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Abstract. We introduce and study a class of optimization problems we
coin replenishment problems with fixed turnover times: a very natural
model that has received little attention in the literature. Nodes with capac-
ity for storing a certain commodity are located at various places; at each
node the commodity depletes within a certain time, the turnover time,
which is constant but can vary between locations. Nodes should never run
empty, and to prevent this we may schedule nodes for replenishment every
day.The natural feature thatmakes this problem interesting is thatwemay
schedule a replenishment (well) before a node becomes empty, but then the
next replenishment will be due earlier also. This added workload needs to
be balanced against the cost of routing vehicles to do the replenishments.
In this paper, we focus on the aspect of minimizing routing costs. However,
the framework of recurring tasks, in which the next job of a task must be
done within a fixed amount of time after the previous one is much more
general and gives an adequate model for many practical situations.

Note that our problem has an infinite time horizon. However, it can
be fully characterized by a compact input, containing only the location
of each store and a turnover time. This makes determining its computa-
tional complexity highly challenging and indeed it remains essentially
unresolved. We study the problem for two objectives: min-avg mini-
mizes the average tour length and min-max minimizes the maximum
tour length over all days. For min-max we derive a logarithmic factor
approximation for the problem on general metrics and a 6-approximation
for the problem on trees, for which we have a proof of NP-hardness.
For min-avg we present a logarithmic approximation on general metrics,
2-approximation for trees, and a pseudopolynomial time algorithm for
the line. Many intriguing problems remain open.
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1 Introduction

Imagine the following particular inventory-routing problem. A set of automatic
vendor machines are spread over a country or a city. They have a certain turnover
time: the number of days in which a full machine will be sold out. Replenishment
is done by vehicles. Let us assume that turnover times are machine dependent
but not time dependent, and that it is highly undesirable to have an empty
machine. However, the holding costs of the machine are negligible, so that we
will always fill the machine to capacity. There is nothing against replenishing a
machine before it has become empty, but then the next replenishment will due
earlier as well. That is, the deadline of the next replenishment is always within
the turnover time after the last replenishment. Equivalently, in any consecutive
number of days equal to the turnover time, at least one replenishment has to
take place. Replenishing a machine earlier to combine it with the replenishment
of another machine that is due earlier may lead to cost savings. The feature
that makes this problem so special w.r.t. existing literature, is that it can be
compactly modeled by only specifying for every machine its location and the
turnover time. The feature is very natural but has hardly been studied in the
existing literature. There are intriguing basic open complexity questions, and
some highly non-trivial results.

The motivation for studying this problem comes linea recta from a business
project for the replenishment of ATMs in the Netherlands, in which some of
the co-authors are involved. The replenishment of the ATMs of all the large
banks in the Netherlands has been outsourced to a single company: Geld Service
Nederland. Of course the real-life ATM replenishment problem is not as stylized
as described above; the turnover time is not strictly the same over time but
subject to variability, there are restrictions on the routes for the vehicles, etc.
But the feature that is least understood in the ATM-problem is exactly the
problem of how to deal with the trade-off between replenishing an ATM earlier
than its due date leading to a higher frequency of replenishments and the savings
on vehicle routing costs.

Formally, an instance of the problem that we study in this paper, which we
baptize the replenishment problem with fixed turnover times (rftt),
consists of a pair (G, τ), where G = (V ∪ {s}, E, c) is a weighted graph with a
designated depot vertex s and weights on the edges c : E → R+, and turnover
times τ ∈ N

|V |, indicating that vj ∈ V should be visited at least once in every
interval of τj days.

A solution consists, for each day k, of a tour Tk in G starting in and return-
ing to the depot s and visiting a subset of the vertices Jk ⊆ V . It is feasible
if vj ∈ ⋃t+τj

k=t+1 Jk, ∀t and ∀vj ∈ V . We will focus on solutions that repeat
themselves after a finite amount of time, that is, in which (Tk, . . . , Tk+�) =
(Tk+�+1, . . . , Tk+2�) for some �, and all k. Since all turnover times are finite, this
is no real restriction.

We consider two versions of rftt. In the first version, called min-avg, the
goal is to find a feasible solution that minimizes the average tour length. In
the min-max problem, we want to find a feasible solution that minimizes the
maximum tour length over all days.
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We emphasize that the particular feature of this model, that jobs or visits to
clients recur and need to be done within each job-specific consecutive time inter-
val occurs naturally in many problem settings. It allows any job of a recurring
task to be done before its deadline, but then the next job of the task comes earlier
and hence its deadline. This is a feature that, despite its natural applicability,
has hardly been studied in the literature from a theoretical point of view.

Related work. As mentioned before, our problem can be seen as a special case of
the Inventory Routing Problem (IRP) [8]. Here, clients (vertices) have their
own storage with a certain capacity and for each day a demand is specified. The
clients pay holding cost over their inventory. However, omitting inventory cost,
we can interpret our problem as such an inventory routing problem in which
the demand at any given location is the same every day, leading to a very small
input description of our problem consisting only of a location and a turnover
time (storage capacity divided by daily demand), which makes it incomparable
to the inventory routing problem from a complexity point of view. Indeed it is
unclear if the decision version of our problem is in NP or in co-NP.

Another closely related problem is the Periodic Latency Problem [9],
which features the recurring visits requirement of rftt. We are given recur-
rence length qi for each client i and travel distances between clients. Client i is
considered served if it is visited every qi time units. The server does not return
to the depot at the end of each time unit (e.g. day), but keeps moving contin-
uously between clients at uniform speed. Another difference between Periodic
Latency Problem and rftt is the objective function. Coene et al. [9] study
two versions of the problem: one that maximizes the number of served clients
by one server, and one that minimizes the number of servers needed to serve
all clients. They resolve the complexity of these problems on lines, circles, stars,
trees, and general metrics.

A problem that does share the compact input size and is in fact a very
special case of our problem is known under the guise of Pinwheel Scheduling.
It has been introduced to model the scheduling of a ground station to receive
information from a set of satellites without data loss. In terms of our problem
no more than one vertex can be replenished per day and all distances to the
depot are the same; the interesting question here is if there exists a feasible
schedule for replenishing the vertices. Formally, a set of jobs {1, . . . , n} with
periods p1, . . . , pn is given, and the question is whether there exists a schedule
σ : N → {1, . . . , n} such that j ∈ ⋃t+pj

k=t+1 σk, ∀t ≥ 0 and ∀j.
Pinwheel Scheduling was introduced by Holte et al. [17], who showed that

it is contained in PSPACE. The problem is in NP if the schedule σ is restricted to
one in which for each job the time between two consecutive executions remains
constant throughout the schedule. In particular this holds for instances with
density ρ =

∑
j 1/pj = 1 [17]. They also observed that the problem is easily

solvable when ρ ≤ 1 and the periods are harmonic, i.e. pi is a divisor of pj or
vice versa for all i and j. As a corollary, every instance with ρ ≤ 1

2 is feasible.
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Chan and Chin [7] improved the latter result by giving an algorithm that
produces a feasible schedule for Pinwheel Scheduling whenever ρ ≤ 2

3 . In [6],
they improved this factor to 7

10 . Later, Fishburn and Lagarias [14] showed that
every instance with ρ ≤ 3

4 has a feasible schedule. All these papers work towards
the conjecture that there is a feasible schedule if ρ ≤ 5

6 . That this bound is tight
can be seen by the instance with p1 = 2, p2 = 3 and p3 = M , with M large.
This instance cannot be scheduled, but has a density of 5

6 + 1
M .

The complexity of Pinwheel Scheduling has been open since it was intro-
duced. It was only recently shown by Jacobs and Longo [18] that there is no
pseudopolynomial time algorithm solving the problem unless SAT has an exact
algorithm running in expected time nO(log n log log n), implying for example that
the randomized exponential time hypothesis fails to hold [5,10]. Since the lat-
ter is unlikely, one could conclude that Pinwheel Scheduling is not solvable
in pseudopolynomial time. It remains open whether the problem is PSPACE-
complete.

Similar to Pinwheel Scheduling, the k-server Periodic Maintenance

Problem [2,11,19] has n jobs, each with a specified periodicity and a processing
time. Each server may serve at most one job per time unit. However, job i is
required to be served exactly every mi days apart rather than within every mi

days. The case k = 1, cj = 1 for all j is analogous to Pinwheel Scheduling,
except for the exact periodicity constraint. For any k ≥ 1, Mok et al. [19] have
shown it is NP-complete in the strong sense. For the special case when mi are
multiples of each other or when there are at most 2 different periodicities, they
have shown it is in P.

Other related problems with a compact input representation include real-
time scheduling of sporadic tasks [1,3], where we are given a set of recurrent
tasks. On a single machine, EDF (Earliest Deadline First) is optimal. However,
we remark that the complexity of deciding whether a given set of tasks is feasible
has been open for a long time and only recently proved showing that it is coNP-
hard to decide whether a task system is feasible on a single processor even if the
utilization is bounded [12].

Another related problem is the Bamboo Garden Trimming Problem intro-
duced by Gasieniec et al. [16]. There are n bamboos, each having a given growth
rate, which may be viewed as inducing a periodicity. On each day, a robot may
trim at most one bamboo back to height 0. The goal is to minimize the maxi-
mum height of the bamboos. Gasieniec et al. provide a 4-approximation for the
general case and a 2-approximation for balanced growth rates.

This paper. We investigate the computational complexity of both the min-max

and the min-avg version of rftt. Mostly we will relate their complexity to
the complexity of Pinwheel Scheduling. Some interesting inapproximability
results follow from this relation. After that, we will start with some special
cases. In Sect. 3, we give our most remarkable result, a constant factor approxi-
mation for min-max on a tree, next to a less remarkable constant approximation
for the min-avg version on the tree. In the same section, we show for min-

avg that the problem can be solved to optimality in pseudopolynomial time on
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line metrics. Finally, in Sect. 4, we present logarithmic factor approximations for
both problem versions on general metrics.

2 Complexity

In this section, we investigate the computational complexity for both object-
ives. Since our problem requires finding a shortest tour visiting some subset
of vertices for every day, it is at least as hard as the Traveling Salesman
Problem (tsp). However it is also interesting to note that the problems are
at least as hard as Pinwheel Scheduling as well. For the min-max objective
there is a direct reduction showing that a factor 2 approximation is at least as
hard as Pinwheel Scheduling: construct an unweighted star with the depot
at the center and each leaf corresponding to a job in the pinwheel instance.
This instance has value 2 only if there exists a pinwheel schedule and at least 4
otherwise.

For the min-avg rftt the reduction is a bit more involved, and given in the
appendix of the full version of this paper [4].

Theorem 1. On series-parallel graphs, min-avg rftt is at least as hard as
Pinwheel scheduling.

We note that this hardness result is incomparable to the tsp reduction. Pinwheel
is neither known to be NP-hard nor in NP, although it is conjectured to be
PSPACE-complete.

Lastly, as Theorem 2 shows, the min-max rftt remains hard even on star
graphs (where TSP is trivial). A reduction can be found in the appendix of the
full paper [4].

Theorem 2. min-max rftt is NP-hard on star graphs.

3 Approximation on Trees

In this section we give a 2-approximation for min-avg and a 6-approximation
for min-max on trees.

We start out with a simplifying result, which will also be of use in the next
sections.

Lemma 1. Given an instance (G, τ) of rftt, let τ ′ be found by rounding every
turnover time in τ down to a power of 2. Then OPT (G, τ ′) ≤ 2OPT (G, τ) for
both min-avg and min-max objectives.

Proof. Let (G, τ̄) denote the instance found from (G, τ) by rounding every
turnover time up to a power of 2. Since any schedule remains feasible if we round
up the turnover times, we have that OPT (G, τ̄) ≤ OPT (G, τ) ≤ OPT (G, τ ′).

Suppose we have an optimal solution for (G, τ̄) in which T̄k is scheduled
on day k. We can construct a feasible schedule for (G, τ ′) by scheduling the
concatenation of T̄2k−1 and T̄2k on day k. The maximum tour length in this
schedule is at most twice that of the optimal solution for (G, τ̄) and every tour
from the original schedule is visited exactly twice in the new schedule, so this
yields a factor 2 increase in both the min-max and the min-avg objective.
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In the remainder we assume w.l.o.g. that G is rooted at s and that turnover
times are increasing on any path from the depot to a leaf node in G. Furthermore,
for an edge e in E we define D(e) to be the set of vertices that are descendants
of e. We also need the following definition.

Definition 1 (tt-weight of an edge). For any edge in G we define:

q(e) = min
j∈D(e)

τj .

We call this quantity the tt-weight (turnover time-weight) of e.

This definition allows us to express the lowerbound in Lemma 2.

Lemma 2 (tt-weighted tree). For an instance (G, τ) of the rftt on trees
it holds that the average tour length is at least:

L(G, τ) := 2
∑

e∈E

c(e)
q(e)

.

Proof. This follows immediately from the fact that 2
q(e) lower bounds the number

of times edge e must be traversed on average in any feasible solution.

Since the maximum tour length is at least the average tour length, Lemma2 also
provides a lower bound for the min-max objective.

An approximation for min-avg rftt is thus found by rounding all turnover
times to powers of 2 and then visit each client j on every day that is a multiple
of τj . Since in that case the lower bound of Lemma2 is exactly attained on the
rounded instance, Lemma 1 implies the following theorem.

Theorem 3. There is a 2-approximation for min-avg rftt on trees.

3.1 MIN-MAX

We will now show that we can achieve a 6-approximation for min-max rftt on
trees by providing a 3-approximation algorithm if all turnover times are powers
of 2 and then applying Lemma1.

The main idea is to take a TSP-tour and recursively split it to obtain a sched-
ule for the clients with increasing turnover times. During the splitting process,
we assign each client j on that tour to a congruence class āτj = {k ∈ N|k ≡ a
(mod τj)} for some a ≤ τj , to indicate we want to visit j on each day in āτj .
Similarly, we distribute all edges e to a congruence class āq(e). We do this ensur-
ing that on any given day, we can create a tour through all clients associated
with that day, using the edges associated with that day plus a small set of extra
edges.

Let us define some further notation. For a given congruence class ām ⊆ N, we
denote g(ām) ⊆ V the set of vertices and f(ām) ⊆ E the set of edges assigned
to that class. Note that ām and (a + m)m define the same congruence class, so
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f(ām) = f((a + m)m). Then, for any k ∈ N we have that Jk, the set of clients
we need to visit on day k, is

Jk =
⋃

m∈N,a≤m|k∈ām

g(ām).

Algorithm 1. Algorithm for recursively constructing f(·) and g(·)
function RecurseTreeSchedule(d, a, m)

Require: d, a connected sequence of edges in G, powers of 2 turnover times τ ; a, m,
integers

if d �= ∅ then
f(ām) = {e ∈ d | q(e) = m}
g(ām) = {j ∈ V (d) | τj = m}
k = maxk′ s.t.

∑
i∈[k′−1]|q(di)>m

c(di)
q(di)

≤ 1
2

∑
i∈[n]|q(di)>m

c(di)
q(di)

d1 = (d1, . . . , dk−1)
d2 = (dk+1, . . . , dn)
RecurseTreeSchedule(d1, a, 2m), RecurseTreeSchedule(d2, a + m, 2m)

end if
end function

The assignment of vertices and edges to classes is guided by the recursive
splitting of a TSP-tour in G. The full procedure for constructing f(·) and g(·)
is shown in Algorithm 1. The algorithm is initially called with d, a TSP-tour
visiting all vertices in G, and a = m = 1 and will determine the set of vertices
to be visited on every day (i.e., those congruent to ā1). Then the first (second)
recursive call determines the sets of vertices with turnover time 2 that will be
visited on odd (even) days. Analogously, RecurseTreeSchedule(d1, a,m) will
return the set of vertices with turnover time m to be visited on days in the
congruence class ām and the two recursive calls will return the set of vertices
with turnover time 2m that are visited on days a, a+2m,a+4m, . . . and a+m,
a + 3m,a + 5m, . . ., respectively.

In the remainder we assume that any call to f(·) and g(·) returns the empty
set for any argument that is not explicitly handled in Algorithm1. Note that we
use the notation V (A) to denote the vertices incident to edges in A ⊆ E.

Lemma 3. After Algorithm1 terminates, each vertex j appears in some set
g(āτj ) for some a.

Proof. Note that d1 ∩d2 = ∅ and that |d1 ∪d2| = |d|−1; since d is a connected
set of edges then in each call to RecurseTreeSchedule, V (d1) ∪ V (d2) =
V (d). Therefore no vertex is skipped in the construction of g(·).

In order to find a tour on day k through the vertices in Jk we use edges
in

⋃
h=1,2,...,m f(āh); as we already observed this set of edges does not neces-

sarily connect vertices in g(ām) to the depot. The next lemma shows that a
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tree that connects all vertices in g(ām) to the root can be found by considering
∪h=1,2,...,mf(āh) and adding a shortest path from some vertex in g(ām) to the
depot.

Lemma 4. Let a,m be such that f(ām) is nonempty. Let P be the set of edges
on the shortest path connecting some arbitrary edge in f(ām) to the root of G.
Then the following edge set forms a connected component:

T (ām) := P ∪ (
⋃

h=1,2,...,m

f(āh)).

Moreover, T (ām) spans
⋃

h=1,2,...,m/2,m g(āh).

Proof. To prove our first claim, we first show that for k ≤ m, f(āk) either
induces at most one connected component, or each component it induces is
incident to a component induced by

⋃
h=1,2,...,k/2 f(āh). Then, we will show

that if f(āk) induces at most one connected component, it is incident to P ∪
(
⋃

h=1,2,...,k/2 f(āh)).
Suppose f(āk) does not induce at most one component. Note that f(āk) is

the subset of edges in some connected edge sequence d through G that have
tt-weight k. But by the way tt-weight is defined and the fact that G is a tree,
a simple path connecting disjoint edges with tt-weight k, can only consist of
edges with tt-weight at most k. So every two components in f(āk) are connected
through a path of edges with tt-weight of at most k. Moreover since the sequence
d used to construct f(āk) is a subset of the sequence used to construct f(āk/2),
by induction these connecting paths must be contained in

⋃
h=1,2,...,k/2 f(āh), as

required.
Next we show that for any k ≤ m such that f(āk) �= ∅, if f(āk) is not incident

to P then it is incident to
⋃

h=1,...,k/2 f(āh).
Let d be the sequence that was used to construct f(āk). Since d contains all

edges in f(ām) and P contains at least one such edge, there exists a minimal path
Q that contains some edge e in f(āk) such that Q is connected to P . Moreover
since Q is minimal and P contains the root, e must be the edge furthest away
from the root on Q. This implies that all edges on Q have tt-weight k or less.
Now suppose that Q contains edges with tt-weight strictly less than k. Then
those edges are necessarily in

⋃
h=1,...,k/2 f(āh) and therefore f(āk) is incident

to that set. If not then Q is strictly contained in f(āk) and therefore f(āk) is
connected to P .

The first claim of our lemma now follows by induction. P ∪ f(ā1) is clearly
connected. If P ∪ ⋃

h=1,2,...,k/2 f(āh) is connected, we get that f(āk) is either
empty or is connected to P or to

⋃
h=1,2,...,k/2 f(āh), and the result follows.

To prove our second claim, suppose that for some k and j ∈ g(āk) it holds
that no edge incident to j, is in

⋃
h=1,2,...,k f(āh). We will show that j appears

on P , from which our claim immediately follows.
Let d be the sequence used to construct g(āk). The edge e incident to j that

is closest to the root, satisfies q(e) ≤ k. So, it cannot be in d otherwise it would
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be contained in
⋃

h=1,2,...,k f(āh). But this implies that e cuts off every edge in
d from the root, and therefore e appears on P , as claimed, concluding the proof.

The next lemma allows us to bound the cost of edges included in f(āh).

Lemma 5. During each (recursive) call to RecurseTreeSchedule, it holds
that

∑

e∈d|q(e)≥m

m
c(e)
q(e)

+
m/2∑

h=1

∑

e∈f(āh)|q(e)=h

c(e) ≤ L(G, τ).

Proof. The proof is by induction on m. Since we initially call the algorithm with
d a TSP-tour in G, which visits each edge twice, it clearly holds for m = 1.

Now for m > 1, suppose it holds for all smaller m. Without loss of generality,
suppose we have a call to the function with input d1, a,m, such that d, a,m/2
are the input parameters for its parent in the call stack.

∑

e∈d1|q(e)≥m

m
c(e)
q(e)

+
∑

h=1,2,..., m2

∑

e∈f(āh)|q(e)=h

c(e)

=
∑

e∈d1|q(e)≥m

m
c(e)
q(e)

+
∑

e∈f(ām/2)|q(e)=m/2

m

2
c(e)
q(e)

+
∑

h=1,2,...,m4

∑

e∈f(āh)|q(e)=h

c(e)

≤
∑

e∈d|q(e)≥m

m

2
c(e)
q(e)

+
∑

e∈f(ām/2)|q(e)=m/2

m

2
c(e)
q(e)

+
∑

h=1,2,..., m4

∑

e∈f(āh)|q(e)=h

c(e)

≤
∑

e∈d|q(e)≥m/2

m

2
c(e)
q(e)

+
∑

h=1,2,...,m4

∑

e∈f(āh)|q(e)=h

c(e) ≤ L(G, τ)

For the first equality, we split the second sum into an h = m/2 part and an
h = 1, . . . , m/4 part. In the first inequality we used the way d1 and d2 are
determined in Algorithm 1, in the second inequality we used that f(ām) ⊆ d and
in the last inequality we used the inductive hypothesis, concluding the proof.

We are now ready for the main theorem.

Theorem 4. There is a 6-approximation for min-max rftt on trees.

Proof. We first round all turnover times down to powers of 2, which loses a factor
of 2 in the optimal solution. We then use Algorithm1 to construct f(·) and g(·)
thus determining the set of vertices Jk to be visited on day k. By Lemma 3 this
defines a feasible schedule.

If we then take T (k̄τmax
) as in Lemma 4, we get a tree that spans Jk. Moreover

the weight of T (k̄τmax
) is at most 3

2OPT : the contribution of P is at most 1
2OPT ,

since we need to reach any client at least on some day (and drive back), while
the contribution of

⋃
h=1,...τmax

f(k̄h) is at most L(G, τ) ≤ OPT , which can be
seen by applying Lemma 5 for m = 2τmax. Lastly, since we need a tour around
T (k̄τmax

), we lose another factor 2. This gives the approximation factor of 6.
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It remains to show that Algorithm 1 runs in polynomial time, and that we can
find a polynomial representation for the schedule. For the first claim, note that
in each recursive call to the algorithm, the following equality holds |d1 ∪ d2| =
|d| − 1; hence the algorithm terminates after at most 2|E(G)| calls.

For the second claim, the crucial observation is that we only need to store
the entries of g for a and m such that g(ām) is nonempty. Since at most one
entry is defined in every call to the algorithm, and we can simply check if k ≡ a
(mod m) for all stored entries, the claim, and the theorem, follow.

3.2 MIN-AVG on the Line

As an even more special underlying metric, we might consider the min-avg

problem on the line (on a path). For the min-max version this case is trivial,
but for the min-avg version its complexity is unclear: we do not know whether
it is in NP, although we expect it to be NP-hard.

On the positive side we can show that the problem is not strongly NP-hard.

Theorem 5. min-avg on the line can be solved in pseudopolynomial time.

We give a DP that finds an optimal schedule in polynomial time for any
instance with polynomially bounded turnover times. Since we are minimizing
the average, it is easy to see that we can reduce this problem to two times the
min-avg problem on the half-line (a path with the depot in one of the leaves).
On the half-line each vertex i has a distance di ∈ N from the origin. Suppose
vertices are numbered such that d1 ≤ . . . ≤ dn. We present a pseudopolynomial
time dynamic programming agorithm for this problem, based on the following
observations.

First of all, we note that on any tour visiting vertex j automatically visits
every vertex i < j. As in the tree case, we therefore assume that τi ≤ τj for
i < j. Thus, after visiting j, all i ≤ j have a remaining turnover time of τi. For
the dynamic program to work, we guess L, the day on which vertex n is visited
for the first time and try all guesses between 1 and τn.

The dynamic program now works as follows. Suppose we are given the optimal
solution for vertices 1, . . . , i−1 when only considering the days 1, . . . , k. Now we
want to include i in the optimal solution for the first k days. If k < min{τi, L},
it is not necessary to visit i during the first k days, and hence it is optimal to
take the optimal solution for the first i − 1 vertices and k days. Otherwise, we
need to visit i on some day � in {1, . . . ,min{τi, L}}. Before day �, we only need
to visit the vertices 1, . . . , i−1. Thus, we take the optimal �−1 tours for visiting
the first i − 1 vertices in the first � − 1 days. After day �, all vertices have the
same remaining turnover time as they had at time zero. Hence, we can take the
optimal tours for the first i vertices and k − � days.

Let φL(i, k) := the minimum cost of the first k tours visiting vertices
1, . . . , i. We initialize φL(0, k) = φL(i, 0) = 0 and we use the recursion:

φL(i, k)=

⎧
⎨

⎩

φL(i − 1, k), if k < min{τi, L}
min

�=1,...,min{τi,L}
φL(i − 1, � − 1)+di + φL(i, k − �), else
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The optimal solution is the schedule that corresponds to the value L ∈
{1, . . . , τn} minimizing φL(n,L)/L. Note that the algorithm runs in time O(nτ3

n),
implying the theorem.

4 Approximation on General Graphs

We will now present logarithmic approximations for both objectives. Note that
an O(log τmax)-approximation is readily achieved; simply treat the sets of clients
with equal turnover time as independent instances. For min-avg, the problem
with equal turnover times is simply tsp, for the min-max we get a problem
sometimes called the k-tsp, for which a 5

2 approximation is known [15]. Since
by rounding to powers of 2, we ensure there are O(log(τmax)) different turnover
times, we get Theorem 6.

Theorem 6. min-max and min-avg rftt have an O(log τmax)-approximation.

Proof. By Lemma 1 we may assume every τi is a power of 2 so that there are at
most log τmax different turnover times. We simply treat the sets of vertices with
the same turnover time as separate instances and concatenate the solutions. Our
result then follows from the fact that for all these instances a constant factor
approximation is available. In the case of the min-max objective we get the
k-tsp problem, where k is equal to the turnover time of the vertices in the
instance. In the case of min-avg, we need to minimize the sum over all k tours.
But since all turnover times are equal there is no advantage to visiting vertices
on different days, hence we recover a simple tsp problem.

In the case of min-max it is relatively simple to adapt this idea for an
O(log n)-approximation by appropriately reassigning clients to lower turnover
times, as per Theorem 7.

Theorem 7. min-max rftt has an O(log n)-approximation.

Proof. We start by assuming that every turnover time is a power of 2. Next,
we split up the instance into two new instances. To this end we first define a
turnover time k to be saturated if |{j ∈ V |τj = k}| ≥ k. In the first instance we
retain the set of vertices V1 with saturated turnover times, and in the second
all vertices V2 with unsaturated turnover times. Now if all turnover times are
saturated, then τmax = O(n) and we can find a O(log n)-approximation using
Theorem 6. So what remains is to find a O(log n)-approximation for the second
instance.

Since no turnover time is saturated, it is easy to see that we can partition
the vertices in V2 into 
log n� sets W1,W2,W4, . . . ,W2�log n� , such that |Wi| ≤ i,
and such that τj ≥ i for all j ∈ Wi. For example we could first add all vertices
j with τj = i to Wi for i ≤ 
log n�, and then arbitrarily distribute vertices j
with τj > 
log n� among the sets that have space. We now produce a schedule
by visiting all clients in any set Wk on different days. This is feasible and implies
that at most log n clients are visited on a given day, which leads to O(log n)-
approximation factor, as required.
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The approach of Theorem 6 does not trivially extend to the min-avg case.
However, we may combine our result on trees with the FRT tree embeddings [13],
to get a randomized O(log n)-approximation.

A more direct, and deterministic O(log n)-approximation is possible as well.
In particular, we use the simple heuristic of visiting each client on every day
that is a multiple of its turnover time, when turnover times are powers of 2. We
call such a schedule a synchronized solution, and show that gives a logarithmic
approximation.

The proof of this approximation factor, which is not trivial, works by show
that a synchronized schedule is no more costly than a non-decreasing schedule,
in which all tours are routed along a tree with turnover times non-decreasing
from the root. We then show how to transform any schedule to a non-decreasing
one, losing a logarithmic factor in the process. As a byproduct we show that
the analysis is tight, and that a non-decreasing schedule must be Ω(log n) times
more costly than OPT in the worst case. The deterministic proof of Theorem8
can be found in the appendix of the full paper [4].

Theorem 8. min-avg rftt has an O(log n)-approximation.

Proof. We will apply the FRT tree embedding [13] of the initial instance and
then use the 2-approximation for tree metrics to obtain the final solution. Given
the instance (G, τ), let T be a random tree produced by the tree metric approxi-
mation with O(log n) distortion. Then dG(u, v) ≤ dT (u, v) and E[dT (u, v)] ≤
O(log n)dG(u, v). Let S be the solution produced by the 2-approximation
for min-avg rftt on the tree metric T . Then E[S] ≤ 2E[OPT (T, τ)] ≤
O(log n)E[OPT (G, τ)] by linearity of expectation on the sum over the edges.

It is an open question whether there exists a constant factor approximation
algorithm for the general case. We observe that the approach of first finding a tree
spanning all vertices and then using the algorithm of Sect. 3 is unsuccessful. In
fact there exist instances of the problem on a graph G with n vertices, such that
if we limit our attention to tours that for each day use only edges of a spanning
tree of G then the obtained solution is Ω(log n) approximated. This implies that
we need some new ideas, in order to improve the O(log n) approximation of the
previous theorem.

5 Conclusion

In this paper, we considered replenishment problems with fixed turnover times, a
natural inventory-routing problem that has not been studied before. We formally
defined the rftt problem and considered the objectives min-avg and min-max.
For the min-avg rftt, we showed that it is at least as hard as the intractable
Pinwheel Scheduling Problem on series-parallel graphs and we gave a 2-
approximation for trees. For the min-max objective we showed NP-hardness on
stars and gave a 6-approximation for tree metrics. We also presented a DP that
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solved the min-avg rftt in pseudopolynomial time on line graphs. Finally, we
gave a O(log n)-approximation for the min-max objective on general metrics.

The results that we present should be considered as a first step in this area
and many problems remain open. An intriguing open problem is the complexity
of the of rftt on a tree. Namely, for min-avg variant we conjecture that the
problem is hard, and we ask whether the simple 2-approximation we provide
can be improved. For the min-max variant it is open whether the problem is
APX-hard and whether we can improve the 6-approximation.

Next to replenishing locations with routing aspects as we studied in this
paper, scheduling problems modeling maintenance or security control of sys-
tems, form a class of problems to which this model naturally applies. It would
be interesting to study such fixed turnover time problems in combination with
scheduling. Would this combination allow for more definitive results?
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