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Approximation algorithms are the prevalent solution methods in the field of stochastic programming.
Problems in this field are very hard to solve. Indeed, most of the research in this field has concentrated
on designing solution methods that approximate the optimal solution value. However, efficiency in
the complexity theoretical sense is usually not taken into account. Quality statements mostly remain
restricted to convergence to an optimal solution without accompanying implications on the running time
of the algorithms for attaining more and more accurate solutions.

However, over the last thirty years also some studies on performance analysis of approximation
algorithms for stochastic programming have appeared. In this directionwe find both probabilistic analysis
and worst-case analysis.

Recently the complexity of stochastic programming problems has been addressed, indeed con-
firming that these problems are harder than most deterministic combinatorial optimization problems.
Polynomial-time approximation algorithms and their performance guarantees for stochastic linear and
integer programming problems have received increasing research attention only very recently.

Approximation in the traditional stochastic programming sense will not be discussed in this chapter.
The reader interested in this issue is referred to surveys on stochastic programming, like the Handbook
on Stochastic Programming by Ruszczyński and Shapiro (2003) or the textbooks by Birge and Louveaux
(1997), Kall andWallace (1994), Prékopa (1995), and Shapiro et al. (2009). We concentrate on the studies
of approximation algorithms in relation to computational complexity theory.

With this surveywe intend to give a flavor of the type of results existing in the literature on approxima-
tion algorithms in two-stage stochastic integer programming rather than a complete overviewof the liter-
ature on the subject. We do so by exhibiting a representative selection of results, which we present in full
detail.While presenting themwe do not refer to the literature; these references, togetherwith pointers to
other relevantwork in this field of research, are given in an extensive notes section at the endof the survey.

© 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

Stochastic programming models arise as reformulations or
extensions of optimization problems with random parameters. To
set the stage for our reviewof approximation in stochastic (integer)
programming, we first introduce the models and give an overview
of relevant mathematical properties.

Consider the optimization problem:

min
x

cx
s.t. Ax = b

Tx = h
x ∈ X,

where X ⊂ Rn
+
specifies nonnegativity of and possibly integrality

constraints on the decision variables x. In addition to them1 deter-
ministic constraints Ax = b, there is a set ofm constraints Tx = h,
whose parameters T and h depend on information which becomes
available only after a decision x is made. The stochastic program-
ming approach to such problems is to assume that this uncertainty
can be modeled by random variables with known probability dis-
tribution, and then to reformulate the model to obtain a meaning-
ful and well-defined optimization problem. In this survey we will
use bold face characters for random variables, and plain face to in-
dicate their realizations.

1.1. Stochastic programming models

An important class of stochastic programming problems con-
sists of probabilistic or chance-constrained problems, which model
randomconstraints1 by requiring that they should be satisfiedwith
some prescribed reliabilityα ∈ [0, 1]; typically,α ∈ (0.5, 1). Thus,
the random constraints Tx ≥ h are replaced by the joint chance
constraint

Pr {Tx ≥ h} ≥ α,

or bym individual chance constraints

Pr {Tix ≥ hi} ≥ αi, i = 1, . . . ,m.

Since we will not consider chance-constrained models in our
discussion of approximation results, we do not present them in
more detail here. An introduction on the subject by Henrion can
be found in [1], and the book by Prékopa [2] provides an excellent
survey of these models.

This survey considers recourse models, the other main class of
stochastic programming models. Recourse models are obtained

1 Barring uninteresting cases, chance constraints make sense only for inequality
constraints.
by allowing additional or recourse decisions after observing the
realizations of the random variables (T , h). Thus, recourse models
are dynamic: time is modeled discretely by means of stages,
corresponding to the available information. If all uncertainty is
dissolved at the samemoment, this is captured by a recoursemodel
with two stages: ‘present’ and ‘future’. Given a first-stage decision
x, for every possible realization q, T , h of q, T , h, infeasibilities
h−Tx are compensated atminimal costs by choosing second-stage
decisions y as an optimal solution of the second-stage problem

min
y

qy

s.t. Wy = h − Tx,
y ∈ Y ,

where q is the (random) recourse unit cost vector, the recourse
matrix W specifies the available technology, and the set Y ⊂ Rn2

+

is defined analogously to X . We will use ξ = (q, T , h) to denote
the random object representing all randomness in the problem.
The value function of this second-stage problem, specifying the
minimal recourse costs as a function of the first-stage decision x
and a realization ξ of ξ, will be denoted by v(x, ξ); its expectation
Q (x) := Eξ [v(x, ξ)] gives the expected recourse costs associated
with a first-stage decision x. Thus, the two-stage recourse model is

min
x

cx + Q (x)
s.t. Ax = b

x ∈ X,

(1)

where the objective function cx+Q (x) specifies the total expected
costs of a decision x.

Example 1.1. Consider the following production planning prob-
lem. Using n production resources, denoted by x ∈ Rn

+
with cor-

responding unit cost vector c , a production plan needs to be made
such that the uncertain future demand for m products, denoted
by h ∈ Rm, is satisfied at minimal costs. The available production
technology suffers from failures: deploying resources x yields un-
certain amounts of products Tix, i = 1, . . . ,m. Restrictions on the
use of x are captured by the constraints Ax = b.

We assume that the uncertainty about future demand and the
production technology can be modeled by the random matrix
(T , h), whose joint distribution is known, for example based on
historical data.

A possible two-stage recourse model for this problem is based
on the following extension of the model. For each of the individual
products, if the demand hi turns out to be larger than the
production Tix, the demand surplus hi − Tix is bought from a
competitor at unit costs q1i . On the other hand, a demand shortage
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gives rise to storage costs of q2i per unit. The corresponding second-
stage problem and its value function are

v(x, ξ) = min
y

q1y1 + q2y2

s.t. y1 − y2 = h − Tx,
y = (y1, y2) ∈ R2m

+
.

Defining Q as the expectation of this value function, we obtain a
two-stage recourse model that fits the general form (1).

This particular model type with recourse matrix W = (Im,
−Im), where Im is them-dimensional identitymatrix, is known as a
simple recourse model. The integer recourse version of this model,
for example corresponding to the case that only batches of fixed
size can be bought, will be discussed in Section 3. ▹

So far, we have introduced the recourse concept as a mod-
eling tool to handle random constraints by means of specifying
recourse actions with corresponding recourse costs. There is how-
ever another class of problems for which the (two-stage) recourse
model is a natural approach, namely hierarchical planning mod-
els (HPM). Such problems involve decisions at two distinct levels:
strategic decisions which have a long-term impact, and operational
decisions which are depending on the strategic decisions. At the
time that the strategic decisions need to be made, only probabilis-
tic information on the operational level problems is available. Hi-
erarchical planning models fit the structure of two-stage recourse
models, with strategic and operational decisions corresponding
to first-stage and second-stage variables, respectively. Despite the
differences in interpretation we use the generic name (two-stage)
recourse model to refer to both model types, in line with the
stochastic programming literature.

In many applications new information becomes available
at several distinct moments, say t = 1, . . . ,H , where H is the
planning horizon. That is, we assume that realizations of random
vectors ξt = (qt , T t , ht) become known at time t . This can bemod-
eled explicitly using a multistage recourse structure: for each such
moment t = 1, . . . ,H , a time stage with corresponding recourse
decisions is defined. In compact notation, the multistage recourse
model is

min
x0

cx0 + Q 1(x0)

s.t. Ax0 = b
x0 ∈ X,

where the functions Q t , t = 1, . . . ,H , representing expected re-
course costs, are recursively defined as

Q t(xt−1) := Eξt

vt(xt−1, ξt) | ξ 1, . . . , ξ t−1 ,

where the expectation is with respect to the conditional distribu-
tion of ξt given ξ 1, . . . , ξ t−1,

vt(xt−1, ξ t) := min
xt

qtxt + Q t+1(xt)

s.t. W txt = ht
− T txt−1

xt ∈ X t ,

and Q H+1
≡ 0 (or some other suitable choice). In this survey we

concentrate on two-stage problems, and touch onmultistage prob-
lems only in remarks.

1.2. Mathematical properties

In this subsection, we review mathematical properties of
recourse models. This provides the background andmotivation for
the discussion of many approximation results.

First we consider properties of continuous recourse models.
Some of the results will be usedwhenwe discuss the complexity of
this problem class, and furthermore they facilitate the subsequent
discussion of properties of mixed-integer recourse models. We
state all properties here without proof. References to the proofs
are given in the Notes section at the end of this survey.

Remark 1.1. As before, all models are discussed here in their
canonical form, i.e., all constraints are either equalities or non-
negativities. Themodels in subsequent sections,which also contain
inequalities and/or simple bounds, can be written in canonical
form using standard transformations.

1.2.1. Continuous recourse
Properties of (two-stage) recourse models follow from those of

the recourse function Q and the underlying value function v. In
case all second-stage variables are continuous, properties of the
value function v are well-known from duality and perturbation
theory for linear programming, and are summarized here for easy
reference.

Lemma 1.1. The function v, defined for x ∈ Rn and ξ = (q, T , h) ∈

Rn2+m(n+1) as

v(x, ξ) = inf

qy : Wy = h − Tx, y ∈ Rn2

+


,

takes values in [−∞, ∞].
It is a convex polyhedral function of x for each ξ ∈ Rn2+m(n+1),

and it is concave polyhedral in q and convex polyhedral in (h, T ) for
all x ∈ Rn. �

If for some x the function v takes on the value+∞with positive
probability, this means that x is extremely unattractive since it
has infinitely high expected recourse costs Q (x). From a modeling
point of view this is not necessarily a problem, but in practice it
may be desirable to exclude this situation.

On the other hand, the situation that v(x, ξ) equals −∞ with
positive probability should be excluded altogether. Indeed, the
value −∞ indicates that the model does not adequately represent
our intention, which is penalization of infeasibilities.

Finiteness of v is often guaranteed by assuming that the
recourse is complete and sufficiently expensive.

Definition 1.1. The recourse is complete if v < +∞, i.e., if for all
t ∈ Rm there exists a y ∈ Y such thatWy = t .

Assuming that Y = Rn2
+ , completeness is a property of the recourse

matrix W only. Such a matrix is called a complete recourse matrix.

Definition 1.2. The recourse is sufficiently expensive if v > −∞

with probability 1, i.e., if the dual feasible region {λ ∈ Rm
: λW ≤

q} is nonempty with probability 1.

For example, the recourse is sufficiently expensive if Pr {q ≥ 0}
= 1.

Unless stated otherwise we assume that the recourse is
complete and sufficiently expensive. Then the recourse or expected
value function Q (x) is finite if the distribution of ξ satisfies the
following condition:

For all i, j, k the random functions qjhi and qjTik

have finite expectations.

Sufficiency of this weak covariance condition [3] follows from the
representation of basic feasible solutions in terms of the problem
parameters.

The following properties of the recourse function Q are
inherited from the second-stage value function v.

Theorem 1.1. Consider the recourse function Q , defined by

Q (x) = Eξ


inf


qy : Wy = h − Tx, y ∈ Rn2

+


, x ∈ Rn.
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Assume that the recourse is complete and sufficiently expensive.

(a) The function Q is convex, finite, and (Lipschitz) continuous.
(b) If ξ follows a finite discrete distribution, then Q is a convex

polyhedral function.
(c) The function Q is subdifferentiable, with subdifferential

∂Q (x) =


Ξ

∂v(x, ξ) dF(ξ), x ∈ Rn,

where F is the cumulative distribution function (cdf) of the
random vector ξ.

If ξ follows a continuous distribution, then Q is continuously
differentiable. �

Consider the special case that ξ follows a finite discrete distri-
bution specified by Pr


ξ = (qk, T k, hk)


= pk, k = 1, . . . , K . The

finitely many possible realizations (qk, T k, hk) of the random pa-
rameters are also called scenarios. It is easy to see that in this case
the two-stage recoursemodel is equivalent to the large-scale linear
programming problem

min cx +

K
k=1

pkqkyk

s.t. Ax = b
T kx + Wyk = hk, k = 1, . . . , K
x ∈ Rn

+
, yk ∈ Rn2

+ .

(2)

Analogously, a mixed-integer recourse problem with finite
discrete distribution can be represented as a deterministic large-
scale mixed-integer programming problem.

1.2.2. Mixed-integer recourse
Mixed-integer recourse models do not possess such nice math-

ematical properties; in particular, convexity of the recourse func-
tion Q is not guaranteed. Indeed, the underlying second-stage
value function v is only lower semicontinuous (assuming rational-
ity of the recourse matrixW ), and discontinuous in general.

Also in this setting we are mostly interested in the case that
v is finite. To have v < +∞ we will assume complete recourse,
see Definition 1.1. For example, this condition is satisfied if W̄ is
a complete recourse matrix, where W̄ consists of the columns of
W corresponding to the continuous second-stage variables. On the
other hand, v > −∞ if the recourse is sufficiently expensive, see
Definition 1.2, i.e., if the dual of the LP relaxation of the second-
stage problem is feasible with probability 1.

Theorem 1.2. Consider the mixed-integer recourse function Q , de-
fined by

Q (x) = Eξ [inf {qy : Wy = h − Tx, y ∈ Y }] , x ∈ Rn,

where Y := Zp
+ × Rn2−p

+ . Assume that the recourse is complete and
sufficiently expensive, and that ξ satisfies the weak covariance condi-
tion. Then

(a) The function Q is lower semicontinuous on Rn.
(b) Let D(x), x ∈ Rn, denote the set containing all (h, T ) such that

h− Tx is a discontinuity point of the mixed-integer value function
v. Then Q is continuous at x if Pr {(h, T ) ∈ D(x)} = 0.

In particular, if ξ is continuously distributed, then Q is contin-
uous on Rn. �

1.3. Outline

Asmentioned above, solving stochastic programming problems
is very difficult in general. Indeed, such problems are defined
in terms of expectations of value functions of linear (mixed-
integer) programming problems or indicator functions (in the
case of chance constraints). This calls for the evaluation of multi-
dimensional integrals, which is computationally challenging al-
ready if the underlying random vector ξ has low dimension, and
becomes a formidable task for problems of realistic size. Even if
the underlying distribution is discrete, the typically huge num-
ber of possible realizations may render the frequent evaluation of
function values impracticable. In Section 2 the computational com-
plexity of two-stage recourse models is addressed, showing that
stochastic programming problems are considerably more difficult
to solve than their deterministic counterparts.

It is therefore not surprising that much of the stochastic pro-
gramming literature is devoted to approximation of some sorts.
For example, a key issue for recourse models is the construction
of suitable discrete approximations of the distribution of the un-
derlying random vector. Such an approximation should have a rel-
atively small number of possible realizations, and at the same time
result in a good approximation of the recourse function, at least
in a neighborhood of an optimal solution. For chance-constrained
problems such discrete approximations of the distribution would
destroy convexity of the problem, even if it exists. In this context,
fast and accurate approximation of high-dimensional (normal) dis-
tribution functions receives much research attention.

We do not discuss these ‘typical’ stochastic programming ap-
proximation issues here. They, as well as related subjects such
as convergence and stability, are covered in the Handbook on
Stochastic Programming [4]. Instead, we consider approximations
as they appear in a number of other ways in stochastic program-
ming and which are in spirit closer to approximation in deter-
ministic combinatorial optimization, i.e., their analysis aiming at
worst-case performance guarantees of polynomial-time algo-
rithms.

Section 3 deals with convex approximations for integer re-
course problems. Here the problems themselves are approximated
by perturbing the distributions such as to achieve convex expected
value functions. The strength of this approximation is that a bound
on the absolute error of the approximate solution value can be de-
rived, making this an example of worst-case analysis of approxi-
mation algorithms. This research remains closest in nature to the
classical research in the stochastic programming community, de-
riving algorithms based onmathematical properties of approxima-
tions of the expected value function.

In Section 4 we switch to research that is in spirit closer to
the theoretical computer science and combinatorial optimization
community. We will give some examples of polynomial-time ap-
proximation algorithms for two-stage stochastic combinatorial
optimization problems and provide bounds on their worst-case
performance ratio between optimal and approximate solution
value. There will be a crucial distinction in the way the stochas-
tic information is represented in the model. A basic technique for
designing approximation algorithms for such problems is formu-
lating them as stochastic (mixed) integer programming problems,
finding approximate solutions for the continuous relaxations of
these problems and applying an appropriate rounding technique
to arrive at integer solutions.

Section 5 contains bibliographical notes on approximation
in stochastic programming as reviewed in this survey. It also
addresses some interesting open problems and new research
directions in this field, major parts of which are still unexplored.

2. Complexity of two-stage stochastic programming problems

In this section we study the complexity of two-stage stochastic
programming problems. The complexity of a problem, in terms
of time or space to solve it, is related to its input size. For
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each instance, a bound on the number of elementary computer
operations or storage units required to solve the problem instance
as a function of the size of its input indicates, respectively, the
time or space complexity of the problem. For an easily accessible
introduction into computational complexity theory we refer to the
first chapters of [5]. We will see that the way in which the random
parameters in stochastic programming problems are described
may have a crucial impact on the complexity. In this survey we
consider three models of describing randomness.

We start by studying problem (2), the deterministic equivalent
LP formulation of the two-stage stochastic programming problem.
This model is also sometimes referred to as the scenario-based
model. If in the input of the problem each scenario (qk, T k, hk) and
its corresponding probability pk is specified separately, then the
input size of the problem is just the size of the binary encoding
of all the parameters in this (large-scale) deterministic equivalent
problem and hence the problem is polynomially solvable in case
the decision variables are continuous and NP-complete in general
if there are integrality constraints on decision variables.

In the independent model, all parameters are independently
distributed random variables. For example, if in this case each
parameter has value a1 with probability p and a2 with probability
1 − p, then there are K = 2n1+mn+m possible scenarios. Hence,
the size of the deterministic equivalent problem is exponential
in the dimension of the parameter space, which is essentially
the size required to encode the input. The complexity changes
correspondingly, as will become clear below. Although it will not
surprise anybody that an exponential number of scenarios indeed
leads to higher complexity classes, the mere fact that the number
of scenarios is exponential in the input size is not sufficient to
conclude the correct complexity right away. Indeed, Section 4
presents algorithms for problems in this class that in polynomial
time are yieldingmore or less good quality approximations in spite
of the exponential number of scenarios.

The third and most extreme representation of uncertainty in
stochastic programming is based on the definition of a sample
oracle. In this case the probability distribution of the parameters is
not specified and as such not counted as part of the input. The only
way to get information on these parameters is by random sampling
through an oracle. Each oracle call is regarded as a basic computer
operation in determining the time complexity. In the literature this
model is often referred to as the black box model.

We will concentrate in this section on models of the second
type, having all random (second-stage) parameters independently
and discretely distributed. We will establish ♯P-hardness of the
evaluation of the second-stage expected value function Q (x) for
fixed x. The class ♯P consists of counting problems, for which
membership to the set of items to be counted can be verified
in polynomial time. Examples of such problems are counting the
number of Hamiltonian circuits in a given graph, or counting the
number of basic feasible solutions to a given linear programming
problem. We notice that strictly following this definition of ♯P ,
none of the stochastic programming problems can belong to this
complexity class. However, we will use the term ♯P-hard for an
optimization problem in the same way as NP-hardness is used for
optimization problems whose recognition version is NP-complete.
For an exposition of the definitions and structures of the various
complexity classes we refer to [6].

To prove ♯P-hardness of the evaluation of the second-stage
expected value function Q (x) we use a reduction from the ♯P-
complete problem graph reliability.

Definition 2.1 (graph reliability). Given a directed graph withm
arcs and n vertices, determine the reliability of the graph, defined
as the probability that two given vertices u and v are connected if
each edge fails independently with probability 1/2.
This is equivalent to the problem of counting the number of
subgraphs, from among all 2m possible subgraphs, that contain a
path from u to v.

Theorem 2.1. Two-stage stochastic programming with discretely
distributed parameters is ♯P-hard.

Proof. Take any instance of graph reliability, i.e., a network G =

(V , A) with two prefixed nodes u and v in V . Introduce an extra
arc from v to u, and introduce for each arc (i, j) ∈ A a variable
yij. Give each arc a random weight qij except for the arc (v, u) that
gets a deterministic weight of 1. Let the weights be independent
and identically distributed (i.i.d.) with distribution Pr{q = −2} =

Pr{q = 0} = 1/2. The event {q = −2} corresponds to failure
of the arc in the graph reliability instance. If for a realization of
the failures of the arcs the network has a path from u to v, then
it implies that there is a path from u to v consisting of arcs with
weight 0 only and vice versa.

Denote A′
= A ∪ (v, u). Now define the two-stage stochastic

programming problem:

max{−cx + Q (x) | 0 ≤ x ≤ 1},

where c is a parameter and

Q (x) = Eq[ϕ(x, q)],

with

ϕ(x, q) = max
y


(i,j)∈A

qijyij + yvu

s.t.


i:(i,j)∈A′

yij −


k:(j,k)∈A′

yjk = 0, ∀j ∈ V ,

yij ≤ x, ∀(i, j) ∈ A.

Suppose that for a realization of the failures of the arcs there is a
path from u to v in the network. As we argued the costs qij = 0 for
those coefficients (i, j) that correspond to arcs on the path. For such
a realization, the optimal solution of the second-stage problem,
is obtained by setting all yij’s corresponding to arcs (i, j) on this
path and yvu equal to x, their maximum feasible value, and setting
yij = 0 for all (i, j) not on the path. This yields solution value x for
this realization.

Suppose that for a realization the graph does not have a path
from u to v, implying in the reduced instance that on each path
there is an arc with weight −2 and vice versa, then the optimal
solution of the realized second-stage problem is obtained by
setting all yij’s equal to 0, and henceforth also yvu = 0, yielding
solution value 0.

Therefore, the network has reliability R if and only if Q (x) =

Rx and hence the objective function of the two-stage problem is
(R − c)x.

Thus, if c ≤ R, then the optimal solution is x = 1 with value
(R−c), and if c ≥ R, then the optimal solution is x = 0with value 0.
Since R can take only 2m possible values, by performing a bisection
search we can compute the exact value of R by solving onlym two-
stage stochastic programming problems to know the exact value
of R. Thus, solving this two-stage stochastic programming problem
implies solving the ♯P-hard graph reliability problem. �

By total unimodularity of the restriction coefficients matrix
[7] in the proof, the same reduction shows that the two-
stage stochastic integer programming problem with discretely
distributed parameters, i.e., the problem in which second-stage
decision variables are restricted to have integer values is ♯P-hard.
We notice that imposing restrictions yij ∈ {0, 1} on all second-
stage variables will giveQ (x) = R⌊x⌋. Thus, evaluatingQ (x) is only
♯P-hard when x = 1, but finding the optimal value for x is still ♯P-
hard.
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In the two-stage linear programming problem, evaluation of Q
at any point x is ♯P-easy since for any realization of the second-
stage random parameters a linear program remains to be solved.
Given a ♯P-oracle for evaluating Q at any point x, solving two-
stage stochastic linear programming problems (with discretely
distributed random variables) will require a polynomial number of
consultations of the oracle, since Q is a concave function in x, and
maximizing a concave function over a convex set is known to be
easy [8]. Thus, two-stage stochastic linear programming is in the
class P♯P

= ♯P [6].
Given a ♯P-oracle for evaluating Q at any point x, a two-stage

stochastic integer programming problem lies in NP . In this case
the expected value function is not convex (see [9]), but there are
a finite number of points x that are candidates for optimality. Thus,
two-stage stochastic integer programming is in the class NP♯P .

In case the random parameters of the two-stage stochastic pro-
gramming problem are continuously distributed, the evaluation of
the function Q in a single point of its domain requires the compu-
tation of a multi-dimensional integral. Most of the stochastic pro-
gramming literature on this subclass of problems is concernedwith
how to get around this obstacle. We give the complexity of this
class of problems without proof.

Theorem 2.2. Two-stage stochastic programming with continuously
distributed parameters is ♯P-hard. �

The membership of this problem to ♯P requires additional
conditions on the input distributions, since exact computationmay
not even be in PSPACE.

3. Convex approximations for integer recourse problems

In this section we consider convex approximations for pure
integer recourse problems. For such problems, the second-stage
integer program is necessarily defined using only inequalities.
Moreover, in all integer recourse models that we consider here,
only the right-hand side vector h is random. The second-stage
value function is thus
v(x, h) := min

y
qy

s.t. Wy ≥ h − Tx,
y ∈ Zn2

+ , x ∈ Rn, h ∈ Rm,

where the components of W are assumed to be integers. Assum-
ing complete and sufficiently expensive recourse, v is a finite,
discontinuous, piecewise constant function; in particular, v is non-
convex. It follows from Theorem1.2 that the integer recourse func-
tion Q (x) = Eh [v(x, h)] , x ∈ Rn, is continuous if h is continuously
distributed, but in general Q is non-convex.

However, for certain integer recourse models, characterized
by their recourse matrices W , a class of distributions of h is
known such that the corresponding recourse function Q is convex.
Thus, for such integer recourse models we can construct convex
approximations of the function Q by approximating any given
distribution of h by a distribution belonging to this special class.

Below we first apply this approach to the simple integer re-
course model. Subsequently, we consider general complete inte-
ger recourse models, starting with the case of totally unimodular
recourse matrices.

3.1. Simple integer recourse

The simple integer recourse second-stage problem is defined as

min
y

q+y+
+ q−y−

s.t. y+
≥ h − Tx,

y−
≥ −(h − Tx),

y+, y−
∈ Zm

+
,

where the indices ·
+ and ·

− are conventionally used to indicate
surplus and shortage, respectively. This recourse structure is
obviously complete, and it is sufficiently expensive if q+

≥ 0 and
q−

≥ 0 (componentwise), as will be assumed from now on.
It is trivial to find a closed form for the simple integer recourse

value function. Due to the simple recourse structure, this function
is separable in the tender variables z := Tx:

v(z, h) =

m
i=1

vi(zi, hi), z, h ∈ Rm,

where

vi(zi, hi) = q+

i ⌈hi − zi⌉+
+ q−

i ⌊hi − zi⌋−, (3)

with ⌈s⌉+
:= max{0, ⌈s⌉} and ⌊s⌋−

:= max{0, −⌊s⌋}, s ∈ R.
Since all functions vi have the same structure, we restrict the
presentation to one such function, and drop the index. It is
straightforward to translate the results below back to the full-
dimensional case.

Given the closed form (3), it follows that the one-dimensional
generic simple integer recourse function Q equals

Q (z) = q+Eh

⌈h − z⌉+


+ q−Eh


⌊h − z⌋−


, z ∈ R, (4)

where h ∈ R is a random variable. Throughout we assume that
Eh [|h|] is finite, which is necessary and sufficient for finiteness of
the function Q . We state the following results without proof.

Lemma 3.1. Consider the one-dimensional simple integer recourse
function Q defined in (4).

(a) For all z ∈ R,

Q (z) = q+

∞
k=0

Pr {h > z + k} + q−

∞
k=0

Pr {h < z − k} .

(b) Assume that h has a probability density function (pdf) f that
is of bounded variation. Then the right derivative Q ′

+
exists

everywhere, and is given by

Q ′

+
(z) = −q+

∞
k=0

f+(z + k) + q−

∞
k=0

f+(z − k), z ∈ R,

where f+ is the right-continuous version of f . �

The function Q is generally non-convex because the right
derivative Q ′

+
may be decreasing on some interval. However, there

exists a class of distributions of h such that Q is convex. This class
of distributions is defined in the theorem below.

Theorem 3.1. The one-dimensional simple recourse function Q is
convex if and only if the underlying random variable h is continuously
distributed with a pdf f that is of bounded variation, such that

f+(s) = G(s + 1) − G(s), s ∈ R, (5)

where G is an arbitrary cdf with finite mean value. �

Sufficiency of (5) is easy to see, since it implies that

Q ′

+
(z) = −q+ (1 − G(z)) + q−G(z + 1), z ∈ R, (6)

is non-decreasing. Below we will make extensive use of the
following special case.

Corollary 3.1. Assume that h is continuously distributed with a pdf
f whose right-continuous version is constant on every interval [α +

k, α + k + 1), k ∈ Z, for some α ∈ [0, 1). Then the function Q is
piecewise linear and convex, with knots contained in α + Z.

Proof. Immediate from Theorem 3.1 and (6), since f+(s) = G(s +

1) − G(s) where G is the cdf of a discrete distribution with support
contained in α + Z. �
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Fig. 1. The function Q and its α-approximation Qα (dashed) in case h is
exponentially distributed with parameter 5, q+

= 1, q−
= 1.5, and α = 0.5.

To arrive at convex approximations of the function Q , we
will use Corollary 3.1 to construct suitable approximations of the
distribution of the random variable h. For future reference, we
present the multivariate definition of the approximations that we
have in mind.

Definition 3.1. Let h ∈ Rm be a random vector with arbitrary
continuous or discrete distribution, and let α = (α1, . . . , αm) ∈

[0, 1)m. Define the α-approximation hα as the random vector with
joint pdf fα that is constant on every hypercube Ck

α :=
m

i=1(αi +

ki − 1, αi + ki], k ∈ Zm, such that Pr

hα ∈ Ck

α


= Pr


h ∈ Ck

α


,

k ∈ Zm.

Returning to the one-dimensional case, it is easy to see that the
α-approximations hα, α ∈ [0, 1), of an arbitrary random variable
h, satisfy the assumptions of Corollary 3.1. It follows that the
α-approximations of the function Q , defined for α ∈ [0, 1),

Qα(z) := q+Ehα


⌈hα − z⌉+


+ q−Ehα


⌊hα − z⌋−


, z ∈ R,

are piecewise linear convex approximations of Q , with knots
contained in α + Z. Moreover, it follows from Lemma 3.1(a) and
Definition 3.1 that

Qα(z) = Q (z), z ∈ α + Z.

We conclude that, for each α ∈ [0, 1),Qα is the piecewise linear
convex function generated by the restriction ofQ toα+Z. See Fig. 1
for an example of the function Q and one of its α-approximations.

In the discussion above, no assumptions weremade on the type
of distribution of h. However, to establish a non-trivial bound on
the approximation error, we need to assume that h is continuously
distributed. This loss of generality is acceptable, because it is
possible to construct the convex envelope of the function Q if h
is discretely distributed [10].

Theorem 3.2. Assume that h is continuously distributed with a pdf f
that is of bounded variation. Then, for all α ∈ [0, 1),

∥Qα − Q∥∞ ≤ (q+
+ q−)

|∆|f
4

,

where |∆|f denotes the total variation of f .

Proof. Wewill sketch a proof for the special case that q+
= 1 and

q−
= 0. The proof for the general case is analogous.
Assume that q+

= 1 and q−
= 0. Then the functionQ reduces to

the expected surplus function g(z) := Eh

⌈h − z⌉+


, z ∈ R, with
α-approximations gα(z) := Ehα


⌈hα − z⌉+


, α ∈ [0, 1). Since

g(z) = gα(z) if z ∈ α + Z, consider an arbitrary fixed z ∉ α + Z,
and let z ∈ α + Z be such that z < z < z + 1.

Using Lemma 3.1(b) and the fact that g is continuous if h is
continuously distributed we find that

g(z) − g(z) =

 z

z

∞
k=0

f (t + k)dt.

It follows from Lemma 2.5 in [11] that

1 − F(z) −
|∆|f
2

≤

∞
k=0

f (t + k)

≤ 1 − F(z) +
|∆|f
2

, t ∈ (z, z + 1),

so that
1 − F(z) −

|∆|f
2


(z − z) ≤ g(z) − g(z)

≤


1 − F(z) +

|∆|f
2


(z − z). (7)

On the other hand, using Lemma 3.1(a) we see that

g(s + 1) = g(s) − (1 − F(s)), s ∈ R.

Since the function gα coincides with g on α + Z, and moreover gα

is linear on the interval [z, z + 1], it follows that

g(z) − gα(z) = (1 − F(z))(z − z). (8)

Together, (7) and (8) imply

|gα(z) − g(z)| ≤ (z − z)
|∆|f
2

, z ∈ [z, z + 1]. (9)

Similarly, by comparing g(z) and gα(z) to g(z + 1), one obtains

|gα(z) − g(z)| ≤ (z + 1 − z)
|∆|f
2

, z ∈ [z, z + 1]. (10)

For α-approximations of expected surplus function g , the claimed
error bound now follows from (9), (10), and the observation that
min{(z − z), (z + 1 − z)} ≤ 1/2.

Analogously, the same error bound can be derived for the
special case with q+

= 0 and q−
= 1. The claim for the general

case then follows trivially. �

Example 3.1. Suppose that h is normally distributed with mean
µ and variance σ 2. Then, the pdf f is a unimodal function with
maximum value f (x) = (2π)−1/2σ−1 at x = µ, and thus |∆|f =

(π/2)−1/2σ−1. We conclude from Theorem 3.2 that for all α ∈

[0, 1),

∥Qα − Q∥∞ ≤ (q+
+ q−)(8π)−1/2σ−1.

The uniform error bound of Theorem 3.2 can be reduced by a
factor 2 if the following combination of α-approximations is used.
For α ∈ [0, 0.5) and β = α + 0.5, define the pdf

fαβ(s) :=
fα(s) + fβ(s)

2
, s ∈ R,

where fα and fβ are density functions of α-approximations as
before. The resulting convex approximations Qαβ of Q satisfy

∥Qαβ − Q∥∞ ≤ (q+
+ q−)

|∆|f
8

. (11)

It can be shown that this error bound cannot be reduced by using
other convex combinations of pdf of type fα .
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The error bound presented above is proportional to the total
variation of the pdf f of h. For many distributions, e.g. with
unimodal densities, the total variation of a pdf decreases as the
variance of the distribution increases. We may therefore expect
that the approximation Qα becomes better as the variance of such
distributions becomes higher.

Finally, we remark that convex approximations of the function
Q can be represented as (one-dimensional) continuous simple
recourse functions. The latter functions are defined like (4), except
that no rounding operations are involved. In the case of α-
approximations, the correspondingmodification of the underlying
distribution is known in closed form [11].

Lemma 3.2. Let h be a continuous random variable with cdf F with
finite mean value, and α ∈ [0, 1). Then

Qα(z) = q+Eϕα


(ϕα − z)+


+ q−Eϕα


(ϕα − z)−


+

q+q−

q+ + q−
, z ∈ R,

where ϕα is a discrete random variable with support in α +Z and, for
k ∈ Z,

Pr

ϕα = α + k


=

q+

q+ + q−
Pr


h ∈ Ck

α


+

q−

q+ + q−
Pr


h ∈ Ck+1

α


. �

We conclude that simple integer recourse functions can be ap-
proximated by continuous simple recourse functionswith discretely
distributed right-hand side parameters, simply by dropping the
integrality restrictions and a modification of the distribution ac-
cording to Lemma 3.2. The resulting convex problem can be solved
using existing algorithms for continuous simple recourse problems
with discrete underlying distributions.

3.2. Complete integer recourse

We now turn to the much more general class of complete inte-
ger recourse models. In addition to completeness and sufficiently
expensive recourse, so that v is finite, we assume that the re-
course matrix W is integer (or rational, so that integrality of W
can be obtained by scaling). We will see that also in this case
α-approximations of the distribution of h lead to convex approx-
imations of the recourse function Q . In fact, Van der Vlerk [12]
claims that this approach leads to the convex envelope of the re-
course function Q if the recourse matrix is totally unimodular (TU).
However, it turns out that this result only holds for a special class
of distributions of h. Below we derive the results for this special
case.

3.2.1. Totally unimodular complete integer recourse
Because W is TU, the extreme points of the feasible set {y ∈

Rn2
+ : Wy ≥ h} are integral for any integer right-hand side h.

However, in our recourse problem the right-hand side h−Tx is not
an integer vector in general. But sinceWy is integral for all y ∈ Zn2

wemay round up the right-hand-side. Due to the assumption that
W is TU,wemaynow relax the integrality restrictions on y, without
changing the optimal value of the problem. That is,

v(x, h) := min
y


qy : Wy ≥ h − Tx, y ∈ Zn2

+


= min

y


qy : Wy ≥ ⌈h − Tx⌉ , y ∈ Rn2

+


(12)

= max
λ


λ ⌈h − Tx⌉ : λW ≤ q, λ ∈ Rm

+


, (13)

where the last equality follows from (strong) LP duality.
Since the recourse structure is complete and sufficiently
expensive, it follows that the dual feasible region Λ := {λ ∈ Rm

+
:

λW ≤ q} is a bounded, non-empty polyhedral set. Hence,

v(x, h) = max
k=1,...,K

λk
⌈h − Tx⌉, x ∈ Rn, h ∈ Rm, (14)

where λk, k = 1, . . . , K , are the finitely many extreme points of
the dual feasible region Λ.

Thus, v is the maximum of finitely many round-up functions,
and hence non-convex. However, as we will see below, the expec-
tation of a round-up function is convex if the underlying distri-
bution of h is of a certain type. Analogous to the simple recourse
case, this allows the construction of convex approximations of Q
by means of special purpose approximations of the distribution.

To set the stage, we first study the expected round-up function

R(z) := λEh [⌈h − z⌉] , z ∈ Rm,

defined for any fixed λ ∈ Rm
+
.

If m = 1, λ = 1, and h is continuously distributed, then

R(z) = Eh

⌈h − z⌉+


− Eh


⌊h − z + 1⌋−


, z ∈ R, (15)

since ⌈s⌉ = ⌈s⌉+
− ⌈s⌉−, s ∈ R, and ⌈s⌉−

= ⌊s + 1⌋− for all s ∉ Z.
The right-hand side of (15) is very similar to the one-dimensional
simple recourse function with q+

= 1 and q−
= −1. Hence, in

view of Corollary 3.1 it is not surprising that this one-dimensional
function R is convex if h has a piecewise constant pdf of the type
specified there. This result can be generalized to m-dimensional
round-up functions.

Lemma 3.3. Let h ∈ Rm be a continuous random vector with joint
pdf f that is constant on every hypercube Ck

α :=
m

i=1(αi+ki−1, αi+

ki], k ∈ Zm, for an arbitrary but fixed α = (α1, . . . , αm) ∈ [0, 1)m.
Then

Eh [⌈h − z⌉] = Eϕα


ϕα − z


= µα − z, z ∈ Rm,

where ϕα := ⌈h − α⌉ + α is a discrete random vector with mean
value µα and support in α + Zm, with

Pr

ϕα = α + k


= Pr


h ∈ Ck

α


, k ∈ Zm.

Hence, in this case the round-up function R(z) = λEh [⌈h − z⌉] , z ∈

Rm, is affine with gradient −λ, and thus convex.

Proof. We use that

Eh [⌈h − z⌉] =


k∈Zm

Pr

h ∈ Ck

α


Eh


⌈h − z⌉ | h ∈ Ck

α


,

z ∈ Rm. (16)

For each fixed k ∈ Zm for which Pr

h ∈ Ck

α


> 0, the conditional

distribution of h given h ∈ Ck
α is uniform on Ck

α . It follows
that conditioned on the event h ∈ Ck

α , the components of the
vector h are independent random variables, with each hi uniformly
distributed on (αi + ki − 1, αi + ki], i = 1, . . . ,m. Hence, writing
each component as in (15) and applying Lemma 3.2 to each term
individually, it follows that

Eh

⌈h − z⌉ | h ∈ Ck

α


= α + k − z, z ∈ Rm. (17)

Substitution of (17) in (16) proves the first claim.
The second claim follows trivially from the first one. �

Based on Lemma 3.3, we defineα-approximations of the round-
up function R as

Rα(z) := λEhα [⌈hα − z⌉] , z ∈ Rm,

for α ∈ [0, 1)m, with hα as introduced in Definition 3.1.



W. Romeijnders et al. / Surveys in Operations Research and Management Science 19 (2014) 17–33 25
In general, an α-approximation is neither a lower bound nor an
upper bound of R. However, since R(z + k) = R(z) − λk, for every
k ∈ Zm and z ∈ Rm, we see that R(z) + λz is a periodic function,
which repeats itself on every set Ck

α . Thus, defining

α⋆
∈ argmin


R(z) + λz : z ∈ [0, 1)m


, (18)

Rα⋆ is a lower bound for R, which is sharp at every z ∈ α⋆
+ Zm.

By construction, the affine function Rα⋆ is actually the convex
envelope of R. Moreover, the components α⋆

i , i = 1, . . . ,m, of the
parameter vector α⋆ can be determined independently.

Now we are ready to prove the main result for this class of
models with TU recourse matrix. Using the dual representation
(14) of the value function v, we have

Q (x) = Eh


max

k=1,...,K
λk

⌈h − Tx⌉


, x ∈ Rn.

Note that Q is not simply the pointwise maximum of a number of
expected round-up functions R. However, the results above for the
function R play a major role in the proof of Theorem 3.3.

Theorem 3.3. Consider the integer recourse expected value function
Q , defined as

Q (x) = Eh


min

y
qy : Wy ≥ h − Tx, y ∈ Zn2

+


, x ∈ Rn. (19)

Assume that

(i) the recourse is complete and sufficiently expensive,
(ii) the recourse matrix W is totally unimodular, and
(iii) h is uniformly distributed on

m
i=1(ai, bi] for ai < bi ∈ R, i =

1, . . . ,m.

If

(iv) the matrix T is of full row rank,

then the convex envelope of Q is the continuous recourse expected
value function Qα⋆ , defined as

Qα⋆(x) = Eϕα⋆


min

y
qy : Wy ≥ ϕα⋆ − Tx, y ∈ Rn2

+


,

x ∈ Rn, (20)

where α⋆ is defined by (18), and ϕα⋆ is the discrete random vector
ϕα⋆ = ⌈h − α⋆

⌉ + α⋆ with support in α⋆
+ Zm, and

Pr

ϕα⋆ = α⋆

+ k


= Pr

h ∈ Ck

α⋆


, k ∈ Zm.

If condition (iv) is not satisfied, then Qα⋆ is a lower bound for Q .

Proof. Wewill prove that Qα⋆ is the convex envelope of Q if T is of
full row rank. The other case then follows from basic analysis.

Assuming that T is of full row rank, we may conveniently
consider Q as a function of the tender variables z := Tx ∈ Rm.

First we will prove that Qα⋆(z) = Q (z) for all z ∈ α⋆
+ Zm,

and subsequently that Qα⋆ is a lower bound for Q . This completes
the proof, since all vertices of the polyhedral function Qα⋆ are
contained in α⋆

+ Zm.
Using the dual representation (14) of the value function v, we

have

Q (z) = Eh


max

k=1,...,K
λk

⌈h − z⌉


, z ∈ Rm,

and, analogously,

Qα⋆(z) = Eϕα⋆


max

k=1,...,K
λk(ϕα⋆ − z)


, z ∈ Rm.

Consider a fixed z̄ ∈ α⋆
+ Zm and a fixed l ∈ Zm. Then ⌈h −

z̄⌉ = α⋆
+ l − z̄ is constant for all h ∈ C l

α⋆ , and by definition
Pr

h ∈ C l

α⋆


= Pr


ϕα⋆ = α⋆

+ l

. Since this is true for every

l ∈ Zm, it follows that

Q (z̄) =


l∈Zm

Pr

h ∈ C l

α⋆


Eh


max

k=1,...,K
λk

⌈h − z̄⌉ | h ∈ C l
α⋆


=


l∈Zm

Pr

h ∈ C l

α⋆


max

k=1,...,K
λk(α⋆

+ l − z̄)

=


l∈Zm

Pr

ϕα⋆ = α⋆

+ l


× Eϕα⋆


max

k=1,...,K
λk(ϕα⋆ − z̄) | ϕα⋆ = α⋆

+ l


= Qα⋆(z̄).

It remains to prove that Qα⋆ is a lower bound for Q . Again
conditioning on the events h ∈ C l

α⋆ , l ∈ Zm, we obtain, for z ∈ Rm,

Q (z) =


l∈Zm

Pr

h ∈ C l

α⋆


Eh


max

k=1,...,K
λk

⌈h − z⌉ | h ∈ C l
α⋆


≥


l∈Zm

Pr

h ∈ C l

α⋆


max

k=1,...,K
λkEh


⌈h − z⌉ | h ∈ C l

α⋆


≥


l∈Zm

Pr

h ∈ C l

α⋆


max

k=1,...,K
λkEhα⋆


⌈hα⋆ − z⌉ | hα⋆ ∈ C l

α⋆


=


l∈Zm

Pr

h ∈ C l

α⋆


max

k=1,...,K
λk 

α⋆
+ l − z


=


l∈Zm

Pr

ϕα⋆ = α⋆

+ l


max
k=1,...,K

λk 
α⋆

+ l − z


= Qα⋆(z).

The second inequality is valid because each λk is nonnegative, so
that for every C l

α⋆ the α-approximation λkEhα⋆


⌈hα⋆ − z⌉ | hα⋆ ∈

C l
α⋆


is a lower bound for λkEh


⌈h − z⌉ | h ∈ C l

α⋆


. Note that this

assumption only holds under (iii), see [13]. �

Assumption (iii) in Theorem 3.3 ensures that Qα⋆ is a lower
bound forQ . For other distributions this is not the case, because the
second inequality in the proof above does not hold in general. For
general distributions the α-approximations require a performance
guarantee similar to the one in Theorem 3.2 for simple integer
recourse models. Obtaining such a performance guarantee is a
topic of current research.

We conclude that if the recourse matrix W is totally unimod-
ular, then the integer complete recourse problem with recourse
function Q can be approximated by the continuous complete re-
course problem with recourse function Qα⋆ . To construct this ap-
proximation, the integer restrictions on the second-stage variables
are dropped, and the distribution of the right-hand side param-
eters is modified according to Theorem 3.3. The resulting con-
tinuous complete recourse problem with discretely distributed
right-hand side parameters can be solved by existing special pur-
pose algorithms [14,15].

3.2.2. General complete integer recourse
Finally, we drop the assumption that W is TU. We will prove

thatQα⋆ is an upper bound for the approximation obtained byusing
the LP relaxation of the second-stage problem. The latter convex
function will be denoted by Q LP , defined as

Q LP(x) := Eh


min

y


qy : Wy ≥ h − Tx, y ∈ Rn2

+


,

x ∈ Rn. (21)

Theorem 3.4. Consider the functions Qα⋆ and Q LP , defined by (20)
and (21) respectively,which are convex approximations for the integer
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recourse expected value function Q , defined by (19).

(a) Qα⋆(x) ≥ Q LP(x) for all x ∈ Rn.
(b) Assume

(i) q ≥ 0, so that 0 is a trivial lower bound for v and Q , and
(ii) h is continuously distributed.
Then, Qα⋆(x) > 0 implies Qα⋆(x) > Q LP(x).

Proof. As before, we condition on the events h ∈ C l
α⋆ , l ∈ Zm, to

obtain, for x ∈ Rn,

Qα⋆(x) =


l∈Zm

Pr

h ∈ C l

α⋆


max

k=1,...,K
λk 

α⋆
+ l − Tx


(22)

and

Q LP(x) =


l∈Zm

Pr

h ∈ C l

α⋆


× Eh


max

k=1,...,K
λk (h − Tx) | h ∈ C l

α⋆


. (23)

For each l ∈ Zm it follows from the definition of C l
α⋆ =

m
i=1

α⋆
i + li − 1, α⋆

i + li

that α⋆

+ l ≥ h for all h ∈ C l
α⋆ . Thus,

λk (α⋆
+ l − Tx) ≥ λk (h − Tx) for all h ∈ C l

α⋆ , k = 1, . . . , K , since
λk

≥ 0. This implies that

max
k=1,...,K

λk(α⋆
+ l − Tx) ≥ max

k=1,...,K
λk(h − Tx)

for all h ∈ C l
α⋆ and substitution in (22) and (23) proves that Qα⋆

≥ Q LP .
In order to show that Qα⋆(x) > 0 implies Qα⋆(x) > Q LP(x), it

suffices to prove that if Qα⋆(x) > 0, then there exists l̄ ∈ Zm such
that Pr


h ∈ intC l̄

α⋆


> 0 and

max
k=1,...,K

λk(α⋆
+ l̄ − Tx) > max

k=1,...,K
λk(h − Tx) (24)

for all h ∈ intC l̄
α⋆ .

From (22) it follows that if Qα⋆(x) > 0, then there exists l̄ ∈ Zm

such that maxk=1,...,K λk(α⋆
+ l̄ − Tx) > 0 and Pr


h ∈ C l̄

α⋆


>

0. Since h is continuously distributed, Pr

h ∈ intC l̄

α⋆


> 0.

Moreover, for all h ∈ intC l̄
α⋆ and every k = 1, . . . , K , with λk

≠ 0,
we have λk(α⋆

+ l̄− Tx) > λk(h− Tx) since λk
≥ 0 and α⋆

+ l̄ > h.
This observation combined with maxk=1,...,K λk(α⋆

+ l̄ − Tx) > 0
implies that (24) holds for all h ∈ intC l̄

α⋆ , proving that Qα⋆(x) > 0
implies Qα⋆(x) > Q LP(x). �

It follows immediately from Theorem 3.4 that if Qα⋆ is a lower
bound for Q , then it is a strictly better convex approximation of Q
than Q LP .

Corollary 3.2. Consider the functions Qα⋆ and Q LP , defined by (20)
and (21) respectively,which are convex approximations for the integer
recourse expected value function Q , defined by (19).

Assume

(i) q ≥ 0, so that 0 is a trivial lower bound for v and Q , and
(ii) h is uniformly distributed on

m
i=1(ai, bi] for ai < bi ∈ R, i =

1, . . . ,m.

Then, the function Qα⋆ is a strictly better convex approximation of Q
thanQ LP , in the sense that Qα⋆ is a lower bound for Q , and Qα⋆(x) > 0
implies Qα⋆(x) > Q LP(x).

Proof. Ifwe donot assume thatW is TU, then relaxing the integral-
ity restrictions in (12) yields a lower bound. This combined with
Theorem 3.3 proves that Qα⋆ is a lower bound for Q . The second
claim follows immediately from Theorem 3.4. �
Note that the distribution of ϕα⋆ as defined in Theorem 3.3 is
always discrete, no matter what kind of distribution h follows.
Thus, in particular if h is continuously distributed, then Qα⋆ is
computationally more tractable than Q LP which in this case is
defined as anm-dimensional integral. Moreover, if h is distributed
as in Corollary 3.2, then Qα⋆ is not only computationally more
tractable than Q LP , it is also a better approximation of Q .

4. Worst-case performance ratio analysis

Worst-case performance analysis of approximation algorithms
for stochastic combinatorial optimization problems has seen an
increasing research interest over the last ten years. The two-stage
stochastic optimization problems studied aremainly recourse type
versions of classical deterministic combinatorial problems, like the
two-stage vertex cover problem, where in the first stage a subset
of vertices can be bought for vertex specific prices, and in the
second stage,when a random subset of the edges has to be covered,
extra vertices can be bought against a higher price. All of them
exhibit the relative complete recourse property: every first-stage
decision can be extended to a feasible second-stage solution for
every realization of the random parameters. This is clearly true in
the two-stage vertex cover problem.Wewill comeback to this type
of problem later.

The strength of the approximation results for two-stage
stochastic combinatorial optimization problems studied varies
according to the assumptions made on the randomness of the
stochastic input.

We start in Section 4.1 with an example with the most se-
vere restriction on the randomness: the random input param-
eters are assumed to come in a number of scenarios which is
finite or polynomially bounded by the other problem parameters.
We call this the scenario-based model. The example is in fact to the
best of our knowledge also the first example of worst-case per-
formance ratio analysis of stochastic combinatorial optimization
algorithms.

At the end of Section 4.1 we briefly mention some more
results along this line, where we present how some results can be
extended to the stochastic version in which input parameters are
not given in scenarios but are independently distributed. We call
the latter the independent model. As noted in Section 2 this gives
rise to deterministic equivalent problems of exponential size.

Themost extreme form of randomness is the so-called black box
model. Here the randomness is not regarded as part of the input at
all, but merely the assumption is made that random scenarios can
be sampled by an oracle; each sample taking only one oracle call.
This type of model is the subject of Section 4.2.

4.1. Scenario-based model

Although the example below resembles a two-stage stochastic
knapsack problem, we prefer to present it as a service provision
problem. It actually diverges from most problems studied in this
research direction, since it is a hierarchical planning problem
rather than a recourse problem.

Consider a service provider that can provide a variety of
services. For each service the provider receives requests from its
customers. However, in order to actually provide a service, the
service has to be installed first. Both installation and provision of a
service require capacity from the same resource, which has limited
capacity. Since only served requests yield a profit, the problem is
to select a subset of the services to be installed and to decidewhich
customer requests to serve, such as to maximize the total profit.

If all demands for services are known in advance, the problem
is NP-hard in the ordinary sense and a fully polynomial-time
approximation scheme exists [16].
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We study the problem with uncertain demand for services,
where services have to be installed before demand is observed. The
uncertainty is expressed by a number of scenarios, i.e., demand
vectors with corresponding probabilities. The stochastic service
provision problem is to select services to be installed such as
to maximize expected profit of meeting service requests. It has
been shown that this stochastic problem is strongly NP-hard [17].
Thus, the complexity of the problem increases by introducing
stochasticity.

We will exhibit the performance analysis of an approximation
algorithm for this problem under the restriction that the resource
has enough capacity to install all services. However, it may not be
optimal to install all of them since it may leave too little capacity
for serving the requests.

A typical approach for constructing an approximation algorithm
that is frequently used in stochastic combinatorial optimization
problems is the following. First formulate the problem as a two-
stage stochastic integer programming problem. Then solve the
LP-relaxation and round its optimal solution to obtain a feasible
solution for the original stochastic integer problem. Obviously,
the quality of our approximation will rely heavily on the way we
round the solution of the LP-relaxation. Belowwe describe such an
approximation algorithm with a worst-case performance ratio of
5 +

√
3. First we introduce some notation.

Let n be the number of services and s the capacity of the
single resource. Let qj be the profit obtained from allocating one
resource unit to meeting demand for service j. Each service j
requires a resource capacity rj to be installed,which is independent
of the demand met. Demand is denoted by the random vector
d ∈ Rn, with dj denoting the demand for service j. Binary first-
stage decision variables zj are used to indicate whether service j
is installed (zj = 1) or not (zj = 0), j = 1, . . . , n. The second-
stage decision variable xj gives the amount of resource used to
meet demand for service j. The two-stage stochastic programming
formulation becomes:

max Ed [v(z, d)]

s.t.
n

j=1

rjzj ≤ s

zj ∈ {0, 1} j = 1, . . . , n,

with

v(z, d) = max
n

j=1

qjxj

s.t.
n

j=1

xj ≤ s −

n
j=1

rjzj

xj ≤ djzj j = 1, . . . , n,
xj ≥ 0 j = 1, . . . , n.

The second-stage problem is to determine the amount xj of
requests for service j to be served, taking into account the capacity
constraint and demand constraints. These constraints ensure that
the resource capacity is not exceeded, that the number of service
requests provided does not exceed the demand, and that requests
are only met if the corresponding services are installed. Observe
that the recourse is relatively complete due to the first-stage
constraint and because the demands dj are non-negative.

Let K be the number of scenarios describing the probability
distribution of demand, pk be the probability that scenario k
occurs, and dkj be the demand for service j in scenario k. Given
the scenarios the following deterministic equivalent linear mixed-
integer program can be formulated, in which we use xjk to denote
the resource allocated to providing service j in scenario k (we use
a subscript instead of superscript for k here because of notational
convenience later on).

max
K

k=1

pk
n

j=1

qjxjk

s.t.
n

j=1

(rjzj + xjk) ≤ s k = 1, . . . , K ,

dkj zj − xjk ≥ 0 j = 1, . . . , n, k = 1, . . . , K ,

zj ∈ {0, 1}, xjk ≥ 0 j = 1, . . . , n, k = 1, . . . , K .

(25)

Though integrality conditions only apply to the first-stage vari-
ables zj, if the data, resource capacity, installation requirements,
and demands are integral, the second stage will have an integer
solution in every scenario.

As stated, we assume that
n

j=1 rj ≤ s. Moreover, to facilitate
the exposition we assume that no demand is larger than the node
capacity minus the corresponding installation requirement: for
any service j in any scenario k, dkj ∈ [0, s − rj]. If necessary, this
can be ensured by preprocessing.

The approximation algorithm that we will present is based on
rounding the optimal solution of the LP-relaxation of problem (25)
obtained by replacing the binary restrictions on the z-variables by
0 ≤ zj ≤ 1, j = 1, . . . , n. We assume without loss of generality
that the resource capacity s is equal to 1.

Let (zlp, xlp) be an optimal basic solution of the LP relaxation.
Depending on whether zLPj = 0, 1 or fractional, we will use a
different way of rounding. Moreover, for services with fractional
zLPj we will also differentiate between services with an installation
capacity rate rj below and above some threshold 0 < w < 1, to be
specified later. Let ℓ be the number of fractional zlpj and let ℓw of
these services have rj ≤ w. Let Z be the set of serviceswith zlpj = 1.
By renumbering the services if necessary, assume that 0 < zlpj < 1
and rj ≤ w for j = 1, . . . , ℓw and 0 < zlpj < 1 and rj > w for
j = ℓw + 1, . . . , ℓ. Write the optimal LP value as

π lp
= π lp

0 + π lp
1 + π lp

2 (26)

where

π lp
0 =


j∈Z

K
k=1

pkqjxlpjk ,

π lp
1 =

ℓw
j=1

K
k=1

pkqjxlpjk ,

and

π lp
2 =

ℓ
j=ℓw+1

K
k=1

pkqjxlpjk .

The approximation algorithm applies rounding to the LP
solution to generate various feasible solutions, as we will describe
below, and selects from those solutions the best one. Each feasible
solution or subset of feasible solutions allows for deriving an upper
bound on either π LP

0 , π LP
1 , or π LP

2 in terms of the solution value
of the algorithm πR. Since πOPT

≤ π LP , with πOPT denoting the
optimal solution value of the stochastic integer program, this leads
to a constant worst-case performance ratio for the approximation
algorithm.

The first feasible solution is obtained by installing service j if
and only if zlpj = 1; i.e., install all services j ∈ Z . The remaining
capacity is then allocated to serve demand for the installed services
in a greedy way, in order of non-increasing qj values. Denote the
resulting solution by (zG, xG) and its value by πG. Then, obviously,

π lp
0 ≤ πG

≤ πR. (27)
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The next set of feasible solutions is used to bound π lp
1 . The idea

is to group the services j = 1, . . . , lw , such that the amount of
resource capacity required to install all services in a group is not
low and not high. We partition the set {1, . . . , ℓw} into I subsets,
{Si}Ii=1, such that
j∈Si

rj ≤ β + w i = 1, . . . , I

and
j∈Si

rj ≥ β i = 1, . . . , I − 1. (28)

Notice that


j∈SI
rj is allowed to be smaller than β , for some β > 0

to be specified later such that β + w < 1. In the algorithm this
partition is made in the most simple way, start filling set S1 until
addition of the next service would make the sum of installation
requirements exceed β + w. This service is then the first one of S2,
etc.

Define A =
ℓ

j=1 rjz
lp
j as the resource capacity used for in-

stalling services in the LP-relaxation andnote that
ℓw

j=1 x
lp
jk ≤ 1−A

for each k = 1, . . . , K . Thus, in the optimal solution of the LP relax-
ation atmost 1−A units of capacity are available for the x variables.
Installing only the services in one of the sets Si, i.e. rounding zLPj to
1 for j ∈ Si, will leave at least 1−β −w units of capacity available.
The x-variable values from the LP relaxation solution correspond-
ing to services in Si may be scaled down, if necessary, to use a total
of no more than 1 − β − w units of capacity in each scenario.

For each i = 1, . . . , I we obtain a feasible solution (zHi , xHi)

with zHi
j = 1 for j ∈ Si, z

Hi
j = 0 for j ∉ Si, x

Hi
jk = γ xlpjk for

j ∈ Si, k = 1, . . . , K and xHi
jk = 0 for j ∉ Si and all k, where

γ =

1 − β − w

1 − A
if β + w ≥ A,

1 otherwise.
(29)

The objective value of solution (zHi , xHi) is

πHi =


j∈Si

K
k=1

pkqjx
Hi
jk = γ


j∈Si

K
k=1

pkqjxlpjk .

Hence,

π lp
1 =

I
i=1


j∈Si

K
k=1

pkqjxlpjk =
1
γ

I
i=1

πHi ≤
I
γ

πR. (30)

By the assumption
n

j=1 rj ≤ s and the definition of the sets Si
(specifically (28)) we have

1 ≥

n
j=1

rj ≥

ℓw
j=1

rj =

I
i=1


j∈Si

rj ≥ (I − 1)β. (31)

Thus, I ≤ 1 + 1/β which inserted in (30) implies that

π lp
1 ≤

β + 1
βγ

πR. (32)

The last set of feasible solutions considered by the algorithm
consists of installing each service j = ℓw + 1, . . . , ℓ (having
rj ≥ w) individually. Since A =

ℓ
j=1 rjz

lp
j ≥

ℓ
j=ℓw+1 rjz

lp
j ≥

w
ℓ

j=ℓw+1 z
lp
j , we have

ℓ
j=ℓw+1

zlpj ≤
A
w

.

Just installing service j has objective value qjE[dj], since we have
assumed that for any service j in any scenario k, dkj ∈ [0, s − rj].
Satisfying the demand constraints implies that
K

k=1 p
kxlpjk ≤

E[dj]zlpj . Altogether this yields the following bound.

π lp
2 =

ℓ
j=ℓw+1

K
k=1

pkqjxlpjk

≤

ℓ
j=ℓw+1

qjE[δj]zlpj

≤ πR
ℓ

j=ℓw+1

zlpj ≤
A
w

πR. (33)

Combining (27), (32) and (33) gives

π lp
≤


1 +

β + 1
βγ

+
A
w


πR. (34)

Theorem 4.1. Under the assumption that
n

j=1 rj ≤ 1, the approxi-
mation algorithm has worst-case performance ratio

πOPT

πR
≤


5 + 2

√
3


.

Proof. The choice of w and β depends on A in (34). When A < 1
2

take w = 1 −
1
2

√
3 and β = −

1
2 +

1
2

√
3 and when A ≥

1
2 take

w = β =
1
2A. In both cases w + β ≥ A, and therefore γ =

1−β−w

1−A .
In the former case (34) leads to

πopt
≤ π lp

≤

1 +

2

1 +

√
3


(1 − A)

−1 +
√
3

+
A

1 −
1
2

√
3

 πR

=


1 +


1 +

√
3
2

(1 − A) + 4

1 +

1
2

√
3

A


πR

=


5 + 2

√
3


πR.

In the latter case (34) leads to

πopt
≤ π lp

≤


4 +

2
A


πR

≤ 8πR
≤


5 + 2

√
3


πR. �

We notice that so far tightness of the bound has not been
established. There exists an instance in which the ratio between
the LP-bound and the optimal value is 4 and an instance for which
the algorithm has ratio 2. It is worthwhile to stress once more
that the deterministic counterpart of the problem, having the same
number of binary decision variables, is weakly NP-hard. Thus, the
complexity of the problem increases by introducing randomness,
even though it only means adding continuous decision variables
for each scenario of the problem.

In between the scenario-based model and the black box model
treated in the next section, there is the independent model (see
Section 2). For example, in the two-stage stochastic vertex cover
problem, each edge will need to be covered in the second stage
with probability p, independently of the other edges. In this
independent model the randomness is represented by the value
of p only, while the number of possible scenarios is exponential
in the number of edges. Thus, in order to obtain approximation
algorithms for this model with polynomial running time in terms
of the size of the input, additional assumptions have to be made.
Typically, the second-stage cost of buying a vertex is assumed to
be inflated by a factor λ compared to the first-stage cost, and this
inflation factor is the same for every vertex in every scenario. It
allows to make use of the rather obvious local optimality property
that a vertex is purchased in the first stage if and only if the
probability that it is used in the second stage exceeds 1/λ. An
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assumption of this kind will return in the black box models of
the next section, where a uniform upper bound on this inflation
factor appears to be crucial for getting desired results. In [18]
a constant worst-case approximation ratio is obtained for this
two-stage vertex cover model under the independent model, as
well as similar results on other two-stage versions of classical
combinatorial optimization problems. We do not present any of
these results in further detail here, since all of them are superseded
by the results that have been derived on the black box model.

4.2. The black box model

In this section we study stochastic problems under the black
box model. In this model approximation algorithms are supposed
to run in time polynomial in the size of the first-stage parameters
only, in spite of the hardness of evaluating the objective function
shown in Section 2.

Under this model the uniform inflation factor mentioned
before, or more precisely a uniform bound on the inflation factor,
is a crucial requirement. Thus, what follows has not been designed
for general two-stage decision problems, but is restricted to
recourse models assuming a uniform inflation factor. Moreover,
the randomness is captured by the black box model. Information
on the random vector ξ can only be obtained by sampling;
a distribution is not explicitly given. Sampling one scenario is
considered to be one computer operation (oracle consultation).

For this restricted class of two-stage stochastic programming
models, a beautiful result shows how to transfer the performance
behavior of algorithms for problems under the scenario-based
model, like in the previous section, to algorithms for problems
under the black boxmodel, with only a small loss in approximation
quality. It uses a technique which is well studied in the stochastic
programming literature called the sample average approximation
(SAA) method [4]. In its most basic form, this method simply
draws independently a set of N scenarios from the distribution,
formulates the deterministic equivalent problem, using probability
pk = 1/N for each scenario, and solves this problem. We restrict
our attention to models with a discrete decision space X . We will
show that with high probability only a polynomial number of
scenarios needs to be sampled to remain within 1+O(ϵ) from the
true optimal solution value, ifwe are able to solve the deterministic
equivalent problem optimally. Subsequently we will argue that
this result also holds if we use approximation algorithms to solve
the deterministic equivalent problem.

Consider the generic two-stage stochastic minimization prob-
lem

min
x∈X

f (x) := c(x) + Eξ [v(x, ξ)] , (35)

where X is the set of all decision vectors. For example, X could be
the set of all n-dimensional binary vectors.

The deterministic equivalent problem generated by SAA, with
samples ξ1, . . . , ξN , is formulated as

min
x∈X

f̂N(x) := c(x) +
1
N

N
i=1

v(x, ξi). (36)

We assume:

(A1) c(x) and v(x, ξ) are non-negative for every first-stage
decision x and every scenario ξ ;

(A2) there is an empty first-stage action 0 ∈ X , with the property
that for every x ∈ X and every scenario ξ, v(x, ξ) ≤ v(0, ξ);

(A3) a uniformboundon the inflation factor exists; i.e., there exists
a smallest number λ ≥ 1 such that for every x ∈ X and every
scenario ξ we have

v(0, ξ) − v(x, ξ) ≤ λc(x). (37)
Although these assumptions may seem arbitrary at first sight, they
arise naturally in various applications. As an example consider
again a vertex cover problem. In this problema randomset of edges
needs to be covered. In the first stage, before we know the set of
edges to be covered, we can already buy some vertices. If it turns
out that not all edges are covered, we can buy additional vertices
in the second stage. However, the cost of buying a vertex in the
second stage is increased compared to the first-stage cost by an
inflation factor thatmaydepend on the vertex and the scenario, but
never exceeds some upper bound λ. The objective is to minimize
the expected costs of covering the edges.

Note that if the costs of buying a vertex are non-negative,
then (A1) holds. Moreover, the empty first-stage action (0 ∈ X)
corresponds to buying no vertices in the first stage. Obviously, the
second-stage costs will not be larger for any subset of edges to be
covered, ifwebuy somevertices (x ∈ X) in the first stage compared
to buying none at all, so that (A2) holds. Finally, (A3) follows since
the vertices x can be bought in the second stage at costs bounded
by λc(x).

Next we analyze the SAA method. Fix ϵ > 0, and let x∗ and x̂N
be optimal solutions of the true problem (35) and the approximate
problem (36), respectively. To facilitate the expositionwe suppress
from here on the subscript N and often use Z∗ for denoting
f (x∗). For the proof of the theorem two types of scenarios are
distinguished: scenario ξ is a high scenario if v(0, ξ) > λZ∗/ϵ,
otherwise it is called low. Given the assumptionswemade, the high
scenarios are outliers that cause high second-stage cost, rather
independently of the first-stage action. They should not affect the
optimum x̂ toomuch. LetΞh andΞℓ denote the set of high and low
scenarios, respectively.

Based on this distinction between scenarios we define the
following functions for bounding the difference between f and f̂

Q̂ℓ(x) =
1
N


i:ξ∈Ξℓ

v(x, ξi) and Q̂h(x) =
1
N


i:ξ∈Ξh

v(x, ξi).

Notice that f̂ (x) = c(x) + Q̂ℓ(x) + Q̂h(x). Using p = Pr {ξ ∈ Ξh},
we rewrite f similarly as f (x) = c(x) + Qℓ(x) + Qh(x), with

Qℓ(x) = (1 − p)Eξ [v(x, ξ) | ξ ∈ Ξℓ] and
Qh(x) = pEξ [v(x, ξ) | ξ ∈ Ξh] .

We prove two preliminary lemmas that bound the differences
Qℓ − Q̂ℓ and Qh − Q̂h, which will lead to Theorem 4.2 stating the
approximation quality. In the proofs we use the Chernoff bound
that we recall here for independent reading.

Lemma 4.1 (Chernoff’s Bound). Given independent random vari-
ables Y1, . . . , YN with Yi ∈ [0, 1] ∀i, for every ϵ > 0,

Pr

 N
i=1

Yi − E


N
i=1

Yi

 > ϵN


≤ 2 exp(−ϵ2N). �

Lemma 4.2. For N = Θ(λ2 1
ϵ4

log |X | log 1
δ
), with probability at

least 1 − δ, |Qℓ(x) − Q̂ℓ(x)| ≤ ϵZ∗
∀x ∈ X.

Proof. Fix x ∈ X . Let Vi, i = 1, . . . ,N , denote independent
identically distributed random variables defined as

Vi =


v(x, ξi) if ξi ∈ Ξℓ,
0 if ξi ∈ Ξh.

Then, Q̂ℓ(x) = 1/N
N

i=1 Vi and Qℓ(x) = E

1/N

N
i=1 Vi


. Since a

scenario is called low if v(0, ξ) ≤ λZ∗/ϵ, we can normalize Vi to
Yi =

Viϵ
λZ∗ ∈ [0, 1], i = 1, . . . ,N . The randomvariables Yi satisfy the



30 W. Romeijnders et al. / Surveys in Operations Research and Management Science 19 (2014) 17–33
assumptions of Chernoff’s bound. Moreover,
N

i=1 Yi =
Nϵ
λZ∗ Q̂ℓ(x)

and E

1/N

N
i=1 Yi


=

Nϵ
λZ∗ Qℓ(x) so that

Pr

|Q̂ℓ(x) − Qℓ(x)| > ϵZ∗


= Pr

 Nϵ

λZ∗
Q̂ℓ(x) −

Nϵ

λZ∗
Qℓ(x)

 >
ϵ2N
λ


= Pr

 N
i=1

Yi − E


1/N

N
i=1

Yi

 >
ϵ2N
λ



≤ 2 exp


−
ϵ4N
λ2


.

InsertingN = Θ(λ2 1
ϵ4

log |X | log 1
δ
)makes this probability atmost

δ
|X |

. Obviously, we are not interested in the probability of the event

|Q̂ℓ(x) − Qℓ(x)| > ϵZ∗ for a given x ∈ X , but in the probability
that |Q̂ℓ(x) − Qℓ(x)| > ϵZ∗ holds for at least one x ∈ X . Using the
finiteness of X and by using the union bound over all x ∈ X we can
bound this probability by δ. �

Lemma 4.3. For N = Θ(λ2 1
ϵ4

log |X | log 1
δ
)

(a) With probability at least 1− δ, Q̂h(0)− Q̂h(x) ≤ 2ϵc(x) ∀x ∈ X;
(b) Qh(0) − Qh(x) ≤ 2ϵc(x) ∀x ∈ X.

Proof. For any x ∈ X , using (37) and the notation Nh for the
number of high scenarios, we have

Q̂h(0) − Q̂h(x) =
1
N


i:ξ∈Ξh

(v(0, ξi) − v(x, ξi)) ≤
Nh

N
λc(x), (38)

and using (A3) and p = Pr {ξ ∈ Ξh}, the probability that a high
scenario occurs, we have for any x ∈ X ,

Qh(0) − Qh(x) = p

Eξ [v(0, ξ) | ξ ∈ Ξh]

− Eξ [v(x, ξ) | ξ ∈ Ξh]


≤ pλc(x). (39)

To bound p and Nh/N , we use the definition of high scenario and
(37) to yield

f (x∗) ≥ Qh(x∗) = pEξ


v(x∗, ξ) | ξ ∈ Ξh


≥ p


Eξ [v(0, ξ) | ξ ∈ Ξh] − λc(x∗)


≥ p


λf (x∗)

ϵ
− λf (x∗)


.

Hence, p ≤
ϵ

(1−ϵ)λ
if ϵ < 1. Using this bound on p, another

application of Chernoff’s bound allows to establish that Nh
N ≤ 2 ϵ

λ
with probability at least 1 − δ. Inserting the bounds on Nh/N and
p in (38) and (39), respectively, completes the proof. �

Theorem 4.2. For N = Θ(λ2 1
ϵ4

log |X | log 1
δ
), we have

f (x̂N)

f (x∗)
= 1 + O(ϵ) w.p. 1 − 2δ.

Proof. The two lemmas imply that with probability at least 1−2δ
both of them hold simultaneously. From (A2) it follows that, for
x ∈ X,Qh(x) ≤ Qh(0) so that Qh(x) − Q̂h(x) ≤ Qh(0) − Q̂h(0)
+ Q̂h(0) − Q̂h(x). This observation together with Lemmas 4.2 and
4.3(a) imply that with probability at least 1 − 2δ,

f (x) − f̂ (x) ≤ ϵZ∗
+ 2ϵc(x) + Qh(0) − Q̂h(0). (40)
Similarly, Lemmas 4.2 and 4.3(b) together with assumption (A2)
applied to f̂ imply that, with probability at least 1 − 2δ,

f̂ (x) − f (x) ≤ ϵZ∗
+ 2ϵc(x) + Q̂h(0) − Qh(0). (41)

Adding (40) with x = x̂ and (41) with x = x∗, inserting Z∗
=

f (x∗) and using that f̂ (x̂) ≤ f̂ (x∗), by definition, yields that with
probability at least 1 − 2δ

f (x̂) − 2ϵc(x̂) ≤ f (x∗) + 2ϵZ∗
+ 2ϵc(x∗).

Using assumption (A1), implying that c(x) ≤ f (x) and c(x) ≤ f̂ (x)
∀x ∈ X , we have with probability at least 1 − 2δ,

f (x̂) − 2ϵf (x̂) ≤ f (x∗) + 2ϵf (x∗) + 2ϵf (x∗),

completing the proof. �

Thus if we have a two-stage stochastic programming problem,
whose deterministic equivalent problem we can solve in polyno-
mial time, then we have a fully polynomial-time randomized ap-
proximation scheme (FPRAS) for the black box model, assuming
that the inflation factor λ is bounded by a polynomial function of
the first-stage parameters, which is a minor assumption.

However, as we have seen, the deterministic equivalent
formulation of the stochastic problem may have a different
complexity than the deterministic counterpart of the problem. This
may be even more dramatic than in the example of the previous
section: e.g., the deterministic equivalent formulation of a two-
stage stochastic shortest path problem in which the destination is
randomand edges can be bought at a cheaper price in the first stage
is an NP-hard problem.

Therefore it is useful to extend the translation from the
deterministic equivalent problem to the black box model to
approximation algorithms, again with only a 1 + O(ϵ) loss in
performance ratios. Direct application of SAA to an α-approximate
algorithm for minimizing f̂ (x) does not lead to an α(1 + O(ϵ))-
approximate algorithm for minimizing f (x).

A trick that does work is to minimize c(x) + Q̂ℓ(x), forgetting
about the high scenarios. Since this requires knowledge of Z∗,
instead we just select a number of samples with the lowest values
v(0, ξi). Again these values may be hard to compute, whence we
assume that we have a β-approximation for evaluating v(0, ξi).
Redefine the number of samples to be N ′

= Nβ2 and order them
such that v(0, ξ (1)) ≤ · · · ≤ v(0, ξ (N ′)). Then for γ = 1 −

2ϵ
βγ

define

Q̄ℓ(x) =
1
N ′

γN ′
i=1

v(x, ξ (i)) and g(x) = c(x) + Q̄ℓ(x).

Theorem 4.3. Choosing N ′ samples, any α-approximate solution for
minimizing g(x) gives with probability 1 − O(δ) an α(1 + O(ϵ))-
approximate solution for minimizing f (x).

Proof. We only give a sketch of the proof. Working with β-
approximate values for v(0, ξ), we should adapt the threshold for
being a high scenario at λβZ∗

ϵ
and adjust all the arguments above,

essentially by replacing everywhere λ by λβ .
Then it is shown that |Q̄ℓ(x) − Qℓ(x)| ≤ 3ϵZ∗ with probability

1 − δ. And eventually it is shown that an α-approximate solution
of g(x) is with probability 1 − O(δ) an α(1 + O(ϵ))-approximate
solution for minimizing f (x). �

Under linear first-stage cost and a form of Lipschitz continuity,
all above results can be translated to the continuous case, implying,
a.o., that under these particular conditions there exists an FPRAS
for two-stage stochastic linear programming under the black box
model.
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5. Notes

Stochastic programming models date back to the fifties
[19,20]. Several surveys on stochastic programming have appeared
of which we mention here the introductory book of Kall and Wal-
lace [15] and the comprehensive books by Prékopa [2], Shapiro
et al. [21], and Birge and Louveaux [14]. For surveys specifically
on stochastic integer programming we refer to the chapter by
Louveaux and Schultz in the Handbook on Stochastic Program-
ming [4], and the survey papers by Klein Haneveld and Van der
Vlerk [22], Römisch and Schultz [23], Sen [24], and Stougie and
Van der Vlerk [25]. Resources on the Internet are the Stochastic Pro-
gramming Community Home Page [1] and the bibliography [26].

The focus in this survey is on the two-stage recourse model. For
a detailed discussion of the multistage model and generalizations
(including random recourse matrices and nonlinear models) we
refer to [4,14,15,2]. More about the important class of chance-
constrained problems and the related (conditional) value at risk
models can be found in [4]. This class of problems is very well
surveyed in [2,27].

The mathematical properties of two-stage stochastic linear
programming problems have been derived by various people and
at a rather early stage in the research activities on stochastic
programming. In particular we refer to the overview by Wets [28]
and the monograph by Kall [29].

The mathematical properties of two-stage stochastic integer
programming problems have been established much more re-
cently [9,30–32]. Schultz [33] proved the properties of the mixed-
integer recourse function presented in Theorem 1.2. In addition,
Schultz presented conditions for Lipschitz continuity of the func-
tion Q .

The results in Section 2 are selected from [34]. ♯P-completeness
of the problem graph reliability has been proved in [35]. That
exact evaluation of the second-stage expected value function may
not even be in PSPACE in case randomparameters are continuously
distributed follows from a result in [36].

Dyer and Stougie [34] also prove PSPACE-hardness of a spe-
cific non-standard version of a multistage stochastic programming
problem if the number of stages is considered to be part of the
input. The complexity of standard multistage stochastic program-
ming remains unsolved.

The idea in Section 3 of approximating the expected value func-
tion of a stochastic programming problem with integer recourse
by a convex function through perturbing the distributions of the
random right-hand sides is due to Klein Haneveld et al. [11]. They
implemented this idea for the case of simple integer recourse. See
Van der Vlerk [37] for a generalization to multiple simple recourse
models, allowing for piecewise-linear penalty cost functions. The
extension to the complete integer recourse case was done by Van
der Vlerk [12], as well as the extension to mixed-integer recourse
models with a single recourse constraint [38].

For the problem with simple integer recourse, the formula
and properties in Lemma 3.1 have been derived by Louveaux and
Van der Vlerk [31], while the characterization of all probability
distributions that lead to convex expected value functions in
Theorem 3.1 is due to Klein Haneveld et al. [11].

The uniform bounds on the absolute errors of the α-approx-
imation in Theorem 3.2 and of the αβ-approximation in (11) are
from [11]. There it is also shown that the latter error bound cannot
be reduced by using other convex combinations of probability
density functions of type fα . The error bounds are derived in case
the distributions of the random right hand sides are continuous.
For the case with discretely distributed h it is possible to construct
the convex envelope of the function Q , see [10].

Algorithms for continuous simple recourse problems with
discretely distributed right-hand side parameters can be found
in e.g. [14,15]. Using the structure of such problems, they can be
represented as relatively small deterministic LP problems.

If the matrix W is complete but not TU, then the function Qα⋆

defined in Theorem 3.3 can be used as a convex lower bounding
approximation of the function Q , allowing to approximately solve
the integer recourse problem by solving a continuous complete
recourse model. Although this approach is easy to implement and
in many cases will give better results than using the LP lower
bound Q LP , no (non-trivial) bound on the approximation error is
known. Indeed, inmost applications the approximation will not be
good enough for this purpose. On the other hand, because of the
properties discussed in Section 3, the function Qα⋆ is well-suited as
a building block in special-purpose algorithms for integer complete
recourse models; several of these algorithms [39–42] use the LP
relaxation Q LP for bounding purposes.

Performance analysis of polynomial-time approximation algo-
rithms for stochastic integer programming problems started in the
early eighties, concentrating on so-called probabilistic analysis of
algorithms for hierarchical planning problems, leading to asymp-
totic quality statements. In order to concentrate onworst-case per-
formance analysis and on algorithms that are linear programming
based, we do not cover these results here. The interested reader is
referred to [9] and for a more recent result to [43].

The work on worst-case performance ratio analysis of
polynomial-time algorithms for two-stage stochastic integer pro-
gramming, described in Section 4.1, appeared in Dye et al. [17], an
updated journal version of a technical report from 1999. It was the
first paper of its kind, concerning a result in the scenario-based
model (cf. Section 2). A more recent stream of papers using this
type of analysis resulted in some important contributions. This
stream has been preluded by some results on two-stage stochastic
linear programming, all of them holding in fact for the black box
model (cf. Section 2), even if that term had not been coined yet by
then.

Though their work became recognizedmuch later, in 2000 Nes-
terov and Vial [44]were the first to propose a randomized approxi-
mation scheme for two-stage stochastic linear programming based
on stochastic subgradients in a subgradient-descent approach for
optimization of the convex objective function. The stochastic sub-
gradients allow to avoid expensive function evaluations (cf. Sec-
tion 2). Independently, a little later Dyer et al. [45] designed a
randomized approximation scheme for the two-stage stochastic
linear programming problem based on a Markov Chain Monte
Carlo method for approximating function values embedded in a
simple randomized local search procedure. Also this work is only
recently accepted by a journal. It was not until the work of Shmoys
and Swamy [46] and Shapiro and Nemirovski [47] that this com-
plexity related approximation theory of stochastic programming
started to attract a lot more attention.

As a tool for using LP-rounding based approximation algorithms
for two-stage stochastic integer programming problems, Shmoys
and Swamy [46] designed a stochastic subgradient based approx-
imation scheme for two-stage stochastic linear programming em-
bedded in an ellipsoid method. For recourse models with inflation
factors polynomially bounded in basic input parameters (see Sec-
tion 4.2), they prove their method to be an FPRAS. They also prove
that the boundon the inflation factor is unavoidable for such strong
results, unless P = NP . They then use this FPRAS as the basis for a
technique to round solutions of LP relaxations of stochastic integer
problems, to obtain strong approximation results for the latter.

Shapiro and Nemirovski [47] showed how these results can
be phrased in the context of the sample average algorithm for
stochastic discrete optimization problems, introduced byKleywegt
et al. [48]. The strong results on this method described in
Section 4.2 within the black box model (coined in [46]) are by
Charikar et al. [49]. They hold for any two-stage stochastic recourse
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problem with a uniformly bounded inflation factor and overruled
the interest in the independent model, mentioned above.

Just before the last cited results, papers on two-stage stochas-
tic integer programming problems appeared. In the spirit of Dye
et al. [17], using the scenario-basedmodel, Ravi and Sinha [50] pre-
sented polynomial-time approximation algorithms with constant
worst-case performance ratios for natural two-stage recourse ver-
sions of classical combinatorial optimization problems, like Short-
est Path with stochastic destination and a higher price for buying
edges in the second stage, when the destination is known, than in
the first stage, or Vertex Cover with first-stage and scenario de-
pendent cost of buying vertices to cover a random edge set. The
results are obtained through formulating the deterministic equiv-
alent stochastic integer programming problem, solving the LP re-
laxation and rounding its solution in a clever way.

Simultaneously, and independently, Immorlica et al. [18] stud-
ied the same problems. They presented moreover strong approxi-
mation results for the independent model (cf. Sections 2 and 4.1).
To this end, they assume that the inflation factor, defined in Sec-
tion 4.1, is a constant.

Among the results within the black box model, we like to
mention the fundamental result of Gupta et al. [51]. In the spirit
of [49], they employ boosted sampling to arrive at the formulation
of a first-stage problem, i.e., without inflation factors, as a robust
optimization problem over a set of sampled scenarios, where the
sample size can be restricted to the bound on the inflation factor. It
allows them to derive strong approximation results for stochastic
versions of several classical combinatorial optimization problems
like the Steiner Tree, Vertex Cover and Facility Location problem.

A final and more recent result we mention here is by Bertsimas
and Goyal [52] who show that, under the right assumptions, the
robust optimization version of the general two-stage stochastic
mixed-integer linear programming problem gives a solution with
worst-case performance ratio at most 2. Their analysis is more
related to the one in Section 3 since they obtain their result by
a careful mathematical analysis of the objective function. Among
the assumptions they use are symmetry properties of the sample
space and distribution, and integrality restrictions on first-stage
variables only.Multistage versions of some of the abovementioned
papers are found in [51,53,54].

Worst-case performance analysis in stochastic integer pro-
gramming remains a rich research field. Many specific problems,
including many stochastic versions of scheduling problems, have
not yet been studied.
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