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1. INTRODUCTION AND MAIN RESULT

-1 ¢n i .
Let, for each n 2 1, Tn =n Zi=l J(E:TO Xin’ where Xin’ i=1,...,n

denotes the i-th order statistic of a random sample X .»X_ of size n from

TR 0
a distribution with distribution function (df) F and J is a bounded measurable
weight function on (0,1). The inverse of a df will always be the left-con-

tinuous one. Let F;(x) = P(T;SX) for - » < x < o, where
*
(1.1) T = (Tn—E(Tn))/o(Tn).

In theorem 2 of STIGLER (1974) it is shown that T: is asymptoficallz
N(O,1)-distributed as n - », if J is bounded and continuous a.e. F , EX1
< o and GZ(J,F) > 0, where
(1.2) 2 (3,F) = f J J(F(x))I(F(y)) (F(min(x,y)) - F(x)F(y))dxdy.

-» —c

In addition these assumptions imply that 1imn+® noz(Tn) = 02(J,F) (see
theorem 1 of STIGLER (1974)). We also want to mention a paper of SHORACK
(1972) for a related result.

The purpose of this paper is to establish a Berry-Esseen bound of order
n_% for the normal approximation of F:. Let ¢ denote the df of the standard

normal distribution. In the following theorem we state our main result.

THEOREM 1. Suppose

(1) J Zs bounded and continuous on (0,1). The derivative J' exists, except
possibly at a finite number of points; J' satisfies a Lipschitz con-
dition of order > } on the open intervals where it exist. The inverse
F! satisfies a Lipschitz condition of order > } on neighbourhoods of
the points where J' does not exist.

(2) E|X1]3 < o and fé ]J'(s)[dF_l(s) < o,
Then cz(J,F) > 0 implies that these exist a constant C, depending on
J and F but not on n, such that for all n = 1

s%p]F;(x) -o(x) | =¢C n—i.

Nl

The only other result where a Berry-Esseen bound of order n 2 for

general linear combinations of order statistics is established is due to



BJERVE (1974). His result admits quite general weights on observations be-
tween the a-th and B-th sample percentile (O<a<B<l), but he does not allow
weights to be put on the remaining observations. In addition the df must
satisfy a quite severe smoothness condition.

Theorem 1 is the first general theorem establishing a Berry-Esseen

bound of order n ? for linear combinations of order statistics, which allows
weights to be put on all the observations. The theorem requires a "smooth'
weight function, and the underlying df must not have '"too much weight in the
tails". The df need not be continuous.

In section 2 we shall approximate T by a random variable (rv) S such
that T - S is of negligible order for our purposes. A Berry-Esseen bound
of order n % for S; is established in section 3 using a technique based on

characteristic functions due to BICKEL (1974) (see also BJERVE (1974)).

2. APPROXIMATION BY s;

Let, for each n > 1, Ul""’Un be independent uniform (0,1) rv's and let

(lsiSn) denote the i-th order statistic of U Un. It is well-known

(see e.g. SHORACK (1972)) that the joint dlstrlgutlon of X ...,Xn is the
same as that of (F (U YseoosF (U )) for any df F. Therefore we shall
identify Xi with F_ (U ) and also X w1th F (U ). Throughout we shall
assume that all rv's are defined on the same probabllity space (Q,A,P). For
any rv X we denote by X the rv (X-E(X))/o(X); it is tacitly assumed that
E|X| < © and 0 < o(X) < o, XE(-) denotes the indicator of a set E.

Define, for each n 2 1, the rv Sn by

(2.1) s =1, +1,
where
-1 3 i -1
(2.2) I =-n _Z J J(s)(x(o’S](Ui)—s)dF (s)
1=1
0
and

o B i-1 '
Tt L J T (0,577 (x g, 57 (U5 78)dF
1=] j=1 0

o).

(2.3) I2n



In this section we shall prove that under appropriate conditions

T; - S; is of negligible order for our purposes:
. * _* -1 -4
(2.4) P(|Tn—Sn| 2n ?) =0(n %) as n > =,

For the purpose of our proofs we start by stating a very simple but useful

lemma.

LEMMA 2.1. Let {Xn} and {Yn} be two sequences of rv's (defined on the same
probability space (Q,A,P)), such that
(1) o (X ~Y ) = 0(n -5/2 ) as n > o, and
(2) etther 0 < 1lim no (X ) < ©or 0 < lim no (Y ) < = holds.
e o -4 -4
Then for any a > 0 P(|Xn—Ynl >an ) = 0(n %) as n » =.

PROOF. To start with the proof we note that

xn—Yn—E(x -Y ) (o(Yn)-c(Xn))

* _ n n - -
(2.5) X: -Y = O(Xn) + (X E(Yn?) O(Xn)o(Yn)

and hence that

- o(Y )-o(X )\ 2
(2.6) GZ(X:-Y:) < 20 Z(Xn)oz(Xn—Yn) + Zcz(Yn)\E?iESEiﬁfgLD
n n

Obviously we may assume that 0 < 11'.mn_)Oo no (X ) < =, Hence we know that

-5/2

) as n » =, we

U—Z(X ) = 0(n) as n -~ . Because also o (X -y ) = 0(n
n -3/2

have shown that the first term on the rlghthand side of (2.6) is O(n )
as n » », To proceed with the second term on the righthand side of (2.6)
we note that it follows from our assumptions that 0 < limn%w noz(Yn) < ®,

Now

IA

o(T)-o(x )\2  (o7(¥)-0 (%))’
20° (¥ )<0(X Yo(T) ) =25 —
P(X ) (o(X )+ (Y ))

2 2
-, (20(Xn)c(Yn—Xn)+o (Yn-Xn))

0% (Xy) (0% Yo (¥ ))*

and we can use the preceeding results to find that



(20(Xn)c(Yn—Xn)+oz(Yn—Xn))2 i

2
' cz(Xn)(c(Xn)+o(Yn))2

=5/by 00 =5/2,12 _

- 0D 0 How M +0@ )% = 002y as 0+

-3/

2k _* 2 . .
Hence we have shown that o (Xn—Yn) = 0(n ) as n > «, An application of

Chebychev's inequality completes the proof. gd

In order to prove that (2.4) holds under appropriate conditions we

need two more lemmas. In our second lemma we approximate Tn by a rv Vn

given by i
1 n
...] n
(2.7) v, o= J J(s)F_"(s)ds = ] f J(s)ds X, ,
i=] ,
0 i-1
n

where F_ denotes the empirical df based on Xl""
*

’Xn' We shall show that
T - V: is of negligible order for our purposes. Let lfl = Ogggllf(t)[ for

n
any function f on (0,1). In certain cases the function f is defined on (0,1)
except at a finite number of points. Then lfl will denote the supremum of

|f] on the domain of f.

LEMMA 2.2. Let EX? < ® gnd suppose that condition (1) of theorem 1 is satis-—
fied. Then oz(J,F) > 0 Timplies that for any a > 0 P(IT:—V:I > an_%) =

= O(n_%) as n > =, The assumption that J' satisfies a Lipschitz condition

of order > } on the open intervals where it exist can be dropped from con-

dition (1). The Lipschitz condition for Fl may be of order = }.

PROOF. It follows from EX? < o that Exin < o for any 1 £ 1 < n., Furthermore
it is well-known (see ESARY, PROSCHAN and WALKUP (1967)) that for any

X, ¥, 1, j, n and F we have P(Xiﬁsx’xjnSY) > P(XinSX) P(XjnSy). Using a
representation of the covariance of two random variables given in LEHMANN
(1966) this result implies directly that the covariance between Xin and Xjn
is finite and non-negative for all 1 < i # j < n. Obviously this implies

that

2 n
(2.8) o (izl a;X. ) <o°(] b.X )



holds, provided aiaj < bibj for all 1 £ i, j < n. This inequality is due to
W.R. VAN ZWET and will be very useful in what follows.

Since the assumptions of this lemma imply those of theorem 1 of STIGLER
(1974) (see our introduction) we know that 1imn+w no (T ) =0 (J F) By as-—
sumption we have also that ¢ (J F) > 0, whereas a 51mp1e appllcatlon of
(2.8) yields o (Tn) <ol un? g (Xl) Because 17l < @ and o (x ) < © by
the assumptions of the lemma these results imply that 0 < 11mh+m no (T ) =

= oz(J,F) < o, Application of lemma 2.1 shows that it suffices now to prove

that

5/2

2 -
(2.9) o (Tn Vn) = 0(n ) as n » =,
To prove (2.9) we distinguish two cases: (i) J is everywhere differentiable
on (0,1), and (ii) J' fails to exist at a finite number of points.
We first prove (2.9) in case (i). Using (2.7) and (2.8) we see that
. (n+!

2 2
(2.10) (T V) <o (izl X |—— -

(S)dSI)

(=N
a'.__,w

Applying (2.8) again and using the condition for J we find that
2 -3 2.2
(2.11) o (Tn Vn) <n -~ IJ3'1% (Xl)e

Because I1J'l < « and oz(Xl) < © by the assumptions of the lemma the proof
of case (i) of the lemma is now complete.

Suppose now that we are in case (ii). Without any loss of generality we
assume that J' does not exist at only one point, say s = s,. Let j = [ns]]+1.

1
Using inequality (2.8) twice we see that

i
n
2 o n - I 1)
(2.12) o (Tn—Vn) < 20 (izl Xinl——%f—— ,J J(s)ds]) +
. ;. i~1
] EN
_ 3
J(_l_) n
+ 202(X ] 2:1 - j J(s)ds])
-1
n



Using condition (1) of theorem 1 and applying (2.8) once more we obtain that

2. -3, 2 2 -2, 2 2
(2.13) o (Tn Vn) <2n " IJ'1° ¢ (Xl) + 8n ~1JI° ¢ (Xjn)'

Hence it remains to prove that oz(Xjn) = O(nui) as n + «, Let g, dénote the
beta-density of the uniform order statistic an (with j = [n51]+]) and let E

n
be the set

1 [

-1 "1
- < (mn "log n)?, 0 <u < 1}

(2.14) E_ = {u: |u-

for some fixed m > 0. The complement of En in (0,1) will be denoted by E;.

Then we have that

2 —
(2.15) o (Xjn) < E(Xjn-F (n+]))
= f (F_l(u)‘F— (n+l)) gn(U)du + [ (F_l(u)"F_l(E%TJ)zgn(u)du.
E ES
n n

Because EX? < © we can use lemma 4 of STIGLER (1969) to see that the secoﬂd
integral on the righthand side of (2.15) is O(n—%) as n > », provided we
choose m sufficiently large. The Lipschitz condition of Fcl in a neighbour-
hood of s, can be.used to treat the first integral on the righthand side

of (2.15). Since Jil <s, < %-we have for sufficiently large n and some

1
constant B > 0 that

-1 ol J (12 a

(2.16) J (F (W-F (57)7g (wdu < B E|an n+][

E

n
It follows directly from this and. the well-known fact that, as

; i - O}

lim = =s,, for 0 <s <1, Elu in n+ll O(E ), that also the first
integral on the rlghthand side of (2.15) is O(n %) as n > =, Hence we can
conclude that o (X1n) = 0(n 5) as n > o, This and (2.13) implies that

o (T -V ) (n—5/2) as n + », in case (ii). This completes the proof of

the lemma. O



Define for 0 < u < 1 the function
' 1 1
(2.17) Y(u) = J J(s)ds = (1-u) J J(s)ds
u 0 _

and let c = fé J(s)ds. Then it is easy to check (see SHORACK (1972) for a
similar approach) that

! n

-1 -1 -1

(2.18) Vo= | v(T (s))dF (s) + cn ! F o),

0 i=1
holds with probability 1. We use the fact that, almost surely, none of the
rv's U ""’Un take values corresponding to the discontinuities of F

1

Here P denotes the empirical df based on U .,Un. This representation

1’
of V w111 be very useful.
In our third lemma we use representation (2.18) to show that V - S;

is of negligible order for our purposes.

2*e L o for some e > 0 and suppose that condition (1)

LEMMA 2.3. Let E|X,|
of theorem 1 is satzsfied Then o (J F) >0 zmpltes that for any a > 0

P(|Vn—Sn| > an %) = 0(n %) as n > o,

PROOF. It follows directly from the proof of lemma 2.2 that
0 < 1imn+m noz(Vn) = 02(J,F) < o, Application of lemma 2.1 show, that it

suffices now to prove that

5/2

(2.19) 02(Vn—Sn) = 0(n ) as n > =,

For the purpose of this proof we define, for each n 2 1, the rv. Wn given by

1 2
(T (s)-s) -1
(2.20) W= J (W(s) + (T_(s)=s)y'(s)+ ———F—— V" (s))dF '(s) +
0
-1 § -l
+ cn z F (U.)
i=1

Note that the assumptions of the lemma guarantee that Wn is well-defined.
It will be convenient to prove

5/2

(2.21) oz(vn—wn) =0 "% as n > w



and

/

(2.22) oz(Wn—Sn) = O(n_5 2) as n > «

rather than (2.19). We first prove (2.22). Using (2.17) we find that
1

(2.23) wn = w(s)dF—l(s) - [ J(s)(Fn(s)-s)dF—l(s) -
0
(I‘n(S)-S)2 _

1 n

+c J (r (s)=)dF '(s) + en ' ] F '(v).
0
1

i=1

n
Because Pn(s) =n zi=1 X(O,s] (Ui) for all 0 < s <1 and n > 1 we have

1
n
(2.24) J (r_(s)-s)dF () =n | ] ( J (-s)dF I (s) +
i=1
0 (0,U,)
. (1-s)dF 1 (s)).
[Ui,l)

Now integration by parts, the finiteness of EIXll and the fact that, al-

most surely, none of the rv's U "’Un take values corresponding to the

1°°
discontinuities of F I shows that
1
> -1 -1
) F U,) + J F (s)ds
i=1 0

1
(2.25) J (Fn(s)—s)dF—l(s) I
0

holds with probability 1.

Thus
1
ad.S. 1 n R _1
(2.26) Wo-EW) =-n '21 J () (X (g, 47U "8)EF  (s) -
1= 0 l
-1 -2 B D '
-2 ‘Z _Z JJ (S)(X(O,S](Ui)_s)(X(O,S](Uj)—s)
1=1 j=1 0

dF_l(s) +



1
+ 2"1n-—1 [ J'(s)s(l—s)dF_l(s).

0
Combining (2.26) with (2.1), (2.2) and (2.3) and using the assumptions of
the lemma together with Fubini's theorem to verify that ESn = 0 we find that

1

a.s. _ .o D 9
(2.27) Wo-Ss - E(wn-sn) = -2 'n iZl JJ (s)((X(O’SJ(Ui)—s) -
=19
- s(1-8))dF ' (s),

and hence that

1
(2.28) 02(Wn-Sn) - 2_2n_302(JJ'(s)(x(o,S](Ul)—s)zdF_l(s)).

0

To see that the variance on the righthand side of (2.28) is finite note that

1

@.29)  oA([ 3 () (xg 09 e () =

0

IA

E(| 3'() (g, 67U 2aF (s0)* =

TSI (g, 70=8) (g gy O aF () (v) =

O

TSI WE( g 1079 (X g7 @)W EF () (v) =

IA

O = O —

13'©)3' N E . 908 E(x 1@ e ()05 ()=

O ——— O— = O — — O —

1
2( le'<s>x(s<1—s>)*dF'?(s))2,
0

IA

where the interchange of the expectation and the integrals is a consequence
of Fubini's theorem. The validity of this application of Fubini's theorem

can be inferred from the moment condition of the lemma, the boundedness of
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J' on its domain and the continuity of F_l at the points where J' is un-
defined. These conditions also imply that féIJ'(s)I(s(l—s))%dF-l(s) is
finite.

Thus we have shown that cz(Wn—Sn) = O(n_3) as n > », This completes
the proof of (2.22).

Next we prove (2.21). As in the second part of the proof of lemma 2.2
we distinghuish two cases. First we assume (case (i)) that J is everywhere
differentiable on (0,1). Using (2.18), (2.20) and Taylor's theorem, to-

gether with the Lipschitz condition for J' on (0,1), we see that for all

1 5/2 -1
n 2 1 and some constant A > 0 an - Wn[ <A, IFn(s)'— s| (s) and
hence that
1
2, vt <alE o3 24p 2
(2.30) o“(V_-W ) < E(V W )" <A J [T (s) - s “Tesn?.

0
Applying Fubini's theorem, the Cauchy-Schwarz inequality, and making some

simple moment calculations it follows that for some constant B > 0
1

( [ (s(1-8)) 2ar™ (s)) 2.
0

(2.31) oz(vn-wn) < a0/

The moment assumption of the lemma ensures.that the integral on the right-
hand side of (2.31) is finite. This completes the proof of (2.21) for case
(i).

Suppose now that J' fails to exist at a finite number of points (case
(i1)). To prove (2.21) in this case is somewhat more delicate. It seems
convenient to introduce at this point the well-known Kolmogorov-Smirnov
statistic Dn = néogggﬂrn(s)-s]. It was sh;wn by DVORETZKY, KIEFER and
WOLFOWITZ (1956) that P(Dnzkn) <c exp(—ZAn), for all n 2 1, An >0 and a
positive constant c independent of n and An. Obviously this implies that
P(Dn > (2_]m log n)ﬁ) = O(n—m) as n +~ », for any Eixed m > 0. Let us denote
by Xo the indicator of the set {Dn 2'(2—1m log n)2}. Without loss of general-
ity we assume that J' does not exist at only one point s, € (0,1).

We first show that E(V -W —E(V -W ))2 Xy = O(n-s/z) as n > «» holds for
an appropriate value of m. Slnce o] (W -S ) O(n_3) as n > <, and hence =

that E(W -S —E(W -S )) Xq = 0(n ) as n > «» for any m > 0, was obtained
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earlier in this proof, it suffices to show that

/

(2.32) E(Vn'sn'E(Vn'sn))zxn = 0n"?) as n + .

To prove (2.32) we apply Holder's inequality to obtain for any 0 < n < 1

-S —E(V =S )2 Cq —Fru —a y32+2n,1/(1+n) = 1+1/n n/ (1+n)
E(V =S -E(V -5 ) 7x, < (E(V -8 -E(V_-S)) ) (Ex,, ) ,

and hence, using the cr—inequality (see e.g. LOEVE (1955), page 155), that

2 2+2 2+2n, 1/ (1+ / (1+n)
(2.33) E(V -8 -E(V -8 ) “x < 16(E|v_|"“ME[s_ |7 / ”)(P(xn=1))n T

Since P(xn=]) = O(n_m) as n > o, it follows that (P(xn=1))n/1+n = O(n—s/z)
as n » », provided we choose m > 5/n. Now using (2.1), (2.2), (2.3) and

(2.7) and applying integration by part we see that

IA

-1 -1
v | <nanal B2 |7 )]

n

and
1

n_](HJH+HJ'H)zg=1(|F-1(Ui)| N J {F"(s)lds)
0

holds for all n > 1 with probability one. Combining this result with the

IA

s_|

finiteness of E|X]|2+2n for any 0 < n < €/2 and some € > 0 satisfying the
moment condition of the lemma and applying the cr—inequality we find that
the expectations in (2.32) are uniformly bounded in n for any n ¢ (0,e/2).
Hence we have shown that (2.32) holds for any fixed m > (10/g).

To complete the proof of (2121) in case (i1) it remains to show that
EQV_-w ~E(V_-W )% = 0(n™>/2 ] g
follows from (2.18) and (2.20) that Vn - Wn = fo gn(s)dF (s) where

) as n > » for some fixed m > (10/¢). It

2
(Pn(S)-S)
(2.34) gn(S) = w(rn(s)> - ¢(s) - (Fn(S)—s)w'(S) - "(s),

for all 0 < s < 1, except s = Sy» and any n 2 1. Note that the fact that

. . . -1
g, remains undefined in s = s, causes no problem because F ~ puts no mass

1

BIBLIOTHEEK MATHEMATISCH CENTRUM
= AMSTERDAM ——
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at S;-
Taking'the set En as in (2.14) we write

(2.35) vVo-W = J gn(s)dF'l(s) + Jc gn(s)dF"l(s),
En En

and hence that

Cc
n n

On the set where X; = 1, we have that !gn(s)] = O((Fn(s)—s)z) = O(n-llog n)

- -1
(2.36) E(Vn-wn)le(.‘:l < 2E( J g, (s)dF l(S)-><:i)2+2E( J gn(S)dF (s)-xﬁ)z.
E E

as n > o, uniformly for all 0 < s < 1 except s = Sy- Using the Lipschitz

condition for F_1 we find that the first righthand term of (2.36) is of

-5/2

c c
order O(n ) as n > . On the set En we can argue that, because X, = 1,

1
not exist for all sufficiently large n. Together with (2.34) and the

the closed interval [s,Pn(s)] does not contain the point s, where J' does

Lipschitz condition for J' thlS implies for s € E and some constant A > 0
that |gn(s)| A ]F (s)- sl for all suff1c1ent1y large n. Now this and the
moment assumption of the lemma ensures that the second righthand term of (2.36)

is O(n—S/2 _5/2) as

) as n > =, Hence we can conclude that E(V,- n)zxﬁ = 6(n
n > o, From this we find easily that also E(Vn—wn— E(Vn—Wn))zxﬁ = O(n—s/z)

as n - o, This completes the proof of the lemma. [

To conclude this section we remark that to show that P(lTn—S | = n_%) =
O(n %) as n > o, first use lemma 2.2 to see that P(IT an > 2 ]n %)
O(n %) as n > «, Next apply lemma 2.3 to find that P(]Vn Snl > Z_In—%) =
O(n %) as n » »=; Hence, since the conditions of lemma 2.3 imply those of
lemma 2.2, P(IT:—S:I > n_%) = O(n—%) as n > «, is shown to hold under the

conditions of lemma 2.3.

3. THE ORDER OF NORMAL APPROXIMATION FOR S;
In this section we shall show that the conditions of theorem 1 ensure

-3

shown in section 2 that, under the conditions of lemma 2.3, we may approx-

. . L
that the normal approximation for Sn is of order n °. As we have already

* .
imate T: by Sn’ the proof of theorem | will then be completed.
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* . * | _ _

The rV'Sn is given by S _ = JLn + JZn’ where J =1 /o(Sn) for m = 1,2
and all n = 1. For convenience we shall write o = o(S ) Since our proof
will depend on characteristic functions (c.f.) let us denote by p and pnl
the c.f. of S and J. . The c.f. of a summand of no_ J, , that is of

n In n " In .
1
-1
(3.1) - J J(S)(X(O’SJ(U])-S)dF (s)
0
will be denoted by p. Clearly we have pnl(t) = pn(t/non) for all t and
n==1.
Following BICKEL (1974) we shall first show that there exist e, > 0,

1

D, and a natural number n.,, depending on J and F but not on n, such that

1 1’?

for all n 2 nl

2
-t /2|‘| “l4¢ < b n t.

t| |

(3.2) J lo (E) - e

|t|<eln

Secondly we show that there exist €y > 0, D2 and a natural number n,,
depending on J and F but not on n, such that for all n 2 n

2
(3.3) f }p () - pnl(t)l-ltl_]dt < Dzn_% .

lt|<52n

The Berry-Esseen bound of order n—i for S; then follows directly from
(3.2), (3.3) and the usual argument based on Esseen's smoothing lemma
(see e.g. FELLER (1966)).

We first prove (3.2)

LEMMA 3.1. Let E]X |3 < » qnd suppose that condition (1) of theorem 1 is
satisfied. Then o (J ,F) > 0 tmplzes (3.2).

PROOF. To start with the proof we note that the conditions of lemma 2.3
are satisfied. Since it was already shown in the proof of lemma 2.3 that
0 < %ig noz(Vn) o (J g) < o and that o (V -S ) O(n _5/2) as n > « it
follows that 0 < %;m no =0 (J F) < =, However, to prove the lemma we

shall need the more precise result that

2
o (J,F)
(3.4) —

=] + O(n—]) as n + o, -
no
n
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To see that (3.4) holds, note first that, using the boundedness of J and J'
(on its domain), the continuity of F—l at the points where J' does not exist,
.. + . ..
the finiteness of EIX]IZ € for some € > 0, and applying Fubini's theorem,
we find that EI, = EI, = 0 and EI, I, = 0. Hence the covariance between
In 2n In"2n .
I. and I, 1is zero. This implies that
In 2n

2 2 2
(3.5) o =0 (Iln) + 0 (IZn)'

Note also that 02(I]n) = n_loz(J,F) and 02(12n) = O(n-z) as n > ». Combining
this with (3.5) we have proved (3.4). Hence

*
(3.6) Jln = TnIIn
* -1 *
where Iln = I]n/O(I]n) and T, 1 + O(n ') as n >~ ». Remark that I]n is a

properly standarized sum of independent, identically distributed, random

variables.
Secondly we will show that the summands of no 1 nITn (that is of (3.1))

have finite absolute third moment. Note that
1
-1
(3.7) IJ J(S)(X(O,s](ul) s)dF "(s)]| <
0

< 1Jl( f de_l(s) + j (l—s)dF_](s)).
(0,0, (v, 1)

Using integration by parts, the finiteness of EIX1|3 < », and applying
the cr-inequality (see LOEVE (1955)), we find that

- U
I
(3.8) E( J sdf ' (s))° = E|u,;F () - J Fl(s)as|> <
(0,U0,) 0
U
< aEluFlawp)’ + E(j F7 () [ds)”) < acElx,|P+Elx, DY) < =
0

Now (3.7), (3.8) and a symmetry argument ensure that the summands of
*

In have finite absolute third moment.

no vt I
nn
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We are now in a position to prove (3.2). Remark first that using (3.6)
and applying a change of variables we get
-t2/2

(3.9) J o (8) e I1e] ae <

lt|<eln
*
itl 2
In - e t /2|

IN

|Ee el lae +

}

<
| t] eniT

2 2 2
Ie_t /2 _ e“t /zrnl]tl—l

+ dt.
4
|t|<sln T
* . . .
Since Iln is a properly standarized sum of independent, identically

distributed, random variables with finite absolute third moment and
T, T 0(1) as n > », we can simply follow the argument leading to the Berry-
Esseen theorem (FELLER (1966)) to see that the first integral on the right-
hand side of (3.9) is O(n—%), as n > o,

To treat the second integral on the right—hand side of (3.9) we note
that because T, T 1 + O(n_l) as n » » we have from an application of the

mean value theorem that for all sufficiently large n

<

2 2,, 2
le t/2 _ -t /2rnl|tl lie

1
|t]<e,n’t
n

1
r 2
< An"! J le1e”® /4ae
holds for some constant A > 0. This completes the proof of the lemma. O

Next we shall be concerned Qith the problem of showing that (3.3) holds
under appropriate conditions. To estimate |p2(t) - pnl(t)l is a rather
delicate matter. We start with the very simple remark that since
[p;(t) - pn](t)l = lEeitJ]n(eitjzn*l)l we have (see BICKEL (1974)) for all
t and any m and n = 1

2m-1

. Aot L itTin, ., L
(3.10) lo- (£)=p_, (£)] = |1£1 11 Ee o) I+

2m
_t
(2m) !

2m
E(JZn) .
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. 1 . )
Estimates for lEeltJln(Jzn) | and lE(Jzn)zml which are adequate for our
purposes will be given in the following lemma. The basic idea of this lemma
is similar to that of lemma 6.2 and 6.3 of BICKEL (1974) (see also BJERVE

(1974) where the same idea is exploited).

LEMMA 3.2. Suppose the conditions (1) and (2) of theorem 1 are satisfied.
Then 02(J,F) > 0 Zmplies that there exist a constant A > 0, depending on
J and F but not on 1, m and n, such that for all t and any n = 1.

(1) lEeitJanzn[ < Atzn_élp(t’fncn)In_2
(ii) IEeltJ]n(Jzn)ll < A1n1/2|p(t7ncn)|n-21 fOP 1 < 91 < a,

(iii) EQJ,)°" <A™ 2™ 0™  for 1 s m <.

PROOF. For convenience we shall write
1

(3.11) g(Ui) = - f J(S)(X(O,S](Ui)—s)dF_l(s) for 1 <i<n
0
and
1
(3.12) h(U;,U,) = - J J'(s)(x(o,s]wi)—s)(x(o,s](uj)—s)dF'%s)
0

for 1 < j <1i <n.

It follows from this, (2.1) - (2.3) and the definitions of Jln and J2n given
earlier in this section that
-, B 9 ., B i-1
(3.13) Jiy = (no) .Z g(,), J, = (n% ) .Z .2 h(Ui,Uj).
1=1 1=1 j=1
To prove statement (i) we follow Bickel's idea (see BICKEL (1974)) and

remark that

. i-1 .
itJin - 2 -1 ot itJin
(3.14) |Ee Tyl = I(a%a ) iZ] jZ1 Ee h(Ui,Uj)I <
1 it
-1 . - \ rom 801 -
< o +le(e/no_) |72 j |3"(s) |+ |E"" (X(O’SJ(UI)-S)IzdF "),
0

where the interchange of expectation and integral follows from an applica-

tion of Fubini's theorem. The validity of this application follows from the
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2+¢

finiteness of E|X]| < o for some € > 0 (as implied by condition (2)),

the boundedness of J' on its domain and the continuity of F—] at the points
where J' is undefined. Thus we have for 0 < s < 1 and n 2> 1
it
=)

(3.15) | e (X(O’S](Ul)—s)|2 <

IA

2 - 2
£ (no ) (Ele@)) |+ X 495D <

tz(non)_2 Egz(Ul) °es(l-s).

IA

Because as in the proof of lemma 3.1 the conditions of lemma 2.3 are
satisfied we can repeat the argument given in the first part of that proof
to find that 0 < %ig noi = 02(J,F) < o, oz(I]n) = n—loz(J,F) and hence that
oz(g(Ul)) = cZ(J,F). We can conclude that for some constant A > 0 the left-
hand side of (3.15) is bounded by At2n_ls(l—s) for 0 < s <1, all t and
n =1, In view of (3.14) we have obtained statement (i).

To prove statement (ii) we note that for 1 2> 1

)1= (nzon)"'l z
(iV’jv) v
V= 1ye00e51

J h(U, ,Uj )s

2n 1 Y v

[ R

where the summation is over all pairs (iv’jv)’ 1 < jv < iv <n,v=1,...,1.

Following again Bickel's idea (see BICKEL (1974)) we note that this implies

(3.16) [Eeitjln(JZn)ll < (nzon)-llp(t/ncn)‘n_z1

n i-1 1
< ECY ) [, ,u)])
i=1 j=1 J
Applying the cr—inequality (see LOEVE (1955)) and using (3.12) we find

n i-l
(3.17) ECY ) lh(Ui,U.)I)l < nzlEIh(Ul,Uz)ll.
i=1 j=1 J

Finally note that it follows from (3.12) that

1
(3.18) E]h(Ul,Uz)ll < (JIJ'(S)]dF"I(s))l.
0
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Combining this with condition (2) of theorem | and using (3.16) and (3.17)
we have proﬁed statement (ii).

The proof of statement (iii) is essentially that of lemma 6.2 of BICKEL
(1974). We use (3.18) and condition (2) of theorem 1 to guarantee the exis-
tence of some constant B > 0 such that E|h(U1,U2)|ﬁns Bzm(because in BICKEL
(1974) h is bounded at the outset, BICKEL does not encounter this problem).

This completes the proof of the lemma. g
We are now in a position to prove (3.3).

LEMMA 3.3. Suppose the conditions (1) and (2) of theorem 1 are satisfied.
Then cz(J,F) > 0 Zmplies (3.3).

PROOF. The proof is essentially Bickel's proof. See BICKEL (1974) p.17 and
18. Remark first that it follows directly from lemma 3.2 and the conditions

of this lemma that the statements (i), (ii) and (iii) of lemma 3.2 hold.

1
It follows from statement (iii) of lemma 3.2 that for |t| < 52n2

t2m 2m m -2m 2m,2m -m 2m
W e A  n m

E(JZn)Zm < o™ (2m) < (zng)zm.

Following BICKEL (1974) we take e, = p/(2A) for some 0 < p < 1 and

2

m= g}iognng A n to obtain that
- 1
(3.22) ™ B, )™ <™ <’ for It] < et
(2m)! n 2

Because p is the c.f. of a rv. with expectation zero and variance
2 . 2
0 < 0°(J,F) < » and lim no_ = 02(J,F) (see the proof of lemma 3.1) there
1

. 3 . n% 5
exist, for p sufficiently small, a T > 0 such that for |t]| < €2n2

2

.2 - It
(3.23) loglp(t/ncn)l < =

From (3.10) withm = 1, and lemma 3.2 (i) and (iii) we have for all t and

n > 1
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. 2
lon(e) = oy ()] < Jel+ 1Bl ng, | + - B, 0% <

—1 - -
< Alt]3n 2lp(t/ncn)[n 2 + Aztzn ].

Combining this with (3.23) we find that

@2 | Ik e @1 e T = 0GTH  as s e,

[t]<n®

A

1
We also have, using (3.23) and statement (ii) of lemma 3.2; that for n*
1

[t] < e,n? and 1 < 2m

2

|Ee 1tJ (J ) ] < Alnl/2 exp(—1n£(1—4m/n)).

1
But then we obtain for n* < [t]| < ezn%
Zm-1 (1t)1 oit] 1 -1
(3.25) 11,2y —17 m(J, )71 =0(@ ) as -

Now combine (3.22), (3.24) and (3.25) with (3.10). This completes the proof

of the lemma. [J
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