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Abstract

In the last years the vertex enumeration problem of polyhedra has seen a revival in the study of metabolic

networks, which increased the demand for efficient vertex enumeration algorithms for high-dimensional

polyhedra given by inequalities. In this paper we apply the concept of branch-decomposition to the vertex

enumeration problem of polyhedra P = {x : Sx = b, x ≥ 0}. Therefore, we introduce the concept of k-

module and show how it relates to the separators of the linear matroid generated by the columns of S. This

then translates structural properties of the matroidal branch-decomposition to the context of polyhedra. We

then use this to present a total polynomial time algorithm for polytopes P for which the branch-width of

the linear matroid generated by S is bounded by a constant k.

1 Introduction

Given a polyhedron P described by inequalities, the vertex enumeration problem asks for the enumeration of
the vertices of P . With the advent of genome scale metabolic networks in the field of computational systems
biology, vertex enumeration and variants thereof became an important biological analysis tool. However, the
size of genome scale metabolic networks (1000 or more reactions) implies high dimensional polytopes (≈ 1000
dimensions) and in turn computational challenges. Current methods for vertex enumeration in computational
systems biology [26, 12] employ a variant of the double description method [15] and are only applicable for small
or medium-scale networks. Pivoting based enumeration algorithms [7, 1, 23] on the other hand are unsuitable
due to the large amount of degenerate vertices.

While it is possible to show that for non-degenerate polyhedra pivoting based algorithms exist that run in total
polynomial time (i.e. the run time is bounded by a polynomial function of the input and output size) [1], it is
a long standing and basic open question if there exists an algorithm that enumerates the vertices of polytopes
(bounded polyhedra) given by inequalities in total polynomial time.

Indeed, the difficulty to obtain polynomial output-sensitive bounds has fundamental complexity theoretic causes.
Khachiyan et al. showed that vertex enumeration of general polyhedra is NP-hard [13] and hence, it is not
possible to enumerate the vertices of (unbounded) polyhedra in total polynomial time unless P = NP [4].

In this paper we approach the vertex enumeration problem from a novel, decomposition based, perspective.
Therefore, we extend the concept of flux module, previously introduced for specific enumeration problems on
metabolic networks [16, 17] to k-modules for the decomposition of arbitrary polyhedra and even non-convex
subsets of Rn. In Sec. 2 we will show how k-modules correspond to k-separators from matroid theory [20]. This
opens the connection to branch-width [10, 22], a concept related to the better known concept of tree-width
[9, 21, 11]. Tree-width has been introduced on graphs and measure how close a graph is to a tree. If the
tree-width is assumed to be a constant parameter, then many famous NP-hard graph optimization problems,
like maximum independent set, can be solved in polynomial time.
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1.1 Metabolic Networks - a Biological Motivation 1 INTRODUCTION

Branch-width, which we will define for independent reading in Section 3, has similar implications. The concept
of branch-width extends to matroids in a straight-forward way [10]. Hence, by considering the linear matroid
generated by the columns of S, we can apply it to decompose the coefficient matrix S of any polyhedron
P = {x : Sx = b, x ≥ 0}.

This relationship has already been used by Cunningham and Geelen [6] to show the tractability for a class of
integer programs. In this paper, we show that branch-width is also a highly useful complexity measure for
polytopes. Therefore, we present a total polynomial time algorithm for vertex enumeration if the branch-wdith
of the underlying matroid is bounded by a constant k.

We close the introduction with a brief introduction to metabolic networks in Section 1.1 to motivate our
terminology and definitions. Motivated by metabolic networks, we define k-modules in Sec. 2 and characterize
them using matroid theory. These results are then used in Section 3 to translate branch-decompositions of
matroids into polyhedral theory to derive the central result of this paper: a total polynomial time vertex
enumeration algorithm for polytopes of which the coefficient matrix has low branch-width (bounded by a
constant).

1.1 Metabolic Networks - a Biological Motivation

The work was motivated by the analysis of metabolic networks. We will briefly introduce metabolic networks
as an illustration of a nice application area, but also to give sense to the definition of modules of polyhedra,
which will become, in an extended form, crucial in the decomposition of polyhedra in Section 3.

A metabolic network is defined on a set of reactions R and metabolites M. A metabolic network is used to
model the chemical reactions that can happen inside a biological cell. It is defined by a stoichiometric matrix
S ∈ R

M×R. Each reaction r ∈ R corresponds to a column Sr of S. The entry Smr of Sr for m ∈ M denotes
how much of the metabolite m is taken up (Smr < 0) or produced (Smr > 0) by r. Most entries are 0, signifying
that the metabolite is not part of the reaction. We notice that M,R should be understood as index sets that
also name the entries of the matrix. In particular, even if sets A,B ⊆ R satisfy |A| = |B| but A 6= B, we will
distinguish the spaces R

A and R
B. For simplicity, we assume here that all reactions are irreversible, i.e. all

reaction speeds are positive.
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Figure 1: An example network and its corresponding stoichiometric matrix S. Note, that the stoichiometric
coefficients are in general not only −1, 0 or 1, but can be arbitrary rational numbers.

The flux space of a metabolic network is then defined as the polyhedron

P = {x ∈ R
R : Sx = b, x ≥ 0}. (1)

In general, in metabolic network studies almost all coefficients of b are assumed to be 0, modeling steady state
of the network. Non-zero coefficients of b allow to model additional constraints like fixed nutrient uptake rate
or a target level of yield. In that sense, the vectors x ∈ P are a generalization of flows in directed graphs.

Note, that since we did not pose any constraints on the structure of S, every polyhedron can be formulated as
the flux space of a metabolic network, possibly by splitting variables and adding slack variables.

One of the main computational challenges in metabolic network analysis is the enumeration of elementary flux
modes (EFM) [25], which can be considered a variation of enumeration of the vertices and rays of the flux
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2 K-MODULES

space polyhedron. In particular for flux spaces {x ∈ R
R : Sx = 0, x ≥ 0} EFM enumeration is equivalent to

enumerating the vertices of the polytope {x ∈ R
R : Sx = 0,

∑

i∈R xi = 1, x ≥ 0}.

For a certain class of flux spaces we observed that, in practice, the flux space often exhibits a structure that
allows the decomposition of P into what we baptised as flux modules [16].

Before we repeat the definition of flux module, we introduce some additional notation. We use index notation
to restrict to a subset of rows/columns. I.e. xi, i ∈ R will denote the component of x at index i, xA will denote
the subvector of x obtained by retaining the components in A ⊆ R. Observe that xi = (xA)i for all i ∈ A ⊆ R
due to the naming property of R. Also, we write SA to denote the submatrix with all columns in A.

Definition 1 [Flux Module, [16]] A ⊆ R is a flux module if there exists a d ∈ R
M s.t. SAxA = d for all x ∈ P .

We call d the interface flux of the module. ✷

If we are given a partition X of R into flux modules, then this reduces enumeration of V(P ), the set of vertices
of P , to vertex enumeration of the composing flux spaces PA = {x ∈ R

A : SAx = d, x ≥ 0}, A ∈ X :

Theorem 1 ([16]) Let P = {x ∈ R
R : Sx = b, x ≥ 0}, b 6= 0. Let X = {A1, . . . , An} be a partition of R into

flux modules, then

V(P ) =
∏

A∈X

V(PA) :=
{

x ∈ R
R : xA ∈ V(PA) ∀A ∈ X

}

.

In [17] we found that global properties of the space P play a minor role for the characterization of modules.
To be more precise it suffices to look at a single point y inside P and consider a neighbourhood of it. This
neighbourhood captures all the characteristics that are needed to analyse modularity of the whole space. To
remove unnecessary dimensions, we define the set Q of variable elements

Q := {r ∈ R : xmax
i 6= xmin

i }, where (2)

xmax
i := sup{xi : x ∈ P}

xmin
i := inf{xi : x ∈ P}

and obtained the following result, where we use ker(S) to denote the kernel of matrix S:

Theorem 2 ([17]) If P̄ ⊆ {x ∈ R
R : Sx = b}, is convex, it holds for all A ⊆ R

A is P̄ -module ⇔ A ∩ Q is ker(SQ)-module.

To ensure the existence of a point y inside P̄ , we assumed convexity of P̄ . We will later see that convexity is not
necessary. Matroid theory then formed the key to understand ker(SQ)-modules and also delivered very efficient
methods for computing flux modules.

Theorem 3 ([17]) A ⊆ R is a ker(S)-module if and only if A is a separator in the matroid represented by S.✷

Although, as we observed, these results work very well for a certain class of flux spaces of metabolic networks, the
decomposition theorem becomes unpractical for more general cases, since no flux modules are found. Thus, also
for decomposition of polyhedra in general this notion is too restricted to be of more general interest. Therefore,
we introduce the notion of k-module in the next section as a generalization of flux module. It will allow us to
generalize the above decomposition Theorem 1 in Section 3.

2 k-Modules

In this section we will use P not only to denote a polyhedron, but very often as a subset of a polyhedron (in
the previous section we used the notation P̄ for it). The precise meaning will always be made clear.

Definition 2 (k-module) Let P ⊆ {x ∈ R
R : Sx = b}. A ⊆ R is a k-module of P if there exists a d ∈ R

M

and a D ∈ R
M×k s.t.

∀x ∈ P ∃α ∈ R
k : SAxA = d+Dα.

We call d the constant interface vector of the module and D the variable interface matrix. If we can choose
d = 0 we will say that the k-module is a linear k-module. ✷

3



2.1 Restriction to Linear Vector Spaces 2 K-MODULES

Notice that the flux-modules of the previous section are equivalent to 0-modules in this definition. Biologically,
we can understand k-modules as follows: In addition to the fixed function (the interface flux d), k-modules also
allow additional variable functions (spanning a k-dimensional space). Since biological subsystems often have
several side functions, this increases the applicability significantly. In other application areas, we can understand
a k-module as a subsystem that only has few (k) interactions to the rest of the system. Without proof, we give
some observations, which may help the reader to get some intuition for the notion.

Observation 1 Let P ⊆ {x ∈ R
R : Sx = b}.

(i) A ⊆ R is a flux-module iff A is a 0-module;

(ii) Every set A with k elements is a (linear) k-module; in particular every i ∈ R is a (linear) 1-module;

(iii) A is a (k − 1)-module ⇒ A is a k-module;

(iv) The property of k-module is not closed under disjoint union, as is the case with the property of 0-module;

(v) Let B ⊆ R be a 0-module. It holds for all A ⊆ R \ B that A is a k-module if and only if A∪̇B is a
k-module;

(vi) ∅ is a k-module for all k ≥ 0.

We observe that for a given k-module A the variable interface D is not unique (unless k = 0). However, the
linear space spanned by D, defined by span(D) := {Dα : α ∈ R

k} is unique, if k is chosen to be minimal, in
which case k is the dimension of span(D).

Proposition 1 Let P ⊆ R
R, A ⊆ R and let k be minimal s.t. A is a k-module of P . Let D,D′ be two different

variable interfaces of A. Then span(D) = span(D′).

Proof Assume span(D) 6= span(D′). By definition of variable interface, it follows that

∀x ∈ P : SAxA ∈ d+ span(D)

∀x ∈ P : SAxA ∈ d+ span(D′)

⇒ ∀x ∈ P : SAxA ∈ d+ span(D) ∩ span(D′). (3)

Since span(D) 6= span(D′), it follows that span(D) ∩ span(D′) ⊂ span(D). Hence,

dim(span(D) ∩ span(D′)) < dim(span(D)).

It follows that there exists a D′′ ∈ R
M×ℓ with ℓ < k and span(D′′) = span(D) ∩ span(D′). By (3) it follows

that D′′ is a variable interface of A and hence, k was not minimal; a contradiction. �

2.1 Restriction to Linear Vector Spaces

Similar to the case of flux modules, also for k-modules we can restrict ourselves to the analysis of linear vector
spaces:

Theorem 4 Let P ⊆ {x ∈ R
R : Sx = b}, b ∈ R

M. Then holds for all A ⊆ R that

A is a P -k-module ⇔ A ∩ Q is ker(SQ)-k-module,

where Q is the set of variables with non-constant values, as defined in (2). ✷

We observe that this theorem simplifies the characterization of P -k-modules substantially. It is not only sufficient
to analyze linear vector spaces, but we also only need to work with linear k-modules:

Observation 2 Let P ⊆ {v ∈ R
R : Sx = b}. If 0 ∈ P , then holds for all A ⊆ R that

A is a linear P -k-module ⇔ A is a P -k-module.
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2.1 Restriction to Linear Vector Spaces 2 K-MODULES

Proof ⇒: By definition.

⇐: Since 0 ∈ P it follows that there exists a α ∈ R
k with 0 = SA0A = Dα + d. Hence, d = D(−α), which

completes the proof. �

We will derive lemmas from which the proof of Theorem 4 will follow. The first lemma, using aff(P ) to denote
the affine hull of P , shows why we do not need a convexity assumption on P :

Lemma 1 Let P ⊆ {x ∈ R
R : Sx = b}. It holds for all A ⊆ R that

A is a P -k-module ⇔ A is a aff(P )-k-module.

The variable and constant interfaces are the same.

Proof We only show that if A is a P -k-module, then A is also an aff(P )-k-module. The other direction is
trivial since P ⊆ aff(P ).

Let D be the variable interface matrix and d the constant interface vector of the P -k-module A. Let x ∈ aff(P )
be arbitrary but fixed. Hence, there exist λ1, . . . , λn ∈ R and x1, . . . , xn ∈ P for some n ∈ N s.t.

x =
n
∑

j=1

λjx
j , 1 =

n
∑

j=1

λj .

Since xj ∈ P , there exists an αj ∈ R
k with SAx

j
A = Dαj + d for every j = 1, . . . , n. It follows that

SAxA =
n
∑

j=1

λjSAx
j
A =

n
∑

j=1

λj(Dαj + d)

= D

n
∑

j=1

λjα
j + d

n
∑

j=1

λj = D

n
∑

j=1

λjα
j + d.

This concludes the proof. �

We can simplify the space that we have to analyze even further if the relative interior w.r.t. kerS is non-empty:

Lemma 2 Let P ⊆ {x ∈ R
R : Sx = b}. If there exists y ∈ P and ǫ > 0 s.t. y + w ∈ P for all w ∈ kerS with

‖w‖∞ < ε (i.e. the relative interior of P is non-empty), then for all A ⊆ R

A is a P -k-module ⇔ A is a ker(S)-k-module.

Proof ⇐: Let x1 ∈ P be arbitrary but fixed. We define d = SAx
1
A. Let x2 ∈ P be arbitrary. By definition

of P , we have x1 − x2 ∈ kerS. Since A is a ker(S)-k-module, there exists by Obs. 2 an α ∈ R
k such

that SA(x
2
A − x1

A) = Dα, where D is the variable interface of the ker(S)-k-module A. Thus, SAx
2
A =

SAx
1
A +Dα = d+Dα and A is an affine P -k-module.

⇒: Assume A is a P -k-module. Hence, there exist d ∈ R
k, D ∈ RM×k s.t. for all x ∈ P there exists an

α ∈ R
k s.t. SAxA = d+Dα. In particular, there exists αy ∈ R

k s.t. SAyA = d+Dαy.

For a proof by contradiction we assume that A is not a ker(S)-k-module. Hence, there exists w ∈ ker(S)
s.t. for all α ∈ R

k we have SAwA 6= Dα. By definition of y, there exists an ε > 0 s.t. y + εw ∈ P . We
conclude that

SA(yA + εwA) = SAyA + εSAwA 6= d+Dαy +Dα for all α ∈ R
k.

⇒ SA(yA + εwA) 6= d+Dα for all α ∈ R
k.

This is a contradiction. �
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To obtain a polyhedron with non-empty relative interior, we start with a preliminary simple lemma, which
shows that modules stay invariant under the operation of projection onto the space Q of non-constant variables,
as defined in (2). We write prAP to denote the projection of a set P ⊆ R on the variables in A, i.e. prAP :=
{vA : v ∈ P}.

Lemma 3 It holds for all A ⊆ Q, where Q is defined as in (2):

A is (linear) P -k-module ⇔ A is (linear) prQP -k-module.

Proof By definition of projection, we have the following equivalence (for all d ∈ R
M, D ∈ R

M×k):

SAxA = d+Dα ∀x ∈ P∃α ∈ R
k

⇔ SAxA = d+Dα ∀x ∈ prQP∃α ∈ R
k

since A ⊆ Q. �

We use this lemma to prove the following stronger version:

Lemma 4 Let P ⊆ {x ∈ R
R : Sx = b} and Q be defined as in (2). It holds for all A ⊆ R

A is P -k-module ⇔ A ∩ Q is prQP -k-module.

Proof Clearly, A\Q is a 0-module. Hence, by Obs. 1(v) it follows that A is a P -k-module if and only if A∩Q
is a P -k-module. By Lemma 3 it follows that A ∩ Q is a P -module iff A ∩ Q is a prQP -module and hence, the
lemma follows. �

Theorem 4 now follows directly from the previous lemmas.

Proof (Theorem 4) Let xmax, xmin and Q be defined as in (2). Define d := b− SR\Qx
max
R\Q. By definition of

Q, it follows that prQP ⊆ {x : SQx = d}. By Lemma 1 it follows for A ⊆ R that A ∩ Q is a prQP -k-module
iff A ∩ Q is a aff(prQP )-k-module. We observe that aff(prQP ) = {x : SQx = d} and hence aff(prQP ) has non-
empty relative interior. By Lemma 2 it follows that A∩Q is a prQP -k-module iff A∩Q is a ker(SQ)-k-module.
By Lemma 4 it follows that A is a P -k-module iff A ∩ Q is a ker(SQ)-k-module. �

2.2 Matroid Theory for k-Modules

The previous subsection showed that we can restrict ourselves to the analysis of linear vector spaces of the form
P = kerS. We will show now that k-modules have a counterpart in matroid theory in the form of separators.

Definition 3 (k-separator, [20]) Let M be a matroid on the element set R. A set A ⊆ R is a k-separator if
and only if

rank(A) + rank(R \A)− rank(R) < k.

Theorem 5 A ⊆ R is a (kerS)-k-module if and only if A is a k + 1-separator in the matroid M represented
by S. ✷

We will now prove Theorem 5, which connects k-modules to (k+ 1)-separators. The proof goes along the same
lines as the proof we gave in [17] of Theorem 3. We reuse Lemma 5 that we already showed in [17] and repeat
its proof for completeness sake.

Lemma 5 ([17]) Let A ⊆ R and S ∈ R
M×R. Then holds

dim(SAprA ker(S)) = dim(ker(S))− dim(ker(S) ∩X⊥)− dim(ker(S) ∩X),

where X = {x ∈ R
R : xi = 0 ∀i 6∈ A} and X⊥ = {x ∈ R

R : xi = 0 ∀i ∈ A}.
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Proof Define L = prA(ker(S)) and consider the map

prA : ker(S) → L

By the fundamental theorem on homomorphisms it follows that dim(L) = dim(ker(S))−dim(ker(S)∩ker(prA)).
Observe that ker(prA) = X⊥. Hence, we get

dim(L) = dim(ker(S))− dim(ker(S) ∩X⊥).

We can identify L ⊆ R
A with L× 0R\A ⊆ R

R. Observe that

dim(S(L)) = dim(SA(L)) = dim(SAprA ker(S)).

It follows again by the fundamental theorem on homomorphisms that

dim(S(L)) = dim(L)− dim(L ∩ ker(S)).

With the identification, we also observe that L = X ∩ ker(S). We conclude

dim(SAprA ker(S)) = dim(S(L)) = dim(L)− dim(L ∩ ker(S))

= dim(ker(S))− dim(ker(S) ∩X⊥)− dim(L ∩ ker(S))

= dim(ker(S))− dim(ker(S) ∩X⊥)− dim(X ∩ ker(S)),

which concludes the proof. �

Lemma 6 A ⊆ R is a k-module if and only if dim(SAprA kerS) ≤ k.

Proof We have

dim(SAprA kerS) ≤ k

⇔ ∃D ∈ R
M×k : SAprA kerS ⊆ {Dα,α ∈ R

k}

⇔ ∃D ∈ R
M×k : {SAxA : x ∈ kerS} ⊆ {Dα,α ∈ R

k}

⇔ ∃D ∈ R
M×k ∀x ∈ kerS ∃α ∈ R

k : SAxA = Dα,

which concludes the proof. �

Proof (Thm. 5) It follows from the definition of rank that

dim(kerS) = |R| − rank(R),

dim(kerS ∩X) = |A| − rank(A),

dim(kerS ∩X⊥) = |R \A| − rank(R \A).

By Lemma 6 a set A ⊆ R is a k-module if and only if

k ≥ dim(SAprA kerS)

⇔ k ≥ dim(kerS)− dim(kerS ∩X⊥)− dim(kerS ∩X) (by Lemma 5)

⇔ k ≥ (|R| − rank(R)) − (|A| − rank(A)) − (|R \A| − rank(R \A))

⇔ k ≥ rank(A) + rank(R \A)− rank(R)

Hence, A is a k + 1-separator if and only if A is a k-module. �

2.3 Finding k-Modules

Summarizing the results from the previous two subsections, we conclude that a polyhedron P = {v ∈ R
R |

Sv = b, v ≥ 0} contains a k-module if and only if the linear matroid with elements the columns Q of the matrix
SQ contains a k + 1 separator. It follows that if we want to test whether a polyhedron contains a non-trivial

7
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k-module, i.e a k-module containing more than k elements, we only have to check whether the corresponding
matroid is k+1-connected. Algorithms for testing connectivity have been developed by Bixby and Cunningham
[5, 14, 2, 3]. If k is assumed fixed, the connectivity test can be performed in polynomial time [3] using matroid
intersection.

Algorithms that directly compute decompositions of matroids into separators, hence modules by the theory
developed above, have been studied in the context of branch-decompositions [18, 19]. In the following we
use that branch-decompositions can be understood to hierarchically divide the matroid, in order to develop a
recursive algorithm for vertex enumeration.

3 Decomposition Theorems

In this section we will state several decomposition theorems.

3.1 Decompositions for polyhedra of bounded branch width

In this section we relate the existence of a certain decomposition of polyhedron P = {x ∈ R
R : Sx = b, x ≥

0} 6= ∅ to the branchwidth of the linear matroid ([10, 22]) with elements R, the columns of S.

Definition 4 (branch-width) Let M be a matroid on a set R of elements. Let ρ(A) := rank(A) + rank(R \
A)− rank(R) + 1 be the connectivity function.

• A branch decomposition (T, τ) consists of a tree T with nodes of degree 3 and 1 and a bijective map τ that
maps the leaves of T ontoR. For short hand notation we write for sets A of leaves: τ(A) := {τ(a) : a ∈ A}.

• The width of an edge e of T is ρ(τ(Ae)), where (Ae, Be) is the partition of the leaves of T given by T \ e.
Observe that deleting an edge of T splits T into two connected components, one with leaves Ae and the
other with leaves Be. This is also well defined, since ρ(A) = ρ(R \A).

• The width of a branch decomposition is the maximal width of an edge e ∈ T .

• The branch-width of M is the minimal width of all possible branch-decompositions. ✷

Observe that ρ(A) ≤ k if and only if A is a k-separator of the matroid M (Def. 3), which is again the case if
and only if A is a P -k-module.

We now interpret the branch-decomposition as a hierarchical structure of k-modules. This enables us to apply
recursive divide-and-conquer algorithms, like the vertex enumeration algorithm that we are going to present in
this section.

In what follows we use notation A∪̇B to indicate that sets A and B are disjoint and to denote their union. We
call a family W of subsets of R binary rooted if it satisfies the following properties:

(P1) For each A ∈ W , A 6= R there exists exactly one B ∈ W with A∪̇B ∈ W .

(P2) For each C ∈ W, |C| ≥ 2 there exist A,B ∈ W with A∪̇B = C.

This describes a binary rooted tree with root R and leaves all the single element sets of R.

To facilitate the exposition, we assume in this section that for polytope P the set of variables with constant
value is empty; i.e, the set Q as defined in (2) is equal to R.

Proposition 2 Let P = {x ∈ R
R : Sx = b, x ≥ 0} 6= ∅ and assume Q = R. Let M be the linear matroid

generated by the columns of S. There exists a binary rooted family Mod of k-modules of P if and only if M has
branch-width at most k + 1.

Proof ⇒: Define the tree T = (Mod \ {R}, E) with vertex set the sets of Mod except for R and an edge (A,B)
between two sets (vertices) A and B if

• there exists C ∈ Mod with A = B∪̇C or B = A∪̇C or

8



3.1 Decompositions for polyhedra of bounded branch width 3 DECOMPOSITION THEOREMS

• A∪̇B = R.

Clearly, this tree defines a branch decomposition. The leaves of T are sets containing a single element and
hence the map τ of the branch decomposition has τ({i}) = i for all i ∈ R. We observe that if we delete
an edge e = (A,B) from T that either A or B is the union of the leaves of its subtree. Let us assume
w.l.o.g. that this is A. Since A is a k-module, it follows by Theorem 5 and Theorem 4 that A is a k + 1
separator of M . Hence, (T, τ) has width at most k+1 and thus, the branch-width of M is at most k+1.

⇐: Let (T, τ) be a branch-decomposition of M with width at most k + 1. We obtain a rooted binary tree T ′

from T by choosing an arbitrary edge e = (a, b), removing e and adding a root c with children a, b, and
direct all edges away from c. For each node a of T ′ we define the set A(a) := {τ(i) : i is leaf under a}. By
definition of branch-decomposition, we observe for each node a of T ′ that A(a) is a (k+1)-separator and
hence, a k-module by Theorem 5 and Theorem 4. It follows that Mod = {A(a) : a node of T ′} is a family
of k-modules that satisfies properties (P1) and (P2). �

As we have seen, the last part of the proof of this proposition is constructive, in the sense that it gives us
a binary rooted family Mod of k-modules from a branch decomposition of width at most k + 1 of the linear
matroid defined by the columns of S. We will now show how such a family Mod can be used to develop a
recursive algorithm for vertex enumeration.

For each module A ∈ Mod let DA ∈ R
M×k denote the variable interface and dA ∈ R

M the constant interface
and define

PA := {x ∈ R
A : SAx = DAα+ d, x ≥ 0, ∃α ∈ R

k}. (4)

In what follows we will study faces of P ; i.e., intersections of P with separating hyperplanes. Notice that every
face F is completely characterized by the variables that have value 0; i.e., xF = 0 for all x ∈ F . Therefore we
take the liberty to use the name ‘faces’ for subsets of variables. Note that not for every subset F of variables
there exists a face where only the variables in F have value 0. Other variables may indirectly be also forced
to 0. To capture this issue, we speak about feasible and infeasible faces, even though by its proper definition
every face is feasible.

Definition 5 (feasible A-face) For A ⊆ R a set F ⊆ A is called a feasible A-face if there exists a x ∈ P with
xF = 0 and xA\F > 0. ✷

Definition 6 (vertex feasible A-face) For A ⊆ R a set F ⊆ A is called vertex feasible A-face if there exists
a vertex v of P with vF = 0 and vA\F > 0. ✷

We note, that whereas testing for A ⊆ R if a subset F defines a feasible A-face can be done easily by linear
programming (see Prop. 7), testing however if F ⊆ A is a vertex feasible A-face is NP-hard [8].

To approximate vertex feasible faces, we introduce the relaxed notion of minimal A-face:

Definition 7 (minimal A-face) For A ∈ Mod a set F ⊆ A is a minimal A-face if there exist no distinct
y, z ∈ {x ∈ PA : xF = 0} with SAy = SAz, i.e. SA is injective on {x ∈ PA : xF = 0}. ✷

Algorithm 1 enumerates all minimal feasible C-faces for a given k-module C ∈ Mod, by recursively enumerating
all minimal A-faces and all minimal B-faces for the two k-modules A,B ∈ Mod that constitute C; i.e., C = A∪̇B.

That this is correct follows from the following theorem.

Theorem 6 Algorithm 1 computes all the minimal feasible C-faces for a given C ∈ Mod. ✷

To prove Thm. 6, we observe the following decomposition property of minimal faces:

Lemma 7 Let A,B,C ∈ Mod with C = A∪̇B. For every minimal feasible C-face FC there exists a minimal
feasible A-face FA and a minimal feasible B-face FB with FC = FA ∪ FB.

Proof Let FC be an arbitrary but fixed minimal C-face. Hence, there exists a x ∈ P with xFC = 0 and
xC\FC > 0.

9
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Algorithm 1 Algorithm to compute all minimal feasible C-faces for C ∈ Mod. For C = R, this algorithm will
compute all vertices.

function F = getMinimalFeasibleFaces(C)
if |C| = 1 then

F := ∅.
if ∅ feasible for C then

F := F ∪ {∅}.
end if
if C minimal feasible for C then

F := F ∪ {C}.
end if

else
Let A,B ∈ Mod with C = A∪̇B.
FA := getMinimalFeasibleFaces(A)
FB := getMinimalFeasibleFaces(B)
F := {FA ∪ FB : FA ∈ FA, FB ∈ FB}.
for F ∈ F do

if F not minimal for C or F not feasible for C then
F := F \ {F}.

end if
end for

end if

Define FA := FC ∩ A and FB := FC ∩B. Since C = A∪̇B, it follows that FC = FA ∪ FB. Furthermore, FA

is a feasible A-face and FB is a feasible B-face, since it follows from xFC = 0 that xFA = 0, xFB = 0 and from
xC\FC > 0 that xA\FA > 0 and xB\FB > 0.

We only have to show that FA and FB are also minimal. For proof by contradiction assume that FA is not
minimal (the case FB non minimal is analogous). It follows that there exist distinct y, z ∈ PA with yFA =
0, zFA = 0 and SAy = SAz. Define w ∈ R

C by wA = y − z and wB = 0. We observe that SCw = SAwA = 0
and supp(w) ⊆ supp(xC). It follows that there exists an α > 0 such that xC + αw ∈ PC and xC − αw ∈ PC .
This is a contradiction to minimality of FC , since y 6= z and hence, w 6= 0. �

Proof (Thm. 6) First notice that the only two possible faces of a k-module C with |C| = 1 are ∅, and C itself.

Any k-module C ∈ Mod with |C| ≥ 2 is constituted by two disjoint k-modules A,B ∈ Mod: C = A∪̇B. By
Lemma. 7 we know that for any minimal feasible C-face FC , there exist a minimal feasible A-face FA and a
minimal feasible B-face FB, such that FC = FA ∪ FB. Since Algorithm 1 tests every possible pair consisting
of a minimal A-face and a minimal B-face on feasibility and minimality for C, this implies the theorem for any
set C ∈ Mod with |C| ≥ 2. �

That Algorithm 1 eventually outputs all vertices of P is a corollary of the following theorem:

Theorem 7 Let A ∈ Mod be an affine 0-module. Then, a feasible A-face is minimal if and only if it is vertex
feasible. ✷

Corollary 1 The minimal feasible R-faces are the vertices of P and Algorithm 1 applied to C = R computes
all vertices of P .

Proof By Theorem 6 all computed R-faces are minimal feasible and thus, by Theorem 7 vertex feasible, since
R is an affine 0-module.

Since there are no further variables, every vertex feasible R-face is a vertex. �

Before we prove Thm. 7, we observe the following property that allows us to relate minimal feasible faces and
vertex feasible faces.

Proposition 3 Every vertex feasible A-face F for A ∈ Mod is a minimal A-face.

10
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Proof By definition of vertex feasible A-face, there exists a vertex v of P with vF = 0 and vA\F > 0. For
proof by contradiction, we assume now that F is not a minimal A-face. It follows that there exist distinct
y, z ∈ {x ∈ PA : xF = 0} with SAy = SAz. We observe that w′ := y − z satisfies SAw

′ = SAy − SAz = 0.
Define w ∈ R

R by wA = w′
A and wR\A = 0. We observe that supp(w) ⊆ supp(v). Hence, there exists an α > 0

such that v − αw ∈ P and v + αw ∈ P . This is a contradiction to the assumption that v is a vertex. �

Proof (Thm. 7) Proposition 3 shows that every vertex feasible A-face is a minimal A-face.

Let F be minimal feasible A-face. Since A is a 0-module it holds for all x ∈ PA that SAxA = d. It follows
by definition of minimal A-face that x ∈ PA with xF = 0 is unique. Since F is also feasible such x exists and
satisfies xA\F > 0.

We observe that by construction P is pointed. Since F is a feasible A-face, it follows that P̂ := {x ∈ P : xF = 0}
is a non-empty pointed polyhedron. Hence, there exists a vertex y of P̂ . Clearly, y is also a vertex of P and
satisfies yA ∈ PA and yF = 0. Thus, yA = xA and F is a vertex feasible A-face. �

Now we will show that in case P is a polytope (i.e. P bounded) the existence of a set Mod of k-modules makes
Algorithm 1 run in polynomial time, for fixed k. Therefore, we will do a number of observations that allow us
to bound the number of minimal feasible faces and finally obtain the runtime bound. The following proposition
still also holds for unbounded polyhedra:

Proposition 4 For every minimal A-face F for A ∈ Mod holds that dim f ≤ k with f = {x ∈ PA : xF = 0}.

Proof Since A is a k-module, it follows that SA maps every point in f into a k-dimensional space. If dim f > k,
it follows that SA is not injective on f and hence, F would not be minimal. �

We observe the following corollary, which may give another intuition for the final complexity bound.

Corollary 2 Every vertex feasible A-face F for A ∈ Mod satisfies dim{x ∈ PA : xF = 0} ≤ k.

Proof Directly from Prop. 3 and Prop. 4. �

Lemma 8 Assume P is bounded. Suppose for A ∈ Mod that F is a feasible A-face and let h = dim f with
f = {x ∈ PA : xF = 0}. Then there exist a set of ℓ ≤ h + 1 vertex feasible A-faces F 1, . . . , F ℓ such that
F = F 1 ∩ F 2 ∩ . . . ∩ F ℓ.

Proof Since F is a feasible A-face, there exists a y ∈ P with yF = 0 and yA\F > 0. Therefore, y lies in the

face {x ∈ P : xF = 0} of P . Since P is bounded, there exist a set of vertices V f of P such that y ∈ conv(V f )
and wF = 0 for all w ∈ V f .

It follows that yA ∈ conv(prAV
f ) and prAV

f ⊆ PA. Since dim{x ∈ PA : xF = 0} = h, there exist by
Carathéodory’s theorem [24] ℓ ≤ h+ 1 points w1, w2, . . . , wℓ ∈ prAV

f with yA ∈ conv(w1, . . . , wℓ).

Clearly F i = {j ∈ R : wi
j = 0} is a vertex feasible A-face and F ⊆ F i for each i = 1, . . . , ℓ. For every

j ∈ A \ F with j ∈ F i for all i = 1, . . . , ℓ it follows that yj = 0, since yA ∈ conv(w1
A, . . . , w

ℓ
A), and hence,

F ⊇ F 1 ∩ F 2 ∩ . . . ∩ F ℓ. Thus, F = F 1 ∩ F 2 ∩ . . . ∩ F ℓ. �

Proposition 5 If P is bounded then holds for all A ∈ Mod that

|{F ⊆ A : F minimal feasible A-face}| ≤ |{F ⊆ A : F vertex feasible A-face}|k+1.

Proof By Prop. 4 every minimal feasible A-face has dimension at most k. Hence, by Lemma 8 there exists
an injective map that assigns to each minimal feasible A-face a non-empty set of at most k + 1 vertex feasible
A-faces. Let cvert denote the number of vertex feasible A-faces. There are at most

k+1
∑

i=1

(

cvert

i

)
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non-empty subsets of at most k + 1 elements. For cvert = 1, we have
∑k+1

i=1

(

cvert
i

)

= 1 = ck+1
vert and for cvert ≥ 2,

we can estimate

k+1
∑

i=1

(

cvert

i

)

≤
k+1
∑

i=1

civert
i!

≤
k+1
∑

i=1

2k+1−icivert
k + 1

≤ (k + 1)
ck+1
vert

k + 1
= ck+1

vert ,

since 2k+1−i ≥ k+1

i!
for all i ≤ k ∈ N.

By injectivity it follows that this is also a bound on the number of minimal feasible A-faces. �

Proposition 6 For A ∈ Mod holds that

|{F ⊆ A : F vertex feasible A-face}| ≤ |{v ∈ R
R : v is a vertex of P}|.

Proof Let F 1, F 2 be distinct vertex feasible A-faces and let v1, v2 be representing vertices. It follows that
supp(v1A) = A \ F 1 6= A \ F 2 = supp(v2A). Hence, v

1 6= v2 and the result follows. �

Theorem 8 Assume P is bounded. Let A,B,C ∈ Mod with C = A∪̇B. Assume the set of minimal feasible
A-faces FA and the set of minimal feasible B-faces FB are given. Then the set of minimal feasible C-faces FC

can be computed in time

O
(

|V|2k+2t
)

,

where V is the set of vertices of P and t is the time needed to check if a face is feasible and minimal.

Proof By Lemma 7 every minimal feasible C-face can be obtained from a combination of one minimal feasible
A-face and a minimal feasible B-face. It follows that we have to consider at most |FA| · |FB | combinations. By
Proposition 6 and Proposition 5 it follows that

|FA| · |FB| ≤ |V|k+1 · |V|k+1 ≤ |V|2k+2.

For each candidate we have to check if it is feasible and minimal, which gives the final runtime bound. �

We now observe that the time for checking if a face is minimal feasible can be done in polynomial time, which
then leads us to the final result on the runtime of Alg. 1.

Proposition 7 Given A ∈ Mod, it can be checked in input polynomial time if a A-face F is minimal feasible.

Proof To check feasibility, we just have to solve the following LP:

max z

s.t. Sx = b

xF = 0

xi − z ≥ 0 ∀i ∈ A \ F

x ≥ 0

If the LP is unbounded or the optimal value is greater than 0 then we have found a solution x∗ ∈ P with x∗
F = 0

and x∗
A\F > 0, which proves feasibility of F . If F is feasible, there exists a solution of the LP with z > 0 and

hence, the optimal value of the LP has to be positive.

To check minimality, do the following: By minimizing / maximizing each i ∈ A using linear programming, we
compute the following set G:

G := {i ∈ A : ui > ℓi} , where

ui := sup{xi : x ∈ PA, xF = 0} ∀i ∈ A

ℓi := inf{xi : x ∈ PA, xF = 0} ∀i ∈ A

Observe that G ∩ F = ∅.

12
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Claim 3.1 F is minimal if and only if SG : RG → R
M is injective.

Proof ⇒: Assume SG is not injective, i.e. there exists a x′ ∈ R
G \ {0} with SGx

′ = 0. Define x ∈ R
A by

xG = x′ and xA\G = 0. By construction of G and convexity, there exists a v ∈ PA with vF = 0 and
ℓG < v < uG. Hence, there exists an α > 0 such that v+αx ≥ 0 and v−αx ≥ 0. We observe further that
SA(v ± αx) = SAv ± αSAx = SAv and hence, v ± αx ∈ P with (v ± αx)F = 0. This is a contradiction to
minimality of F .

⇐: Assume F is not minimal. Hence, there exist x, y ∈ PA with xF = yF = 0 and SAx = SAy. It follows
that w := x− y satisfies SAw = 0 and by definition of G, we have wA\G = 0. Hence, SGwG = SAw = 0,
which is a contradiction to injectivity of SG. �

Since we can check injectivity of matrices by computing the nullspace matrix in polynomial time, we can also
check minimality of F in polynomial time. �

Theorem 9 If P is a polytope and Mod is a family of k-modules satisfying Properties (P1) and (P2) for
constant k, then Algorithm 1 runs in total polynomial time.

Proof As mentioned before, Mod can be represented as a binary tree, rooted at R, with leaves the single
element modules. We observe that the time spend for the leaves (modules A ∈ Mod with |A| = 1) is O(Rt),
where t is the time needed to check if the corresponding face is minimal and feasible. Let C be the set of interior
nodes, then the total time needed for determining the minimal feasible faces of all modules corresponding to
interior nodes is, by Theorem 8,

O
(

|C||V|2k+1t
)

,

where t is the time needed to check if a given face is minimal and feasible. By Prop. 7 t grows polynomially in
the input size. Since the number of internal nodes |C| of a binary tree is linear in the number of leaves |R|, the
result follows. �

4 Conclusion

In this paper we introduced (affine) k-modules as a tool to decompose polyhedra given by inequalities in general
and metabolic networks in particular.

We showed a strong connection between k-modules and (k + 1)-separators in matroid theory. This allows the
application of algorithms to find (k + 1)-separators from matroid theory. This way we were able to extend
the concept of a decomposition into flux modules [16] to a decomposition into k-modules by using branch-
decompositions.

Branch-decompositions turned out to be a valuable structure for the vertex enumeration problem, because it
allowed us to show that the vertex enumeration problem can be solved for polytopes in total polynomial time if
the branch-width is bounded by a constant. If the vertices of polytopes in general can be enumerated in total
polynomial time is still a major open problem in computational discrete geometry.

The presented vertex enumeration algorithm also works for unbounded polyhedra. However, we were not able to
show a total polynomial run-time bound. This may be linked to the fact that vertex enumeration of polyhedra
in general is NP-hard.

We think that the presented algorithm is a major step towards understanding the complexity of the vertex
enumeration algorithm. Further studies are needed to investigate the practical applicability of the algorithm,
for example in the context of Elementary Flux Mode enumeration of metabolic networks.
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