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Abstract
Locally recoverable codes are a class of block codes with an additional property called locality. A
locally recoverable code with locality r can recover a symbol by reading at most r other symbols.
Recently, it was discovered by several authors that a q-ary optimal locally recoverable code, i.e., a
locally recoverable code achieving the Singleton-type bound, can have length much bigger than q + 1.
In this paper, we present both the upper bound and the lower bound on the length of optimal locally
recoverable codes. Our lower bound improves the best known result in [12] for all distance d ≥ 7.
This result is built on the observation of the parity-check matrix equipped with the Vandermonde
structure. It turns out that a parity-check matrix with the Vandermonde structure produces an
optimal locally recoverable code if it satisfies a certain expansion property for subsets of Fq. To
our surprise, this expansion property is then shown to be equivalent to a well-studied problem in
extremal graph theory. Our upper bound is derived by an refined analysis of the arguments of
Theorem 3.3 in [6].
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1 Introduction

Motivated by applications in distributed and cloud storage systems, locally recoverable codes
have been studied extensively in recent years. Informally speaking, a locally recoverable
code (LRC for short) is a block code with an additional property called locality. For a
locally recoverable code C of length n, dimension k and locality r, it was shown in [4] that
the minimum distance d(C) of C is upper bounded by

d(C) 6 n− k −
⌈
k

r

⌉
+ 2. (1)

The bound (1) is called the Singleton-type bound for locally recoverable codes. A code
achieving the above bound is usually called optimal.
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1.1 Known results
Construction of optimal locally recoverable codes, i.e., block codes achieving the bound (1)
is of both theoretical interest and practical importance. This is a challenging task and has
attracted great attention in the last few years. In the literature, there are a few constructions
available and some classes of optimal locally recoverable codes are known. A class of codes
constructed earlier and known as pyramid codes [8] are shown to be codes that are optimal.
In [14], Silberstein et al proposed a two-level construction based on the Gabidulin codes
combined with a single parity-check (r + 1, r) code. Another construction [16] used two
layers of MDS codes, a Reed-Solomon code and a special (r + 1, r) MDS code. A common
shortcoming of these constructions relates to the size of the code alphabet which in all the
papers is an exponential function of the code length, complicating the implementation. There
was an earlier construction of optimal locally recoverable codes given in [13] with alphabet
size comparable to code length. However, the construction in [13] only produces a specific
value of the length n, i.e., n =

⌈
k
r

⌉
(r+1). Thus, the rate of the code is very close to 1. There

are also some existence results given in [13] and [15] with less restrictions on the locality r.
But both results require large alphabet which is an exponential function of the code length.

A recent breakthrough construction was given in [15]. This construction naturally
generalizes Reed-Solomon construction which relies on the alphabet of cardinality comparable
to the code length n. The idea behind the construction is very nice. The only shortcoming
of this construction is restriction on the locality r. Namely, r + 1 must be a divisor of either
q − 1 or q, or r + 1 is equal to a product of a divisor of q − 1 and a divisor of q for certain
q, where q is the code alphabet. This construction was extended via automorphism group
of rational function fields by Jin, Ma and Xing [10] and it turns out that there is more
flexibility on the locality and the code length can be q + 1. For some particular locality
such as r = 2, 3, 5, 7, 11 or 23, it was shown that there exist q-ary optimal locally recoverable
codes with length up to q + 2√q via elliptic curves [11]. All these results are aimed at the
optimal LRC with large distance.

Unlike classical MDS codes, it is surprising to discover that the optimal LRCs can have
super-linear code length in alphabet size q. Barg et.al, [1] gave optimal LRCs by using
algebraic surfaces of length n ≈ q2 when the distance d = 3 and r 6 4. This inspired
the construction of the optimal LRC with unbounded length and distance d = 3, 4 [12].
Furthermore, it was shown in [6] that an optimal LRC with d ≥ 5 must have length upper
bounded in terms of alphabet size q. More precisely, they showed that the length of an
optimal q-ary linear LRC with distance d > 5 and locality r is upper bonded by O

(
dq3+ 4

d−4

)
.

As for the lower bound, they presented an explicit construction of optimal LRCs with code
length Ωr

(
q1+ 1

b(d−3)/2c

)
provided that d ≤ r + 2, where Ωr means that the implied constant

depends on r. One can see that there is still a huge gap between the lower bound and the
upper bound. Following this discovery, there are several works dedicated to constructing
the maximum length of optimal LRCs. The paper [9] aimed at the optimal LRC with small
distance d = 5 or 6. In particular, for d = 6, the results given in [9] are obtained subject to
the constraint that q is even.

1.2 Our results, comparisons and a conjecture
The main result of this paper can be summarized as follows.

I Theorem 1. Suppose that r > d− 2 and (r + 1)|n. Then
(i) there exists an explicit construction of optimal locally recoverable codes with length

n = q2−o(1), minimum distance d and locality r for d = 7, 8;
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(ii) there exists an explicit construction of optimal locally recoverable codes with length
n = q

3
2−o(1), minimum distance d and locality r for d = 9, 10;

(iii) there exist optimal locally recoverable codes with length n = Ωr,d

(
q(q log q)

1
b(d−3)/2c

)
,

minimum distance d and locality r for d ≥ 11; and
(iv) there exists an explicit construction of optimal locally recoverable code with length

n = Ωr,d

(
q1+ 1

b(d−3)/2c

)
, minimum distance d and locality r for a constant d ≥ 11.

Moreover, the complexity of this construction is upper bounded by O(nd).

The first three results are derived from extremal graph theory (see Section 5). The last
one is derived from the probabilistic arguments (see Section 4).

The first two results improve on the result in [6] which only achieves n = Ω(q3/2) for
d = 7, 8 and n = Ω(q4/3) for d = 9, 10. The third one outperforms the result in [6] by
a (log q)

1
b(d−3)/2c multiplicative factor. In addition, for d = 6, we are able to remove the

constraint required in [9] that q is even.
Although it was proved in [6] that the length of an optimal locally recoverable code

is upper bounded by q3+O( 1
d ), both the constructions in [6] and this paper show from

different angles that the length of an optimal locally recoverable code only achieve q1+O( 1
d ).

Furthermore, via an upper bound from extremal graph theory, our construction in this paper
can achieve at most O

(
q1+ 2

b(d−1)/2c

)
(see Section 5). Thus, we make the following conjecture.

I Conjecture 2. Every optimal locally recoverable code with minimum distance d and locality
r has length upper bounded by q1+O( 1

d ).

In addition to the above lower bound on length of optimal locally recoverable codes, we
also provide an improved upper bound by refining the analysis of the arguments of Theorem
3.3 in [6].

I Theorem 3 (Informal). Let C be an optimal [n, k, d]q-linear locally repairable code with the
locality r. If d > 5, then

n ≤
{
O(q3) if d mod r + 1 > 5 or d mod r + 1 < 2,
O(q2) if 2 ≤ d mod r + 1 ≤ 5. (2)

1.3 Our techniques
For minimum distance d ≥ 7, the only optimal locally recoverable code with super-linear
code length was given in [6]. In this paper, we present another construction for optimal LRCs
for d > 5. Our idea comes from generalized Reed-Solomon codes where parity-check matrices
have the Vandermonde structure. This idea was already employed in [9] for d = 5, 6. Similar
to [9], we divide a parity-check matrix into disjoint blocks, each block with r + 1 columns.
We require that each block of this matrix has a Vandermonde matrix structure. In order that
the parity-check matrix with this structure produces an optimal locally recoverable code,
elements in these blocks must satisfy certain expansion property. This property allows us to
relate optimality of a locally recoverable code to a well-studied problem in extremal graph
theory. With the help of extremal graph theory, we succeed to improve all of the best known
results in [6] for d ≥ 7.

Furthermore, by a random or probabilistic argument, we show an existence result.
Moreover, for constant d the probabilistic method for the existence result can be converted
into a deterministic algorithm via method of conditional probabilities. Thus, we obtain an
algorithmic construction in polynomial time, i.e., Theorem 1(iv). The result of Theorem
1(iv) matches the result given in [6]. However, our parity-check matrix is more structured
and this may lead to some other applications.

ICALP 2019
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1.4 Organization
The paper is organized as follows. In Section 2, we briefly introduce locally recoverable codes
and some basic notations on graph theory. Section 3 presents a necessary and sufficient
condition for which a Vandermonde-type parity-check matrix produces an optimal locally
recoverable code in terms of certain expansion property for subsets of Fq. In Section 4, we
first show an existence result via a probabilistic method. Then this probabilistic method is
converted into an algorithmic construction in polynomial time. In Section 5, we show that
the necessary and sufficient condition derived in Section 2 is equivalent to a central problem
in extremal graph theory. By applying the known results from extremal graph theory, we
obtain the desired results. Finally, in Section 6, we prove a general upper bound on the
optimal LRC.

2 Preliminaries

2.1 Locally recoverable codes
Let q be a prime power and Fq be the finite field with q elements and denote by [n] the set
{1, 2, . . . , n}. In this paper, we consider linear locally recoverable codes only. An [n, k, d]
linear code C is a k-dimensional subspace of Fn

q with minimum (Hamming) distance d. The
(Euclidean) dual code of C, denoted by C⊥, is defined by C⊥ = {b ∈ Fn

q : c ·b = 0 for all c ∈
C}, where c · b denotes the standard inner product of the two vectors b and c.

Informally speaking, a block code is said to have locality r if every coordinate of a given
codeword can be recovered by accessing at most r other coordinates of this codeword. There
are several equivalent definitions of locally recoverable codes. A formal definition of a locally
recoverable code with locality r is given as follows.

I Definition 4. A q-ary block code C of length n is called a locally recoverable code or
locally repairable code (LRC for short) with locality r if for any i ∈ [n], there exists a subset
Ri ⊆ [n]\{i} of size r such that for any c = (c1, . . . , cn) ∈ C, ci can be recovered by {cj}j∈Ri ,
i.e., for any i ∈ [n], there exists a subset Ri ⊆ [n] \ {i} of size r such that for any u,v ∈ C,
uRi∪{i} = vRi∪{i} if and only if uRi = vRi . The set Ri is called a recovering set of i.

In literature, there are various definitions for locally recoverable code and all of them
are equivalent. For example, we have the following two definitions that are equivalent to
Definition 4. For the sake of completeness, we give a proof.

I Lemma 5. A q-ary code C of length n is a locally recoverable code if and only if one of
the followings holds.
(i) For any i ∈ [n], there exists a subset Ri ⊆ [n] \ {i} of size r such that position i

of every codeword c ∈ C is determined by cRi
, i.e, there is a function fi(x1, . . . , xr)

(independent of c and only dependent on i) such that ci = fi(cRi), where cRi stands
for the projection of c at Ri.

(ii) For any i ∈ [n], there exists a subset Ri ⊆ [n] \ {i} of size r such that

CRi
(i, α) ∩ CRi

(i, β) = ∅

for any α 6= β ∈ Fq, where C(i, α) = {c ∈ C : ci = α} and CRi
(i, α) denotes the

projection of C(i, α) on Ri.

The Singleton (upper) bound in (1) is given in terms of minimum distance d. We can
also rewrite this bound in terms of dimension k.
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I Lemma 6. Let n, k, d, r be positive integers with (r + 1)|n. If the Singleton-type bound (1)
is achieved, then

n− k = n

r + 1 + d− 2−
⌊
d− 2
r + 1

⌋
. (3)

Conversely, if d− 2 6≡ r (mod r + 1) and the equlity (3) is satisfied, then the Singleton-type
bound (1) is achieved.

The proof is straightforward and can be found in [6].
I Remark 7. If d− 2 ≡ r (mod r + 1), one can verify that (3) implies that r|k. In this case,
by [4, Corollary 10] one cannot achieve the Singleton-type bound (1) with equality and one
must have d 6 n− k −

⌈
k
r

⌉
+ 1. Therefore in this case we say an LRC attaining this latter

bound as optimal.

I Corollary 8. If r > d−2, then an [n, k, d] locally recoverable code with locality r is optimal if

n− k − n

r + 1 = d− 2. (4)

Proof. As r > d− 2,
⌊

d−2
r+1

⌋
= 0. Hence, (3) and (4) are equivalent. J

The locality of a locally recoverable code C can be determined by a parity-check matrix of
C as follows. Assume that (r + 1)|n. Let m = n

r+1 and let Di be (n − k −m) × (r + 1)
matrices. Put

H =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
D1 D2 · · · Dm

 , (5)

where 1 and 0 stand for the all-one row vector and the zero row vector of length r + 1,
respectively. Let C be the code with H as a parity-check matrix. Then it is clear that the
dimension of C is at least k. Furthermore, we claim that the locality of C is r. Indeed,
let c = (c1, c2, . . . , cn) be a codeword of C, then

∑(r+1)(i+1)
j=1+(r+1)i cj = 0 for 0 6 i 6 m − 1

as HcT = 0. Hence, a coordinate cj with j ∈ {1 + (r + 1)i, . . . , (r + 1)(i + 1)} for some
0 6 i 6 m− 1 can be repaired by cRj with Rj = {1 + (r + 1)i, . . . , (r + 1)(i+ 1)} \ {j}.

In conclusion, to see if a linear code C with a parity-check matrix H of the form (5) is
an optimal locally recoverable code, it is sufficient to check if the minimum distance of C
satisfies (4) for r > d− 2.

2.2 Graphs
A undirected graph G is a pair G = (V,E), where V is a finite set and E is a set consisting of
some subsets of size 2 of V . An element of V is called a vertex and an element of E is called
an edge. A subgraph G′ of a graph G is a graph whose vertex set and edge set are subsets
of those of G. We say that G has a cycle (v1, . . . , vm) if {vi, vi+1} ∈ E for i = 1, . . . ,m− 1
and {vm, v1} ∈ E. The following Lemma 9 provides a simple but useful way to determine
if G contains a cycle. The proof can be found in any textbook about graph theory (see [3]
for instance).

ICALP 2019
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I Lemma 9. An undirected graph G contains a cycle if |E| ≥ |V |.

Apart from the above usual definition of graphs, we also require some results on hypergraph
in this paper. A hypergraph is a generalization of a graph in which an edge can join any
number of vertices. Formally, a hypergraph H is a pair H = (X,E) where X is a set of
elements called vertices, and E is a set of non-empty subsets of X called hyperedges or edges.
Therefore, E is a subset of 2X \ {∅}, where 2X stands for the power set of X.

I Definition 10 (r-uniform Hypergraph (or r-graph for short)). A hypergraph H = (X,E) is
called r-uniform if every hyperedge in E has size r. In other words, every hyperedge of an
r-uniform hypergraph connects exactly r vertices.

There are several ways to define cycles in a hypergraph that coincide with the definition
of cycles in the usual graph. In this paper, we use the Berge cycle as the generalization of
cycles in the usual graph.

I Definition 11 (Berge cycle). A r-uniform hypergraph H = (X,E) contains a Berge k-cycle
(v1, . . . , vk) if there exist k hyperedges e1, . . . , ek ∈ E such that {vi−1, vi} ⊆ ei for i = 2, . . . , k
and {v1, vk} ⊆ e1.

3 A criterion on minimum distance

It follows from Corollary 8 that for d ≤ r + 2, a locally recoverable code with parity-check
matrix H in (5) is optimal provided that any d− 1 columns of H are linearly independent
and each Di is a (d− 2)× (r + 1) matrix.

Let Fq be a finite field and put m = n
r+1 . Assume that A1, . . . , Am are subsets of Fq, each

of size r + 1. Let Ai = {ai,1, . . . , ai,r+1} for i = 1, . . . ,m. Let ai,j = (ai,j , a
2
i,j , . . . , a

d−2
i,j ) and

put Di = (aT
i,1,aT

i,2, . . . ,aT
i,r+1). Thus, Di is a Vandermonde-type matrix. Let e1, . . . , em be

the standard basis of vector space Fm
q , i.e., all components of ei are 0 except that the i-th

component is 1. Then, we can rewrite H as follow.

H =
(

eT
1 · · · eT

1 · · · eT
m · · · eT

m

aT
1,1 · · · aT

1,r+1 · · · aT
m,1 · · · aT

m,r+1

)
. (6)

We now present a sufficient and necessary condition under which any d− 1 columns of
the matrix H in (6) are linearly independent.

I Theorem 12. For d > 5, then any d−1 columns of H defined in (6) are linearly independent
if and only if |

⋃
i∈S Ai| ≥ r|S|+ 1 for any S ⊆ [m] of size no more than t = bd−1

2 c.

Proof. We first prove the “if” direction. Let hi,j be the (i, j)th column of H, i.e., hi,j =
(ei,ai,j)T for 1 6 i 6 m and 1 6 j 6 r+ 1. Choose any d− 1 columns {hi,j}16i6m;j∈Si of H,
where Si are subsets of [r+ 1] satisfying

∑m
i=1 |Si| = d− 1. Let A′i = {ai,j ∈ Ai : j ∈ Si}, i.e.,

A′i is the subset of Ai where each element is associated with one of the d− 1 columns. Let H ′
be the (n− k−m)× (d− 1) matrix consisting of these d− 1 columns. We are going to show
that H ′ has rank d− 1. We assume that Si is either empty or of size at least 2. Otherwise,
the unique column selected from Di with |Si| = 1 must be linearly independent from the rest
d− 2 columns. We can consider the linear independence of the rest d− 2 columns instead.
Now, we assume that there are at most t non-empty sets Si. Let A = {ai,j}16i6m;j∈Si .
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Assume that A = {a1, . . . , as} has s distinct elements. If s = d− 1, then by elementary row
operations, one can find a (d− 1)× (d− 1) Vandermonde submatrix of the form(

1 1 · · · 1
aT

1 aT
2 · · · aT

d−1

)
of H ′, where ai = (ai, a

2
i , . . . , a

d−2
i ). Thus, the rank of H ′ is d− 1.

We proceed to the case where s < d− 1. By permuting the columns of H ′, we obtain a
matrix of the following form:

H1 =
(

eT
i1

eT
i2
· · · eT

is
eT

is+1
· · · eT

id−1

aT
1 aT

2 · · · aT
s aT

s+1 · · · aT
d−1

)
,

where 1 6 i1 6 i2 6 · · · 6 id−1 6 m and {as+1, . . . , ad−1} is a subset of A. Thus, aj belongs
to Aij

for 1 6 j 6 d− 1. By elementary column operations, we can erase aT
s+i since it also

appears in one of the first s columns. Hence, H1 is equivalent to

H2 =
(

eT
i1

eT
i2
· · · eT

is
eT

is+1
− eT

ks+1
· · · eT

id−1
− eT

kd−1

aT
1 aT

2 · · · aT
s 0T · · · 0T

)
,

where {ks+1, . . . , kd−1} is a subset of {i1, . . . , is}. Since H2 is an upper left triangular block
matrix, showing that H2 is a full-rank matrix is equivalent to showing both (aT

1 ,aT
2 , . . . ,aT

s )
and (eT

is+1
− eT

ks+1
, · · · , eT

id−1
− eT

kd−1
) have full rank. Note that (aT

1 ,aT
2 , . . . ,aT

s ) is a (d −
2)× s Vandermonde matrix and hence it has full rank s. It remains to show that eis+1 −
eks+1 , . . . , eid−1 − ekd−1 are linearly independent. Suppose they were linearly dependent.
Then there exist elements λs+1, . . . , λd−1 ∈ Fq which are not all zero such that

d−1∑
j=s+1

λj(eij − ekj ) = 0.

Let P be the subset of {s+ 1, . . . , d− 1} such that λi 6= 0 if and only if i ∈ P . It follows that∑
i∈P

λi(eji
− eki

) = 0. (7)

Let U = {ji : i ∈ P}, V = {ki : i ∈ P} and W = U ∪ V . As both U and V are subsets of
{i ∈ [m] : |Si| > 2}, we have |W | 6 t =

⌊
d−1

2
⌋
. Since λi is nonzero for all i ∈ P , every ` ∈W

must appear at least twice in the multiset consisting of elements of U and V . Otherwise, e`

could not be cancelled in (7). This implies |W | ≤ |P |.
On the other hand, for each ai ∈ A, there is exactly one subset A′ki

containing ai since
the first s columns have s distinct ai. Furthermore, let ti = |{` ∈ U : ai ∈ A′`}|. It follows
that

∑
ai∈A ti = |P | and ai belongs to ti + 1 subsets in {A′` : ` ∈W}. This implies∣∣∣∣∣ ⋃

`∈W

A`

∣∣∣∣∣ ≤∑
`∈W

|A`| −
s∑

i=1
ti = (r + 1)|W | − |P |

since A′` ⊆ A`. Combining with the condition |
⋃

`∈W A`| ≥ r|W |+ 1 forces |W | ≥ |P |+ 1.
A contradiction occurs and we complete the proof of the “if” direction.

We proceed to the “only if” direction. First, we claim that |Ai ∩Aj | ≤ 1 for any i 6= j.
Otherwise, we may assume that Ai ∩Aj contains two distinct elements a1 and a2. Thus, H
contains the four linearly dependent columns (ei,a1)T , (ei,a2)T , (ej ,a1)T and (ej ,a2)T .

ICALP 2019
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We prove the “only if” part by contradiction. Without loss of generality, we assume
that the first s subsets A1, . . . , As do not satisfy the condition, i.e. |

⋃s
i=1 Ai| ≤ sr, where s

satisfies s 6 t. Define an undirected graph G = ([s], E) such that {i, j} ∈ E if and only if
Ai ∩Aj 6= ∅. By inclusion-exclusion principle, we have

rs >

∣∣∣∣∣
s⋃

i=1
Ai

∣∣∣∣∣ ≥
s∑

i=1
|Ai| −

∑
(i,j)∈E

1 = s(r + 1)− |E|.

This implies |E| ≥ s. By Lemma 9, there exists a cycle in this undirected graph. Without loss
of generality, we may assume that (1, . . . , `) is a cycle, i.e., {i, i+ 1} ∈ E for i = 1, . . . , `− 1
and {`, 1} ∈ E. By the definition of E, Ai and Ai+1 contains a common element {aji

}. Then,
we can pick two columns (ei,aji−1)T 1 and (ei,aji)T from the i-th block Di for i = 1, . . . , `.
These 2` columns are linearly dependent since

∑̀
i=1

(
(ei,aji−1)− (ei,aji

)
)

=
∑̀
i=1

(0,aji−1 − aji
) = 0.

The proof is completed. J

By Theorem 12, we immediately obtain the following result.

I Theorem 13. If t =
⌊

d−1
2
⌋
> 2 and (r + 1)|n, then there exists a q-ary optimal linear

LRC with length n, minimum distance d and locality r provided that there are m = n
r+1 sets

A1, . . . , Am ⊆ Fq such that

|Ai| = r + 1 for 1 ≤ i ≤ m,
|
⋃

i∈S Ai| ≥ |S|r + 1 for any S ⊆ [m] of size at most t. (8)

I Remark 14. We point out that there is another way to look at (8) as one reviewer suggests.
Define an unbalanced bipartite expander graph where the vertex ui on the left hand side are
associated with sets Ai and the vertex vj on the right hand side are associated with an element
aj in Fq. ui and vj are adjacent if and only if aj is contained in Ai. The expansion property
(8) is now equivalent to the existence of good unbalanced bipartite graph [5]. However, the
parameters discussed in this paper are not in the scope of explicit construction of good
unbalanced bipartite graph, i.e., the expansion property in (8) is too strong for all known
explicit constructions.

4 Random and algorithmic constructions

In the previous section, we converted the construction of optimal LRCs into a problem of
finding subsets of Fq satisfying (8). In this section, we first present a probabilistic construction
of subsets satisfying (8). In addition, we can derandomize this probabilistic construction into
a deterministic construction in polynomial time if d is constant. The case t = 2, i.e., d = 5
and 6, is equivalent to the design of constant weight codes [9]. In this section, we assume
t ≥ 3. Since the algebraic structure is not important for the union of set, we replace Fq with
[q] from now on.

I Theorem 15. There exist m =
⌈

q
1+ 1

t−1

2t2(r+1)2+ 2
t−1

⌉
sets A1, . . . , Am satisfying (8) provided q

is large enough.

1 Define aj0 = aj` for simplicity.
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Proof. Let Xi = {xi,1, . . . , xi,r+1}, i = 1, . . . , 2m be the set picked uniformly at random over
all (r + 1)-sized subsets of [q]. Define the binary random variable YS such that YS = 1 if
|
⋃

i∈S Xi| ≤ |S|r and 0 otherwise. Our goal is to bound the expectation E
[∑

S⊆[2m],|S|≤t YS

]
.

Without loss of generality, we may assume that S = {1, . . . , a} for some 1 < a ≤ t. We
order the random variables in Xi, i = 1, . . . , a, i.e., x1,1, . . . , x1,r+1, . . . , xa,1, . . . , xa,r+1. We
want to bound the probability of the event YS = 1, i.e., at least a elements repeated in this
sequence. Given an element xi,j , the probability that xi,j 6= xi′,j′ for some xi′,j′ prior to
xi,j is at least 1 − (i−1)(r+1)+j

q ≥ 1 − a(r+1)
q . Taking over all sets of size at least a in this

sequence, the probability of YS = 1 is at most

a(r+1)∑
i=a

(
a(r + 1)

i

)(
a(r + 1)

q

)i

≤
a(r+1)∑

i=a

(
a(r + 1)

)i

i!

(
a(r + 1)

q

)i

≤ 1.1
a!

(
a2(r + 1)2

q

)a

.

for q ≥ 10a2(r + 1)2. It follows that

E

 ∑
S⊂[2m],|S|≤t

YS

 =
t∑

i=2

∑
S⊂[2m],|S|=i

Pr[YS = 1] ≤
t∑

i=2

(
2m
i

)
1.1
i!

(
i2(r + 1)2

q

)i

≤
t∑

i=2
1.1( 1

i! )
2
(

2mi2(r + 1)2

q

)i

≤
t∑

i=2
1.1
(

1
i!

)2(
q

(r + 1)2

) i
t−1

≤ 1.1× 1.5
(

1
t!

)2(
q

(r + 1)2

) t
t−1

≤ 2
4t2

(
q

(r + 1)2

) t
t−1

≤ m.

for q ≥ t2t3t(r + 1) and t ≥ 3. The second inequality is due to
(2m

i

)
≤ (2m)i

i! and the third
inequality is due to(

1
i!

)2(
q

(r + 1)2

) i
t−1

≥ 3
(

1
(i− 1)!

)2(
q

(r + 1)2

) i−1
t−1

.

That means there exists 2m (r+ 1)-sized sets A1, . . . , A2m such that there are at most m
subsets S ⊆ [2m] with |

⋃
i∈S Ai| ≤ |S|r. For each of these m subsets S, remove one set from

Ai, i ∈ S. The desired result follows as we remove at most m sets. J

Theorem 15 is an existence proof. However, if t is a constant, it is possible to turn this
argument into an algorithm via the method of conditional probabilities.

I Theorem 16. There exists a polynomial-time deterministic algorithm to find m sets in
Theorem 15 provided that t is a constant.

Proof. We follow the same notation in Theorem 15. Let Xi = {xi,1, . . . , xi,r+1} be a random
set of size r + 1. Our goal is to minimize E[

∑
S⊂[2m],|S|≤t YS ] by fixing the set Xi one by

one. Since

E

 ∑
S⊆[2m],|S|≤t

YS

 =
∑

A⊂[q],|A|=r+1

E

 ∑
S⊆[2m],|S|≤t

YS |X1 = A

Pr[X1 = A]

= 1(
q

r+1
) ∑

A⊂[q],|A|=r+1

E

 ∑
S⊆[2m],|S|≤t

YS |X1 = A

 ,
there exists a set A such that E

[∑
S⊆[2m],|S|≤t YS |X1 = A

]
≤ E

[∑
S⊆[2m],|S|≤t YS

]
. If r+ 1

is a constant, we only need to enumerate all subsets of size r+1 in polynomial time. However,
if r + 1 is not a constant, we enumerate x1,1 ∈ X1 instead of the whole set, i.e., minimizing
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E
[∑

S⊆[2m],|S|≤t YS |x1,1 = a1,1

]
for a1,1 ∈ [q]. Given a subset S ⊆ [2m] of size t, let us show

how to compute E[YS |x1,1 = a1,1]. Without loss of generality, we assume S = {1, . . . , t}.
We list t(r + 1) random elements x1,1 = a1,1, x1,2, . . . , x1,r+1, . . . , xt,1, . . . , xt,r+1. For large
enough q, it suffices to approximate E[YS |x1,1 = a1,1] by counting the number of sequences
where there are exact t repetitions. There are

((r+1)t
t

)
combinations of these t positions. Let

R ⊆ [t] × [r + 1] be any set of size t representing the t positions. we first remove these t
positions from the sequence. The remaining tr positions in the sequence must have distinct
elements and there are

∏rt−1
i=0 (q − i) ways to pick these tr elements. Assume that we assign

1, . . . , rt to these rt positions. To obtain our final result, we multiply it by
∏rt−1

i=0 (q − i). It
remains to fill our sequence by adding back the t positions in R. For each (i, j) ∈ R, we
enumerate all possible choices of xi,j , (i, j) ∈ R and find out the number of combinations
that there are exact t repetitions in the resulting sequence. There are at most qt ways to do
the enumeration. Then, we obtain the exact value of E[YS |x1,1 = a1,1]. Observe that there
are at most

∑t
i=2
(

n
i

)
subsets S. Thus, this expectation can be computed in polynomial time

as t is a constant. We do it r + 1 times so as to fix all elements in X1. Given A1, . . . , Ak,
our goal is to find Xk+1 = Ak+1 to minimize the expectation

E

 ∑
S⊆[2m],|S|≤t

YS |X1 = A1, . . . , Xk = Ak

 ≤ E
 ∑

S⊆[2m],|S|≤t

YS

 .
It can be done in the same way as X1, . . . , Xk−1 are already fixed. After we fix all these 2m
sets, we will obtain A1, . . . , A2m with the same property as Theorem 15 claims. Then, we
enumerate all t-sized subsets S ⊆ [q] and do the same as Theorem 15 does. The resulting
subsets are the output of our algorithm. The number of these subsets is at least m. Since t
is constant, all this operation is done in polynomial time. The proof is completed. J

The following is a direct consequence of Theorem 12, Theorem 15 and Theorem 16.

I Theorem 17. For d > 5, put t =
⌊

d−1
2
⌋
. If r > d − 2, (r + 1)|n and q is sufficiently

large, then there exists a q-ary [n, k, d] optimal locally recoverable code with locality r and

n ≥ q
1+ 1

t−1

2t2(r+1)1+ 2
t−1

. The parity check matrix of this code has the form of (6). Moreover, if d
is a constant, there exists a deterministic algorithm running in polynomial time to construct
this code.

5 The connection with extremal graph theory

To our surprise, it turns out that finding a collection of sets satisfying (8) is equivalent to
constructing an (r + 1)-uniform hypergraph avoiding short Berge cycle. The latter is one of
the central problems in extremal graph theory and this problem is extremely difficult.

I Lemma 18. There exist m sets satisfying (8) if and only if there exists an (r+1)-hypergraph
H = ([q], E) with |E| = m that does not have any Berge `-cycles for all ` ≤ t.

Proof. To see the equivalence of these two problems, we define an (r + 1)-hypergraph as
follows: Let H = (V,E) with V = [q] and E = {A1, . . . , Am}. It is clear that H is an
(r + 1)-hypergraph. Assume that there exists k ≤ t subsets Ai1 , . . . , Aik

does not satisfy
the condition that |

⋃k
j=1 Aij

| ≥ rk + 1. The same argument in Theorem 12 implies that
there exists a cycle (1, 2, . . . , `) such that j ∈ Aij ∩ Aij+1 . That means {j − 1, j} ⊆ Aij

for j = 2, . . . , ` and {1, `} ⊆ Ai1 . By the definition of Berge cycle, the (r + 1)-hypergraph
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H contains this Berge `-cycle (1, 2, . . . , `). On the other hand, assume that there exists a
Berge `-cycle in H. Denote the ` edges of this cycle Ai1 , . . . , Ai`

. The results follows since
|Aij
∩Aij+1 | ≥ 1 for i = 1, . . . , `− 1 and |Ai1 ∩Ai`

| ≥ 1. J

The equivalence of both the problems allow us to make use of known results in this area.
Let F be a family of r + 1-graph. Denote by exr+1(n,F) the maximum number of edges
in an (r + 1)-hypergraph that does not contain any subgraphs in F . Denote by BCk the
set of k-cycles. Let Bk = {BC2, . . . , BCk}. One upper bound on exr+1(n,Bt) is obtained by
reducing this problem to an m× n bipartite graph with girth more than 2t and apply the
result in [7].

I Proposition 19 ([19]). exr+1(n,Bt) is upper bounded by
(i) n

r ( n
r+1 )

2
t−1 + n

r+1 if t is odd,
(ii) n

r(r+1)n
2
t + n

r+1 if t is even.

Since these two problems are equivalent, Proposition 19 gives an upper bound on the
number m of sets Ai. For t = 3, 4, the following two propositions show that this upper
bound is asymptotically tight. However, constructing such hypergraph requires sophisticated
knowledge in this area which is beyond the scope of this paper. We summarize the results
as follows.

I Proposition 20 ([18]). There exists explicit construction of (r+ 1)-hypergraph H = ([q], E)
with |E| = q2−o(1) that contains no subgraph in B3.

I Proposition 21 ([17]). There exists explicit construction of (r+ 1)-hypergraph H = ([q], E)
with |E| = Θ(q 3

2−o(1)) that contains no subgraph in B4.

Determining the exact value of exr+1(n,Bt) for r ≥ 2 and t ≥ 3 is extremely difficult. A
major open problem in this area is whether exr+1(n,Bt) = Ω(n1+ 2

t ). A tighter lower bound
for general t can be obtained from H-free random process [2]. The method in [2] can also be
applied to hypergraph and add a log factor above the probabilistic method in Theorem 15.
Again this technique is beyond our scope.

I Proposition 22 ([18]). exr+1(n,Bt) = Ωr,t(n(n logn)
1

t−1 ).

Theorem 1 summarizes all above results in the language of codes.

6 An upper bound on the length of optimal LRC

In this section, we derive an upper bound on the length of optimal LRC. Our upper bound
holds for all optimal LRC. The proof of our upper bound is a refined analysis of the argument
of Theorem 3.3 in [6]. Recall the following Lemma in [6].

I Lemma 23 (Lemma 3.1 [6]). Let C be an [n, k, d]q linear optimal LRC with locality r.
Then, there exist n

r+1 disjoint recovery sets, each of size r + 1 provided that

n

r + 1 ≥
(
d− 2−

⌊
d− 2
r + 1

⌋)
(3r + 2) +

⌊
d− 2
r + 1

⌋
+ 1. (9)

We use above lemma to force the optimal LRC to have disjoint recovery sets.

I Theorem 24. Let C be an optimal [n, k, d]q-linear locally repairable codes of locality r with
(r + 1)|n and n = Ω(dr2) satisfying (9) in Lemma 23. If d > 5, then

n ≤
{
O(q3) if d mod r + 1 > 5 or d mod r + 1 < 2,
O(q2) if 2 ≤ d mod r + 1 ≤ 5. (10)
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Proof. Put h = d − 2 − bd−2
r+1 c. Then n − k = n

r+1 + h and h ≤ d − 2. We first follow the
same line of proof in Theorem 3.3, [6]. It allows us to assume that the parity-check matrix of
optimal LRC C is as follows:

H =


1 0 · · · · · · · · · 0
0 1 · · · · · · · · · 0
...

...
. . . . . . . . .

...
0 0 · · · · · · · · · 1

A

 , (11)

where A is an h× n matrix over Fq. The submatrix consisting of the first ` rows of H is a
block diagonal matrix. Let hi,j be the ((i− 1)(r + 1) + j)-th column of H, i.e.,

hi,j = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
`−i

,vi,j)T (12)

for some vi,j ∈ Fh
q , where T stands for transpose. Define

h′i,j := hi,j − hi,r+1 = (0, . . . , 0︸ ︷︷ ︸
`

,vi,j − vi,r+1)T

for i ∈ [`] and j ∈ [r]. It is clear that there are only h = d− 2− bd−2
r+1 c nonzero components

in h′i,j . Assume that d− 6 = a(r + 1) + b for some 0 ≤ b ≤ r. Then, we claim that the first
ar+ b columns h′i,j are linearly independent. This is because the linear combination of these
ar + b columns leads to

a∑
i=1

r∑
j=1

λi,j(hi,j − hi,r+1) +
b∑

j=1
λa+1,j(ha+1,j − ha+1,r+1) 6= 0

as it is a linear combination of ar + b+ a+ 1 = d− 5 columns of H.
Since these ar + b columns h′i,j are linearly independent, there exist ar + b indices where

these ar + b vectors h′i,j span the whole space. Without loss of generality, we assume they
are the last ar + b indices. To simply our argument, we denote by S the index set of first
ar + b columns and S̄ the index set of the rest columns. For each (x, y) ∈ S̄, there exist
λxi,yj

∈ Fq such that h̄′x,y = h′x,y −
∑

(i,j)∈S λxi,yj
h′i,j gives a vector whose value on last

ar + b indices are all zero. The number of nonzero components of h′x,y is at most

h− (ar + b) = d− 2− bd− 2
r + 1 c − (d− 6) + bd− 6

r + 1 c = 4 + bd− 6
r + 1 c − b

d− 2
r + 1 c.

On the other hand, let h̄′x1,y1
and h̄′x2,y2

be any two vectors of h̄′x,y, (x, y) ∈ S̄. Ob-
serve that they lie in the space spanned by ar + b columns h′i,j and h′x1,y1

,h′x2,y2
which

in turn contained in the space spanned by the first d − 5 columns hi,j together with
hx1,y1 ,hx1,r+1,hx2,y2 ,hx2,r+1. This implies that h̄′x1,y1

and h̄′x2,y2
are linearly independent.

Let H1 be the matrix whose columns consist of h̄′x,y, (x, y) ∈ S̄. Remove all zero rows in
H1 and denote the resulting matrix H2. It is clear that any two columns of H2 are linearly
independent and H2 has at most 4 + bd−6

r+1 c − b
d−2
r+1 c rows. Let C1 be a linear code whose

parity-check matrix is H2. We divide our discussion into two cases.
1. bd−6

r+1 c − b
d−2
r+1 c = 0, i.e., d mod r + 1 > 5 or d mod r + 1 < 2 .

Then, C1 has length N ≥ rn
r+1 − d, dimension k ≥ N − 4 and distance d ≥ 3. In the worst

scenario, we assume that k = N − 4 and d = 3. Applying the Hamming bound on code
C1 gives qN−4 ≤ qN

N(q−1) . This implies N ≤ q3, i.e., n ≤ r+1
r (d+ q3).
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2. bd−6
r+1 c − b

d−2
r+1 c = −1 i.e., 2 ≤ d mod r + 1 ≤ 5.

Then, C1 has length N ≥ rn
r+1 − d, dimension k ≥ N − 3 and distance d ≥ 3. In the worst

scenario, we assume that k = N − 3 and d = 3. Applying the Hamming bound on code
C1 gives qN−3 ≤ qN

N(q−1) . This implies N ≤ q2, i.e., n ≤ r+1
r (d+ q2).

The proof is completed. J

References
1 Alexander Barg, Kathryn Haymaker, Everett W. Howe, Gretchen L. Matthews, and Anthony

Várilly-Alvarado. Locally recoverable codes from algebraic curves and surfaces. CoRR,
abs/1701.05212, 2017. arXiv:1701.05212.

2 Tom Bohman and Peter Keevash. The early evolution of the H-free process. Inventiones
mathematicae, 181(2):291–336, August 2010.

3 Belá Bollobás. Modern Graph Theory. Springer, New York, 1998.
4 Parikshit Gopalan, Cheng Huang, Huseyin Simitci, and Sergey Yekhanin. On the Locality of

Codeword Symbols. IEEE Trans. Information Theory, 58(11):6925–6934, 2012.
5 Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced Expanders and

Randomness Extractors from Parvaresh–Vardy Codes. J. ACM, 56(4):20:1–20:34, July 2009.
6 Venkatesan Guruswami, Chaoping Xing, and Chen Yuan. How Long Can Optimal Locally

Repairable Codes Be? In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2018, August 20-22, 2018 - Princeton, NJ,
USA, pages 41:1–41:11, 2018.

7 Shlomo Hoory. The Size of Bipartite Graphs with a Given Girth. J. Comb. Theory, Ser. B,
86(2):215–220, 2002.

8 Cheng Huang, Minghua Chen, and Jin Li. Pyramid Codes: Flexible Schemes to Trade Space for
Access Efficiency in Reliable Data Storage Systems. In Sixth IEEE International Symposium
on Network Computing and Applications (NCA 2007), 12 - 14 July 2007, Cambridge, MA,
USA, pages 79–86, 2007.

9 Lingfei Jin. Explicit construction of optimal locally recoverable codes of distance 5 and 6 via
binary constant weight codes. CoRR, abs/1808.04558, 2018. arXiv:1808.04558.

10 Lingfei Jin, Liming Ma, and Chaoping Xing. Construction of optimal locally repairable
codes via automorphism groups of rational function fields. CoRR, abs/1710.09638, 2017.
arXiv:1710.09638.

11 Xudong Li, Liming Ma, and Chaoping Xing. Optimal locally repairable codes via elliptic
curves. CoRR, abs/1712.03744, 2017. arXiv:1712.03744.

12 Yuan Luo, Chaoping Xing, and Chen Yuan. Optimal locally repairable codes of distance 3
and 4 via cyclic codes. CoRR, abs/1801.03623, 2018. arXiv:1801.03623.

13 N. Prakash, Govinda M. Kamath, V. Lalitha, and P. Vijay Kumar. Optimal linear codes with
a local-error-correction property. In Proceedings of the 2012 IEEE International Symposium
on Information Theory, ISIT 2012, Cambridge, MA, USA, July 1-6, 2012, pages 2776–2780,
2012.

14 Natalia Silberstein, Ankit Singh Rawat, Onur Ozan Koyluoglu, and Sriram Vishwanath.
Optimal locally repairable codes via rank-metric codes. In Proceedings of the 2013 IEEE
International Symposium on Information Theory, Istanbul, Turkey, July 7-12, 2013, pages
1819–1823, 2013.

15 Itzhak Tamo and Alexander Barg. A Family of Optimal Locally Recoverable Codes. IEEE
Trans. Information Theory, 60(8):4661–4676, 2014.

16 Itzhak Tamo, Dimitris S. Papailiopoulos, and Alexandros G. Dimakis. Optimal Locally
Repairable Codes and Connections to Matroid Theory. IEEE Trans. Information Theory,
62(12):6661–6671, 2016.

17 Craig Timmons and Jacques Verstraëte. A counterexample to sparse removal. European
Journal of Combinatorics, 44:77–86, 2015.

18 Jacques Verstraëte. Personal communication.
19 Jacques Verstraëte. Extremal problems for cycles in graphs, pages 83–116. Springer International

Publishing, Cham, 2016.

ICALP 2019

http://arxiv.org/abs/1701.05212
http://arxiv.org/abs/1808.04558
http://arxiv.org/abs/1710.09638
http://arxiv.org/abs/1712.03744
http://arxiv.org/abs/1801.03623

	Introduction
	Known results
	Our results, comparisons and a conjecture
	Our techniques
	Organization

	Preliminaries
	Locally recoverable codes
	Graphs

	A criterion on minimum distance 
	Random and algorithmic constructions
	The connection with extremal graph theory
	An upper bound on the length of optimal LRC

