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1. If Ugr Uppacsens denotes a sequence of real numbers unifor:
ly distributed modulo 1 and if £(x) is a bounded Riemamn-inte-
grable function of the real variable x, with period 1, then
e ..}.\r...... )j_‘_ fuy) = j‘f(tm.

It is obvious that the theorem becomes false if, instead of suy-
posing that f is Riemann-integrable, we assume only that f iu
Lebes .ue-integrable, since we can change arbitrarily the vaiuzs
of £ at all points w, (mod«1) without changing the integral.

A natural question to ask is whether for £ € L. , the rela‘:

N ‘
(1) Viem, ..i_._ ):'_f(x-vu“) z {{(t)d&

holds almost everwhere in xs If w, =0n, where 8 is any fixed
irrational mumber, the relation {1) holds for almost all x, vndey
the only assumption that f €L . This result, due to Khintchin:

is actually an instance of Birkhoff's ergodic theorem 2) , and oue
cannot expect a generalization of the argument to general vnifo: -
ly distributed sequences,

Here, using an argument based on different ideas, ve shall
give some results of the type (1), confining ourselves to the
case £ el and to certain types of sequences {u.m}& [

If; instead of a result of the type (1) we consider conver-
gehce in mean, we can B'bate the following general theorem 3 )

Theorem I. Let gx} € L be 8 function with period 1 and meau

value zero, i.e. f f(x)dxzo. Then, for any sequence {%} had form-
1y distributed modulc 1, one has R

J*W 1 i..iﬂf(x#mm) dX z ©

Droof. Let 2: ¢ e F% pe tne Fourier series of £ (o =0,

e = a ) Iet us write

zmku ‘ ‘wuku
Oz a-le wLL L ")

K

So ’t:ha*b the im;agral cansidemd in the theorem is equa.l 1;0

2 i fegl ,Sk‘t

and, sinca 1 1 L“ ooy ﬁaea not exoeed

tl%
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then M. anon that [ S «&  for k=1, 2, ... hand 3> X
the lutegual) vill not exceed ;
{ r Fray. + 2J

for N > > 8§ which pvedvesthe theowme-

2. Tu are unzhle to stets 8 result of the type (1) without ma-
kin, czrveairn additional hypotheses on the fuasticn i aocu on tho:
¥ N - N
seguenne {tbms . (That some addibional hypetieses, at least on
the function £, are necessary, will ove showa &t the end cf +he
paper, withn the usg of an argunent dus o krdbs)
Let again £ € L have period 1 and mean vslue zero, 8o thag
f(' ) . 271 k% e -
X N & k'. 2 o= _K = ch *
Let us cenote by R(hL) the remainder
Let us now dsnote by S(M,h,h) tre sum
‘} ;u?uku
{rt N ared % being 1utegers)
n N-H
We can state the fol‘ownng Jhooxum'

N 2

Ck}

?P‘vg“

- Theovem I1. Let ffL hxse nerlod 4 and mean value 2ero,
and be such that R{n)=0 ( ——x ) ¥harex > 1, Let {ur& be

‘ € i,,‘ T -

gseguence_uniformly d:.strib'«..wc? mm.u]c 1 puch that

‘S(\q ™ ;{J; _/\'g’av' ( M+ !J}t !{?i,i"’:’;i,fvg‘{)a
where f\,fﬁﬂ 1 are consd vu-s such Fhet ¢ +1<7 amd V< Y2,

U o o o

Then, almost everywheve in x
lim ..1.__ U‘(x«:-u,nw ‘.+f(x~+u,?,}7 20
M

N- =0 J

The proof depends on the following lemma, which is a parti-
cwlar cage of & result of G} and Koksna "*), We give'here a
proof somewhat diffzrent frow the original one.

Lermra. L2t {fu"ﬂj »¥ =1, 2, ..... be @ sequence of functions
all belonging %o 17 (P> 1)in the interval (0,1). Letn (N) ke
positive mosoioulc dgcrsasing suck that J Ul oo Smpose that
for gll u, K, N

. H-HI

“l dx € {?*'XA-NE'a"NArz(N}

whe.2A > 1. &hﬂn, fcr almogt 2ll x.

lim L ff JJ ...)L’,) ‘ = 0

Naoo N * (h)
Proof of the Jemzr.aa Les M be a positive integer, By A
(h =1, 2, ””.2 ) we denote sny of the intervals (open on the

le:f:‘*b, cloaed on the right) obtained hy the suvbdivision of the
interval (0, 2" } in Qk equal paris. By ‘3{ '>we Jerote the sum va
wherce ¥ takes all integral values com;mnu. in A ‘h

Deroting by J any fixed integer sueh that 1 £ 3 2" s &nd
writing j in the dyadic eysiem, we find that the intexval (0,3)



"3 T (w)
is the sum of certain intervals A x Vhere k takes at most once
each valus 0o, 1, 2, ....n, gnd each h depends on the corresptnding

k. According to this

J th,) ch
) ) ka = EOSO +.oo-.00’0 + £'b ﬂ:)- D
where ¢, =0 or 1.

Let © be a positive number larger tha,n 1, 0 be fixed later ou:
one h:a.s,J us:.ng Hbldex's 1nequali

‘Z—_]‘v < (4___ % (k") )1’

-t e ki o thyf
( .éﬁ)f’(g; of 15.1)

, ‘”P’k

30

where % +% = 1 . Hence for all j (1< j ¢<2") and gil x

[pag S BI_ I o 15T,

where B = ( 2 ' 3 P.K )P 1, and the double summation is extended

K=©

to k =0, 1, 2, ..... n; and for each k +0 all values of h
(h = 1; 2, sas 2k ) Now, by hypothes:.s,

i

f l’sff‘) | ax ¢ ¢ 2P plu-id, (227

»

Hence
J(“) : ",
— -A “KJA -dx
_“ f, ¢ 3 [ AFEL 2k ¢ (P Vi TESal I
where we can suppose that the .Lnteger 3(x) is any measurable ﬂm OR
of x, Supposing now
My ¢ 27
cne has ;,, = , o
! S L P - no k y :
2 . Lo opkk o np-d) kol alk)
Vet a— O _.1.._. y (‘) &.2 e n(l J
dx = — L -4 : e
. \ ! i : Pk
~ »g{jﬁ%m___.@_mn( }
! : Ao 2("“’)“ . :
Now fix © such that 1<68 < 2 p (Which is’po‘ssi’qle Vsmee A 1),
ahd put ‘ - ' ‘ : e
o | o = -(i-— < 1y
‘one has = n s R zxi}
3 e o LT 7;
’ k:(}' ) ) ) 0 g

weiages Lo 0(?’[(9/?’) +O(°¢ /‘) T
and, remarkl,ng that t‘we conrl: tloa ‘ "‘;N) /ao.nmplies . v?(;z,"/,’q <00 e
one has, wrl'ting P . SR )



P
I, = J i—iﬁﬁff-—‘ dx e 3(m) g 28

that ZI <oo s Ia other words

¥

m@x‘&“tdx<m
n=t 015‘1

N _
which implies Z_f, . of W)

i

for almost all X.~

Proof of Theorem II. Writi

Ty = Lt l 5 f(:m—un)' dx
one has, usi he hypotheses of the theorem:
% ley | ls(x, N, 0]

THJN' .
< 2A2£: e P eT R (e e an? f‘tr fey 1F
- e b
’J’ N“ 7
<2 (o8 ey o+ =X -
[ > (1og B)*

A' being a constant. Fix now an € , positive, such that

(2) afe +20 +2%T < 2

as is clearly pussible since O +T < 1,. and take for h the inte-
gral part of N + Then

2pe + T2t 2

N
C[ (M + N) F
- ”” ¢ _ (log N)
one has by (2)
(M)u Nt-u
+
T £ D -+ ’
M\N (log W)™

D being a constant. Since L<¥2,¢>1, en appliaation of the lemma
(mth? =2) gives

N 500

for almost all X '

3. Applications. We propose now %0 glve exaumples of sequencea
{w\.} uniformly distribu-tadf cx whi»h the relation :
l- Z\(n,gr '9 f

lsct, 3, 00| € A’ 8 (M, W) (Tstct, T < ¥2)
is satisfied..
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Pirsh Lxample. Let © denote an irrational number of the type
I, that is o say that for some constant %> 2, the inequality

[ o8|«

‘has only a finite number oi solutions in integers p and q,
(¢ > 1). We can take, for instance, for § any algebraic number;
- oxr any irrational number with bounded partial quotients. By a
well known theorem the numbers which are not of the type I
form a null set (Borel). . ' | -
Let now, r being an integer 2 2,

r ra
un= en +C{'n l + eeasae +Xp
Whe 3¢, , »»see O, are arbiirary real constants, Te shall prove
that for the sequence phd using the notations of theorem II,

one has

(3) - }s(m, N, )| & ' (e
8o that theorem II is app]inable to such a sequence.

In fact, this can be deduced from’ theorema of Weyl, Vino~
gradoff and others. As we do not need the modern results in their
sharpest form, We meke use, instead, of the following special
case of the 'hedrem of Koksmas),'which has the advantage that
the wanted ineguality (3) follows from it immediamely

 Let r denote a positive integers put P = 2" ; 01z an ix
tional number of the type I, described above, so that ‘& numver
= 1(0) exists such that for all integera 4> 1,

lsin uf-z e‘ >
q’"! |
Then if < n}) denotes the polynomi al ku, We'have‘s}
M4 N A SR
g G s (. K {r) )(p 0g
N Ma

From this, (3) 'Eollows with ==qoza.nd T < 1

Second, ekampie. uet “(t) Ye =& P ;tlmes dlffersntlable fuMcunou ,
(P 2) For*‘z,ml? such +hat T ?’(t) has the same sign for a2ll
t, and thot '

| T DT I

~ where ¢, C and 5 ars zndegendenf of t. Then for the sequence
v ~\”(n) one has ‘ :

i

Y !s(m N, )| v;”s,‘:ﬂ:{"N eim

with GG¥E<1 ‘C(VE, qo that theﬁ“ am II is applmoable to the
~ sequence {W N}.‘H~ e .
ThM]P‘DOf of {4} ia based on tha fal?ow;ng lamma G*»xan dQI.O,Q




Lemma. Let # > 0, N
derivative of orderP
for all 4, or- g
of . er'blng

lg(P Y s m - P |
one haf: :
2 {0 B () (g

—b—
> 1, p>

Now apply ‘the lemma to the function g(t) =
satisfies the condltlons of our example, and put

M+ N

2 be all integers, put P
and let g(t) be a real func’clon for M<t<M + N vhich admits a
say g )(t) and suppose that g(
(%) £ -r for ell %, where T is 1ndependent

HE(E), where £(t)

| | ) ‘ -
v =Tﬁ—ﬁsﬂa R = ka (‘b)d‘t f SN
so that MeN | |
¢ ckdt . ck y-! kv
R Iy iy Y 7R t 4t = 5 N VI3
™M v 0
We have now, c, 3 Cp etc....ﬁ belng constartsa
1-¥ ‘ -zg - %)
(—T)}’“<e kF“l (M+N)P‘ N P-2
A S o Y s I 13
(rN"s P Lo, xF (M+N) P N P
-2 z,f_’_:&l — 2 (2-%)
G F ey (i + ) N
Hence, by (5) .
1 2(-¥) J — 2(1-

5

nzm™
the inequality being obtained by remarking that, since O <!I< 1,

2W1kftnq ) P
41«: (M + N) N

P2 2,,P> 4, one has
2(1-%) S A~
P = P-2
and
200 2028 ¢ 2P
p-2 | P P _ :
1 - _ 201~ _ 2£1-¥)
T PRI .= - T =
'Ir:x.ting nowf 2 L, 0T =1 bz y U = v;.
~%¢ remark that, since P > 4, O <y < 1, one has
T & Y2 and R :
T+ 0 =4 « 2% 208 < 4
‘ 7 p -2 P
so that ‘ L
MY zwﬁd(n) ] | p @ T
e ,$ €, KW N (u4N)
nM :




-T -

with @ + T<1, T< Yo, We conclude that, under the condi-
t¢ons atated fgr ftﬁ) Jheorem II is appliceble 1o the
cuence u, = £{nj. - . o

4¢ In view of theoren 17 the questicn arises, whether by
imPOSiﬁg to the ssguence Uy s uz...a.‘Sufficientlyastrong
~conditicne; e.g. with respect to its discrepency D(NY,
one could avoid any sert of condition on the Fourier coef-
fisienss of f(x) and hove the rélaticn,(ﬁ§ by mere%y'sn?~
p““.nb Shat the periodic function £ belongs to L T¢s The
answer to this questlo’ is negatwve, a3 #OllQWS from an
interesting counterexsmple due t0 Pa Erdos wAo communicated
i+ to us verbally: For evé“: Ziven positive number €< 1
and every decreasing Sequence of EQ$1%+V6 nvmbers {5"3
fo; which

C

s e

(6) 8, < &

24,

a funnr¢cn £(x) on (O;1) q_g be constructed, Whlqh takes
Ghe values 0 and 1 only, for which f f(x)a(x)<f, whereasz
the follow;ug assertion holds: 1f ui,,ug, ceecans is ggy

sequence ou (0, 1); then it can be replacsd by a sequence
] t — - ‘

’gx", ® .i’.’ att 'Rgzg.g“l} i "Jh&'i?

KRR PR WG ERD

wheréas for'all X , o
. '\l' |

Lin sup = J__ £ u + x)— 1
N =3 0 B nti '

Now i% is cbvicus that, if +the sequonce'u,, Uy eees is uni-

formiy aistrivuted (iod 1) with the dlS”T°pan"V D(N), we car

choose &y 8, , ».es. S50 rapidly decreasing tha’ the Bequence

'u‘ ; u; s svee» i5 alsc uniformly distributed and has the

.i*~repancy.$ £D(NY. Therefores'

No mather now fast the posli zlve decrzasing funetion f ) may

4

~

T p—————— - {———r - - vk

vrn ¢ z6ro a8 N —soee, 1F Tnere are u,qu€ucaq u 3 U,y eeca

- o 2o,

“for which D(N) < & (W}, uh9re exist a funciion f(x) € L}

and cerdiain gequences w/ ﬁ”ud~ 7 weens §§g%sfzggng(N)\ LRI,
suﬂh tha 349 wo ~g1§ ; N

/ ] - ) S
j F(x)ax £¥2 and Lim suvp ﬁiz:f(unf+ x) =1
fﬁ”~ﬁﬂﬁ£2,§ on {041). ' s ,



-5 - 7 witaouy J.nss oI generaliyy

We give a complete sketch of the proof. Pu‘t./ ‘5- =Ty
where w(1), w(2), «... denotes an increasing sequerzce cf po-—
gitive integers. Put M, = 1, N, = (k2 S0+ eeaat a 1}'
M4 {(k > 2) and Ny = W(M + My + oeoes N ) + 1.(0ther se-~

quences M1, M s +++ and N1, Nz,‘.... would do as well, bdbut it
is essential that Myy Mz.... increage rapidly and N4y N, éee
still more)e. Now for k 2 1 consider in (O, 1) the se% Ty conwﬁf?
sisting of Nk eqmdis‘bant small segments 0" , each of length

""—'m (fve bele )s Let i‘k(x) denote the caracteristic

funct:.on of 'T' , Whereas f(x) denotes the caracteristie

funetion of T1 + TE + «.es Then

f(:;c) .é T (x) + fe(x) 4 seserae

is a function € L and jfdx <& by (6).

We new translate the numbers un In the first step we move
the first M1 elements of Wop Uyy oeend In the second step the
following M2 elements eto.; hence after the k-th step My + eene
*Mk elements have been moved. In the first step we move u,
over a distance 0, Now let the (k-1)th step be carried out.
Then we carry out the k-th step in substeps. In the first sub-
step we remove the flrst kz.mk__1 elements (n=M, + ...+Mk_1+1 pre

+oeeant My 4o+ kzmk___,)s In the second step the following
k?'Mk 1 elements, etcs In the first substep we replaoce each
u, by an un in such a way that u + W falls in ghe
1efthand endpoint of a ¢y which :x.s nearest to w, + m

(mod.1). In the k-th substep (denoted by (k, b)) we replace un
by an un in such a way that u’ + Wh » falls in the .
lefthand endpoint of o o K which is nbarest to e (mod 1}
e

Note that(mod.1) each w, now is moved over a distance < -A-;- § :S;L '

K
Now let x denote an arbitrary real number in (0, 1). Then for

each K312 x lies exactly in ome of the N w(k) equal parts of
length W in which we can devide the segment (0;1),
say in the part
b’ st ,
W&x‘(m (O\k<N(k)) |
Now there is an uniqu.ly defined integer h =h (K) (0 £ k< w(;
such that hz W (modw(k)) .




WYL ORPULLL LY UUILRETS u 4+ X Wlil peirong TO OIN8 T WE SopuchHow

_ Ok . Henee f(u! + x) = 1, Denoting the total number of ele-
ments which have been moved after finishing the substep (k,h)
by A(h,k) we clearly find

S Alkh) |
,15-.,,..,’[1)-‘ Zs——:f(u + X) -(-E-T7'S—- —> 1ask - oo

Dby the de:t‘ini‘tz.ons of Mk 4 and AMk,1). Q.e.d.

Footnotes
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ren Funktionen. ReciMath.Moscou 41, 11-13 ('

2) For litterature see 1.
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‘ but we did not find it in the litterature.
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Cemp,Math,

5) J.F. Eoksma, Over stclselsiﬁpphantiache Ongellakhederu Dissq
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Theorem (Stelling) 1o, p.61.

6) Par the convenience of the reéder, this result is obtained
5 tak%gg the one~dimensional case in Koksma's fhcorem (sec
wi

@ze,f..'sf-ku,,,g rfka,t=1 d=~7-1,h=krr
jandR‘Af 3 0. | | |
~T) Ses eege J.G. van der Corpux, Neue zahlenthuoretlsche Ab-

schatzungen II.
8) For thu defin;ticn of disercpancy see ca 28 J.F, chsma,
- .Diophantische Approximationen (urg.d.Maun.,TV 43 19Jo),
- Kap.VIII §2, P.90.




