
ar
X

iv
:1

70
2.

05
21

7v
1

 [
cs

.D
S]

 1
7

Fe
b

20
17

A Fully Polynomial Time Approximation

Scheme for Packing While Traveling

Frank Neumann1, Sergey Polyakovskiy1, Martin Skutella2, Leen Stougie3,

Junhua Wu1

1 Optimisation and Logistics, School of Computer Science,

The University of Adelaide, Australia
2 Combinatorial Optimisation & Graph Algorithms,

Department of Mathematics,

Technical University of Berlin, Germany
3 CWI and Operations Research,

Dept. of Economics and Business Administration,

Vrije Universiteit, Amsterdam, The Netherlands

Abstract

Understanding the interactions between different combinatorial optimisation

problems in real-world applications is a challenging task. Recently, the traveling

thief problem (TTP), as a combination of the classical traveling salesperson prob-

lem and the knapsack problem, has been introduced to study these interactions in a

systematic way. We investigate the underlying non-linear packing while traveling

(PWT) problem of the TTP where items have to be selected along a fixed route. We

give an exact dynamic programming approach for this problem and a fully polyno-

mial time approximation scheme (FPTAS) when maximising the benefit that can be

gained over the baseline travel cost. Our experimental investigations show that our

new approaches outperform current state-of-the-art approaches on a wide range of

benchmark instances.

Introduction

Combinatorial optimisation problems play a crucial role in important areas such as

planning, scheduling and routing. Many combinatorial optimisation problems have

been studied extensively in the literature. Two of the most prominent ones are the trav-

eling salesperson problem (TSP) and the knapsack problem (KP) and numerous high

performing algorithms have been designed for these two problems.

Looking at combinatorial optimisation problems arising in real-world applications,

one can observe that real-world problems often are composed of different types of

combinatorial problems. For example, delivery problems usually consists of a routing

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301632893?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1702.05217v1

part for the vehicle(s) and a packing part of the goods onto the vehicle(s). Recently,

the traveling thief problem (TTP) [1] has been introduced to study the interactions of

different combinatorial optimisation problems in a systematic way and to gain better

insights into the design of multi-component problems. The TTP combines the TSP and

KP by making the speed that a vehicle travels along a TSP tour dependent on the weight

of the selected items. Furthermore, the overall objective is given by the sum of the

profits of the collected items minus the weight dependent travel cost along the chosen

route. A wide range of heuristic search algorithms [2, 3, 8] and a large benchmark

set [12] have been introduced for the TTP in recent years. However, up to now there

are no high performing exact approaches to deal with the TTP.

The study of non-linear planning problems is an important topic and the design of

approximation algorithms has gained increasing interest in recent years [6, 14]. The

non-linear packing while traveling problem (PWT) has been introduced in [10] to push

forward systematic studies on multi-component problems and deals with the packing

part combined with the non-linear travel cost function of the TTP. The PWT can be

seen as the TTP when the route is fixed but the cost still depends on the weight of the

items on the vehicle. The problem is motivated by gaining advanced precision when

minimising transportation costs that may have non-linear nature, for example, in appli-

cations where weight impacts the fuel costs [4, 7]. From this point of view, the PWT

is a baseline problem in various vehicle routing problems with non-linear costs. Some

specific applications of the PWT may deal with a single truck collecting goods in large

remote areas without alternative routes, that is a single main route that a vehicle has

to follow may exist while any deviations from it in order to visit particular cities are

negligible [11]. The problem is NP-hard even without the capacity constraint usually

imposed on the knapsack. Furthermore, exact and approximative mixed integer pro-

gramming approaches as well as a branch-infer-and-bound approach [11] have been

developed for this problem.

We introduce a dynamic programming approach for PWT. The key idea is to con-

sider the items in the order they appear on the route that needs to be travelled and

apply dynamic programming similar as for the classical knapsack problem [13]. When

considering an item, the decision has to be made on whether or not to pack the item.

The dynamic programming approach computes for the first i, 1 ≤ i ≤ m, items and

each possible weight w the maximal objective value that can be obtained. As the pro-

gramming table that is used depends on the number of different possible weights, the

algorithm runs in pseudo-polynomial time.

After having obtained the exact approach based on dynamic programming, we con-

sider the design of a fully polynomial approximation scheme (FPTAS) [5].

First, we show that it is NP-hard to decide whether a given instance of PWT has a

non-negative objective value. This rules out any polynomial time algorithm with finite

approximation ratio under the assumption P 6= NP . Due to this, we design a FPTAS

for the amount that can be gained over the travel cost when the vehicle travels empty

(which is the minimal possible travel cost). Our FPTAS makes use of the observation

that the item with the largest benefit leads to an objective value of at least OPT/m and

uses appropriate rounding in the previously designed dynamic programming approach.

We evaluate our two approaches on a wide range of instances from the TTP bench-

mark set [12] and compare it to the exact and approximative approaches given in [11].

2

Our results show that the large majority of the instances that can be handled by ex-

act methods, are solved much quicker by dynamic programming than the previously

developed mixed integer programming and branch-infer-and-bound approaches. Con-

sidering instances with a larger profit and weight range, we show that the choice of the

approximation guarantee significantly impacts the runtime behaviour.

The paper is structured as follows. In Section 2, we introduce the problem. We

present the exact dynamic programming approach in Section 3 and design a FPTAS

in Section 4. Our experimental results are shown in Section 5. Finally, we finish with

some conclusions.

Problem Statement

The PWT can be formally defined as follows. Given are n + 1 cities, distances di,
1 ≤ i ≤ n, from city i to city i + 1, and a set of items M , |M | = m, distributed all

over the first n cities. W.l.o.g., we assume m = Ω(n) to simplify our notations. Each

city i, 1 ≤ i ≤ n, contains a set of items Mi ⊆ M , |Mi| = mi. Each item eij ∈ Mi,

1 ≤ j ≤ mi, is characterised by its positive integer profit pij and weight wij .

In addition, a fixed route N = (1, 2, ..., n+ 1) is given that is traveled by a vehicle

with velocity v ∈ [vmin, vmax]. Let xij ∈ {0, 1} be a variable indicating whether

or not item eij is chosen in a solution. Then a set S ⊆ M of selected items can be

represented by a decision vector x = (x11, x12, ..., x1m1
, x21, ..., xnmn

). The total

benefit of selecting a subset of items S is calculated as

B(x) = P (x) −R · T (x),

where

P (x) =

n
∑

i=1

mi
∑

j=1

pijxij

represents the total profit of selected items and

T (x) =
n
∑

i=1

di

vmax − ν
i
∑

k=1

mk
∑

j=1

wkjxkj

is the total travel time for the vehicle carrying these items.

Here, ν = vmax−vmin

W
is the constant defined by the input parameters, where W is

the capacity of the vehicle. T (x) has the following interpretation: when the vehicle is

traveling from city i to city i+1, the selected items have to be carried and the maximal

speed vmax of the vehicle is reduced by a normalised amount that depends linearly on

the weight of these items. Because the velocity is influenced by the weight of collected

items, the total travel time increases along with their weight. Given a renting rate R ∈
(0,∞), R · T (x) is the total cost of carrying the items chosen by x. The objective of

this problem is to find a solution x∗ = argmaxx∈{0,1}mB(x).

3

We investigate dynamic programming and approximation algorithms [5] for the

non-linear packing while traveling problem. A FPTAS for a given maximisation prob-

lem is an algorithm A that obtains for any valid input I and ǫ, 0 < ǫ ≤ 1, a solution

of objective value A(I) ≥ (1− ǫ)OPT (I) in time polynomial in the input size |I| and

1/ǫ.

Dynamic Programming

We introduce a dynamic programming approach for solving the PWT. Dynamic pro-

gramming is one of the traditional approaches for the classical knapsack problem [13].

The dynamic programming table β consists of W rows and m columns. Items are

processed in the order they appear along the path N and we consider them in the lexi-

cographic order with respect to their indices, i.e.

eab � eij , iff ((a < i) ∨ (a = i ∧ b ≤ j)).

Note that � is a total strict order and we process the items in this order starting with the

smallest element. The entry βi,j,k represents the maximal benefit that can be obtained

by considering all combinations of items eab with eab � eij leading to weight exactly

k. We denote by β(i, j, ·) the column containing the entries βi,j,k. In the case that a

combination of weight k doesn’t exist, we set βi,j,k = −∞. We denote by

din =

n
∑

l=i

dl

the distance from city i to the last city n+ 1.

We denote by B(∅) the benefit of the empty set which is equivalent to the travel

cost when the vehicle travels empty. Furthermore, B(eij) denotes the benefit when

only item eij is chosen.

For the first item eij according to �, we set

β(i, j, 0) = B(∅),

β(i, j, wij) = B(eij),

and

β(i, j, k) = −∞ iff k 6∈ {0, wij}.

Let ei′j′ be the predecessor of item eij in �. Based on β(i′, j′, ·) we compute for

β(i, j, ·) each entry βi,j,k as

max

{

βi′,j′,k

βi′,j′,k−wij
+pij−Rdin(

1
vmax−νk

− 1
vmax−ν(k−wij)

)

Let est be the last element according to �, then maxk β(s, t, k) is reported as the

value of an optimal solution. We now investigate the runtime for this dynamic program.

If din has been computed for each i, 1 ≤ i ≤ n − 1, which takes O(n) time in total,

then each entry can be compute in constant time.

4

Theorem 1. The entry β(i, j, k) stores the maximal possible benefit for all subsets of

Iij = {eab | eab � eij} having weight k.

Proof. The proof is by induction. The statement is true for the first item eij according

to � as there are only the two options of choosing or not choosing eij . Assume that

β(i′, j′, k) stores the maximal benefit for each weights k when considering all items

of Ii′j′ . There two options exist when we consider item eij in addition: to include

or not include eij . If eij is not included, then the best possible value for β(i, j, k) is

β(i′, j′, k). If eij is included, then remaining weight has to come from the previous

items whose maximal benefit has been β(i′, j′, k−wij). Transporting a set of items of

weight k − wij from city i to city n+ 1 has cost

Rdin
vmax − ν(k − wij)

and transporting a set of items of weight k from city i to n+ 1 has cost

Rdin
vmax − νk

.

This cost of transporting items of a fixed weight from city i to city n+1 is independent

of the choice of items. Therefore, β(i, j, k) stores the maximal possible benefit when

considering all possible subsets of Iij = {eab | eab � eij} having weight k.

To speed up the computation of our DP approach, we only store an entry for

β(i, j, k) if it is not dominated by any other entry in β(i, j, ·), i.e. there is no other entry

β(i, j, k′) with β(i, j, k′) ≥ β(i, j, k) and k′ < k. This does not affect the correctness

of the approach as an item eij can be added to any entry of β(i′, j′, ·) and therefore we

obtain for each dominated entry at least one entry in the last column having at least the

same benefit but potentially smaller weight.

Approximation Algorithms

We now turn our attention to approximation algorithms. The NP-hardness proof for

PWT given in [11] does not rule out polynomial time approximation algorithms. In

this section, we first show that polynomial time approximation algorithms with a finite

approximation ratio do not exist under the assumption P 6= NP . This motivates the

design of a FPTAS for the amount that can be gained over the baseline cost when the

vehicle is traveling empty.

Inapproximability of PWT

The objective function for PWT can take on positive and negative values. We show that

deciding whether a given PWT instances has a solution that is non-negative is already

NP-complete.

Theorem 2. Given a PWT instance, the problem to decide whether there is a solution

x with B(x) ≥ 0 is NP-complete.

5

Proof. The problem is in NP as one can verify in polynomial time for a given solution

x whether B(x) ≥ 0 holds by evaluating the objective function. It remains to show that

the problem is NP-hard.

We address two cases: when B(x) is subject to the capacity constraint and when it

is unconstrained. In both cases, we reduce the NP-complete subset sum problem (SSP)

to the decision variant of PWT which asks whether there is a solution with objective

value at least 0. The input for SSP is given by m positive integers S = {s1, . . . , sm}
and a positive integer Q. The question is whether there exists a vector x ∈ {0, 1}m such

that
∑m

k=1 skxk = Q. We encode the instance of SSP given by S and Q as the instance

of PWT, which consists of two cities. The first city contains all the m items and the

distance between the cities is d1 = 1. We assume that p1k = w1k = sk, 1 ≤ k ≤ m.
To prove the first case, we construct the instance I ′ of PWT. We extend the initial

settings by giving to the vehicle capacity W = Q and define its velocity range as
υmax = 2 and υmin = 1. Furthermore, we set R∗ = Q. Consider the nonlinear
function f ′

R∗ : [0,W] → R defined as

f ′

R∗ (w) = w −

R∗

2−w/W
= w −

Q

2− w/Q
.

f ′
R∗ , which is defined on the interval [0,W], is a continuous concave function that

reaches its unique maximum of 0 in the point w∗ = W = Q, i.e. f ′
R∗ (w) < 0 for

w ∈ [0,W] and w 6= w∗. Then 0 is the maximum value for f ′
R∗ when being restricted

to integer input, too. Therefore, the objective function for PWT is given by

g′
R∗ (x) =

m∑

k=1

p1kxk −

R∗

2−

1

W

m∑

k=1

w1kxk

.

There exists an x ∈ {0, 1}m such that g′R∗(x) ≥ 0 iff

m
∑

k=1

skxk =
m
∑

k=1

w1kxk =
m
∑

k=1

p1kxk = Q.

Therefore, the instance of SSP has answer YES iff the optimal solution of the PWT

instance I ′ has objective value at least 0. Obviously, the reduction can be carried out in

polynomial time which completes the proof of the first case.

To prove the second case, we construct the instance I ′′ of PWT where our settings

assume

W =

m
∑

k=1

sk

and

υmin =
√

Q/(2W −Q) = υmax/2.

We then set

R∗ = υmin ·W (υmax − υmin ·Q/W)
2
.

Finally, this gives us the functions f ′′
R∗ (w) and g′′R∗ (x) of the following forms:

f ′′

R∗ (w) = w −

R∗

υmax − υmin · w/W
.

6

g′′
R∗ (x) =

m∑

k=1

p1kxk −

R∗

υmax −

υmin

W

m∑

k=1

w1kxk

.

Similarly, there exists an x ∈ {0, 1}m such that g′′R∗(x) ≥ 0 iff

m
∑

k=1

skxk =
m
∑

k=1

w1kxk =
m
∑

k=1

p1kxk = Q.

Therefore, the instance of SSP has answer YES iff the optimal solution of the PWT

instance I ′′ has objective value at least 0, while the reduction can be carried out in

polynomial time.

The objective function can take on negative and non-negative values. Theorem 2

rules out meaningful approximations for the original objective functions B and we

state this in the following corollary.

Corollary 1. There is no polynomial time approximation algorithm for PWT with a

meaningful approximation ratio, unless P=NP.

FPTAS for amount over baseline travel cost

As there are no polynomial time approximation algorithms for fixed approximation

ratio for PWT, we consider the amount that can be gained over the cost when the

vehicle travels empty as the objective. This is motivated by the scenario where the

vehicle has to travel along the given route and the goal is to maximise the gain over this

baseline cost. Note that an optimal solution for this objective is also an optimal solution

for PWT. However, approximation results do not carry over to PWT as the objective

values are “shifted” by the cost when traveling empty.

Let

B(∅) = −R ·
n
∑

i=1

di/vmax

be the travel cost (or benefit) for the empty truck. B(∅) can be seen as the set up cost

that we have to pay at least. We consider the objective

B′(x) = B(x) −B(∅),

i. e. for the amount that we can gain over this setup cost, and give an FPTAS. Note, that

we have −R · T (x) ≤ B(∅) for any x ∈ {0, 1}m and P (x)−R · T (x)−B(∅) = 0 if

x = 0m.

We now give a FPTAS for the amount that can be gained over the cost when the

vehicle travels empty and denote by OPT the optimal value for this objective, i.e.

OPT = max
x∈{0,1}m

B′(x).

7

Algorithm 1 FPTAS for B′(x)

• Set L = maxeij∈M B′(eij), r = ǫL/m, and din =
∑n

l=i dl, 1 ≤ i ≤ n.

• Compute order � on the items eij by sorting them in lexicographic order with

respect to their indices (i, j).

• For the first item eij according to �, set β(i, j, 0) = B′(∅) and β(i, j, wij) =
B′(eij).

• Consider the remaining items of M in the order of � and do for each item eij
and its predecessor ei′j′ :

– In increasing order of k do for each β(i′, j′, k) with β(i′, j′, k) 6= −∞

∗ If there is no β(i, j, k′) with (⌊β(i, j, k′)/r⌋ ≥ ⌊β(i′, j′, k)/r⌋ and

k′ < k),

set β(i, j, k) = max{β(i, j, k), β(i′, j′, k)}.

∗ If there is no β(i, j, k′) with (⌊β(i, j, k′)/r⌋ ≥ ⌊β(i′, j′, k + wij)/r⌋
and k′ < k + wij),

set β(i, j, k + wij) = max{β(i, j, k + wij), β(i
′, j′, k) + pij +

Rdin(
1

vmax−νk
− 1

vmax−ν(k+wij)
)}.

Considering the dynamic program for B′(x) instead of B(x) increases each entry

by |B(∅)| and therefore obtains an optimal solution for B′(x) in pseudo-polynomial

time. In order to obtain an FPTAS, we round the values of B′(x) and store for each

rounded value only the minimal achievable weight.

Let

t(w) =
1

vmax − νw

denote the travel time per unit distance when traveling with weight w. We have t(x +
w)− t(x) ≥ t(w) for any x ≥ 0 as t(w) is a convex function.

Consider the value B(eij) − B(∅) which gives the additional amount over B(∅)
when only packing item eij . We assume that there exists at least one item eij with

B(eij) − B(∅) > 0 as otherwise OPT = 0 the solution being {0}m. Let P (eij)
and T (eij) be the profit and travel time when only choosing item eij . Furthermore, let

x∗ = argmaxx∈{0,1}m B′(x) be an optimal solution of value OPT > 0.

We have

n
∑

i=1

mi
∑

j=1

(P (eij)−R · T (eij))x
∗
ij −B(∅) ≥ B(x∗)−B(∅) = OPT

as t(w) is monotonically increasing and convex.

Therefore the item eij of x∗ with B(eij) − B(∅) > 0 maximal fulfils B(eij) −
B(∅) ≥ OPT/m.

Let

L = maxeij∈MB′(eij) > 0

8

be maximal possible objective value when choosing exactly one item. We have

L ≥ OPT/m and L ≤ OPT.

We set r = ǫL/m, where ǫ is the approximation parameter for the FPTAS. For the

FPTAS we round B′(x) to ⌊(B′(x)/r⌋ and store for each of such values the minimal

weight obtained. As we only store entries with 0 ≤ B′(x) ≤ OPT , and for each such

integer based on dominance and rounding one entry, the total number of entries per

column is upper bounded by

(OPT/r) + 1 ≤ OPT/(ǫL/m) + 1 ≤ m2/ǫ+ 1

and number of entries in the dynamic programming table is O(m3/ǫ).
In each step, we make an error of at most

r = ǫL/m ≤ ǫOPT/m

and the error after m steps is at most ǫL ≤ ǫOPT. Hence, the solution x with maximal

B′-value after having considered all items fulfils

B′(x) ≥ (1 − ǫ)OPT.

To implement the idea (see Algorithm 1), we only store an entry β(i, j, k) if there

is no entry β(i, j, k′) with

⌊β(i, j, k′)/r⌋ ≥ ⌊β(i, j, k)/r⌋ and k′ < k.

Hence, for each possible value ⌊β(i, j, k)/r⌋ at most one entry is stored and the number

of entries for each column β(i, j, ·) is upper bounded by m2/ǫ + 1 (as stated above).

Using for each β(i, j, ·) a list which stores the entries β(i, j, k) in increasing order of

k can be used for our implementation.

Based on our investigations and the design of Algorithm 1, we can state the follow-

ing result.

Theorem 3. Algorithm 1 is a fully polynomial time approximation scheme (FPTAS)

for the objective B′. It obtains for any ǫ, 0 < ǫ ≤ 1, a solution x with B′(x) ≥
(1− ǫ) · OPT in time O(m3/ǫ).

The construction of the FPTAS only used the fact that the travel time per unit dis-

tance is monotonically increasing and convex. Hence, the FPTAS holds for any PWT

problem where the travel time per unit distance has this property.

Experiments and Results

In this section, we investigate the effectiveness of the proposed DP and FPTAS ap-

proaches based on our implementations in Java1. We mainly focus on two issues: 1)

studying how the DP and FPTAS perform compared to the state-of-the-art approaches;

2) investigating how the performance and accuracy of the FPTAS change when the

parameter ǫ is altered.

1The code will be made available online at time of publication.

9

Table 1: Results on Small Range Instances

Instance m OPT

Exact Approaches Approximation Approaches

exactMIP BIB DP approxMIP FPTAS

ǫ = 0.0001 ǫ = 0.01 ǫ = 0.1 ǫ = 0.25 ǫ = 0.75
RT(s) RT(s) RT(s) AR(%) RT(s) AR(%) RT(s) AR(%) RT(s) AR(%) RT(s) AR(%) RT(s) AR(%) RT(s)

instance family eil101

uncorr 01 100 1651.6970 1.217 5.694 0.027 100.0000 3.838 100.0000 0.001 100.0000 0.001 100.0000 0.001 100.0000 0.001 100.0000 0.025

uncorr 06 100 10155.4942 12.605 3.698 0.065 100.0000 4.961 100.0000 0.012 100.0000 0.011 100.0000 0.011 100.0000 0.011 99.9928 0.063

uncorr 10 100 10297.7134 3.525 0.795 0.036 100.0000 0.624 100.0000 0.017 100.0000 0.017 99.9939 0.016 99.9939 0.016 99.9653 0.037

uncorr-s-w 01 100 2152.6188 0.328 7.566 0.001 100.0000 3.978 100.0000 0.000 100.0000 0.000 100.0000 0.000 100.0000 0.000 100.0000 0.003

uncorr-s-w 06 100 4333.8512 12.590 2.215 0.012 100.0000 2.699 100.0000 0.008 100.0000 0.007 100.0000 0.007 99.9569 0.008 99.9569 0.017

uncorr-s-w 10 100 9048.4908 37.144 1.107 0.022 100.0000 1.763 100.0000 0.012 100.0000 0.012 100.0000 0.012 100.0000 0.013 99.9355 0.020

b-s-corr 01 100 4441.9852 1.420 125.954 0.014 100.0000 5.366 100.0000 0.010 100.0000 0.009 100.0000 0.009 100.0000 0.008 100.0000 0.013

b-s-corr 06 100 10260.9767 4.509 22.541 0.101 100.0000 2.761 100.0000 0.058 100.0000 0.057 100.0000 0.048 100.0000 0.043 100.0000 0.087

b-s-corr 10 100 13630.6153 11.013 27.081 0.187 99.9971 3.713 100.0000 0.103 100.0000 0.101 99.9971 0.081 99.9606 0.065 99.8143 0.113

uncorr 01 500 17608.5781 19.594 27.581 0.247 100.0000 5.757 100.0000 0.171 100.0000 0.161 100.0000 0.153 100.0000 0.163 100.0000 0.377

uncorr 06 500 56294.5239 384.213 13.354 2.829 100.0000 7.800 100.0000 2.370 100.0000 2.344 100.0000 2.300 100.0000 2.212 100.0000 2.340

uncorr 10 500 66141.4840 211.302 2.325 4.010 100.0000 0.718 100.0000 3.720 100.0000 3.645 100.0000 3.446 100.0000 3.531 100.0000 3.632

uncorr-s-w 01 500 13418.8406 4.337 34.866 0.090 100.0000 50.310 100.0000 0.085 100.0000 0.090 100.0000 0.084 100.0000 0.087 99.9910 0.085

uncorr-s-w 06 500 34280.4730 346.430 7.285 1.040 100.0000 9.609 100.0000 0.964 100.0000 0.933 100.0000 0.905 100.0000 0.936 100.0000 0.920

uncorr-s-w 10 500 50836.6588 519.902 3.338 2.022 100.0000 3.354 100.0000 2.005 100.0000 1.783 100.0000 1.753 100.0000 1.784 100.0000 2.147

b-s-corr 01 500 21306.9158 40.482 624.204 1.534 100.0000 13.338 100.0000 1.373 100.0000 1.279 100.0000 1.116 100.0000 0.949 100.0000 0.716

b-s-corr 06 500 69370.2367 236.387 97.313 14.616 99.9996 7.847 100.0000 13.393 100.0000 12.975 100.0000 11.642 99.9996 9.741 99.9996 6.018

b-s-corr 10 500 82033.9452 376.569 218.728 22.011 100.0000 2.309 100.0000 21.372 100.0000 20.829 100.0000 18.573 100.0000 15.313 99.9943 8.840

uncorr 01 1000 36170.9109 218.306 114.567 1.872 99.9993 11.918 100.0000 1.891 100.0000 1.875 100.0000 1.832 100.0000 1.845 100.0000 1.764

uncorr 06 1000 93949.1981 1261.949 36.847 20.944 100.0000 17.971 100.0000 17.024 100.0000 16.615 100.0000 16.545 100.0000 16.378 100.0000 15.713

uncorr 10 1000 122963.6617 620.896 4.821 30.116 100.0000 2.184 100.0000 27.305 100.0000 26.783 100.0000 26.541 100.0000 26.051 100.0000 23.905

uncorr-s-w 01 1000 27800.9614 241.957 399.158 0.802 100.0000 4985.566 100.0000 0.730 100.0000 0.690 100.0000 0.688 100.0000 0.724 100.0000 0.687

uncorr-s-w 06 1000 61764.4599 1152.624 12.792 9.872 100.0000 19.063 100.0000 8.686 100.0000 8.812 100.0000 8.560 100.0000 8.740 100.0000 8.396

uncorr-s-w 10 1000 103572.4074 2146.408 7.644 15.047 100.0000 9.688 100.0000 14.030 100.0000 13.912 100.0000 13.797 100.0000 13.982 100.0000 13.492

b-s-corr 01 1000 46886.1094 378.551 6129.531 11.783 99.9988 46.394 100.0000 11.714 100.0000 11.358 100.0000 10.793 100.0000 9.592 100.0000 6.536

b-s-corr 06 1000 125830.6887 643.533 919.201 94.523 99.9999 10.311 100.0000 92.411 100.0000 91.039 100.0000 83.002 99.9999 71.078 100.0000 45.433

b-s-corr 10 1000 161990.5015 862.572 1646.520 151.601 100.0000 7.160 100.0000 150.279 100.0000 149.722 100.0000 134.764 100.0000 113.049 99.9981 70.135

1
0

Table 2: Results of DP and FPTAS on Large Range Instances

Instance m

DP FPTAS

ǫ = 0.0001 ǫ = 0.001 ǫ = 0.01 ǫ = 0.1 ǫ = 0.25 ǫ = 0.5 ǫ = 0.75
OPT RT(s) AR(%) RT(s) AR(%) RT(s) AR(%) RT(s) AR(%) RT(s) AR(%) RT(s) AR(%) RT(s) AR(%) RT(s)

instance family eil101 large-range

uncorr 01 100 69802802.2801 0.030 100.0000 0.002 100.0000 0.002 100.0000 0.002 100.0000 0.002 100.0000 0.002 100.0000 0.002 100.0000 0.029

uncorr 06 100 204813765.6933 0.053 100.0000 0.019 100.0000 0.020 100.0000 0.019 100.0000 0.019 100.0000 0.019 100.0000 0.019 100.0000 0.049

uncorr 10 100 172176182.1249 0.041 100.0000 0.028 100.0000 0.028 100.0000 0.028 100.0000 0.028 100.0000 0.027 100.0000 0.026 99.9628 0.037

uncorr-s-w 01 100 36420530.5753 0.006 100.0000 0.003 100.0000 0.003 100.0000 0.003 100.0000 0.003 100.0000 0.003 100.0000 0.002 100.0000 0.004

uncorr-s-w 06 100 148058928.2952 0.098 100.0000 0.072 100.0000 0.502 100.0000 0.072 100.0000 0.069 100.0000 0.065 100.0000 0.059 100.0000 0.070

uncorr-s-w 10 100 142538516.4602 0.136 100.0000 0.101 100.0000 0.104 100.0000 0.103 99.9978 0.096 99.9978 0.086 99.9978 0.073 99.9978 0.089

m-s-corr 01 100 19549602.2671 0.003 100.0000 0.002 100.0000 0.002 100.0000 0.002 100.0000 0.002 100.0000 0.002 100.0000 0.001 100.0000 0.002

m-s-corr 06 100 137203175.1921 0.147 100.0000 0.115 100.0000 0.118 100.0000 0.113 100.0000 0.089 100.0000 0.063 100.0000 0.040 100.0000 0.043

m-s-corr 10 100 225584278.6004 0.424 100.0000 0.326 100.0000 0.329 100.0000 0.312 100.0000 0.200 100.0000 0.179 100.0000 0.086 100.0000 0.073

uncorr 01 500 385692662.0930 0.470 100.0000 0.451 100.0000 0.454 100.0000 0.619 100.0000 0.508 100.0000 0.445 100.0000 0.430 100.0000 0.517

uncorr 06 500 958013934.6172 3.539 100.0000 3.749 100.0000 7.431 100.0000 3.947 100.0000 3.690 99.9996 3.677 99.9996 3.486 99.9993 3.021

uncorr 10 500 844949838.4389 4.870 100.0000 5.393 100.0000 5.716 100.0000 5.483 100.0000 5.135 100.0000 4.851 99.9992 4.609 99.9992 4.295

uncorr-s-w 01 500 182418888.9364 1.157 100.0000 1.157 100.0000 1.199 100.0000 1.145 99.9995 1.112 99.9995 1.063 99.9995 0.977 99.9904 0.929

uncorr-s-w 06 500 780432253.0187 22.390 100.0000 25.040 100.0000 26.276 100.0000 24.024 100.0000 23.282 99.9997 21.756 99.9997 18.293 99.9997 18.411

uncorr-s-w 10 500 714433353.7957 30.959 100.0000 34.458 100.0000 39.004 100.0000 34.308 100.0000 32.308 99.9996 28.792 99.9990 26.392 99.9990 25.971

m-s-corr 01 500 96463941.1275 2.335 100.0000 2.478 100.0000 2.782 100.0000 2.695 100.0000 1.509 100.0000 0.963 100.0000 0.546 100.0000 0.408

m-s-corr 06 500 666701000.1488 108.705 100.0000 126.833 100.0000 139.630 100.0000 122.750 100.0000 62.479 100.0000 33.547 100.0000 17.959 100.0000 10.642

m-s-corr 10 500 1082009880.5886 262.999 100.0000 299.862 100.0000 317.352 100.0000 274.284 100.0000 145.087 100.0000 78.470 99.9994 41.816 99.9994 25.924

uncorr 01 1000 777386336.9660 4.222 100.0000 4.397 100.0000 4.347 100.0000 4.309 100.0000 4.341 100.0000 4.377 100.0000 4.280 100.0000 4.240

uncorr 06 1000 1933319297.4248 46.043 100.0000 51.383 100.0000 53.087 100.0000 48.861 100.0000 52.957 99.9999 52.062 99.9997 50.286 99.9996 51.488

uncorr 10 1000 1693797490.1704 64.485 100.0000 76.744 100.0000 78.847 100.0000 74.128 100.0000 82.754 100.0000 77.057 100.0000 72.283 100.0000 72.567

uncorr-s-w 01 1000 361991311.8336 14.254 100.0000 15.072 100.0000 15.670 100.0000 14.523 100.0000 14.110 100.0000 14.039 100.0000 12.088 100.0000 11.129

uncorr-s-w 06 1000 1574469459.3163 286.843 100.0000 318.096 100.0000 330.508 100.0000 337.289 100.0000 334.318 100.0000 307.588 99.9998 270.013 99.9996 245.927

uncorr-s-w 10 1000 1439410696.3695 393.793 100.0000 438.775 100.0000 455.830 100.0000 464.527 100.0000 441.955 100.0000 433.672 99.9994 378.917 99.9994 340.813

m-s-corr 01 1000 191170309.5684 46.858 100.0000 58.031 100.0000 59.987 100.0000 58.101 100.0000 31.703 100.0000 18.771 100.0000 10.728 100.0000 6.831

m-s-corr 06 1000 1315708161.7720 2393.205 100.0000 2512.281 100.0000 2606.412 100.0000 1921.573 100.0000 666.749 100.0000 364.452 100.0000 208.969 100.0000 150.060

m-s-corr 10 1000 2163713055.3759 6761.490 100.0000 6668.535 100.0000 6441.906 100.0000 4526.653 100.0000 1334.882 100.0000 703.258 100.0000 397.527 100.0000 282.211

1
1

In order to be comparable to the mixed integer programming (MIP) and the branch-

infer-and-bound (BIB) approaches presented in [11], we conduct our experiments on

the same families of test instances. Our experiments are carried out on a computer with

4GB RAM and a 3.06GHz Intel Dual Core processor, which is also the same as the

machine used in the paper mentioned above.

We compare the DP to the exact MIP (exactMIP) and the branch-infer-and-bound

approaches as well as the FPTAS to the approximate MIP (approxMIP), as the for-

mer three are all exact approaches and the latter two are all approximations. Table 1

demonstrates the results for a route of 101 cities and various types of packing instances.

For this particular family, we consider three types of instances: uncorrelated (uncorr),

uncorrelated with similar weights (uncorr-s-w) and bounded strongly correlated (b-s-

corr), which are further distinguished by the different correlations between profits and

weights. In combination with three different numbers of items and three settings of

the capacity, we have 27 instances in total, as shown in the column called “Instance”.

Similarly to the settings in [11], every instance with “ 01” postfix has a relatively small

capacity. We expect such instances to be potentially easy to solve by DP and FPTAS due

to the nature of the algorithms. The OPT column shows the optimum of each instance

and the RT(s) columns illustrate the running time for each of the approaches in the time

unit of a second. To demonstrate the quality of an approximate approach applied to the

instances, we use the ratio between the objective value obtained by the algorithm and

the optimum obtained for an instance as the approximation rate AR(%) = 100× OBJ
OPT

.

In the comparison of exact approaches, our results show that the DP is much quicker

than the exact MIP and BIB in solving the majority of the instances. The exact MIP is

slower than the DP in every case and this dominance is mostly significant. For example,

it spends around 35 minutes to solve the instance uncorr-s-w 10 with 1, 000 items,

where the DP needs around 15 seconds only. On the other hand, the BIB slightly beats

the DP on three instances, but the DP is superior for the rest 24 instances. An extreme

case is b-s-corr 01 with 1, 000 items where the BIB spends above 1.5 hours while the

DP solves it in 11 seconds only. Concerning the running time of the DP, it significantly

increases only for the instances having large amount of items with strongly correlated

weights and profits, such as b-s-corr 06 and b-s-corr 10 with 1, 000 items. However,

b-s-corr 01 seems exceptional due to the limited capacity assigned to the instance.

Our comparison between the approximation approaches shows that the FPTAS has

significant advantages as well. The approximation ratios remain 100% when ǫ equals

0.0001 and 0.01. Only when ǫ is set to 0.25, the FPTAS starts to output the results

having similar accuracies as the ones of approxMIP. With regard to the performance,

the FPTAS takes less running time than approxMIP on the majority of the instances

despite the setting of ǫ. As an extreme case, approxMIP requires hours to solve the

uncorr-s-w 01 instance with 1, 000 items, but the FPTAS takes less than a second.

However, the approxMIP performs much better on b-s-corr 06 and b-s-corr 10 with

1, 000 items. This somehow indicates that the underlying factors that make instances

hard to solve by approximate MIP and FPTAS have different nature. Understanding

these factors more and using them wisely should help to build a more powerful algo-

rithm with mixed features of MIP and FPTAS.

In our second experiment, we use test instances which are slightly different to those

in the benchmark used in [11]. This is motivated by our findings that relaxing ǫ from

12

0.0001 to 0.75 improves the performance of FPTAS by around 50% for the b-s-corr

instances, while does not degrade the accuracy noticeably. At the same time, there is

no significant improvement for other instances. It’s surprising as shows that the perfor-

mance improvement can be easily achieved on complex instances. Therefore, we study

how the FPTAS performs if the instances are more complicated. The idea is to use

instances with large weights, which are known to be difficult regarding dynamic pro-

gramming based approaches for the classical knapsack problem. We follow the same

way to create TTP instances as proposed in [12] and generate the knapsack component

of the problem as discussed in [9]. Specifically, we extend the range to generate po-

tential profits and weights from [1, 103] to [1, 107] and focus on uncorrelated (uncorr),

uncorrelated with similar weights (uncorr-s-w), and multiple strongly correlated (m-s-

corr) types of instances. Additionally, in the stage of assigning the items of a knapsack

instance to particular cities of a given TSP tour, we sort the items in descending or-

der of their profits and the second city obtains k, k ∈ {1, 5, 10}, items of the largest

profits, the third city then has the next k items, and so on. We expect that such assign-

ment should force the algorithms to select items in the first cities of a route making

the instances more challenging for the DP and FPTAS. In fact, these instances occur to

be harder and force us to switch to the 128GB RAM and 8 × (2.8GHz AMD 6 core

processors) cluster machine to carry out the second experiment.

Table 2 illustrates the results of running the DP and FPTAS on the instances with

the large range of profits and weights. Generally speaking, we can observe that the

instances are significantly harder to solve than those ones from the first experiment,

that is they take comparably more time. Similarly, the instances with large number of

items, larger capacity, and strong correlation between profits and weights are now hard

for the DP as well. Oppositely to the results of the previous experiment, the FPTAS

performs much better when dealing with such instances in the case when ǫ is relaxed.

For example, its performance is improved by 95% for the instance m-s-corr 10 with

1, 000 items when ǫ is raised from 0.0001 to 0.75 while the approximation rate remains

at 100%.

Conclusion

Multi-component combinatorial optimisation problems play an important role in many

real-world applications. We have examined the non-linear packing while traveling prob-

lem which results from the interactions in the TTP. We designed a dynamic program-

ming algorithm that solves the problem in pseudo-polynomial time. Furthermore, we

have shown that the original objective of the problem is hard to approximate and have

given an FPTAS for optimising the amount that can be gained over the smallest possi-

ble travel cost. It should be noted that the FPTAS applies to a wider range of problems

as our proof only assumed that the travel cost per unit distance in dependence of with

weight w is monotone increasing and convex. Our experimental results on different

types of knapsack instances show the advantage of the dynamic program over the pre-

vious approach based on mixed integer programming and branch-infer-and-bound con-

cepts. Furthermore, we have demonstrated the effectiveness of the FPTAS on instances

with a large weight and profit range.

13

Acknowledgements

The authors were supported by Australian Research Council grants DP130104395 and

DP140103400.

References

[1] Bonyadi, M.; Michalewicz, Z.; and Barone, L. 2013. The travelling thief problem:

The first step in the transition from theoretical problems to realistic problems. In

Evolutionary Computation (CEC), 2013 IEEE Congress on, 1037–1044.

[2] El Yafrani, M., and Ahiod, B. 2016. Population-based vs. single-solution heuristics

for the travelling thief problem. In Proceedings of the Genetic and Evolutionary

Computation Conference 2016, GECCO ’16, 317–324. New York, NY, USA: ACM.

[3] Faulkner, H.; Polyakovskiy, S.; Schultz, T.; and Wagner, M. 2015. Approximate

approaches to the traveling thief problem. In Proceedings of the 2015 Annual Con-

ference on Genetic and Evolutionary Computation, GECCO ’15, 385–392. New

York, NY, USA: ACM.

[4] GOODYEAR. 2008. Factors Affecting Truck Fuel Economy.

http://www.goodyeartrucktires.com/pdf/resources/publications/Factors Affec-

ting Truck Fuel Economy.pdf.

[5] Hochbaum, D. 1997. Appromixation Algorithms for NP-hard Problems. PWS

Publishing Company.

[6] Hoy, D., and Nikolova, E. 2015. Approximately optimal risk-averse routing poli-

cies via adaptive discretization. In Bonet, B., and Koenig, S., eds., Proceedings of

the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015,

Austin, Texas, USA., 3533–3539. AAAI Press.

[7] Lin, C.; Choy, K.; Ho, G.; Chung, S.; and Lam, H. 2014. Survey of green vehicle

routing problem: Past and future trends. Expert Systems with Applications 41(4, Part

1):1118 – 1138.

[8] Mei, Y.; Li, X.; and Yao, X. 2016. On investigation of interdependence between

sub-problems of the travelling thief problem. Soft Comput. 20(1):157–172.

[9] Pisinger, D. 2005. Where are the hard knapsack problems? Computers & Opera-

tions Research 32(9):2271 – 2284.

[10] Polyakovskiy, S., and Neumann, F. 2015. Packing while traveling: Mixed inte-

ger programming for a class of nonlinear knapsack problems. In Michel, L., ed.,

Integration of AI and OR Techniques in Constraint Programming, volume 9075 of

Lecture Notes in Computer Science. Springer International Publishing. 332–346.

14

[11] Polyakovskiy, S., and Neumann, F. 2016. The packing while

traveling problem. European Journal of Operational Research –.

http://dx.doi.org/10.1016/j.ejor.2016.09.035 (in press).

[12] Polyakovskiy, S.; Bonyadi, M. R.; Wagner, M.; Michalewicz, Z.; and Neumann,

F. 2014. A comprehensive benchmark set and heuristics for the traveling thief prob-

lem. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary

Computation, GECCO ’14, 477–484. New York, NY, USA: ACM.

[13] Toth, P. 1980. Dynamic programming algorithms for the zero-one knapsack

problem. Computing 25(1):29–45.

[14] Yang, G., and Nikolova, E. 2016. Approximation algorithms for route planning

with nonlinear objectives. In Schuurmans, D., and Wellman, M. P., eds., Proceed-

ings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17,

2016, Phoenix, Arizona, USA., 3209–3217. AAAI Press.

15

	Introduction
	Problem Statement
	Dynamic Programming
	Approximation Algorithms
	Inapproximability of PWT
	FPTAS for amount over baseline travel cost

	Experiments and Results
	Conclusion

