
A New Approach to
Formal Language Theory by

Kolmogorov Complexity
(Preliminary Version)

Ming Li

York University, Dq;artment of Computer Science
North York, Ontario M3J IP3, Canada

Paul M.B. Vitanyi

Centrum voor Wiskunde en Infonnatica
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

and
Universiteit van Amsterdam, Faculteit Wiskunde en Informatica

ABSTRACT

We introduce Kolmogorov complexity as a new technique in
Formal Language Theory. We give an alternative for pumping
lemma(s) and a new characterization for regular languages. For the
separation of deterministic contextfree languages and contextfree
languages no pumping lemmas or any other general method was
known. We give a first general technique to separate these classes,
and illustrate its use on four examples previously requiring labourous
ad hoe methods. The approach is also successful at the high end of
the Chomsky hierarchy since one can quantify nonrecursiveness in
terms of Kolmogorov complexity. We also give a new proof, using
Kolmogorov complexity, of Yao and Rivest's result that k + I heads
are better than k heads.

1. Introduction

It is feasible to reconstruct parts of Formal Language Theory using algorithmic
information theory (Kolmogorov complexity). We prove theorems on how to use
Kolmogorov complexity as a concrete, powerful, tool. We do not just want to intro­
duce fancy mathematics; our goal is to help our readers do proofs in the most
essential, usually easiest, sometimes even obvious ways. In this paper it is only
important to us to demonstrate that the application of Kolmogorov complexity in
the targeted area is not restricted to trivialities. The proofs of the theorems in this
paper may not be easy. However, the theorems are of the type that are used as a
tool. Once derived, our theorems are very easy to apply.

507

1.1. Prelude

The first application of Kolmogorov complexity in the theory of computation was
in [16, 17). By re-doing proofs of known results, it was shown that static, descrip­
tional (program size) complexity of a single random strin.g can be used to obtain
lower bounds on dynamic, computational (running time) complexity. None of the
inventors of Kolmogorov complexity originally had these applications in mind.
Recently, Kolmogorov complexity has been applied extensively to solve classic
open problems of sometimes two decades standing [10, 14]. See also a survey of
two decades of applied Kolmogorov complexity [11].

The secret of Kolmogorov complexity's success in dynamic, computational
lower bound proofs rests on a simple fact: the overwhelming majority of strings has
hardly any computable regularities. We call such a string 'Kolmogorov random'. A
Kolmogorov random string cannot be (effectively) compressed. Incompressibility is
a noneff ective property: it can be shown that no particular string, except finitely
many, can be proved to be random. Recall, that a traditional lower bound proof
by counting usually involves all inputs of certain length. One shows that a certain
lower bound has to hold for some "typical" input. Since a particular "typical" input
is hard (sometimes impossible) to find effectively, the proof has to involve all the
inputs. Now we understand that a "typical input" can be constructed via a Kolmo­
gorov random string. But we cannot exhibit such a typical input since we cannot
prove a string to be random. No wonder the old counting arguments had to involve
all inputs. In a proof using Kolmogorov complexity, we first choose a random
string that is known to exists (although we cannot construct it). Then we show that
if the assumed lower time bound would not hold, then this string could be
compressed, and hence it would not be random.

1.2. Outline of This Paper

It turns out that the same approach works in a new area for application of Kolmo­
gorov complexity: Formal Languages and Automata Theory proper. We show a
powerful alternative to the pumping lemma for regular languages. It is well known
that not all nonregular languages can be shown to be nonregular by the usual uvw­
pumping lemma. There is a plethora of pumping lemmas to show nonregularity,
like the 'marked pumping lemma', and so on. In fact, it seems that many example
nonregular languages require their own special purpose pumping lemmas, see for
instance [6]. Comparatively recently, a pumping lemma (to end all pumping lem­
mas) was exhibited: namely a pumping lemma that characterizes the regular
languages [4]. This ultimate pumping lemma is complicated and uses Ramsey
theory. In contrast, using Kolmogorov complexity we give a new characterization of
the regular languages that simply makes our intuition of "finite state"ness of these
languages rigorous and is easy to apply. Being a characterization it works for all
non-regular languages. We give several examples of its application, some of which
were quite difficult using pumping lemmas.

While there is a pumping lemma to show that certain languages are not

508

context-free (CFL), there is no pumping lemma or any other general technique to
separate the deterministic contextfree languages (DCFL) from the CFL languages.
All known examples required very laborous ad hoe proofs, cf. [6]. We give neces­
sary (Kolmogorov complexity) conditions for DCFL, that easily separates CFL
from DCFL on all witness languages we have tried. We test the new method on
four examples, which were very hard to handle before. For completeness we present
a known characterization of recursive languages, and a necessary condition for
recursively enumerable languages.

As further examples of the Kolmogorov complexity approach we test the
approach on some known results: deterministic machines equivalent to nondeter­
ministic machines may require exponentially more states, and a new proof of the
Yao-Rivest result that k +I heads are better thank heads for multihead finite state
automata. We include some exercises for the reader.

2. Kolmogorov Complexity

Any of the usual definitions of Kolmogorov complexity [2, 8, 11, 17] will do
for the sequel. To fix thoughts, consider the problem of describing a string x over
O's and I's. Any partial recursive function f from strings over O's and l's to such
strings, together with a string p, the program for f to compute x, such that
f (p) = x, is such a description. It is useful to generalize this idea to the condi­
tional version: f (p, x) = y such that p is a program for f to compute x given y.
Then the descriptional complexity Kf of x, relative to f and y, is defined by

Kfx I y) = min{ IP I :p E{O, l}*, f (p,y) = x},

or oo if no such p exists, where Ix I is the length (number of bits) of string x.

For a universal partial recursive function /o we know that, for all f, there is a
constant CJ such that for all strings x,y, K10 (x IY) ~ Kj(x ly)+c1. So the canonical
relative descriptional complexity K (x I y) can be set equal to K10 (x IY). Hence we fix
a reference universal function Jo and dispense with the subscript: the conditional
Kolmogorov complexity of x given y is defined as K (x I y) = K10 (x I y), and the
unconditional Kolmogorov complexity of x is K (x) = K (x I t:), where E: denotes the
empty string (I E: I = 0).

Since there are 2n binary strings of length n, but only 2n - 1 possible shorter
descriptions d, it follows that K(x);;;;.: Ix I for some binary string x of each length.
We call such strings incompressible or random. It also follows that, for any length n
and any binary string y, there is a binary string x of length n such that
K(xly)~lxl.

Example. (Substrings of incompressible strings.) Is a substring of an
incompressible string also incompressible? A string x = uvw can be specified by a
short description for v of length K(v), a description of I u I, and the literal descrip­
tion of uw. Moreover, we need information to tell these three items apart. Such
information can be provided by prefixing each item with a self-delimiting

509

description of its length, as explained. in the next section. Together this takes
K(v) + I uw I + 0 (log Ix I) bits. Hence,

K(x) ~ K(v)+ O(log Ix I)+ I uw I ,
Thus, if we choose x incompressible, K (x) ~ Ix I , then we obtain

K(v) ~ Iv 1-0(log Ix I) .

It can be shown that this is optimal - a substring of an incompressible string can be
compressible. This conforms to a fact we know from probability theory: every
sufficiently long random string must contain long runs of zeros, so it must contain
some substring which is compressible.

Example. (State Blow-Up in Converting NFA to DFA) The usual construc­
tion to convert a nondeterministic finite automaton (NF A) with n states into a
deterministic finite automaton (DF A) with f (n) states that recognizes the same
language uses f (n) = 0(2n) [9]. No general construction exists that uses
significantly less states. We provide a new proof of this.

To convert an n-state NFA to a DFA, the DFA requires sometimes 2°Cn) states.

Proof Consider the language Lk = { x I the kth bit from right is 1 } . Lk can be
accepted by a NFA with k + 1 states. Suppose a DFA A with only 2°Ck) states
accepts Lk. We will also use A to denote A's description. Fix a string x of length k
such that K(x IA,k)~ Ix I· Give xO* to A as input. Stop A when it reads the last
bit of x. Record the current state of A. Reconstruct x by running A starting from
the recorded current state; Feed A with input O's; At the ith 0, if A accepts, then
the ith bit of x is 1, otherwise it is 0. This description of x needs only o(k) bits
since A has only 2o(k) states. So K (x I A,k)< Ix I, contradiction. •

Corollary. (Language reversal) The same argument shows that if L is accepted
by an n-state DFA, then any DFA accepting LR (L reversed.) may require 2°Cn)
states.

Corollary. (One-way input versus two-way input) The same argument shows
that if Lis accepted by an n-state 2-way DFA, then any one-way DFA accepting L
may require 20(n) states.

·Example. (Descriptions and Self-Delimiting Strings) Let x be a binary string
of length n. The shortest program (and its length K(x)) of x is generally uncomput­
able. Let us consider 'good' computable approximations to it. Now a description of
x can be given as follows.

(1) A piece of text containing several formal parameters pi, ... ,pm. Think of
this piece of text as a formal parametrized procedure in an algorithmic
language like PASCAL. It is followed by

(2) an ordered list of the actual values of the parameters.

The piece of text of (I) can be thought of as being encoded over a given finite
alphabet, each symbol of which is coded in bits. Therefore, the encoding of (I) as
prefix of the binary description of x requires 0 (1) bits. This prefix is followed by

510

the ordered list (2) of the actual values of p 1' ... ,pm in binary. To distinguish one
from the other, we encode (1) and the different items in (2) as self-delimiting
strings, as follows.

For natural numbers x, in the sequel of this paper let x denote both the
natural number and the xth binary string in the sequence 0, 1, 00, 01, 10, 11, 000,. ...
So the natural number 3 corresponds both to the natural number 3 and to the
binary string 00. For each string x, the string x is obtained by inserting a zero
after each letter in x except for the last letter where we insert a one. Let
x' = "fx1 w. The string x' is called the self-delimiting code of x. So '100101011' is
the self-delimiting code of '01011'. The self-delimiting code of a positive integer x
requires logx + 2loglogx bits, which is equivalent to saying that the self-delimiting
code of a binary string x requires Ix I + 2log Ix I bits. All logarithms are base 2
unless otherwise noted. For convenience, we denote the length Ix I of a natural
number n by "logx".

3. Regular Sets and Finite Automata

It is useful to first develop formal language theory in a way that is not exactly new,
but for some reason has fallen into disregard. In connection with the Kolmogorov
approach, we believe that a simple and transparent theory results.

An automaton is a 'black box' function B: V X M--?>M, with V the nonempty
finite input alphabet, M a set of states of memory. We extend B to B' on V* by
B'(£,m)=m and

B'(a(1) ... a(n),m) = B(a(n), B'(a(l) ... a(n -1),m)).

Clearly, if B' is not one-one, then the automaton 'forgets' because some x and y
from V* drive B into the same memory state. Assuming an initial memory state
m 0, we denote 'indistinguishability' of a pair of histories x,y E V* by x ,_,y, defined
as B'(x,m 0)=B'(y,mo). 'Indistinguishability' of objects is intuitively reflexive, sym­
metric, transitive, and right-invariant, i.e., .._.. is a right-invariant equivalence rela­
tion on V*. It is a simple matter to ascertain this formally. We add output by a
function o: M ~{O, l }, and say B accepts a language L defined as
{x EV"': B'(x,mo)=m, o(m)= 1}. If the set of classes induced by,.._, is finite, then
B is a finite automaton. This way, it is a straight-forward exercise to verify from the
definitions:

Theorem (Myhill, Nerode). The following statements about L ~ V* are
equivalent.
(i) L ~ V* is accepted by some finite automaton.
(ii) L consists of a union of right-invariant ---equivalence classes of V* .. where
I V* I,.._, I < 00.

(iii) For all x,y E V* define x "'Y by: for all z E V* we have xz EL if! yz EL. Then
I V*l-1 <oo.

Subsequently, closure under complement, union and intersection follow by

511

simple construction of the appropriate black box functions from given ones. The
clumsy pumping lemma approach can now be replaced by the Kolmogorov formu­
lation below.

3.l. Kolmogorov Complexity Replacement for the Pumping Lemma

An important part of formal language theory is deriving a hierarchy of language
families. The main division is the Chomsky hierarchy, with regular languages,
context-free languages, context-sensitive languages and recursively enumerable
languages. The common way to prove that certain languages are not regular is by
using "pumping" lemmas, e.g., the uvw-lemma. However, these lemmas are quite
difficult to state and cumbersome to prove or use. In contrast, below we show how
to replace such arguments by simple, intuitive and yet rigorous, Kolmogorov com­
plexity arguments. Below, languages are infinite sets of strings over a finite alpha­
bet.

Regular languages coincide with the languages accepted by finite automata
(FA). This invites a straightforward application of Kolmogorov complexity. Let us
give an example. We prove that { ok 1 k: k ~ 1} is not regular. If it were, then the
state q of the accepting FA after processing ok is, up to a constant, a description of
k. Namely, by running the FA, starting from state q, on a string consisting of I's, it
reaches its first accepting state precisely after k I's. Hence, since the FA has a fixed
finite number of states, there is a fixed finite number that bounds the Kolmogorov
complexity of each natural number: contradiction. We generalize this observation
as follows. (In the lexicographic order short strings precede long strings.)

Lemma (KC-Regularity). Let L be regular, and c a constant depending only on
L. For each x, if _;g1 is the nth string in the lexicographical order in (or in the comple­
ment ofJ Lx:::: {xy: xy EL} then K(y),,;;;:;K(n)+c.

Proof. Let L be a regular language. A stringy such that xy EL for some x
can be described by

This discussion, and a description of the FA that accepts L,

The state of the FA after processing x and the number n.

The statement "(or in the complement of)" follows, since regular languages are
closed under complementation. D

As another application of the KC-Regularity Lemma we prove that {IP: p is
prime } is not regular. Consider the string xy consisting of p I's, with p is the
(k + 1)th prime. Set in the lemma x equal to IP' with p' the kth prime, soy :::: JP -p',

and n = 1. It follows that K (p - p'):::: 0 (1). Since the differences between the con­
secutive primes rise unbounded, this implies that there is an unbounded number of
integers of Kolmogorov complexity 0(1). Since there are only 0(1) descriptions of
length O (1), we have a contradiction. (To prove that p - p' rises unbounded: If P is
the product of the first j primes, then no P + i (1,,;;;:;i ,,;;;:;j) is prime.) We give two
more examples from the well-known textbook of Hopcroft and Ullman that are
marked * as difficult there:

512

Example [Exercise 3.1(b.)* in [6)]. Prove that L={xxRw: x,wE{0,1}*} is

not regular. Fix x such that K(x);;.lxl. Consider prefix (01)310glxlx. The first
string with this prefix in L is (01)310glx I xxR(10)310glx I 0. By the KC-regularity

lemma, K(xR(10) 310glx I O)<K(l)+c, a contradiction.

Example [Exercise 3.6* in [6]]. Prove that L = { O; Ji: GCD (i,j) = 1} is not

regular. Obviously L is regular iff L' = { Oi 1J: GCD (i,j)=/= 1} is regular. Fix a prime p
such that K (p);;. logp - loglogp (by density of primes). Consider prefix ff'. By the

KC-regularity lemma, K(1P)<K(2)+c, a contradiction.

3.2. Kolmogorov Complexity Characterization of Regular Languages

We can show that the lemma is not only a device to show that some nonregular

languages are nonregular, as the common pumping lemmas, but the condition is a

characterization of the regular sets. (So it can be used to show nonregularity for all
nonregular languages.) While the pumping lemma's are not precise enough (except

for the difficult Ehrenfeucht-Parikh-Rozenberg construction) to characterize the reg­

ular languages, with Kolrnogorov complexity this is easy. In fact, the lemma above

is a direct corrollary of the characterization below. If Vis a finite nonempty alpha­

bet, then fix an effective order v 1,v 2 , • · · of the elements of V*. (This can be the

lexicographic order.) For each x E V*, let x=x1X2 · · · be the characteristic

sequence of x, such that the ith element Xi = 1 if xv; EL, and X; = 0 otherwise. We

denote XI · · · Xn by Xl:n·

Theorem (Regular KC-Characterization). Let L <: V*. The following statements
are equivalent.
(i) L is regular.
(ii) There is a constant ci depending only on L, such that for all x E V*, for all n,

K(x1:n In) < ci.
(iii) There is a constant CL depending only on L, such that for all x E V*, for all n,
K(x1:n) < K(n) + Ci.

Proof (Outline). (i)~(ii): by similar proof as the KC-Regularity Lemma.

(ii)~(iii): obvious.

(iii)~(i): Define x is recursive, if there is a recursive function f: N ~{O, I}
such that Xn =f (n) for all n.

Claim. For each constant c there are only finitely many x such that, for all n,
K(x1:n) < K(n) + c, and each of these x is recursive.

Proof Omitted. It follows by combining arguments due to D.W. Loveland,
A.R. Meyer and G.J. Chaitin in [3, 12]. D

By (iii) and the claim, there are only finitely many distinct x's associated with

the ~·s in V*, and all of them are recursive. Define the right-invariant equivalence

relat10n ""' by x ,,...., x' if x = x'. This relation induces a partition of V* in equivalence

classes [x] = {y : y ,__, x}. Since there is a one-one correspondence between the [x]' s

and the x's, and there are only finitely many distinct x's, there are also only finitely

many [x]'s, which implies that Lis regular by the Myhill-Nerode theorem. D

513

The difficult part of the Regular KC-Characterization consists in proving that
the KC-Regularity Lemma is exhaustive, i.e., can be used to prove the nonregular­
ity of all nonregular languages. This is non-trivial, since Item (iii) does not hold for
the self-delimiting version of Kolmogorov complexity.

Exercises

1. Prove that {0'1lm Im >n} is not regular.

2. Prove that {x#~ I x,y E{O, 1}*} is not regular.

3. Prove that {x#y I x appears (possibly nonconsecutively) in y} is not regular.

4. Prove that {x#y I at least 1,.2 of x is a substring in y} is not regular.

5. Prove that {x#y#z I x*y =z} is not regular.

6. Prove that {p I p is a prime represented in binary starting with a 1} is not
regular.

4. Context-free Languages

In this section we study CFL's and DCFL's (deterministic context-free
languages) using Kolmogorov complexity. We provide a lemma to establish neces­
sary properties in terms of Kolmogorov complexity for a language to be DCFL.
Our lemma can be used to prove many CFL languages to be non-DCFL's. This is
all the more interesting, since there does not appear to be a natural pumping
lemma to separate DCFL from CFL; previously the only recourse was to ad hoe
reasoning.

4.1. Necessary Conditions for Deterministic Context-free Languages

While there are pumping lemmas to show nonregularity, we hope to have con­
vinced the reader that using Kolmogorov complexity is both easier and more
natural. To prove that a language is in CFL - DCFL there is no pumping lemma at
all; yet in this section we present a KC-DCFLness Lemma that is easily used to
demonstrate witnesses to the nonemptiness of CFL - DCFL. Previously, this was
done one at a time in an ad hoe fashion. The resulting proofs were usually quite
complicated. (See for example the Solution for Exercise 10.5 (a) in [6].)

For a string x = x1x2 ... xm we use notation xi:J = xixi+l···x1. xR is the
reverse of x. We say that a string x is finitely generatable if x is a prefix of the
infinite string generated by some finite state deterministic machine (on empty
input). Like in the case of the regular sets, we first state a simplified version of the
theorem we aim at. We also use the definitions and notions in the previous section.
If M is a dpda, then we use I M I to denote the length of a self-delimiting descrip­
tion of it.

Lemma (KC-DCFL). Let L be a DCFL accepted by a dpda M, and let FSu and
FSv be finite state generators. For large enough u and v such that uv is the first word
in (or in the complement of) L with prefix u, and moreover

514

(a) uR and v are finitely generatable by finite state generators FSu and FSv respec-
tively; and

(b) K(u)>Ioglu [, K(v)>log!v I andioglog [u [<K(v)/2;

we have that if uvw is the first word in (or in the complement of) L with proper prefix
uv, then K(w)= 0(1).

Corollary (KC-DCFL). Above lemma also holds if uv'w is the first word with
proper prefix uv', where v' is obtained from v with the last (few) bit(s) of v being
changed.

Proof Sketch. Let L be accepted by M with input head hr and pushdown store
head hp. Assume uv, uvw EL and they satisfy the above conditions. (The case uv
or uvw is an element of the complement of L is handled similarly, since the dpda
recognizes both L and its complement.) For each x, we denote with c(x) the push­
down store contents at the time hr has read all of x, and moves to the right adja­
cent input. Consider time t when h, reaches the end of u. There are two cases:

Case 1. Suppose that when h, continues and reaches the end of v, all of the
original c(u) has been popped except the bottom C bits, where C is a constant not
depending on u, v. If at the time the pushdown store first decreased from J c(u) J

to size C the input head h, was at position p in v, then we must have
K(vp:lv 1) ~ C +[MI +0(1) (= 0(1)). Namely, no word (lexicographically before)
uv is in L, while uv is in L, and therefore vp: Iv I can be reconstructed from the
pushdown contents and a description of M. This implies that K(c(uv)) = 0 (1).
But, since uvw is the first string in L with proper prefix uv, we must have
K(w) = 0(1), by the standard argument (since we can reconstruct w easily).

Case 2. Suppose c(uv) still contains the bottom f (u, v) bits of the original
c(u), wherej(u, v) is unbounded. We show that this contradicts assumption (b).

First generate a long "easy" u' with suffix u, using the same generating process
FSu that finitely generates uR, such that K ([u' J) < loglog [u j, but Ju' [>> I u [.
Then, u is a suffix of u' and K(u') < loglog [u J + 0(1).

Claim. There is such a u' such that M accepts u'v, and M does not accept any
prefix u'v' of u'v.

Proof Since u is a proper and very short suffix of u', we can choose u' such
that the top segment of c (u') to be read by M is precisely the same as the top seg­
ment of c(u) to be read by Min the v-parts of its computations on inputs uv and
u'v, for large enough [u [, I u' J. lbis follows from well-known arguments, related
to the determinacy of both FAu and M. To see it, notice that both u and u' are
generated by the same finite state machine. Such a machine must generate the
string of form aR(bR)oo for constant size strings a,b. So u = cbka, where c is a
suffix of b. Clearly, we can choose u'=cbk'a with k'>>k and still
K(u') < loglog! u [+ 0 (1). Since Mis deterministic, it must either cycle through a
sequence of stack contents, or increase its stack with repetititions on long enough u
(and u'). Namely, let a triple (q,i,s) mean that Mis in state q, has top stack sym­
bol s, and hr is at ith bit of some b. Consider only the triples (q,i,s) at the steps

515

where M will never go below the current top stack level again while reading u. (I.e.
swill not be popped before going into v.) There are precisely h = I c(u) I such tri­
ples. Because the input is repetitious and M deterministic, some triple must start to
repeat within a constant number of steps and with a constant interval (in height of
M's stack) after M starts reading b's. It is easy to show that within a repeating
interval only a constant number of b's are read. The stack does not cycle through a
finite set of stack contents, since c (u) + I M I ;a., K (v) ;a., log I v I (because we can
reconstruct v from c (u) and M). So the stack contents grows repetitious and
unbounded. Since the repeating cycle starts in the stack after a constant number of
symbols, and its size is constant in number of b's, it is easy to adjust u' so that M
starts in the same state and reads the same top segments of c(u) and c(u') in the v
part of its computation on uv and u'v. This proves the Claim. D

By the Claim, we can use u' and FSv to find v. But this implies
K(v)~K(u')+O(l), and since K(u')<loglogju I+ O(l)<K(v)/2 + 0(1), we
have a contradiction again. 1bis proves the Lemma. The Corollary follows by
about the same proof. D

We next state the lemma in a more general form, sacrificing clarity. Assume
the conceptual apparatus developed at the outset of Section 4, but this time the
'black box' function B is a dpda. 1bis means that the 'indistinguishability' right­
invariant equivalence relation ",_," induced by B divides V* in infinitely many
equivalence classes. However, for many DCFL languages certain equivalence
classes can be represented by finitely generatable words of very low complexity
which is the essence of the lemma below. Let L be a DCFL language and B the
accepting dpda. If x E V* belongs to an equivalence class induced by B, then we
denote this equivalence class by [x]. If v i. v 2, ... is V* ordered lexicographically
length increasing, then x" = xfxf · · · is the characteristic sequence of x, such that
the ith element xf = 1 if XV; EL and xf = 0 otherwise. We denote xt ... x~ by
xfn· We need one more notion. We say that x is i-indistinguishable from y, and
write x --;y, if xtn = xln with n = I VI;. (I.e., x '""';Y if for all words z in V*
with I z I ~ i, either both xz, yz in L or both xz, yz not in L.)

Theorem (KC-DCFL). Let L ~ V* be a DCFL, and FSu and FSv be finite stale
generators. For large enough u and v such that

(a) uR and v are finitely generatable by finite state processes FSu and FSv, respec­
tively;

(b) v = Vn and x~ is the mth one (or the mth zero) in Xu considering only the words
that are finitely generated by FSv; and

(c) K(u) = Q(log I u I), K(v) =~(log Iv I), and loglog I u I + K(m) + 0 (1) < K(v);
we have K(xfn I n) = 0(1).

Proof outline. Same proof as before works. Part (1) is about the same. Part (2):
The crucial part is as follows. The long and 'easy' u' = uy that is finitely generated
by the same process generating u is choosen such that u' ,..,., k u, with k such that
n ~ I V I k so that xY:n' = xY:n• and moreover K (u') < loglog I u I . In fact,

516

K<.xY:n I n) ~ IM I + min {K(u'): u' is finitely generated by the same process gen­
erating u}. But since v = Vn is the mth one (or mth zero) in xv;n considering only
the words that are finitely generated by FSv, we can reconstruct v using M, u' (in
turn using FSu), m and FSv, so that K(v) .o;; loglog I u I + K(m) + 0(1). By (b)
this contradicts (c). D

Clearly, the requirements (b) in the Lemma and (c) in the Theorem can be
much weakened. We now give applications. All the following CFL languages were
proved to be not DCFL only with great effort -- see [6].

Example 1. [Exercise 10.5 (a)** in [6]]
Prove { w: w = WR' w E { 0, 1} *} is not DCFL. Let u =on 1 and v =on' where

K(n)=logn. So they both satisfy conditions (1) and (2). Given u, uv is the first
word in L with prefix u. But the first word in L with proper prefix uv would be
on10n10n. Sow= 10n, hence K(w)=logn, so Lis not a DCFL by the KC-DCFL
Lemma. Approximately the same proof shows that the CFL language
{ wwR: w E V*} and the CSL (context-sensitive) language { ww: w E V*} are not
DCFL languages.

Example 2. [Exercise 10.5 (b)** in [6]] Prove {on 1 m: m = n, 2n} is not DCFL:
Let u =011 and v = 1n, where K(n)=logn. The first word in L with proper prefix uv
is on1 2n. Sow =1 11 • So K(w)=logn, contradicting to KC-DCFL Lemma.

Example 3. Prove {Oi1J2k J i,j,k ~O,i = j or j =k} is not DCFL. This is again
easy. Let u =On and v = 111 , where K(n)=logn. So uv EL. Here we apply the Corol­
lary. Let v'=l 11 - 12. The first word in L with proper prefix uv' is on1n-I2n. But
then K(w) =logn, contradicting to the KC-DCFL Lemma (Corollary) again.

Example 4. [Pattern Matching] Prove { u#vuRw} is not DCFL. Let u = 1n #
and v =In where K(n);;;:.logn. So uv is the first word in L with prefix u. Let
v'= 1n- 10. Then the first word in L with prefix uv' is 1n # 1n - 101n. Sow= 1n and
K(w)=f:O (1), contradiction. •

Remark. Obviously, despite of its remarkable usefulness, we do not have a
proof that this KC-DCFL lemma can be used to prove that all non-DCFL CFL's
are not DCFL's. Currently we can only claim that for languages the authors tested
(and knew) so far, all of them can be easily proved using above lemma (or some
variation of it). Our research in this direction has only started.

S. Recursive, Recursively Enumerable, and Beyond

It is immediately obvious how to characterize recursive languages in terms of Kol­
mogorov complexity. If L ~ V*, and V* = { v 1, v2, ... } is effectively ordered, then we
define the characteristic sequence A= A 1 A.2 · · · of L by A.i = I if v; EL and A; = O
otherwise. In terms of the earlier developed terminology, if B is the automaton
accepting L, then A. is the characteristic sequence associated with the equivalence
class [t]. By definition, L is recursive if A. is a recursive sequence. It then follows
trivially from the definitions:

Theorem (Recursive KC Characterisation). A set L E V* is recursive, if! there

517

exists a constant cL (depending on L) such that, for all n, K(A.1:n / n)<cL.

L is r.e. if the set { n: An= 1} is r.e. In terms of Kolmogorov complexity, the
following theorem gives not only a qualitative but even a quantitative difference
between recursive and r.e. languages. The following theorem is due to Barzdin' [1]
and Loveland [13].

Theorem (KC-r.e.) (i) If L is r.e., then there is a constant cL (depending on L),
such that for all n, K(A.1:n / n) ~ logn +cL.
(ii)There exists an r.e. set L such that K(A.1:n / n) > logn.

Note that, with L as in (ii), V* - L also satisfies (i), so (i) cannot be extended
to a Kolmogorov complexity characterization of r.e. sets.

Example. Fix an effective enumeration of Turing machines. Define
k = k 1k 2 · · · by ki = 1 if the ith Turing machine started on a blank tape halts, and
ki =O otherwise. Let L be the language such that k is its characteristic sequence.
Clearly, Lis an r.e. set. We can prove that K(ki:n /n) > Iogn.

Example. The probability that the optimal universal Turing machine U halts
on self-delimiting binary input p, randomly supplied by tosses of a perfect coin, is
Q, O<Q<l. Let V be a finite nonempty alphabet, and v 1,v2, · · · an effective
enumeration without repetitions of V*. Define L <;;; V* such that vi EL iff Qi= 1. It
is known that K(Q 1:n / n) = Q(n). Hence L, nor V* -L are r.e. It can be proved
that L E.'12 - (L: 1 U TI 1), in the arithmetic hierarchy (i.e., L is not recursively enu­
merable).

6. Open Problems

(1) It is not difficult to give a KC-analogue of the uvwxy Pumping Lemma, as
we were informed by Tao Jiang. Just like the Pumping Lemma, this will show that
{anbncn:n ~ 1}, {xx:x EV*}, {aP:p is prime}, and so on, are not CFL. But it
fails on languages like {aibick: i=/=j or i=/=k}. Clearly, this hasn't yet captured the
heart of CFL. More in general, can we find a CPL-KC-Characterization?

(2) What about ambiguous CFL languages?

(3) What about context-sensitive languages and deterministic context-sensitive
languages?

(4). Let V be a finite nonempty alphabet, w a word over V, and h a homomor­
phism from V* to V*. Then {hn(w): n ~ O} is called a DOL language. If L is a
DOL language, then g(L) is called a CDOL language in case g is a homomorphism
from V* to W* such that g(a)=/=£ (£is the empty string) for all a in V. (Cf. A.
Salomaa, Formal Languages, Academic Press, 1973.)

Theorem. All but finitely many words in a CDOL language are very compressi­
ble (very nonrandom).

Proof Let L be a CDOL language. It is easy to show that for all x EL of
length n we have K(x) ~ logn + cL with CL a constant depending only on L.
(Either L is finite or the number of words of length ~ n in L satisfies

518

I L ~n I ~ I V I n.) D

What about the remainder of the L-farnily of languages?

7. Addendum: New Proof of a Result of Yao and Rivest

Multihead finite and pushdown automata were studied in parallel with the field of compu­
tational complexity in the years of 1960's and 1970's. One of the major problems on the
interface of the theory of automata and complexity is to determine whether additional
computational resources (heads, stacks, tapes, etc.) increase the computational power of the
investigated machine. A k-head deterministic (nondeterministic) one-way finite automaton,
denoted as k-DFA (k-FA), is similar to a deterministic (nondeterrninistic) finite automaton
except it has k, rather than I, input heads. Each step, depending the current state and the
k symbols read by the k heads, the machine changes its state and move some of the heads
one step to the right. It stops when all heads reach the end of input.

We consider the question of whether k + l heads are better than k for finite auto­
mata, and study the power of k-FA's.

Method. If the input is abc#a'b'c', and

(1) a,b,c are mutually random, i.e. K(a lb,c)~ la 1-0(logla I) and similar for band c.

(2) K(a' I b,c)~K(a')-O(log I a' I), and similar for b' and c'.

In order to check, say, whether a ==a', intuitively the machine must have one head in a and
another in a' simultaneously to do the matching. We will prove a lemma to make this
intuition precise.

Definition. Let A beak-FA or k-DFA. Let x andy are two blocks in the input I of
A. We say that A matched x and y if on input I, there is a time A has one head in x and
one head in y.

Matching Lemma. Let A accepts input I =abc#a'b1c1 , w!!ere a,b,c,a',b',c'E'J..*.

Assume that A did not match band b'. Then A accepts also input abc#a1b1c1 such that

K(b I a,c,a',c'),,..;; O(k 2 IA I logl I I).

Actually the proof will imply, and we will use, the following messier corollary to the
Matching Lemma:

Corollary. Above, (1) the order is not important, for instance, b' can appear before b;
(2) b' can appear as constant number of separated pieces.

Proof Define a crossing sequence at a position p of the input to be the sequence of !D's
ordered by time, where each ID contains the following information of A

(location of h l • · · · , location of hk, current state)

at the steps some head enters position p. Each ID needs total description length at most
O(klogl I I+ IA I). For A, a crossing sequence contains k !D's. Let I c.s. I denote the
description length of a crossing sequence, then

lc.s. l,,..;;O(k2 IA lloglll).

Let c.s. 1 and c.s. 2 be the cro~sing sequence at the last bit of a' and the first bit of c',

respecti~ely. W~ search for a b as follows. For each string b of length I b I, simulate A on
input abc#a'Olb I c' in the following way. Each time a head reaches the first bit of b', we
check if the current status of the machine matches the description in c.s. 1• If not, abort. If
consistent, change the status of A according to c.s. 2 and continue the simulation. If the
simulation ends, then we know that A must also accept input abc#a'b'c' and summing up

519

all the information we used in searching b, we have K (b I a, c, a', c') ~ 0 (k2 I A I log I I I). 0

The following theorem was first claimed by Rosenberg [18}. Its proof was found to
be erroneous by Floyd [5]. The case k = 2 was proved by Ibarra and Kim [7]. Finally,
the proof of the general result is due to A.C. Yao and R. Rivest [19], and C.G. Nelson
[15). We give a new proof using Kolmogorov complexity.

Theorem. (k +I)-head finite automata are better than k-head finite automata. More
precisely, there is a language L which is accepted by a (k + 1)-DFA but accepted by no k­
FA.

Proof Let

Lb=(w1# · · · #wb@wb# · · · #w1: w;E{O,l}*}

as defined by Rosenberg and Yao-Rivest. Let b= [~] + l. So Lb can be accepted by a

(k + 1)-DFA.

Assume that a k-FA M also accepts Lb. Let w be a long enough Kolmogorov ran­
dom string and w be equally partitioned into w 1 w2 • · • wb and construct a acceptable
input to M: I =w1 # · · · #¥.'b@v.'b# · · · #w1. But since b> (~],there exists an i such

that the two w/s in I are not matched. By the matching lemma,
K(w; I w-w;)~O(k21A llogj!j)=O(loglwl). But then
K(w)~lwl-lw;l+O(loglwl). We only need to make !w;l>O(loglwl) to reach a
contradiction. •

Acknowledgements.

We thank Peter van Emde Boas, Theo Jansen, and Tao Jiang for reading and commenting
on the manuscript. Tao Jiang also has suggested a KC-analogue for the uvw.xy-lernma.

References

l. Barzdin', Y.M., "Complexity of programs to determine whether natural numbers not
greater than n belong to a recursively enumerable set," Soviet Math. Dok/. 9,
pp. 1251-1254 (1968).

2. Chaitin, G.J., "On the length of programs for computing finite binary sequences: sta­
tistical considerations," J. Assoc. Comp. Mach. 16, pp. 145-159 (1969).

3. Chaitin, G.J., "Information-theoretic characterizations of recursive infinite strings,"
Theor. Comput. Sci. 2, pp. 45-48 (1976).

4. Ehrenfeucht, A., R. Parikh, and G. Rozenberg, "Pumping lemmas for regular sets,"
SIAM J. Computing 10, pp. 536-541 (1981).

5. Floyd, R., "Review 14," Comput. Rev. 9, p. 280 (1968).

6. Hopcroft, J.E. and J.D. Ullman, Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley (1979).

7. Ibarra, O.H. and C.E. Kim, "On 3-head versus 2 head finite automata," Acta Infoma­
tica 4, pp. 193-200 (1975).

8. Kolmogorov, A.N ., "Three approaches to the quantitative definition of information,"
Problems in Information Transmission 1(1), pp. 1-7 (1965).

9. Lewis, H.R. and C.H. Papadimitriou, Elements of the Theory of Computation,
Prentice-Hall (1981).

520

10. Li, M. and P.M.B. Vitimyi, "Tape versus queue and stacks: The lower bounds,"
Infonnation and Computation 78, pp. 56-85 (1988).

11. Li, M. and P.M.B. Vititnyi, "Two decades of applied Kolmogorov complexity: In
memoriam A.N. Kolmogorov 1903 - 1987," pp. 80-101 in Proc. 3rd IEEE Conference
on Structure in Complexity Theory (1988).

12. Loveland, D.W., "A variant of the Kolmogorov concept of complexity," InformaJion
and Control 15, pp. 510-526 (1969).

13. Loveland, D.W., "On minimal-program complexity measures," pp. 61-65 in Proceed­
ings Assoc. Comp. Mach. Symposium on Theory of Computing (1969).

14. Maass, W., "Combinatorial lower bound arguments for deterministic and nondeter­
ministic Turing machines," Trans. Amer. Math. Soc. 292, pp. 675-693 (1985).

15. Nelson, C.G., "One-way automata on bounded languages," TR14-76, Harvard
University (July 1976).

16. Paul, W., "Kolmogorov's complexity and lower bounds," in Proc. 2nd International
Conference on Fundamentals of Computation Theory, Lecture Notes in Computer Sci­
ence, Vol. ??, Springer Verlag, Berlin (September 1979).

17. Paul, W.J., J.I. Seiferas, and J. Simon, "An information theoretic approach to time
bounds for on-line computation," J. Computer and System Sciences 23, pp. 108-126
(1981).

18. Rosenberg, A., "On multi.head finite automata," IBM J. Res. Develop. 10, pp. 388-
394 (1966).

19. Yao, A.C.-C. and R.L. Rivest, "k+ 1 heads are better than k," J. Assoc. Comput.
Mach. 25, pp. 337-340 (1978).

