monotonic, but not necessarily continuous.Iii]

Composition
f g f• g

For X _,;r (Y .l) and Y _, J (Z.l) define X '-> J (Z.1) by:

f; g g1' • f

484

Proposition 2. 6 The composition f; g is monotonic in each argument, but need not

be continuous in either. Also it is associative with the singleton as unit. Iii

From e (><:.i_) to :r (X.l. L

Define eX: e (X.L) -+ :r (X.L) by:

(.L ~A)

(.L E A)

(That is, eX(A) = {b E X.l. 13 a EA. as b}).

Then ex is strict and continuous. It is very important that ex is continuous as this

is why we can live with the fact that :r (><.t_) is not a cpo - enough directed sets, for

our purpose, will have limits as they will be images under ex of directed sets in

e (X..L.).

Fact 2. 2 The following diagram commutes:

Fact 2.3 For any f: X-+ e (Y.L) and g:-+ e (Z.l.), e2 o (f; g) = (ey • f); (e2 • g). Iii

Smyth Powerdomains and Predicate Transformers

A predicate transformer from X to Y is any map p : P (Y) -+ P (X) such that:

(1) Law of Excluded Miracle p (~) = ~

(2) Countable Mui tipl icativity p (i ~ w Bi) = i ~ w P (Bi)

These are the appropriate healthiness conditions. The usual healthiness conditions

imply them (recall here that X, Y are taken as countable) but non-continuous trans

formers are allowed - and as is, essentially, pointed out in Dijkstra [8], Ch. 9,

must be. That they are exactly the right conditions will appear from the isomorphism

with the Smyth powerdomain functions that we will show and from the role they play

in the various semantics.

We take PT X y to be the set of predicate transformers from X to Y (dropping the

' subscripts when they can be understood from the context) and ordered pointwlse thus:

485

p i;;; q iff V' B i;;; Y. p (B) i;;;; q(B)

The "Smyth state transformers" from X to Y are all functions m : X , <r (Yl.), al so

ordered pointwise: this collection is called STX, y. Now for any such m define

for Bi;;; Y:

wp (m, B) = [a E X) m (a) i;;;; B}

If l. E m (a) then never a E wp (m, B).

Lemma 2. 1 The function wp (m, •) is a predicate transformer and wp (m, •)

is monotonic in m. ~

So now we have a monotonic w: ST~ PT where w (m) (B) = wp {m, B), and the next

theorem even shows it is an isomorphism.

Theorem 2. 1 (Isomorphism)

orders. l&I

3. SEMANTIC ISSUES

The function w: ST~ PT is an isomorphism of partial

In this section we consider four semantics of a simple programming language

of commands al lowing countable nondeterminism and establish the relationships be

tween the various semantics. The first semantics is operational being given as a tran

sition relation between configurations and specified axiomatically. The next two are

standard denotational semantics based on the two discrete powerdomains we consider

in section 2. The last is a denotational predicate transformer semantics.

We disagree with Back [4] who defines a semantics also based one (X.L) but different

from ours in that the semantics of while-loops is defined as the limit of the first w

iterates. He correctly points out that this does not capture the correct notlon of ter

mination and blames that on a failure of e (X..L); we rather blame it on the semantics

he gives to while-loops and prefer to carry the iterates to enough stages (at most all

countable ordinals) to reach the least fixed-point as in [6]. Then with this definition,

theorem 3. 1 below shows the operational and denotational semantics are identical.

Further fact 3. 1 shows the semantics based on the Smyth order is a projection, un

der ex, of the semantics based on the Egli-Milner ordering and corollary 3.1 then

relates it to the operational semantics. Finally we give a predicate transformer se

mantics, again iterating through suitable ordinals, following Boom [s], and show in

486

theorem 3. 2 and corollary 3. 2 that it is isomorphic to the semantics based on the

Smyth order (following the ideas in Plotkin [16]).

Throughout the rest of the paper we consider a simple programming language whose

set of commands is parameterised on two sets:

ACom is the set of atomic commands ranged over by the metavariable A.

BExp is the set of Boolean expressions ranged over by B.

Now, Com is the set of commands of the language, ranged over by S and generated by

the following grammar:

S:: =skip I A I S;S I .!f B then S elseS.fl. while B do Sod

We assume a countable unanalysed set X of states and we further assume we are given

two semantic functions:

G: Acom -> (X -> P (X) - [~})

~~ BExp -> (X -> [tt, ff})

where [tt, ff} is of course the set of truthvalues.

The assumption that for any cr EX, G: [A JI (cr) is a non-empty and (necessarily) count

able subset of X means that atomic commands are assumed to be always terminating

and countably nondeterministic statements. A particular choice for A might be the

statement x: = ? , meaning set x to any value. If there were only one variable that

could appear in the language we could give the semantics of x: = ? by putting for any

a:

u [x : = ?] (cr) = X

We now provide three different semantics for commands.

Operational Semantics

We define a function

Op : Com ..., (X -> e (XJ.))

by considering a transition relation "-> 11 between configurations, that is pairs <S, cr>

consisting of a command and a state. We define"->" by the fol lowing clauses:

487

I. <A, cr> ~ <skip, cr'> if cr' Ea .[A] (cr)

II. If <Si, cr> -?<Si 1 , a'> then <Si; S, cr> ~ <51 1; S, cr'>

111. <skip; s, cr>-? <s, cr>

IV. 1. <lt B then S 1 else Sa .f!.,cr>-? <S1 , cr> (if~~ [B] (cr) = tt)

2. <lt B then Si else Sa .f!.,cr>-? <Sa, cr> (ifJj [B] (cr) =ff)

V. 1. <whileB.2QSod, cr>-?<S;while8,9QS.Q.9, cr> (ifJi [B] (er)=tt)

2. <while B do S .Q£!., cr>-? <skip, er> (ifJ~ [B] (cr) =ff)

Intuitively, <Si, a>-? <Sa, er'> means that one step of execution of S 1 in state a can

lead to state er' with Sa being the remainder of S 1 to be executed.

Definition 3. 1 S can diverge from cr iff there exists an infinite sequence

<S1, cr1> (i = O, 1 •••••) such that <s, er>= <So, a0 > ~ <s1 , er1 > ~ <S2, cra> -? •••

~ a) If S f. skip then for any er there are 5 1 and cr' such that <S, cr> -? <s•, o'>

(that is, S can be executed for at I east one step)

b) The set [<5 1, er'> I <S, cr>-? <S 1 , cr'>} is always countable (since X is

assumed to be countable).

Definition 3. 2 We define the function Op by:

Op [S] (cr) =[er' I <s, cr> -?* <skip, cr'>} U [.L /Scan diverge from cr}.

Of course "~ * 11 is the transitive reflexive closure of 11 ~ "·

Denotational Semantics

We define now two functions

f/Je: Com -+ (X -+ e (X.L))

and

by the same type of equations. Let n be, indifferently, e or~- We define

I. f/Jn [skip] = [• } ({ • } is the singleton function defined in section 2)

II. .i9n[A] =AO' Ex. a [A] (cr)

111. .i9h [si;sa] = .19.n [si]; .19n [sa]

IV. .i9n[jf B thenS1 elseSaf!] (o) =.!.fJ~[B](cr)thenl91l[S1](cr)~f/Jn[Sa]
v. ilJn[while B.2QS od] = µm.:\.cr € X • .!f•~ [B](cr).!b!m(.i9ti[s];m)(cr)~-

488

~ ;r (X) need not be a cpo, so l9:r might be not well-defined in case V. But this

is not the case because of the following fact which also shows the relationship be

tween the two denotational semantics.

Fact 3. 1 For all S, .19:r is well-defined and ex 0 Se[S] = l9:r [S] • ~

The equivalence of the denotational and operational semantics is expressed in the

fol lowing theorem:

Theorem 3. 1

Corollary 3. 1 {Operational characterisation of l9;:r)

i)

i I)

If S cannot diverge from cr then

cr' = S;r[.s] {cr) iff <s, cr> _,,* <skip, cr'>
-L. E l9:r [S] {cr) iff S can diverge from cr

.E!::22.f By fact 3. 1 and theorem 3. 1. l2iJ

Weakest Precondition Semantics

Let PT be the set of all predicate transformers from X to X as defined in section 2.
We define now a function 1J: Com, PT which we shall call the weakest precondition

semantics (wp semantics).

I.

II.

111.

IV.

v.

lr[skip]=id

lr [A] (R) = wp {u[A] ,R) {where wp is the function defined in section 2).
1J [Si ; S2] = 1J [Si] " lr [Sz]

lr [l.f B then S 1 else Szfl] (R)= (u~ [.B]-1 (tt) n 1J [5 1] (R)) U
(;;I [B] -i {ff) n 1J [52] (R))

1J [~ B do S od] (R) =

µQ. ~ x. ({•~ [B]-i (tt) n lr [s] {Q.)) u {~ [.B]-J. (ff) n R))

It is clear that 1J is well-defined, as 1J [S] is monotone and so the corresponding
function in case Vis monotone as well, and therefore has a least fixed-point. How
ever, we also wish to prove that for each S, 1J [s'] is a predicate transformer.
This fol lows directly from the next theorem which also establishes the relationship
with the semantics based on the Smyth powerdomain.

Theorem 3. 2 For all SE Com and R ~ X we have:

wp (l9;r [S] , R) = lr [S] (R) 12i!

489

Corollary 3. 2 For al I S in Com and R i;;; X we have:

~:r [S] = w-1 ('lt [S] J

Proof By theorems 3. 2 and 3. 1. ~

Corollary 3. 3 (Operational characterisation of wp semantics)

a E tr [S] (R) iff S cannot diverge from a and

'Va'. [<S, a>-+* <skip, a'>-+ a' ER]

.E!:2.2f By corollary 3. 1 and theorem 3. 2. [iii

4. PROOF THEORY

In this section we consider a Hoare logic for the total correctness of programs

and indicate the soundness of the logic and a relative completeness theorem after the

fashion of Cook (see Apt [1 J for a survey of results of this kind). As our assertion

language, L, we take any many-sorted logic whose sort set contains a sort~ (for

program data) and ord (for ordinals); we also assume a constant O, of sord .2!:f!, and

a binary predicate symbol, <, over~- We use x, y, z as variables of sort~

and a., i;l, y as variables of sort .2!:5!; we use p, q, r to range over L-formulae.

Now we can finish specifying the syntax of our programming language. For conveni

ence we will only consider a fixed finite set of data variables, Var"' (x1 ••• , Xie}.

Boolean expressions are taken to be those quantifier-free L-formulae whose variables

are all in Var and whose symbols have sorts only involving~- Lett range over

expressions of sort~ whose symbols have sorts only involving~· Atomic com

mands are taken to be of the form x: = t (ordinary assignment) or x:"' ? (random

assignment).

Before turning to semantic issues we give our logic and work out an example. The

formulae of the logic are all L-formulae together with all those of the form

(p} s (q}

(the latter meaning that, for all values of parameters, if a is a state satisfying p,

then every execution sequence of S from a terminates and ends in a state satisfying

q), The axioms and rules of the logic are as follows:

490

1. Assignment

[p[t/x]} x: = t [p}

where p[t/x] is the result of substituting t for all free occurrences of x in p,

2. Random Assignment

fp} x: = ? fp}

provided x is not free in p.

3. If-Then-Else Rule

fpAB} Sifq}, (pA-,B} S2 fq}

fp} !f B then Si~ S2.f.!. [q}

4. Composition Rule

5. While Rule

fp} Si (q}, fq} S2 fr}

fp}S1;S2 fr}

p(a) A O<a...,. B, fp(a)} S {3S <a.. p(S)}, p(O)-+ -,B

(3a.. p(a.)} while B do Sod fp(O)}

We call p(a.) the loop invariant.

6. Conseguence Rule

p p', fp'} s [q'}, qi -+ q

(p} s f q}

Call the above proof system T; we write F f-:r (p} S (q} to mean that fp} S (q} can

be proved in T from the formulae in F. The above while rule is a straightforward

generalization of the following while rule for total correctness of the usual while

programs given in Hare I [1 OJ.

7. Wh i I e Ru I e 11

p(a+l)-+ B, fp(a+ll} s fp(ci;)},p(O)-+ B

[3a. p(a.)} ~ B do Sod fp(O)}

(A slightly different vocabulary is assumed here, viz. a ranges over the natural

numbers). We shall show in a moment that while rule II is not sufficient for proofs

of total correctness of programs.

As an example proof in T consider the following program:

491

S =while B do S 0 od, where

and

S 0 - .!f x = 0 ~ y: = ? ; x: = 1 ~ y: = y - fi (see Dijkstra [8], Ch. 9).

We now wish to prove in T that [true} S [Y = O} holds. To this end we assume L con

tains equality symbols of all sorts, the language of Peano arithmetic (and we use x < y

as an abbreviation), a one-argument (conversion) function :- of sort (data, ord) and

a constant w of sort ord.

Define p(o.) by:

p(o.) = (x= 0-'> a.= w) /\ (x;i 0 -'>a. =y)

Intuitively speaking, for a state a, p(o,) (cr) holds if o:. is the smallest ordinal bigger

or equal to the number of possible iterations performed by the loop when started in o.

Then p(a) satisfies the premises of the while rule so [3a· p(a)} S fp(O)} holds. Also

both 3a,. p(a,) and p(O)-'> y = 0 hold, so by the consequence rule [true} S [Y = O} holds.

Note While rule II is not sufficient to prove the formula {true} S [y = O} from

arithmetical assumptions.

The use of parameterized loop invariants combines the technique of using loop in

variants and loop counters. The~ rule II uses integer-valued loop counters as

opposed to the while rule from T which uses ordinal-valued loop counters. The in

sufficiency of integer-valued loop counters to prove the above formula {true} S

{Y = O} was first observed by Back [3]. The use of ordinal-valued loop counters

was in fact proposed already in Floyd [10]. In the proof-theoretic framework it was

first incorporated in Manna and Pnuel i [13 J where so-cal I ed convergence functions

with a range being a wel I-founded set are used. In the framework of weakest pre

condition semantics the use of ordinal-valued loop counters was advocated in Boom

[5 J.

We now pass to the problem of soundness and comp I eteness of T and consider inter

pretation, l,of L. These are ordinary many-sorted structures of the

appropriate type, but subject to the following three conditions:

1.

2.

3.

The domain, I data' of sort~ is countable.

The domain, ,--d-' of sort ord is an initial segment of the ordinals.
or --

The constant,0,denotes the least ordinal and the relation symbol, <,
denotes the strict ordering of the ordinals, restricted to I d.

£.!::_

492

Let us fix on such an interpretation I and finish specifying the semantics of our pro

gramming language. The set of states is:

X= Var -+I~

where I data is the domain of sort~· Let TT range over maps from al I L-variables,

other thaii°those in Var, to elements of I-domains of the appropriate sort. We write:

I Frr, a P

to mean that p is true in I when the free variables of p denote the values specified by

TT and a; we write I frr p for va. I FiT,aP· The definition of~i: BExp-+ (X-+[tt,ff})

is now obvious· and for~ we have:

G [x: = t] (a)- {a[I[t](a)/x]}
using an obvious notation and

G [x =?](a)= [a' 13 i E l.2ili. a'= a[i/x]}

Now all four semantics considered in the previous section are at our disposal; we

concentrate on the weakest precondition semantics, lt. For the truth of Hoare asser

tions we put for any p, 1T:

and then:

0.. fp} S (q} iff'v'TT• [p] i;;; 1.r [S] [q] • 11 TT TT

By corollary 3.3 this is the same as

h (p} S f q} iff'v' TT• a (aE [P]TT-+ (S cannot diverge from a
A (V'a 1• <s, cr> -+*<skip, a'>-+ a1 € [q]TT)))

which is the usual definition of total correctness. We set Tr1 to be the set of all sen

tences true in I.

Soundness Theorem For any formulae p, q of Land command S if Tr1 I- (p} S (q}

then ff (P} S fq}. C8

We now state a completeness theorem for assertion languages of a special form; let

L include second order set variables a, b, c, ••••• Set variables are of arbitrary

arity. We write p(~, •••• , a., z:i., •••• , Zn) to denote that ai, •••• , a., zi, •••

, Zn are all among free variables of p. The set variables cannot be quantified over.

493

However, they can be bound by the least fixed-point operator: for any formulae

p (a, x1 , •••• , X1c) where a is a k-ary set variable which always occurs positively

in p, µa. p is also a formula. (Here a variable always occurs positively in a formula

if none of its occurrences in a disjunctive normal form of the formula are in the

scope of a negation sign.) µa. p has one free variable less than p (a is bound in µa. p)

and gets the fol I owing meaning:

I P... µa. p iff I j;;-[R/ J p 'rT.,cr TT a , a

where R = µQ,;; (I .9.~jlt. [1 f; [o/a] (p ..,. (x1 ,, •••.•••••• , :xic)E a)]. For our in
terpretation I we now impose the following two additional conditions:

4.

s.
The domains of each of the set sorts contain all sets of the appropriate kind.

The domain I d consists of all countable ordinals.
.2£..._

We are now in position to state the completeness theorem.

Completeness Theorem

Tr1 t-=r- [pJ S [q}. ~

For any command Sand formulae p, q if ff [P} S {q] then

The assertion language we have used here is based on the µ-calculus of Hitchcock

and Park [12]. It would be interesting to establish what strength of assertion lan

guage is really needed for the completeness theorem.

Acknowledgements

This work was carried out with the aid of a Science Research Council grant. We are

grateful to A.de Bruin and the other referees for detailed comrrients; they will be in

,corporated in the full version of the paper.

494

REFERENCES

[l J

[2]

[3]

[4]

[5]

[6 J

[7]

[8 J

[9 J

[1 0 J

[11 J

[12]

[13 J

[14 J

[15]

[16 J

[17 J

Apt, K. R., Ten Years of Hoare 1s Logic, A Survey, Part I
Fae. of Economics, Univ. of Rotterdam, Technical Report (to appear in
TOPLAS), 1979

Apt, K.R. andOlderog, E.R., ProofRulesDealingWithFairness
Bericht Nr. LW, Inst. lnf. Prakt. Math., Univ. of Kiel (1981)

Back, R. J., Proving Total Correctness of Non-Deterministic Programs in
lnfinitary Logic, Computing Centre, Univ. of Helsinki, Research Report No. 9
(to appear in Acta lnformatica), 1979

Back, R. J,, Semantics of Unbounded Non-Determinism, in: Proc. 7th Collo
quium Automata, Languages and Programming, Lecture Notes in Computer
Science 85, Springer-Verlag, pp. 51-63, 1980

Boom, H.J., A Weaker Precondition for Loops
Mathematisch Cent rum Report IW 104/78, 1978

Broy, M., Gratz, R. and Wirsing, M., Semantics of Non-Deterministic and
Non-Continuous Constructs in Bauer, F.L. and Broy, M. (eds.) Program
Construction, International Summer School Markloberdorf, July 1978
Lecture Notes in Computer Science 69, Springer-Verlag, pp. 553-591, 1979

Chandra, A., Computable Non-Deterministic Functions,in: Proc 19th Annual
Symposium on Foundations of Computer Science, pp. 127-131, 1978

Dijkstra, E.W., A Discipline of Programming,
Prentice-Hal I, 1976

Emerson, E. A. and Clarke, E. M. , Characterizing Correctness Proper! i es
of Parallel Programs Using Fixpoints, in: Proc 7th Colloguium Automata,
Languages and Programming, Lecture Notes in Computer Science 85,
Springer-Verlag, pp. 169-181, 1980

Floyd, R. W., Assigning Meanings to Programs, in: Proc. AMS Symposium
in Applied Mathematics 19, pp. 19-31, 1967

Hare!, D., First-Order Dynamic Logic, Lecture Notes in Computer
Science 68, Springer-Verlag, 1979

Hitchcock, P., Park, D., Induction Rules and Termination Proofs, in:
Automata, Languages and Programming (ed. M. Nivat) North Holland, 1973

Manna, z. and Pnueli, A., Axiomatic Approach to Total Correctness of
Programs, Acta lnformatica 3, pp. 253-262, 1974

Park, D., On The Semantic of Fair Parallel ism, in: Proc. Winter School
on Formal Software Specification, Lecture Notes in Computer Science 86,
Spri nger-Verl ag, pp. 504-526, 1980

Plotkin, G. D., A Powerdomain Construction, SIAM Journal on Computation
Vol. 5, ~' pp. 452-487, 1976

Plotkin, G. D., Dijkstra's Predicate Transformer and Smyth's Powerdomain
in: Proc. Winter School on Formal Software Specification, Lecture Notes
in Computer Science 86, Springer-Verlag, pp. 527-553, 1980

Smyth, M., Powerdomains,£§§, Vol. 16, No. 1, 1978

