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Abstract We introduce a mimetic Cartesian cut-cell method for incompressible
viscous flow that conserves mass, momentum, and kinetic energy in the inviscid
limit, and determines the vorticity such that the global vorticity is consistent with the
boundary conditions. In particular we discuss how the no-slip boundary conditions
should be applied in a conservative way on objects immersed in the Cartesian
mesh. We use the method to compute the flow around a cylinder. We find a good
comparison between our results and benchmark results for both a steady and an
unsteady test case.

To compute fluid flow in complicated geometries often curvilinear or unstructured
meshes are used. The generation of these meshes is difficult and time-consuming.
When the geometry depends on time, the mesh has to be updated after every
time step and the cost of mesh generation will take a significant part of the total
computing time.

Immersed boundary methods form an increasingly popular alternative. Immersed
boundary methods are methods in which one Cartesian mesh is used for the
complete flow domain, with the boundaries of objects immersed in this Cartesian
mesh. Near the immersed boundary the Cartesian method is adapted for the no-slip
boundary condition.

Within the class of immersed boundary methods essentially two approaches
for modeling the boundary conditions exist. In the first approach the influence of
the boundary on the fluid is modeled by an extra force term in the Navier-Stokes
equations. In the second approach the sharp interface of the boundary is maintained
and the boundary condition is taken into account by adjusting the discretized Navier-
Stokes equations.
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Cut-cell methods follow the second approach. Close to the object non-Cartesian
cells occur, the so-called cut cells. These cells demand a special treatment because
of their more difficult shape and the no-slip boundary condition on one of their faces.

One of the most popular discretization methods for the incompressible Navier-
Stokes equations on Cartesian meshes is the MAC-method [1]. It uses a staggered
mesh, which means that the velocity variables are located on the faces of the
Cartesian cells and the pressure variables are located in the centers of the cells.
From this variable positioning, through central difference approximations a method
follows that has a compact stencil, no spurious pressure oscillations, conservation
of both mass and momentum as well as conservation of secondary quantities as
vorticity and energy (in the inviscid limit).

Most cut-cell methods use a colocated mesh, where the velocity and pressure
variables are all located in the centers, which makes the treatment of cut cells
simpler. However, methods on colocated meshes do not have all the favorable
properties that the MAC method has. For example, spurious pressure oscillations
have to be suppressed by introducing artificial diffusion, making these methods less
suitable for turbulent flow computations.

A few extensions of the MAC method to cut-cell meshes have been presented
in the literature [2, 3]. In these methods different cut-cell configurations are treated
case by case and a mass, momentum and energy conserving extension is derived
using, in 2D, a 5-point stencil and a finite-volume rationale. However, achieving
a fully conservative method using the 5-point stencil is impossible. Moreover, an
extension of the method to 3D is problematic due to the many possible cut-cell
configurations. To our knowledge only a quasi-3D extension, where the immersed
boundary is parallel to one of the Cartesian coordinate axes, has been published so
far [4].

We will use the recent developments in mimetic discretization methods [5], that
allow for a conservative treatment of non-Cartesian cells. Using these methods on
a primal-dual mesh structure, upon completing the dual mesh near the boundary,
we derive a mass, momentum and energy conserving cut-cell method that calculates
vorticity in such a way that the global vorticity is consistent with no-slip boundary
conditions. We first introduce the method and then present results for the flow
around a cylinder.

1 The Mimetic Cut-Cell Method

1.1 The Cut-Cell Primal-Dual Cell-Complex

We discuss the cut-cell mesh for the specific case of a cylinder in a rectangular
domain. From this discussion it will be clear how it can be generalized to other
domains. We give the cylinder its own discrete representation, independent of the
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Fig. 1 On the left the Cartesian mesh (blue) and the discretized cylinder (green) are shown. In
the middle one sees the cylinder with extra intersection vertices added. Finally, on the right the
resulting primal mesh is shown

Cartesian mesh, because in a future extension to general time-dependent geometries
this will be needed for mass conservation.

We cover the rectangular domain by a Cartesian mesh with Ny x N, cells.
For simplicity we take the mesh to be uniform. We discretize the boundary of the
cylinder by uniformly taking Ny points on the circle and connecting these by straight
line segments. Subsequently, we immerse the discretized cylinder in the Cartesian
mesh, add the intersections between edges of the Cartesian mesh and the cylinder as
extra vertices, and remove all the edges and vertices in the interior of the cylinder.
This process has been depicted in Fig. 1.

The resulting computational mesh consists of two-dimensional cells, one-
dimensional edges and zero-dimensional vertices. We denote the mesh by
G = {C(0), C(1), C2)}, where Cy), for k = 0, 1, 2, is the set of k-dimensional cells.
This mesh is a so-called cell-complex. This means that for each k-dimensional cell
o) € C) in the mesh its boundary do) is made up of lower dimensional cells
that are also part of the mesh. The cell-complex G covers the flow domain £2.

Our cut-cell method will also need a dual mesh. The dual mesh is a second mesh
for the flow domain that is geometrically dual to the primal mesh in the sense that
for each k-dimensional cell o) € C) of the primal mesh, there exists a (2 — k)-
dimensional dual cell 6 € C~(k) in the dual mesh, where we denote by é(k) the set
of (2 — k)-dimensional dual cells. We use a barycentric dual mesh. In contrast to the
primal mesh, the dual mesh Q = {5(2), é(l), é(o)} is not a cell-complex. However, to
formulate a fully conservative cut-cell method it is important to extend the dual mesh
to a cell-complex. This can be done as follows. We consider the restriction of the

primal mesh to the boundary 8£2 of £2, denoted by G = {Cf’o), Cf’l)}, and then take

the dual mesh to the primal mesh within d£2, which we denote by Gh = {C?l), éf’o)}.
The union of the original dual mesh and the boundary dual mesh, g' = Q U Gh s
constitutes a dual cell-complex. This construction works in arbitrary dimension.
The construction of the dual cell-complex has been depicted in Fig. 2. More details
concerning the primal and dual cell-complex can be found in [6].
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Fig. 2 On the left the primal (blue) and dual (red) mesh are depicted and in the middle the primal
mesh and boundary dual mesh are shown. On the right one sees the dual cell-complex which is the
union of the interior and boundary dual mesh

1.2 The Incidence Matrices

We discretize the velocity field u as the fluxes through the edges of the primal mesh.
For each edge o(1) € C(1) we set

Uog, = / u-ndL, @))
()

where 7 is the normal on o). Next, let u!) = (uf,l(z)) be the vector of all these

fluxes. We denote the finite linear space corresponding to unknowns on the edges
by C, so uV e ¢V, and define C© (vertices) and C® (cells) analogously.

Using the integral values as variables we can discretize the continuity equation
V - u = 0 without introducing a discretization error. To see this, we consider a two-
dimensional cell o2y € C(y), integrate the continuity equation over o(2) and apply
the divergence theorem to obtain

_ 1)
0 - Z 00’(2)0’(1)”(7(1)7 (2)
0(1)630(2)
where Ocyoy = 1 if the orientations of o(2) and o) agree and —1 otherwise.

For example, if we take o(3) to be oriented such that the normal on do(2) points
outward and the normal on o1y given by the orientation of o) points into o(2), then
Voo = ~ 1.

We can write Eq. (2) for all cells in C(2) together as 0® = D@Dy where 0?
is the zero element of C® and DD : ¢V — €@ is defined by ]D)((Tz(é)l(),(l) = 05y001)»
where we extend the definition of 04, 5,, by 0 to the instances when o(1) ¢ do(2).

Similarly, we define an incidence matrix DL . cO 5 e Tet ® ¢ cO
be a discretization of the 2D scalar vorticity field w by evaluation on the vertices
of the mesh, then the value of D39w©@ for some edge o1 is, as a result of the
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fundamental theorem of calculus, given by

[D(LO)Q,(O)]%)Z/ rotw-ndL = Z 00<1>0(0>wg()()»’ 3

om 0'(0)630'(1)

withrot w := (dyw, — 03, w).

We choose the orientation of the dual cells in relation to the orientation of their
corresponding primal cells. From this it follows [6] that the incidence matrices on
the dual mesh G, i.e., D2 : €@ — CD and DOV : ¢ — CO are given by
D12 = (]D)(Z*I))T and DO-D = (D(l’o))T.

For Eq. (3) to hold for all o(1y € C(y) it is crucial that the two boundary points
that make up do(j) are in C(g). The dual mesh G is not a cell-complex and therefore

if i)(z) e CO® is, for example, a discretization of the continuous pressure field p on
the vertices of the dual mesh, then

D*2p@; :[ Vp-dL

a(n)

only holds for an edge &(1) for which its end points are again part of the mesh,
i.e., for an edge that is dual to a primal edge o(1) that is not part of the boundary
mesh Céjl).

To get a consistent discretization of the pressure gradient on all the dual edges
we extend D2 to G. This extension maps from C® to C(V and we denote it by
D2, The part of D2 that maps from C? to €™ will be used separately in the
discretization and denoted by @fl’z). It consists of an interior and boundary part,
i.e., Hi)l(.l’z) = []fD(l’z) ﬁg’z)]. For more details on the construction of D12 and,

analogously, DD see [6].

1.3 The Discrete Hodge Operators

So far, we only discussed the exact discretization of differential operators on both
the primal and dual cell-complex in terms of the incidence matrices. These primal
and dual incidence matrices map from C%® to C**D and from C*+D to C®,
respectively. To be able to discretize higher order differential operators, like for
example the vector Laplacian, and to end up with a square solvable system of
equations we need an interpolation map between the primal and dual meshes.

We introduce interpolation operators H® : ¢® — C® that interpolate a field
discretized on the k-cells in C) to a consistent discretization of the same field on
é(k). For example, if 1 e C(V is a discretization of the velocity field on primal
edges as in (1), then aV = HOuW is an approximation of the velocity field
discretized on the dual edges in é(l).
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We use the mimetic scalar product matrices [5], which can also be interpreted as
interpolation operators [6]. These operators are constructed locally for each 2-cell
and the global operator is constructed by an assembly process as in finite element
methods. The operators are symmetric positive definite and diagonal in the Cartesian
part of the mesh.

1.4 The Numerical Scheme

We use the incidence matrices and discrete Hodge matrices to discretize the incom-
pressible Navier-Stokes equations in space. The discrete variables are velocity,
vorticity and pressure. As velocity variables we use the fluxes on the edges, i.e.,
u¥ e ¢V, The pressure variables are located on the vertices of the dual cell-
complex, i.e., p® e C». The vorticity variables will be located in the vertices of
the primal mesh, i.e., 0@ e cO, However, as we will see shortly, we only need
vorticity variables in the vertices of the non-Cartesian cut cells.
We discretize the incompressible Navier-Stokes equations in the form

ou+V-u®@u)+vwWxw+Vp =0,

with additionally @ = V x u and the continuity equation V - u = 0. We discretize
the momentum equation on all edges of the dual mesh, i.e., we approximate the
integral of the momentum equation over every dual edge. In summary, we discretize
the spatial part as

HDy, + Clu™M] HODGLO pE2 [ 5™ oV
~ J ~
DODED =IO g 0® |=| [0 | (4)
(DELZ))T 0 0 p(2) H(l’l)vél)

The Dirichlet boundary conditions are incorporated in the last line. The matrix
14D contains only entries equal to 1, 0 or, —1, and consists, just like (Hj)l(l’z))T =
[T T2, of two parts. The matrix [1-1 is defined such that the equation
(]ﬁ)gl’z))Tu(l) = ﬁ(l*l)vél) brings forth D& Dy = 0@ and (ﬁ,(,l’z))Tu“)

(ﬁlgl’z))Tvlgl), i.e., the discrete incompressibility constraint and the definition of the

Dirichlet boundary conditions, imposing that the fluxes for the boundary edges are
equal to the prescribed values vg) € C}gl).
The no-slip boundary condition for the diffusive term is incorporated in the

equation that defines the vorticity. The vector 520) € 5150) contains the integrals of
the tangential velocity over the boundary dual edges. The boundary term —]~I,(70’ b 1720)

gives the contribution of boundary edges in the dual cell-complex to the vorticity
integral over the dual cells. The entries of ©® are actually the vorticity variables
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multiplied with the viscosity v. This definition of the variables increases the
symmetry of the discrete system.

The equation for the vorticity variables, i.e., HO@©® = p@O-DHD M 4
ﬁéo’l)ilgo)), is explicit for variables in the Cartesian parts of the mesh, because
the restriction of H(® to these parts of the mesh is diagonal. Consequently, these
variables become superfluous and are not used. As a result, the vorticity variables
are only necessary in the cut cells. For convenience we left the corresponding
adjustment of the discrete equations out of (4).

For the convection term we use the central approximation introduced in [7],
which conserves both momentum and kinetic energy. This discretization of the
convection term fits well in the framework presented above [6].

2 Numerical Results: The Flow Around a Cylinder

We consider the benchmark case [8] of the flow around an asymmetrically placed
cylinder in a channel. On the inflow boundary a parabolic profile is prescribed, on
the top and bottom of the channel no-slip boundary conditions apply and on the
outflow boundary we impose zero stress. We test for two meshes that are uniform
in the y-direction and non-uniform in the x-direction such that mesh lines are
concentrated near the cylinder. We use the standard four-stage explicit Runge-Kutta
method for the time integration.

Results are shown for two test cases. The first case is a steady case with average
inflow velocity corresponding to Re = 20. We compute the drag coefficient cp, the
lift coefficient cy,, the length of the recirculation zone L, and the pressure difference
between the front and back of the cylinder. The results are shown in Table 1.

The second case is an unsteady periodic case with inflow corresponding to
Re = 100. In this case we compute for one period the maximum drag coefficient
CDmax, the maximum lift coefficient c; max, the Strouhal number St, and the pressure
difference between front and back of the cylinder halfway the period, where the start
of the period coincides with the moment that c¢; (f) = crmax. The results can be
found in Table 2. In Fig. 3 the vorticity field is shown.

Despite the fact that the meshes used are not body-conforming and have relatively
few cells near the cylinder, characteristic values close to the benchmark values are
found. Especially in the unsteady case the drag and lift coefficients are somewhat

Table 1 Results for the steady test case

Ny x Ny x Ny #u D o) #p@  ¢p cr L, Ap

160 x 130 x 30 40,656 226 20,732 55876  0.0109  0.0858  0.1171
300 x 255 x 60 149,584 444 75539 55835  0.0122  0.0849  0.1178
[8] (lower bound) ~ — - - 5.57 0.0104  0.0842  0.1172
[8] (upper bound) ~ — - - 5.59 00110  0.0852  0.1176



1042 R. Beltman et al.

Table 2 Results for the unsteady test case

Ny x Ny x Ny #uD #o) #il(z) CDmax CLmax St Ap
160 x 130 x 30 40,656 226 20,732 3.3884  1.1601  0.2989  2.5300
300 x 255 x 60 149,584 444 75,539  3.2839  1.0423  0.3003  2.4997

[8] (lower bound) - - - 3.22 0.99 0.295 2.46
[8] (upper bound) - - - 3.24 1.01 0.305 2.50
<30 20 10 0 10 20 >30
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Fig. 3 The vorticity on the finer mesh in the unsteady case for ¢y (f) = ¢Lmax

overestimated, however, the values corresponding to the finer mesh are already close
to the benchmark interval. The fact that we find relatively accurate results despite
the use of a non-optimal mesh and the low order of accuracy of the method in the
cut cells, is to be attributed to the physical accuracy of the method. The method
conserves mass, momentum and energy, even in cut cells, and determines a vorticity
corresponding to a physically correct global vorticity. For proofs and numerical
verifications of these properties see [6].
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