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Abstract

We determine the sample complexity of pure exploration bandit problems with
multiple good answers. We derive a lower bound using a new game equilibrium
argument. We show how continuity and convexity properties of single-answer
problems ensure that the existing Track-and-Stop algorithm has asymptotically
optimal sample complexity. However, that convexity is lost when going to the
multiple-answer setting. We present a new algorithm which extends Track-and-
Stop to the multiple-answer case and has asymptotic sample complexity matching
the lower bound.

1 Introduction

In pure exploration aka active testing problems the learning system interacts with its environment
by sequentially performing experiments to quickly and reliably identify the answer to a particular
pre-specified question. Practical applications range from simple queries for cost-constrained physical
regimes, i.e. clinical drug testing, to complex queries in structured environments bottlenecked
by computation, i.e. simulation-based planning. The theory of pure exploration is studied in the
multi-armed bandit framework. The scientific challenge is to develop tools for characterising the
sample complexity of new pure exploration problems, and methodologies for developing (matching)
algorithms. With the aim of understanding power and limits of existing methodology, we study an
extended problem formulation where each instance may have multiple correct answers. We find
that multiple-answer problems present a phase transition in complexity, and require a change in our
thinking about algorithms.

The existing methodology for developing asymptotically instance-optimal algorithms, Track-and-
Stop by Garivier and Kaufmann [2016], exploits the so-called oracle weights. These probability
distributions on arms naturally arise in sample complexity lower bounds, and dictate the optimal
sampling proportions for an “oracle” algorithm that needs to be sample efficient only on exactly the
current problem instance. The main idea is to track the oracle weights computed at a converging
estimate of the instance. The analysis of Track-and-Stop requires continuity of the oracle weights as a
function of the bandit model. For the core Best Arm Identification problem, discontinuity only occurs
at degenerate instances where the sample complexity explodes. So this assumption seemed harmless.

Our contribution We show that the oracle weights may be non-unique, even for single-answer
problems, and hence need to be regarded as a set-valued mapping. We show this mapping is always
(upper hemi-)continuous. We show that each instance maps to a convex set for single-answer
problems, and this allows us to extend the Track-and-Stop methodology to all such problems. At
instances with non-singleton set-valued oracle weights more care is needed: of the two classical
tracking schemes “C” converges to the convex set, while “D” may fail entirely.

We show that for multiple-answer problems convexity is violated. There are instances where two
distinct oracle weights are optimal, while no mixture is. Unmodified tracking converges in law
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(experimentally) to a distribution on the full convex hull, and suffers as a result. We propose a “sticky”
modification to stabilise the approach, and show that now it converges to only the corners. We prove
that Sticky Track-and-Stop is asymptotically optimal.

Related work Multi-armed bandits have been the subject of intense study in their role as a model
for medical testing and reinforcement learning. For the objective of reward maximisation [Berry and
Fristedt, 1985, Lai and Robbins, 1985, Auer et al., 2002, Bubeck and Cesa-Bianchi, 2012] the main
challenge is balancing exploration and exploitation. The field of pure exploration (active testing)
focuses on generalisation vs sample complexity, in the fixed confidence, fixed budget and simple regret
scalarisations. It took off in machine learning with the multiple-answer problem of (ε, δ)-Best Arm
Identification (BAI) [Even-Dar et al., 2002]. Early results focused on worst-case sample complexity
guarantees in sub-Gaussian bandits. Successful approaches include Upper and Lower confidence
bounds [Bubeck et al., 2011, Kalyanakrishnan et al., 2012, Gabillon et al., 2012, Kaufmann and
Kalyanakrishnan, 2013, Jamieson et al., 2014], Racing or Successive Rejects/Eliminations [Maron
and Moore, 1997, Even-Dar et al., 2006, Audibert et al., 2010, Kaufmann and Kalyanakrishnan, 2013,
Karnin et al., 2013].

Fundamental information-theoretic barriers [Castro, 2014, Kaufmann et al., 2016, Garivier and
Kaufmann, 2016] for each specific problem instance refined the worst-case picture, and sparked
the development of instance-optimal algorithms for single-answer problems based on Track-and-
Stop [Garivier and Kaufmann, 2016] and Thompson Sampling [Russo, 2016]. For multiple-answer
problems the elegant KL-contraction-based lower bound is not sharp, and new techniques were
developed by Garivier and Kaufmann [2019].

Recent years also saw a surge of interest in pure exploration with complex queries and structured
environments. Kalyanakrishnan and Stone [2010] identify the top-M set, Locatelli et al. [2016]
the arm closest to a threshold, and Chen et al. [2014], Gabillon et al. [2016] the optimiser over an
arbitrary combinatorial class. For arms arranged in a matrix Katariya et al. [2017] study BAI under a
rank-one assumption, while Zhou et al. [2017] seek to identify a Nash equilibrium. For arms arranged
in a minimax tree there is significant interest in finding the optimal move at the root Teraoka et al.
[2014], Garivier et al. [2016], Huang et al. [2017], Kaufmann and Koolen [2017], Kaufmann et al.
[2018], as a theoretical model for studying Monte Carlo Tree search (which is a planning sub-module
of many advanced reinforcement learning systems).

2 Notations

We work in a given one-parameter one-dimensional canonical exponential family, with mean pa-
rameter in an open interval O ⊆ R. We denote by d(µ, λ) the KL divergence from the distribution
with mean µ to that with mean λ. A K-armed bandit model is identified by its vector µ ∈ OK of
mean parameters. We denote byM⊆ OK the set of possible mean parameters in a specific bandit
problem. Excluding parts of OK fromM may be used to encode a known structure of the problem.
We assume that there is a finite domain I of answers, and that the correct answer for each bandit
model is specified by a set-valued function i∗ :M→ 2I .
Example 1. As our running example, we will use the Any Low Arm multiple-answer problem. Given
a threshold γ ∈ O, the goal is return the index k of any arm with µk < γ if such an arm exists, or to
return “no” otherwise. Formally, we have possible answers I = [K] ∪ {no}, and correct answers

i∗(µ) =

{
{k | µk ≤ γ} if mink µk < γ,

{no} if mink µk > γ.

We exclude the case mink µk = γ fromM (as such instances require infinite sample complexity).

Additional examples of multiple-answer identification problems are visualised in Table 1 in Ap-
pendix B.

Algorithms. A learning strategy is parametrised by a stopping rule τδ ∈ N depending on a
parameter δ ∈ [0, 1], a sampling rule A1, A2, . . . ∈ [K], and a recommendation rule ı̂ ∈ I. When a
learning strategy meets a bandit model µ, they interactively generate a history A1, X1, . . . , Aτ , Xτ , ı̂,
where Xt ∼ µAt . We allow the possibility of non-termination τδ = ∞, in which case there is no
recommendation ı̂. At stage t ∈ N, we denote by Nt = (Nt,1, . . . , Nt,K) the number of samples (or
“pulls”) of the arms, and by µ̂t the vector of empirical means of the samples of each arm.
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Confidence and sample complexity. For confidence parameter δ ∈ (0, 1), we say that a strategy
is δ-correct (or δ-PAC) for bandit model µ if it recommends a correct answer with high probability,
i.e. Pµ

(
τδ <∞ and ı̂ ∈ i∗(µ)

)
≥ 1 − δ. We call a given strategy δ-correct if it is δ-correct for

every µ ∈M. We measure the statistical efficiency of a strategy on a bandit model µ by its sample
complexity Eµ[τδ]. We are interested in δ-correct algorithms minimizing sample complexity.

Divergences. For any answer i ∈ I, we define the alternative to i, denoted ¬i, to be the set of
bandit models on which answer i is incorrect, i.e.

¬i := {µ ∈M|i /∈ i∗(µ)} .

We define the (w-weighted) divergence from µ ∈M to λ ∈M or Λ ⊆M by

D(w,µ,λ) =
∑
k

wkd(µk, λk) D(w,µ,Λ) = inf
λ∈Λ

D(w,µ,λ)

D(µ,Λ) = sup
w∈4K

D(w,µ,Λ) D(µ) = max
i∈I

D(µ,¬i)

Note that D(w,µ,Λ) = 0 whenever µ ∈ Λ. We denote by iF (µ) the argmax (set of maximisers) of
i 7→ D(µ,¬i), and we call iF (µ) the oracle answer(s) at µ. We writew∗(µ,¬i) for the maximisers
of w 7→ D(w,µ,¬i), and call these the oracle weights for answer i at µ. We write w∗(µ) =⋃
i∈iF (µ)w

∗(µ,¬i) for the set of oracle weights among all oracle answers. We include expressions
for the divergence when i∗ is generated by half-spaces, minima and spheres in Appendix H.
Example 1 (Continued). Consider an Any Low Arm instance µ with mink µk < γ. For any arm i ∈
i∗(µ), we have D(w,µ,¬i) = wid(µi, γ) and D(µ,¬i) = d(µi, γ). Hence D(µ) = d(mini µi, γ),
and iF (µ) = argmini µi. On the other hand, when mink µk > γ, we have i∗(µ) = {no}, so that
D(w,µ,¬no) = mink wkd(µk, γ) and D(µ,¬no) = D(µ) = 1

/∑K
k=1

1
d(µk,γ) .

The function iF (µ) = {i ∈ I : D(µ,¬i) = D(µ)} is set valued, as is w∗. They are singletons with
continuous value over some connected subsets ofM, and are multi-valued on common boudaries of
two or more such sets. Both iF and w∗ can be thought of as having single values, unless µ sits on
such a boundary, in which case we will prove that they are equal to the union (or convex hull of the
union) of their values in the neighbouring regions.

3 Lower Bound

We show a lower bound for any algorithm for multiple-answer problems. Our lower bound extends
the single-answer result of Garivier and Kaufmann [2016]. We are further inspired by Garivier
and Kaufmann [2019], who analyse the ε-BAI problem. They prove lower bounds for algorithms
with a sampling rule independent of δ, imposing the further restriction that either K = 2 or that
the algorithm ensures that Nt,k/t converges as t → ∞. The new ingredient in this section is a
game-theoretic equilibrium argument, which allows us to analyse any δ-correct algorithm in any
multiple answer problem. Our main lower bound is the following.
Theorem 1. Any δ-correct algorithm verifies

lim inf
δ→0

Eµ[τδ]

log(1/δ)
≥ T ∗(µ) := D(µ)−1 where D(µ) = max

i∈i∗(µ)

max
w∈4K

inf
λ∈¬i

K∑
k=1

wkd(µk, λk)

for any multiple answer instance µ with sub-Gaussian arm distributions.

The proof is in Appendix C, where we also discuss how the convenient sub-Gaussian assumption can
be relaxed. We would like to point out one salient feature here. To show sample complexity lower
bounds at µ, one needs to find problems that are hard to distinguish from it statistically, yet require a
different answer. We obtain these problems by means of a minimax result.
Lemma 2. For any answer i ∈ I, the divergence from µ to ¬i equals

D(µ,¬i) = inf
P

max
k∈[K]

Eλ∼P [d(µk, λk)] .

where the infimum ranges over probability distributions on ¬i supported on (at most) K points.
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The proof of Theorem 1 then challenges any algorithm for µ by obtaining a witness P for D(µ) =
maxiD(µ,¬i) from Lemma 2, sampling a model λ ∼ P, and showing that if the algorithm stops
early, it must make a mistake w.h.p. on at least one model from the support. The equilibrium property
of P allows us to control a certain likelihood ratio martingale regardless of the sampling strategy
employed by the algorithm.

We discuss the novel aspect of Theorem 1 and its lessons for the design of optimal algorithms. First
of all, for single-answer instances |i∗(µ)|=1 we recover the known asymptotic lower bound [Garivier
and Kaufmann, 2016, Remark 2]. For multiple-answer instances the bound says the following.
The optimal sample complexity hinges on the oracle answers iF (µ). That is, for if ∈ iF (µ), the
complexity of problem µ is governed by the difficulty of discriminating µ from the set of models on
which answer if is incorrect.

Is the bound tight? We argue yes. Consider the following oracle strategy, which is specifically
designed to be very good at µ. First, it computes a pair (i,w) witnessing the two outer maxima in
D(µ). The algorithm samples according to w. It stops when it can statistically discriminate µ̂t from
¬i, and outputs ı̂ = i. This algorithm will indeed have expected sample complexity equal to D(µ)−1

at µ, and it will be correct.

The above oracle viewpoint presents an idea for designing algorithms, following Garivier and
Kaufmann [2016] and Chen et al. [2017]. Perform a lower-order amount of forced exploration of all
arms to ensure µ̂t → µ. Then at each time point compute the empirical mean vector µ̂t and oracle
weightswt ∈ w∗(µ̂t). Then sample according towt. This approach is successful for single-answer
bandits with unique and continuous oracle weights. We argue in Section 4.3 below that it extends to
points of discontinuity by exploiting upper hemicontinuity and convexity of w∗.

For multiple-answer bandits, we argue that the set of maximisers w∗(µ) is no longer convex when
iF (µ) is not a singleton. It can then happen that µ̂t → µ, while at the same time w∗(µ̂t) keeps
oscillating. If the algorithm tracksw∗(µ̂t), its sampling proportions will end up in the convex hull of
w∗(µ). However, as w∗(µ) is not convex itself, these proportions will not be optimal. We present
empirical evidence for that effect in Appendix D. The lesson here is that the oracle needs to pick an
answer and “stick with it”. This will be the basis of our algorithm design in Section 5.

4 Properties of the Optimal Allocation Sets

The Track-and-Stop sampling strategy aims at ensuring that the sampling proportions converge to
oracle weights. In the case of a singleton-valued oracle weights setw∗(µ) for single answer problems,
that convergence was proven in [Garivier and Kaufmann, 2016]. We study properties of that set
with the double aim of extending Track-and-Stop to points µ where w∗(µ) is not a singleton and of
highlighting what properties hold only for the single-answer case, but not in general.

4.1 Continuity

We first prove continuity properties of D andw∗. We show how the convergence of µ̂t to µ translates
into properties of the divergences from µ̂t to the alternative sets.

For a set B, let S(B) = 2B \ {∅} be the set of all non-empty subsets of B.
Definition 3 (Upper hemicontinuity). A set-valued function Γ : A→ S(B) is upper hemicontinuous
at a ∈ A if for any open neighbourhood V of Γ(a) there exists a neighbourhood U of a such that for
all x ∈ U , Γ(x) is a subset of V .
Theorem 4. For all i ∈ I,

1. the function (w,µ) 7→ D(w,µ,¬i) is continuous on4K ×M,

2. µ 7→ D(µ,¬i) and µ 7→ D(µ) are continuous onM,

3. µ 7→ w∗(µ,¬i), µ 7→ w∗(µ) and µ 7→ iF (µ) are upper hemicontinuous on M with
non-empty and compact values,

The proof is in Appendix F. It uses Berge’s maximum theorem and a modification thereof due to
[Feinberg et al., 2014]. Related continuity results using this type of arguments, but restricted to
single-valued functions, appeared for the regret minimization problem in [Combes et al., 2017].
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4.2 Convexity

Next we establish convexity.

Proposition 5. For each i ∈ I, for all µ ∈M the set w∗(µ,¬i) is convex.

This is a consequence of the concavity ofw 7→ D(w,µ,¬i) (which is an infimum of linear functions).
In single-answer problems, we obtain that the oracle weights set w∗(µ) is convex everywhere. This
is however not the case in general for multiple-answer problems, as illustrated by the next example.

Example 1 (Continued). Consider a K = 2-arm Any Low Arm instance µ with µ1 < γ and
µ2 < γ, so that both answers 1 and 2 are correct. Recall that D(µ) = maxk=1,2 d(µk, γ). Now for
µ1 < µ2 < γ, w∗(µ) = {(1, 0)} and symmetrically for µ2 < µ1 < γ, w∗(µ) = {(0, 1)}. However,
for µ1 = µ2 < γ, w∗(µ) = {(1, 0), (0, 1)}, which is not convex. Playing intermediate weights w =
(α, 1− α) results in strictly sub-optimal D(µ,w) = max {α, 1− α} d(µ, γ) < d(µ, γ) = D(µ).

This example also illustrates the upper hemicontinuity of w∗(µ): since µ of the form (µ, µ) is the
limit of a sequence (µt)t∈N with µt,1<µt,2, we obtain that {(1, 0)} ⊆ w∗(µ). Similarly, using a
sequence with µt,1>µt,2, {(0, 1)} ⊆ w∗(µ).

The example scales up to K arms, and shows that the sample complexity guarantee for vanilla TaS
(Theorem 9) may exceeds by a factorK the optimal complexity, which is matched by our new method
(Theorem 11).

4.3 Consequences for Track-and-Stop

The original analysis of Track-and-Stop excludes the mean vectors µ ∈M for whichw∗(µ) is not
a singleton. We show that the upper hemicontinuity and convexity properties of w∗(µ) allow us
to extend that analysis to all µ with a single oracle answer (in particular all single-answer bandit
problems), at least for one of the two Track-and-Stop variants. Indeed, that algorithm was introduced
with two possible subroutines, dubbed C-tracking and D-tracking [Garivier and Kaufmann, 2016].
Both variants compute oracle weights wt at the point µ̂t, but the arm pulled differs.

C-tracking: compute the projection wεt
t of wt on4εtK = {w ∈ 4K : ∀k ∈ [K], wk ≥ εt}, where

εt > 0. Pull the arm with index kt = arg mink∈[K]Nt,k −
∑t
s=1 w

εs
s,k.

D-tracking: if there is an arm j with Nt,j ≤
√
t−K/2, then pull kt = j. Otherwise, pull the arm

kt = arg mink∈[K]Nt,k − twt,k .

The proof of the optimal sample complexity of Track-and-Stop for C-tracking remains essentially
unchanged but we replace Proposition 9 of [Garivier and Kaufmann, 2016] by the following lemma,
proved in Appendix G.3.

Lemma 6. Let a sequence (µ̂t)t∈N verify limt→+∞ µ̂t = µ . For all t ≥ 0, let wt ∈ w∗(µ̂t) be
arbitrary oracle weights for µ̂t . If w∗(µ) is convex, then

lim
t→+∞

inf
w∈w∗(µ)

∥∥∥∥∥1

t

t∑
s=1

ws −w

∥∥∥∥∥
∞

= 0 .

The average of oracle weights for µ̂t converges to the set of oracle weights for µ. C-tracking then
ensures that the proportion of pulls Nt/t is close to that average by Lemma 7 of [Garivier and
Kaufmann, 2016], hence Nt/t gets close to oracle weights.

Theorem 7. For all µ ∈M such that iF (µ) is a singleton (in particular all single-answer problems),
Track-and-Stop with C-tracking is δ-correct with asymptotically optimal sample complexity.

Proof in Appendix G.6. We encourage the reader to first proceed to Section 5, since the proof
considers the result as a special case of the multiple-answers setting.

Remark 8. If w∗(µ) is not a singleton, Track-and-Stop using D-tracking may fail to converge to
w∗(µ), even when it is convex.

While we do not prove that D-tracking fails to converge to w∗(µ) on a specific example of a
bandit, we provide empirical evidence in Appendix E. The reason for the failure of D-tracking
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µ̂t

Dt i∗(µ)

{1}
{2}
{no}
{1, 2}

(a) Stopping rule: does the conservative confidence
region Dt exclude the alternative ¬i to any answer i?

µ̂t

Ct

< <

(b) Sampling rule: find least (in sticky order) ora-
cle answer in the aggressive confidence region Ct.
Track its oracle weights at µ̂t.

Figure 1: Sticky Track-and-Stop: The two main ideas, illustrated on the Any Low Arm problem.

is that it does not in general converge to the convex hull of the points it tracks. Suppose that
wt = w(1) = (1/2, 1/2, 0) for t odd and wt = w(2) = (1/2, 0, 1/2) for t even. Then D-tracking
verifies limt→+∞Nt/t = (1/3, 1/3, 1/3). This limit is outside of the convex hull of {w(1),w(2)}.

5 Algorithms for the Multiple-Answers Setting

We can prove for Track-and-Stop the following suboptimal upper bound on the sample complexity,
based on the fact that it ensures convergence of Nt/t to the convex hull of the oracle weight set.
Theorem 9. Let conv(A) be the convex hull of a set A. For all µ ∈M in a multi-answer problem,
Track-and-Stop with C-tracking is δ-correct and verifies

lim
δ→0

Eµ[τδ]

log(1/δ)
≤ max
w∈conv(w∗(µ))

1

D(w,µ)
.

5.1 Sticky Track-and-Stop

The cases of multiple-answers problems for which Track-and-Stop is inadequate are µ ∈ M with
iF (µ) of cardinality greater than 1. When convexity does not hold,w∗(µ) is the union of the convex
sets (w∗(µ,¬i))i∈iF (µ). If an algorithm can a priori select if ∈ iF (µ) and track allocationswt in
w∗(µ̂t,¬if ), then using Track-and-Stop on that restricted problem will ensure thatNt/t converges to
the oracle weights. Our proposed algorithm, Sticky Track-and-Stop, which we display in Algorithm 1,
uses a confidence region around the current estimate µ̂t to determine what i ∈ I can be the oracle
answer for µ. It selects one of these answers according to an arbitrary total order on I and does not
change it (sticks to it) until no point in the confidence region has the chosen answer in its set of oracle
answers.

Algorithm 1 Sticky Track-and-Stop.
Input: δ > 0, strict total order on I. Set t = 1 , µ̂0 = 0 , N0 = 0 .
while not stopped do

Let Ct = {µ′ ∈M : D(Nt−1, µ̂t−1,µ
′) ≤ log(f(t− 1))} . // small conf. reg.

Compute It =
⋃
µ′∈Ct iF (µ′) .

Pick the first alternative it ∈ It in the order on I.
Compute wt ∈ w∗(µ̂t−1,¬it).
Pull an arm at according to the C-tracking rule and receive Xt ∼ νat .
Set Nt = Nt−1 + eat and µ̂t = µ̂t−1 + 1

Nt,at
(Xt − µ̂t−1,at)eat .

Let Dt = {µ′ ∈M : D(Nt, µ̂t,µ
′) ≤ β(t, δ)} . // large conf. reg.

if there exists i ∈ I such that Dt ∩ ¬i = ∅ then
stop and return i.

end
t← t+ 1 .

end

Theorem 10. For β(t, δ) = log(Ct2/δ), with C such that C ≥ e
∑+∞
t=1 ( eK )K (log2(Ct2) log(t))K

t2 ,
Sticky Track-and-Stop is δ-correct.
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That result is a consequence of Proposition 12 of [Garivier and Kaufmann, 2016].

5.2 Sample Complexity

Theorem 11. Sticky Track-and-Stop is asymptotically optimal, i.e. it verifies for all µ ∈M,

lim
δ→0

Eµ[τδ]

log(1/δ)
→ 1

D(µ)
.

Let iµ = min iF (µ) in the arbitrary order on answers. For ε, ξ > 0, we define C∗ε,ξ(µ), the minimal
value of D(w′,µ′,¬iµ) for w′ and µ′ in ε and ξ-neighbourhoods of w∗(µ) and µ.

C∗ε,ξ(µ) = inf
µ′:‖µ′−µ‖∞≤ξ

w′:infw∈w∗(µ,¬iµ) ‖w
′−w‖∞≤3ε

D(w′,µ′,¬iµ) .

Our proof strategy is to show that under a concentration event defined below, for t big enough,
(µ̂t, Nt/t) belongs to that (ξ, ε) neighbourhood of (µ,w∗(µ,¬iµ)). From that fact, we obtain
D(Nt, µ̂t,¬iµ) ≥ tC∗ε,ξ(µ). Furthermore, if the algorithm does not stop at stage t, we also get
an upper bound on D(Nt, µ̂t,¬iµ) from the stopping condition. We obtain an upper bound on
the stopping time, function of δ and C∗ε,ξ(µ). By continuity of (w,µ) 7→ D(w,µ,¬iµ) (from
Theorem 4), we have limε→0,ξ→0 C

∗
ε,ξ(µ) = D(µ,¬iµ) = D(µ).

Two concentration events. Let ET =
⋂T
t=h(T ){µ ∈ Ct} be the event that the small confidence

region contains the true parameter vector µ for t ≥ h(T ). The function h : N → R, positive,
increasing and going to +∞, makes sure that each event {µ ∈ Ct} appears in finitely many ET ,
which will be essential in the concentration results. We will eventually use h(T ) =

√
T .

In order to define the second event, we first highlight a consequence of Theorem 4.
Corollary 12. For all ε > 0, for all µ ∈M, for all i ∈ I, there exists ξ > 0 such that

‖µ′ − µ‖∞ ≤ ξ ⇒ ∀w′ ∈ w∗(µ′,¬i) ∃w ∈ w∗(µ,¬i), ‖w′ −w‖∞ ≤ ε .

Let E ′T =
⋂T
t=h(T ){‖µ̂t − µ‖∞ ≤ ξ} be the event that the empirical parameter vector is close to µ,

where ξ is chosen as in the previous corollary for i = iµ. The analysis of Sticky Track-and-Stop
consists of two parts: first show that EcT and E ′T

c happen rarely enough to lead only to a finite term in
Eµ[τδ]; then show than under ET ∩ E ′T there is an upper bound on τδ .
Lemma 13. Suppose that there exists T0 such that for T ≥ T0, ET ∩ E ′T ⊂ {τδ ≤ T}. Then

Eµ[τδ] ≤ T0 +

+∞∑
T=T0

Pµ(EcT ) +

+∞∑
T=T0

Pµ(E ′T
c
) . (1)

Proof. Since τδ is a non-negative integer-valued random variable, Eµ[τδ] =
∑+∞
T=0 Pµ{τδ > T}.

For T ≥ T0, Pµ{τδ > T} ≤ Pµ(EcT ∪ E ′T
c
) ≤ Pµ(EcT ) + Pµ(E ′T

c
).

The sums depending on the events ET and E ′T in (1) are finite for well chosen h(T ) and C(t).

Lemma 14. For h(T ) =
√
T and f(t) = exp(β(t, 1/t5)) = Ct10 in the definition of the confidence

region Ct, the sum
∑+∞
T=T0

Pµ(EcT ) +
∑+∞
T=T0

Pµ(E ′T
c
) is finite.

The proof of the Lemma can be found in Appendix G.1. The remainder of the proof is concerned
with finding a suitable T0. First, we show that if µ̂t and Nt/t are in an (ξ, ε) neighbourhood of µ
and w∗(µ,¬iµ), then such an upper bound T0 on τδ can be obtained.
Lemma 15. Let t1 be an integer and suppose that for all t ≥ t1, D(Nt, µ̂t,¬iµ) ≥ tC∗ε,ξ(µ). Let
Tβ = inf{t : t > β(t, δ)/C∗ε,ξ(µ)}. Then τδ ≤ max(t1, Tβ).

Proof. Take t ≥ t1. If τδ > t then by hypothesis and the stopping condition, t ≤
D(Nt, µ̂t,¬iµ)/C∗ε,ξ(µ) ≤ β(t, δ)/C∗ε,ξ(µ) . Conversely, for t ≥ t1, if t > β(t, δ)/C∗ε,ξ(µ)

then τδ ≤ t. We obtain that τδ ≤ max(t1, inf{t : t > β(t, δ)/C∗ε,ξ(µ)}).
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The oracle answer it becomes constant. Due to the forced exploration present in the C-tracking
procedure, the confidence region Ct shrinks. After some time, when concentration holds, the set of
possible oracle answers It becomes constant over t and equal to iF (µ).
Lemma 16. If an algorithm guaranties that for all k ∈ [K] and all t ≥ 1, Nt,k ≥ n(t) > 0
with limt→+∞ n(t)/ log(f(t)) = +∞, then there exists T∆ such that under the event ET , for
t ≥ max(h(T ), T∆), It = iF (µ) and min It = iµ = min iF (µ).

Proof in Appendix G.4. Note that Lemma 16 depends only on the amount of forced exploration and
not on other details of the algorithm. Any algorithm using C-tracking verifies the hypothesis with
n(t) =

√
t+K2 − 2K by Lemma 34 [Garivier and Kaufmann, 2016, Lemma 7].

Convergence to the neighbourhood of (µ,w∗(µ,¬iµ)). Once it = iµ, we fall back to tracking
points from a convex set of oracle weights. The estimate µ̂t and Nt/t both converge, to µ and to the
set w∗(µ,¬iµ). The Lemma below is proved in Appendix G.5.
Lemma 17. Let T∆ be defined as in Lemma 16. For T such that h(T ) ≥ T∆, it holds that on ET ∩E ′T
Sticky Track-and-Stop with C-Tracking verifies

∀t ≥ h(T ), ‖µ̂t − µ‖∞ ≤ ξ , and ∀t ≥ 4
K2

ε2
+ 3

h(T )

ε
, inf
w∈w∗(µ,¬iµ)

‖Nt

t
−w‖∞ ≤ 3ε .

Remainder of the proof. Suppose that the event ET ∩E ′T holds. Let T∆ be defined as in Lemma 16
and T be such that h(T ) ≥ T∆. Let η(T ) = 4K2/ε2 + 3h(T )/ε. For all t ≥ η(T ) we have
D(Nt, µ̂t,¬iµ) ≥ tC∗ε,ξ(µ) by Lemma 17. For h(T ) bigger than some Tη we have η(T ) ≤ T .
We suppose h(T ) ≥ max(T∆, Tη). We apply Lemma 15 with t1 = η(T ). We obtain that τδ ≤
max(η(T ), Tβ) ≤ max(T, Tβ). Conclusion: for T ≥ T0 = max(h−1(T∆), h−1(Tη), Tβ), under
the concentration event, τδ ≤ T and we can apply Lemma 13.

Note that limδ→0
T0

log(1/δ) = 1
C∗ε,ξ(µ) . Taking ε → 0 (hence ξ → 0 as well), we obtain

limδ→0
Eµ[τδ]

log(1/δ) = 1
limε→0 C∗ε,ξ(µ) = 1

D(µ) . We proved Theorem 11.

6 Conclusion

We characterized the complexity of multiple-answers pure exploration bandit problems, showing a
lower bound and exhibiting an algorithm with asymptotically matching sample complexity on all
such problems. That study could be extended in several interesting directions and we now list a few.

• The computational complexity of Track-and-Stop is an important issue: it would be desirable to
design a pure exploration algorithm with optimal sample complexity which does not need to solve a
min-max problem at each step. Furthermore, the same would need to be done for the sticky selection
of an answer for the multiple-answers setting.
• Both lower bounds and upper bounds in this paper are asymptotic. In the upper bound case, only
the forced exploration rounds are considered when evaluating the convergence of µ̂t to µ, giving rise
to potentially sub-optimal lower order terms. A finite time analysis with reasonably small o(log(1/δ))
terms for an optimal algorithm is desirable. In addition, while selecting one of the oracle answers
to stick to has no asymptotic cost, it could have a lower order effect on the sample complexity and
appear in a refined lower bound.
• Current tools in the theory of Brownian motion are insufficient to characterise the asymptotic
distribution of proportions induced by tracking, even for two arms. Without tracking the Arcsine law
arises, so this slightly more challenging problem holds the promise of similarly elegant results.
• Finally, the multiple answer pure exploration setting can be extended in various ways. Making
I continuous leads to regression problems. The parametric assumption that the arms are in one-
parameter exponential families could also be relaxed.
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