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Periodic Solution of the Van der Pol Equation 

by 

. ~, 
H. Bavinck and J. Grasman 

Mathematisch Centrum, Amsterdam. 

Summary 

The purpose of this paper is to introduce the method of intermediate 

matching for asymptotic expansions and to apply this method for 

connecting the four local solutions of the Van der Pol equation, 

given by Dorodnicyn [3]. It turns out that for the approximation 

of the periodic solution a fifth local solution is needed. The present 

approach results in a reduction of the computational work. The ampli­

tude of the periodic solution is determined up to a higher order 

accuracy in v than has been done so far. 

* presently Technische Hogeschool, Delft. 
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1. Introduction 

In this paper an asymptotic expansion is given for the periodic solution 

of the Van der Pol equation 

- v ( 1 - x2 ) dx + x = 0 
dt ( 1. 1) 

for large value of the parameter v. Equation (1.1) has been studied exten­

sively by many authors. It is a well-known fact that a periodic solution 

for this equation exists (cf. LaSalle [6]). In the phase-plane (x,p), 

where p =:,equation (1.1) transform into 

_dp 2 
~-v(1 -x) p+x= 0._ ( 1.2) 

Van der Pol [7] has already pointed out that the periodic solution for 

large v can be approximated by the solutions of the following reduced 

equations of (1.2) 

( 1.3) 

in a region of the phase-plane where pis large and 

2 
- V(1 - X) p + X = 0 ( 1.4) 

in a region where p and fare both small. The regions where these approx­

imate solutions are valid do not overlap and it was not clear at all how 

these local solutions had to be matched. In 1947 Dorodnicyn L3] introduces 

two new regions in which he gives asymptotic solutions for (1.2). His four 

regions overlap, which makes it possible to find a complete solution for 

the whole limit-cycle. However, Dorodnicyn's way of matching is rather 

crude and his claim that the accuracy of the asymptotic solution can be 

carried up to an arbitrary order of vis false (see Zonneveld [10]). 

Furthermore, some computational errors in Dorodnicyn's work have been 

noticed by Urabe [9], Zonneveld [10] and Ponzo and Wax [8]. 

If one tries to match the local solutions of Dorodnicyn by the method 

described by Van Dyke [4], one meets serious difficulties. Yet, it is 
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possible to apply a well-founded method of matching, if a fifth region 

with its own local solution is added. Such a method of matching is based 

on the principle that the asymptotic expansions of two adjacent local solu­

tions should be identical, if they are written in the local coordinates of 

the over1apping region. It turns out that it is possible to choose the 

constants of integration in s.uch a way, that the terms of the two expan­

sions are completely identical. In the sequel we will call this the method 

of intermediate matching. 

Since equation (1.2) remains unchanged, if we substitute -x for x and 

-p for p, each solution will show radial symmetry with respect to the 

origin. Hence we will obtain two groups of five regions. The regions of 

the first group are specified as follows: 

A: -2 
:,; - 1 -1/3 ( III I ) ' - X + rv :,; x - rv s -1/3 + Rv-1/3 B: - 1 - Rv :,; X:,; - 1 ( IV' ) , 

C: 1 + rv-113 :,; x:,; 2 -1 (I)~ - - rv 
-1) :,; p(x) :,; p(x 2 -2 -2 

(II)' D: p(2 - Rv + - v log v - rv ) 

E: 2 -2 -2 s 9 -2 
( - ) . X + 9 v log v - Rv ~ x ~ X - Rv s s 

The constants rand R (0 < r << R) are independent of v. The point 

x = x (= 2 + O(v-413 )) will be specified more precisely in section 10. 
s 

We have given the notation of Dorodnicyn for the regions between brackets. 

The regions of the second group A, B, C, D and E are obtained by radial 

symmetry. 
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The main modifications we made in Dorodnicyn's work are the following: 

a. The region A(III') is taken as the starting-point of the calculations. 

b. In the formal expansions of the regions C(I) and D(II) also fractional 

powers of v are included. 

c. Between the regions D(II) and A(III) a fifth region E(-) with its own 

local solution is added. 

d. For the local solutions of C and D and of D and Ewe apply intermediate 

matching, since the Van Dyke matching fails here. In order to obtain a 

uniform representation we also apply intermediate matching in the other 

cases, although the Van Dyke matching is applicable there. 

These modifications result in a reduction of the computational work, so 

that we determine the amplitude of the periodic solution up to a higher 

order accurracy in v. 

2. Solutions in region A 

In region A the main term of the asymptotic expansion of the solution 

originates from the solution of the approximate equation (1.4). It turns 

out that p = O(v-1) and that the formal expansion of the solution of (1.2) 



takes the form 

00 

p = I 
n=0 

y (x) 
n 

-2n-·1 
V 
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( 2. 1 ) 

Substitution of (2.1) into (1.2) and equalization of the coefficients of 
-2m 

v (m = 0, 1, 2, •.. ) lead to the system 

y (x) = _x_ 
0 1-x2 

(2.2) 

n-1 1 Y (x) =-- l yk(x) yn-k-1(x) n 1-x 
2 k=0 

(2.3) 

(n = 1 ' 2, ... ) . 
For n = 1 and n = 2 we find 

2 
y 1 (x) = 

x(x +1) 

( 1-x2)4 
(2.4) 

4 2 1 ) y2 (x) 2x(3x + 6x + = 
( 1-x2) 7 

(2.5) 

3. Solution in region B 

When x t - 1 the terms of the local expansion (2.1) become singular and 

the solution can no longer be represented by (2.1). Following Dorodnicyn 

we introduce the local coordinate u and the local dependent variable Q by 

- 1 
a (a> 0) ( 3. 1 ) X = - UV ' 

p = v 8Q(u; v) (3.2) 

Equation (1.2) will be transformed into an equation, which will have all 

the terms of the same order 0( 1 ) , if 

28 - a= 1 +a+ 8 = 0 (3.3) 

Hence, by choosing a= - f, 8 = - j in (3.1) and (3.2), we obtain the 

appropriate local variables for the solution in region B. For Q(u; v) we 
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construct a formal expansion of the type 
00 

Q(u; v) =. I Q (u)v-2n/3 
n n=O 

so that the coefficients satisfy the following recurrent system 

dQO 
QO du - 2uQO + 1 = 0 , 

2 dQ1 2 2 
Qo du - Q1 = u Qo - uQo ' 

2 dQn 2 n-, dQn-k 
Qo du - Qn = u QOQn-1 - I Qo~ du • 

k=1 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

Equation (3.5) can be reduced to the Riccati type if one puts Q - du 0 - dz 
and for the general solution of (3.5) one finally finds 

2 
= u - z(u) 

where z = z(u) is the inverse functions of 

- c0 Ai'(z) - c0 Bi'(z) 
u = c0 Ai(z) + c0 Bi(z) 

(3.8) 

(3.9) 

.... 
(Ai(z) and Bi(z) are the so-called Airy functions, c0 and c0 are constants). 

For the solutions of (3.6) and (3.7) one finds 

( ) 1 { Ju ( ) (v2 - y_) } Q1 u = A(u) c, + O Av Qo dv (3.10) 

Ju d 
where A(u) = exp (- 2v ) 

o Q0(v) 

n = 2, 3, ... (3.11) 

It is still necessary to determine the constants occurring in (3.9) until 

(3.11). 
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4. Matching of the solutions for regions A and B 

In order to obtain matching relations for the coefficients of the expan­

sions (2.1) and (3.4) we introduce the intermediate coordinates by 

-µ 
X = - 1 - S\/ 

2 
, 0 < µ < 3· ( 4. 1 ) 

Then, after substitution of this new coordinate and after reordening of the 

terms, (2.1) and (3.4) have to represent identical expansions. In order to 

avoid unneccessarily complicated formal computations we select one value of 

µ and takeµ=½· Substitution of x = - 1 - s - 1/ 3 into (2.1) yields the 

expansion 

1 -1 -2/3 1 -1 1 -4/3 1 ( 2 -4) -5/3 
p = 2 S V + 4 \I - 8 S\/ + "'i6 S - 2s \I 

1 3 -2 1 -7 /3 1 ( 5 20 -7) -8/3 + 
- 32 S V + 64 S\/ - 128 S - S \I 

_1_ (s6 + 2 - 4s-6)v-3 - _1_ (s7 + 8s + 8s-5) "-10/3 
256 512 

(4.2) 

After substitution of u = v113s the leading term of expansion (3.4) has to 
( -1/3 be O v· ). It follows from (3.8), that this is only possible if u ➔ oo 

as z ➔ 00 • The asymptotic expansions of the Airy functions (see [1], ch. 10) 
.... 

show that c0 in (3.9) has to be chosen O. In fact, we have 

Ai'(z) 
u = - Ai(z) 

Thus, by (3.8) we may conclude that 

-1/3 Q ( 1/3) _ l -1 -2/3 1 -4 -5/3 
V Q V S - 2 S \I - B S V 

11 -10 -11/3 0( -14/3) 
- 32 s " + " . 

(z ➔ oo) 

5 -7 -8/3 
+ - s " 

32 " 

(4.3) 

Estimation of the order of magnitude of the solutions (3.10) and (3.11) 

for u = v113s and comparison with (4.2) lead to the following choice for 

Q (u): 
n 
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n = :2, 3, ... 

By taking the asymptotic expansions of Q (u) for large values of u, one 
n 

obtains 

-5/3 Q ( 1/3 ) V 2 V S = 1 -4/3 1 -5 v-10/3 + O(v-13/3) , - 8 sv - 64 s 

V - 7 / 3 Q3 ( V 1 / 3 S ) = 116 S 2 V -5 / 3 + 0 ( V - 1 1 / 3 ) 

v-3 ,,4 ( v1/3s) = 1 3 -2 1 -3 O(v-4) 
~ - 32 S V + 128 V + 

-11/3 Q5(v1/3s) 1 4· -7/3 1 -10/3 + O(v-13/3) 
V = 64 S V - 64 SV 

n-1 
( _1 )n-1 s -:;f V 

2n 

n+2 
3 

_ n+3 

+ O(v 3 ) ' n = 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

6, 7, ... 

(4.9) 

It is also possible to derive these asymptotic expansions directly from 

the differential equations (3.5), (3.6) and (3.7). 

Comparing expansions (4.2) with the expansion given by (4.3) until (4.9), 
one concludes that the expansions are identical indeed. 

5. Solution for !-egion C 

For u ➔ - 00 th~ first two terms of (3.4) behave as 

Q (u ') = u2 + a + O(u-1) 0 ' Q1(u) = ½ u3 + 0(1) ( 5. 1 ) 

The constant ci denotes the first zero of Ai ( z) Ai(-a) = 0, a= 2.338107. 

From equation (1.2) we learn that in the case that pis large (p = 0(v)), 
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the first two terms of (1.2) are dominant. Therefore we suppose that the 

solution in region C can be expanded as follows 

00 

p = f 0 (x,v) v + l 
n=1 

f ( ) (1-2n)/3 
X,V V 

n 
(5.2) 

It is assumed that for any constant E > O the relations lim lfn(x,v)I vE = ,00 

v-►00 

and lim f (x,v) v-E =Oare valid for n = 0,. 1, 2, ... . For the function 
n 

v-►00 

f we have the recurrent system 
·n 

ft = 1 2 ft= 0 - X ' 0 1 

ft = 
3 

0 f~ f4 = xf1 

f 3 f ' + xf21 xf f = 0 0 6 - 0 3 

etc. 

Hence, 

' fo fr= 
2 -x 

, f2 ft= 
0 5 

xf2 ' (5.3) 

• (5.4) 

In order to avoid unnecessary difficulties, we determine the constants 

a0 (v) and ~1(v) immediately by matching with (5.1). We obtain 

1 2 -1/3 -1 p = 3 (x + 1) (2 - x) v + av + O(v ) (5.5) 

2 so that a0(v) = 3 and a 1(v) =a.The higher order terms become 

1 2 
f 2 = - x+1 + 3 (log 12 - xi - log Ix+ 1 I)+ a2(v) (5.6) 

f 3 = a3(v) ( 5. 7) 

f 4 = [~- (log lx+1 I - log 12-xl) + · 

+g_1 __ 1_1 __ 1 1 1 1 J () (5 8) 
9 2-x 3 x+1 6 (x+1)2 + 3 (x+1)3 a+ a4 v ' • 
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f 5 =: _g_ - 1- ( 2 log I 2-x I + 1 - 2 log Ix+ 1 I + 3a2 ( v) ) 
27 2-x 

+ O(log2 I 2-xl) 

1 2 
+ 0(2-x)-1) f6 

Cl. 
:: -

' 27 (2-x)2 

4 log 12-xl 
2+4 log 3-6a2(v) 

Cl. 

f7 -· - 81 Cl. 2 + 81 2 
(2-x) (2-x) 

f8 
2 3 1 + O(log !2-xl) -· 243 a 

(2-x) 3 ' 2 (2-x) 

1 
4 

+ 0 ( log I 2-x I ) 
f10 

Cl. = 
- 2.i 4 3 (2-x) (2-x) 

6. Matching of the solutions for regions Band C 

The matching relations are derived by substitution of 

X = - 1 + tv-113 

(5.9) 

(5.10) 

(5.12) 

(5.13) 

( 6. 1 ) 

into the expansion (5.2) and of u = - tv 113 into (3.4). The choice of the 

intermediate coordinate tin (6.1) is again made in order to avoid diffi­

cult formal computations. Any transformation of the type x = - 1 + tv-µ 

with O < µ < 2/3 would work. 

We first investigate the functions ~(u) for large negative values of u. 

. Ait(z) 
The function u = -Ai ( z) has a simple pole at z = - a with residue - 1 . Thus, 

in the neighbourhood of z = - a we may write 

Since u-+ - 00 if z + - a we finally obtain 
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v-1 Q (-v 113t) = - l t 3 + (b - _g_ log v - _g_ log ltl) v-1 - -61 at-2 v-5/ 3 
1 3 1 9 3 

+ (2\ + ½ b1 

(_1_ + _g_ b 
- 450 5 1 

+ o( u-8/3) 

2 2 . 3 2 
- - log· v - - log I t I ) t - v -

27 9 

4 4 -5 -8/3 - 45 log v - 15 log It I ) at v 

(6.3) 

v-5/3 Q (-v1/3t) = _ _g_ tv-4/3 + b -5/3 1 t-1 -2 
2 9 2 V - 3 a V 

1 1 I I 1 1 + <27 log V + 9 log t + 9 - 6 b1) 

1 2 -3 -8/3 o(u-8/3) + 9 a t V + 

-2 -7/3 t V 

(6.4) 

+ (f., a log 

+ o(v-7/3) 

ltl + ..2.. a log v + b ) v-7/ 3 
81 3 

(6.5) 

(6.6) 

-11/3 Q ( 1/3t) _ _1_ t4 -7/3 + ( -7/3) 
V 5 - V - - 486 V O V • (6.7) 

These asymptotic expressions may also be obtained directly from the diffe­

rential equations for Q (-v113t). The constants are given by 
n 

a= 2.33810741 

- _g_ + _g_ log I v I } d 
2 V , 

3v 3 Qo(v) 
(6.8) 

(6.9) 
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Io, 2Q Q 
b = 1 . A( v) { ~ 2 

3 A(-..,) _.., Q 
0 

+ -2._ a _ -2._ a log Iv I} d 
27 V 27 Q2 V • 

0 

(6.10) 

Substitution of (6.1) into expansions (5.2) yields 

2 1 /3 1 3 v t 0 (x,v) = t v - 3 t , (6.11) 

-1/3 -1/3 v f 1(x,v) =av , (6.12) 

.£ t -4/3 _1 t2 -5/3 2 3 -2 
- 9 V - 27 V - 243 t V 

1 t4 -7/3 
- 486 V 

(6.13) 

(6.14) 

+ ( ] 7 a log I t I .2- - .2- 2 - 81 (l log V 27 (l log 3 + 27 (l 

(6.15) 

-3 ( 1 -4 -5/3 2 1 1 2 v t 5 x,v) = - 4 t v + (9 log 3 + 3 a2(v) + 27 - 9 logltl 

2 -3 -2 - 2) + 27 log v) t v + o(v (6.16) 

-11 /3 ( ) 1 -5 -2 ( - 2) 
V t 6 X, V = 5 t V + 0 V (6.17) 

We note that all terms depending on tare identical in both expansions. By 

equating the constant terms we obtain the matching relations 
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4 2 
= b1 - 9 log V - 3 log 3 (6.18) 

a3(v) = b2 , 

a4 (v) = b3 +~~a log v + tr a log 3 - i7 a (6.19) 

7. Solution for region D 

, 
The expansion (5.2) is no longer valid if xis in the neighbourhood of 2. 

Therefore, we consider region D, where p = O(v-1) and, because of (5,5), 

x = 2 + ½ av-413 + O(v-2 ). Since p(x) is a double-valued function in this 

region, we consider the inverse function x(p). Furthermore, the local 

variable q is defined by 

( 7. 1 ) 

so that equation (1.2) transforms into 

{(q - f + tr av-4/3) (x2 - 1) + x}: = v-2q - f v-2 + ~ av-10/3 . 

(7.2) 

We suppose that there exists an expansion of the form 

X = 
00 

2 + l av-4/3 + l X (q,v) v-2(n+1)/3 
3 n=2 n 

(7.3) 

It is assumed that for any£> 0 the functions X (q,v.) , n = 2, 3, •.. 
n 

satisfy the relations lim 1x (q,v)j v£ = 00 and lim X (q,v) v-£ = o. 
v-+o:, n v-+o:, n 

For X (q,v) we find the following equations 
n 

dX3 
-= 0 dq 

3 q--
2 

dX4 4 dX2 5 
- 3 q dq - 3 aq dq = 27 a , 

ax5 5 dX2 
- 3 q dq - ( 4 q - - ) X - = 3 2 dq O 

etc. 

(7.4) 

(7.5) 

(7.6) 

(7.7) 
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The solutions are 

X2(q,v) = - j q +!log lql + d2(v) 

X3(q,v) = d3(v) 

4 13 I I X4{q,v) = 27 aq - 81 a log q + d4(v) , 

2 2 ...2.. 8 II 4 X5(q,v) = - 27 q + (81 + 81 log q + 9 d2(v)) q + 

(7.8) 

(7.9) 

(7.10) 

13 ( ) I I 10 I I 13 2 I I ) ( - 27 d2 V log q - 243 log q - 243 log q + d5 ( V) + 

20 I I 20 1 o 1 
( - 729 log q - 729 - 81 d2 ( v) ) q ' 

Moreover, we have 

x6(q,v) = - _l_ a2q + ...i.. b q + 
27 27 2 

X7(q,v) = t, aq2 + , 

X8(q,v) = - -k q3 + 

8. Matching of the solutions for regions C and D 

(7.11) 

(7 .12) 

(7.13) 

(7.14) 

In order to derive matching relations we substitute in (5.2) an inter­

mediate coordinate X given by 

-1 
x = 2 - Xv • 

Reordening the terms we obtain 

( 8. 1 ) 

-1/3 .2 1 2 10 4 -1 
p = 3X + av + (- 2X - 3 + 3 log lxl - 9 log v - 3 log 3 + b1) v 

+ _g_ ax-1 v-4/3 + (b - _1 a2 x-2) v-5/3+ ( l x3 + l X + ...i.. x-11 IX I 
9 2 27 3 9 27 og 

3 20 x-1 8 -1 2 -1 2 -1 2 a -2 
- 81 log v - 27 X log 3 + 9 b1 X + 27 X + 243 3) v 

X 

10 25 31 4 log IXI 20 
+ (b3 + 27 a log 3 + 81 a log v - 162 a - 8'1 a 2 + 243 

X 
~ 4 

_ _g__ __ J_ + JL a log 3 + .s._ __ 1 _ .L) -7 / 3 + ( 7 / 3) 
27 .2 81 2 2 6 4 V O V • x- X 81X 2.3 X 

a log v 

x2 

(8.2) 
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2 5 -4/3 Substitution of q = pv + - - - av into (7.13) yields 
3 27 

x = l P _ l av-1/3 
3 3 + {¾ - ¾ log IPI - ¾ log v + : 1 p2 

4 -4/3 
- 27 apv 

-5/3 · 4 1 8 
d3(v) v + {- 27P + 27 p - 81 p 

8 i + _l_ 3 -2 .2. ~ - 81 P log v - 9 p d2(v) 243 p} v + {- 81 a - 81 a 

-1 
V 

+~~a log IPI +~~a log v - d4(v) - i,- a p2} v-7/3 + o(v-7/3). 

(8.3) 

The expansions (8.2) and (8.3) have to represent the same intermediate solu­

tion, so that substitution of (8.2) into (8.3) must lead to an identity. 

Working out this identity we obtain the following matching relations 

1 16 2 b1 
d2,_ ( v) = - - - log v - - log 3 + -

9 27 3 3 
(8.4) 

b2 2 2 
= 3 - 27 a (8.5) 

b3 13 104 139 4 
d4(v) = 3 + 27 a log 3 + 243 a log v - 486 a - 27 a b1 • (8.6) 

9. Solution for region E 

Expansion (7.3) is singular in q = O. In order to reveal the behaviour 

of the solution near this singularity we introduce the local coordinate(; by 

-2 
X = X + (;V . 

s 
( 9. 1 ) 

The coordinate x = x is defined in such a way that the exact solution 
s 

there takes the value 

2 -1 ..2_ -7/3 p(x ) = - - v + av 
s 3 27 

If we suppose that the following expansions exist 

P == _ _g v- 1 + 5 - 7 / 3 + 
3 27 av L 

n=2 

00 

00 

X = 2 + ~ V-4/3 + 
s 3 l X ( V) 

n n=2 

( ) -( 5+2n) / 3 
n E;.,v v n 

-2(n+1)/3 
V 

(9.2) 

(9.3) 
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then by substituting (9.1) and (9.2) into (l.2) we obtain the recurrent 

system 

dn2 .2. 5 ar-·- 2 n2 +2 (x2(v) + s) = 0 (9.4) 

dn 3 .2_ n + 5 x ( V) - .]_ rv,2 = 0 
ds ·- 2 3 2 3 27 "' (9.5) 

6 ( ( ) ) ( ( ) + c)2 5 3 - n;2 x2 v + s + x2 v "' - 162 a = 0 (9.7) 

with the condition nk(0,v) = 0 , k = 2, 3, ... , since x = xs was chosen 

2 -1 5 -7/3 such that p = - - v + - av exactly. The solutions are 
3 27 

n2 =.LS + (..!.Q_ + .L X (v)) (1 - e9s/2 ) 
9 81 9 2 ( 9. 8) 

n3 = ("t x3(v) A 2) (l 9s/2) - 243 a - e (9.9) 

5 28 121 ( 1 e9s/2) 28 
n4 = (9 x4(v) - 81 ax2(v) - 729 a) - - at; 81 

65 + 65 a X (v)) f;e9s/2 (9.10) - (162 a 36 2 

= ]_ n5 2 
10 + .L 2 9s + ( 81 9 x2 ( v ) ) e · · · (9.11) 

10. Matching of the solutions for regions D and E 

-2 In region D we have q = 0(1), whereas in region E q = O(v ). 

Therefore, we introduce an intermediate coordinate q = qv in order to get 

the matching relations. Substitution in expansion (7.3) yields 

X = 1 -4/3 (2 , ... q, 2 l ( )) -2 ( ) ~~ + 3 av + 9 log - 9 og v + d2 v v + d3 v -8/3 
V 

{ 1 ... ( 20 
1 

... q I 20 20 1 o ( ) ) 1 } - 3 
+ - 3 q + - 729 log + 729 log v - '{29 - 81 d2 v ~ . v 

13 I I 13 -10/3 -10;3 + {- 81 a log q_ + 81 a log v + a4(v)} v + o(v ) 

(10.1) 
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... 
In order to obtain an intermediate coordinates such that the term n2(s,v) 

in expansion (9.2) becomes of order O(v), which is necessary for having 
2 -1 -2 p + - v = 0( v ) , we use the following transformation 
3 

... 2 s = s + 9 log V (10.2) 

In the intermediate region expansion (9.2) transforms into 

q = n2(s,v) v-1 + n3(s,v) "-5/ 3 + n4(s,v) "-7/ 3 + n5(s,v) v-3 + 

= (- 1Q _ .2. ( )) 9i/2 + (- .2. ( ) + J..!L 2) 9F,/2 -2/3 
81 9 x2" e 9 x3 v 243 a e v 

... 
+{ .2. ~ + lQ. log v + 1Q + .2. x (v) + l (1.Q. + .2. x (v)) 2 e9s} v-1 

9 81 81 9 2 2 81 9 2 

{ .2. ( ) + 28 ( ) + 121 ..Q2. ..2..2._ ( ) + - 9 X4 v 81 ax2 v 729 a - 729 a log" - 162 ax2" log v 

& .... ,2.2. ... 9f./2 -4/3 .2. 14 2 -5/3 
- 162 as- 36 ax2(v) s} e V + (9 X3(v) - 243 a ) V 

+ o(v-513 ), (10.3) 

Inserting (10.3) into (10.1) we obtain an identity, when (9.1), (9.3) and 

(10.2) are used. Consequently we obtain the matching relations 

28 1 2 1 2 1 0 .2. = - 27 log v + 9 - 3 log 3 + 3 b1 + 9 log la,+ 9 x2(v)I ,(10.4) 

2 b2 2 2 2 135 x3 ( v) - 14 a 
= - - - a + - ------e--,-- (10.5) 

3 27 135 2 + 9 x2 ( v) ' 
2 

13 110 .2. I 1 135 x3(v) - 14 a 2 
= - 81 a log 81 + 9 x2 ( " ) .... · 9 ( 1 5 ( 2 + 9x2 ( " ) ) ) + 

2(405 x4(v) - 252 ax2(v)- 121) b3 13 130 
--...,,.........;-------,---,--;;;~--- + - + - a log 3 - ..!..::!2.. a 

81 ( 10 + 45 x2 ( v)) 3 27 486 

4 108 
- 27 ab1 + 243 a log " . (10.6) 

From these relations x2(v) , x3(v) and x4(v) may be computed. 
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11. Matching of the solutions for regions E and A 

In expansion (2.1) we substitute 

1 -4/3 ( ( ) ) -2 ( ) -8/3+ ( ) -10/3 x = 2 + j av + x2 v + E v + x 3 v v x4 v v + ... 

( 11. 1) 

and we obtain 

p = 

ill } -13/3 
·- 729 a V + •. • (11.2) 

which agrees with (9.2) for E << -1. In this case there are no matching 

relations: the solutions fit exactly. 

12. The amplitude 

In order to determine the amplitude a of the periodic solution we 
V 

have to insert 

,::, .2_ ,_ 
q_ = :3 - 27 

-4/3 av (12.1) 

into expansion ( 7. 3 ). The constants d2 ( v), d3 ( v) and d4 ( v) which occur in 

this expansion are computed in (8.4), (8.5) and (8.6). We obtain 

a = 2 + .l av-413 +(.lb - .1.§. log v - -9
1 + £9 log 2 - .§.9 log 3) v-2 

:v 3 3 1 27 

+ (_lb -~ 2) -8/3 + (_lb + 104 l ..!±__ ..21_ 
3 2 27 a v 3 3 243 a og v - 27 ab1 - 486 a+ 

+~~a log 3 - ~fa log 2) v- 1o/3 + o(v-1013 ) (12.2) 

In formula ( 1:2.2) a = 2.33810741 and the constants b 1 , b2 and b3 are given 

by (6.8), (6.9) and (6.10). Numerical values for b 1, b2 and b3 will be 

given in a su·bseq_uent paper. 
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13. The period 

The computation of the asymptotic expression for the period cannot be 

reduced. Therefore, we refer to Dorodnicyn's paper L3] or Bavinck and Gras­

man [2] , where all the details have been worked o~t. Integration of 

(13,1) 

over the five regions yields 

-1/3 -1 T = (3 - 2 log 2) v + 3 av - 2 v log v + 

+ ( log 2 - log 3 + 3 b 1 - 1 - log ,r - 2 log Ai ' (-a)) v-1 

+ o(v-1) (13,2) 

It should be noticed that the period computed in [3] and [9] contains com­

putational errors. We remark that in Dorodnicyn's paper the integration 

(13,1) has been carried out over intervals in different regions, which are 

separated by concrete points. It can be shown that one may take arbitrary 

points in the regions of overlapping for the points of separation of the 

different intervals of integration. In fact, it turns out that in the 

final sunnning up of the contributions from the five regions the coordinates 

of these points cancel. For the Volterra-Lotka type of relaxation 

oscillations, where we have the same situation, this can be verified 

rather directly (see [5] ). 
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