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Abstract

In the context of the study into elementary modes of metabolic networks, we
prove two complexity results. Enumerating elementary modes containing a
specific reaction is hard in an enumeration complexity sense. The decision
problem if there exists an elementary mode containing two specific reactions
is NP-complete. The complexity of enumerating all elementary modes re-
mains open.
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1. Introduction

We study some problems related to extreme rays of the cone {x ∈ R
n |

Ax = 0, x ≥ 0}, for some m × n matrix A. An extreme ray of a cone is
a vector of the cone that cannot be expressed as a convex combination of
any two other vectors of the cone. The cone is pointed in the origin 0 of
R

n. Therefore, its extreme rays correspond one-to-one to the vertices of the
bounded polyhedron {x ∈ R

n | Ax = 0, 1T x = 1, x ≥ 0}, with 1 denoting
the all-1 vector in R

n. As a result, enumerating the extreme rays of the
cone is not harder than enumerating the vertices of a bounded polyhedron
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(polytope). Since the number of objects to be enumerated can be exponential
in the size of the input, the complexity in terms of running time is measured
as a function of the size of the input and of the output (we give precise
definitions of enumeration complexity later).

The complexity of enumerating vertices of polytopes is a famous and long-
standing open question (see e.g., Dyer and Proll, 1977). We do not solve
this question but present an intriguing related result: given a coordinate i,
enumerating all extreme rays r of the cone that have ri > 0 cannot be done
in polynomial total time (that is, polynomial in the size of the input and of
the output) unless P=NP.

Our second complexity result, using essentially the same reduction, is: it
is NP-complete to decide if there exists an extreme ray r of the cone that
has both ri > 0 and rj > 0 for two given coordinates i and j.

Both results are based on a reduction to the decision problem on the
existence of negative simple cycles in directed graphs and are inspired by
the work of Khachiyan et al. (2008), who proved that enumerating vertices
of any (possibly unbounded) polyhedron cannot be achieved in polynomial
total time unless P=NP. Of course, Khachiyan et al.’s result does not apply
to polytopes, which could still be easier than the general case.

Both questions appeared in computational biology studies of metabolic
networks (Acuña et al., 2009; Larhlimi and Bockmayr, 2009; Schuster and
Hilgetag, 1994; Terzer and Stelling, 2008; Terzer, 2009; Urbanczik and Wag-
ner, 2005). In this context A is the so-called stoichiometric matrix. Each
row of this matrix represents a chemical compound and each column an irre-
versible chemical reaction: aik is a positive integer if compound i is a product
(i.e. output) of reaction k and a negative integer if it is a substrate (i.e. in-
put) of the reaction. It is 0 if it is not involved in the reaction. The equation
Ax = 0 indicates that the metabolic network is in steady state, in the sense
that all (internal) compounds that are produced are also consumed.

The extreme rays of the cone are in this context called elementary modes,
and, biologically speaking, they are minimal sequences of reactions that
would “survive” if the rest of the network were cut. An example is given
in Figure 1 for the Citric Acid Cycle.

In this biological context, our results show that: a) it is not possible to
generate, in polynomial total time, all elementary modes that pass through
a given reaction unless P=NP; and b) deciding if there exists an elementary
mode that passes through two given reactions is NP-complete. The first re-
sult can have biotechnological relevance. Indeed, by knocking-out enzymes
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Figure 1: An example of elementary modes analysis. Left: A simplified model of the
Citric Acid Cycle (including some anaplerotic reactions and the glyoxylate cycle). Some
ubiquitous compounds were excluded from the model. The stoichiometric matrix has
values −1, 1 and 0. Right: The eight elementary modes of this metabolic network (trivial
cycles of two reactions are excluded).

and analysing the effect this has on metabolic behaviour, one can identify
whether and where a metabolic network is robust or fragile, and ultimately
arrive at a better understanding of cellular phenotypes and of their link with
the genotype. Enumerating all elementary modes that pass through a given
reaction would thus allow to determine all possible steady-state behaviours
this reaction enables to block. The decision problem of our second result is
more of academic interest. In Acuña et al. (2009), we investigated compu-
tational complexity issues related to the analysis of metabolic networks and
found that several questions concerning the cone {x ∈ R

n | Ax = 0, x ≥ 0}
can be answered by appropriate linear programming formulations, such as
finding some extreme ray and finding an extreme ray with one given co-
ordinate positive, whereas other questions are NP-hard, such as finding an
extreme ray with a minimum number of positive coordinates and (related to
it) finding an extreme ray with a given set of k positive coordinates. Here
k is regarded as part of the input of the problem. The complexity of the
latter problem for fixed k was posed as an open question. Our second result
settles this question by showing that it is NP-complete already if k = 2. The
main question about the complexity of enumerating all elementary modes (a
particular case of enumerating vertices of a polytope) remains open.
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Although we are supposing that all reactions are irreversible, both com-
plexity results remain valid if we consider elementary modes (or extreme
pathways) in networks where some reactions are reversible. Indeed, our for-
mulation is a particular instance (empty set of reversible reactions) and there-
fore cannot be harder than the general case.

The complexity of the first problem remains the same if we consider enu-
meration of elementary modes passing through a given compound instead of
reaction. Indeed, both problems are equivalent: we can reduce one formula-
tion to the other by just breaking the given reaction (respectively compound)
in two steps and putting an extra compound (respectively reaction) connect-
ing both. Analogously, deciding if there is an elementary mode that passes
through two given compounds (or through a given compound and a given
reaction) is also NP-hard.

Biologists have been interested in finding the biological pathways in a
metabolic network that produce a specific output, e.g. chemical compounds
related to growth, (see e.g. Becker et al., 2007; Nielsen, 1998; Nielsen and
Olsson, 2002; Pharkya et al., 2004; Price et al., 2004; Rocha et al., 2008;
Teusink and Smid, 2006; van der Werf, 2005) for surveys and two well used
methods on the topic, and more in general, work by the Nielsen, Palsson,
and Teusink groups plus some others (Senger and Papoutsakis, 2008a,b) on
specific applications.

Modelling biological pathways with elementary modes, i.e. extreme rays
of the cone, leads to the enumeration problem that we address in our first
result. It may seem strange that enumerating the elementary modes pass-
ing through a given reaction is hard while the complexity of enumerating
all elementary modes remains unknown. This apparent contradiction comes
from the fact that time is measured in terms of the output size. Given the
“normalisation” effect introduced by this, enumerating a smaller subset of
objects could therefore be harder than enumerating the whole set. Nev-
ertheless, the hardness of enumerating a specific subset of the elementary
modes gives some intuition on the difficulty of enumerating the whole set
of them. Our first result is in fact rather surprising. Although nobody has
enough confidence to call it a conjecture, most people who have done the-
oretical research in this field guess that enumerating vertices of polytopes
should be achievable in polynomial total time (see for a definition Section
2). If, contrary to this guess, enumerating vertices of polytopes will appear
to be hard, it will be caused by degeneracy, since enumerating vertices of
non-degenerate polytopes can be done in polynomial total time by a Lo-
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cal Reverse Search method (Dyer, 1983). Cones corresponding to real-life
stoichiometric matrices appear to be highly degenerate, see Terzer (2009).
Therefore, for enumerating extreme rays of the cone, variations of the double

description method of Motzkin et al. (1953) are the most popular ones in the
analysis of stoichiometric metabolic networks (Terzer, 2009). Where local
reverse search methods suffer from degeneracy, double description methods
suffer from generating intermediate (candidate) vectors that do not appear
in the output.

In the following section we present our results. We start by defining
notions of the complexity of enumeration problems. Essentially we show
that enumerating negative cycles of weighted directed graphs, shown unlikely
in polynomial total time by Khachiyan et al. (2008), is a special case of
our enumeration problem of extreme rays with a given coordinate in the
support. To this end, we need to provide essential ingredients from the proof
by Khachiyan et al. (2008) that enumerating negative cycles in weighted
directed graphs is hard. We conclude with some remarks about related open
questions raised by metabolic network analysis in Section 3. Among these,
the complexity of enumerating vertices of polytopes remains the challenging
open question in this field.

2. Complexity results

To define the complexity of enumeration problems in terms of functions
of the size of the input is not suitable because the number of solutions can be
exponential in the input size. Definitions of enumeration complexity classes
have been proposed in Johnson et al. (1988). We use the largest of these
classes here.

Definition 2.1. An enumeration problem can be solved in polynomial total
time if an algorithm exists with running time bounded by a polynomial func-

tion of the combined size of the input and the output. We call this class of

problems PT.

Given a directed graph, or network, G = (V, E), each column of its node-
arc incidence matrix M corresponds to an arc (u, v) ∈ E and contains exactly
one −1 in the row of its tail-node u, and exactly one +1 in the row of its
head-node v, and otherwise 0 entries. We call a cycle simple if it does not
contain subcycles.
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Lemma 2.2. Let G = (V, E) be a directed graph with the node-arc incidence

matrix M , then the extreme rays of the cone {x ∈ R
|E| | Mx = 0, x ≥ 0}

correspond one-to-one to the directed simple cycles of G.

Proof. In graph optimisation, a vector x ≥ 0 that satisfies Mx = 0 is called
a flow circulation. The flow decomposition lemma (see e.g. Schrijver, 1986)
states that any such vector x can be written as a positive linear combination
of characteristic vectors of directed simple cycles of G. Thus, the set of all
characteristic vectors of directed simple cycles of G contains all extreme rays
of the cone. It is also obvious that the characteristic vector of any simple
cycle cannot be written as a positive linear combination of vectors of other
simple cycles.

In a weighted directed graph, a function w : E → R assigns weights to
arcs. The total weight of a set of arcs is the sum of the weights of each of
the arcs. We say that a cycle C is negative if its total weight is negative.
We create a matrix M ′ related to a directed graph G(V, E) by appending an
extra row to the node-incidence matrix M of G. In the column corresponding
to arc e ∈ E, the entry in the extra row is w(e). The extra row could be
seen as corresponding to a dummy node d, and a column as representing a
directed hyperarc with a weight on the extra node. In terms of stoichiometry,
this would correspond to a reaction transforming 1 molecule of compound
u into 1 molecule of compound v and w(u, v) molecules of compound d in
case w(u, v) > 0, or transforming 1 molecule of compound u and w(u, v)
molecules of compound d into 1 molecule of compound v in case w(u, v) < 0.
We append two extra columns to M ′: the first one is the unit vector of
the dummy node and the second is its negative. In stoichiometric terms,
these can be regarded, respectively, as a reaction that produces 1 molecule of
compound d from external nutrients and a reaction that excretes 1 molecule
of compound d. To facilitate the exposition, we denote the two arcs between
the dummy node and “some invisible external node”, respectively, e+ and
e−. We call the resulting matrix M+. In Figure 2, we present an example of
the matrix M+.

Given a vector x we denote by S(x) its support, i.e., the set of non-zero
coordinates of x. As observed by many researchers, the extreme rays of the
cone {x ∈ R

n | Ax = 0, x ≥ 0} are exactly the vectors in the cone with
minimal support and they are uniquely characterised by their support, up to
a positive scalar multiplication.
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Figure 2: Transformation of a weighted directed graph into a metabolic network with
stoichiometry. Left: A weighted directed graph G. Center: The matrix M+ of G. Right:

The set of reactions that represent the stoichiometric matrix M
+ (stoichiometry is not

shown).

In the context of the cone related to directed graphs, we index the co-
ordinates of the vectors by the arcs to which they correspond and write the
support of a vector as a subset of arcs. The following relations exist between
directed simple cycles of G and extreme rays of the cone Γ =: {x ∈ R

|E|+2 |
M+x = 0, x ≥ 0}.

Lemma 2.3. Let G = (V, E, w) be a directed weighted graph. Every extreme

ray x of the cone Γ has either S(x) = {e+, e−}, or S(x) \ {e+, e−} is the

union of simple directed cycles of G.

Proof. Let x be an extreme ray of the cone Γ such that S(x) 6= {e+, e−}. Let
x′ ∈ R

|E| be the truncated vector x without the values corresponding to the
arcs e+ and e−. Then, x′ 6= 0 and Mx′ = 0 where M is the node-arc incidence
matrix of G. The vector x′ belongs to the cone {x ∈ R

|E| | Mx = 0, x ≥ 0}
and therefore x′ 6= 0 is a positive linear combination of extreme rays of this
cone. By Lemma 2.2, the support of x′ is the union of simple directed cycles
of G. Therefore, S(x) \ {e+, e−} is the union of simple directed cycles of
G.

Lemma 2.4. Let G = (V, E, w) be a directed weighted graph. Let C be a

directed simple cycle.

• if C is negative then C ∪ {e−} is the support of an extreme ray of Γ;

• if C is positive then C ∪ {e+} is the support of an extreme ray of Γ;

• otherwise C is the support of an extreme ray of Γ.
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Proof. If C is negative, that is w(C) =
∑

e∈C w(e) < 0, we consider the
vector x defined by

xi =







1 if i ∈ C
−w(C) if i = e−

0 otherwise

Clearly, x is in the cone Γ =: {x ∈ R
|E|+2 | M+x = 0, x ≥ 0} and has support

S(x) = C ∪ {e−}. We show that x is an extreme ray of Γ. Suppose it is
not. Then it is a positive linear combination of extreme rays of Γ. Thus,
there must exist an extreme ray x′ such that S(x′) ⊆ S(x) and S(x′) ∋ e−.
By Lemma 2.3, S(x′) \ {e−} is the union of directed simple cycles of G. But
S(x′) \ {e−} ⊆ S(x) \ {e−} = C, a directed simple cycle C. We conclude
that S(x′) = S(x) = C ∪ {e−}. The proof is analogous for the case that C is
positive.

Now, if the cycle has weight 0, then we choose in Γ(G) the vector x defined
as

xi =

{

1 if i ∈ C;
0 otherwise

Arguing in a similar way as in the previous case, we conclude that x is an
extreme ray of Γ with S(x) = C.

Lemma 2.5. Let G = (V, E, w) be a directed weighted graph. Let x be an

extreme ray of Γ. Then exactly one of the following possibilities is true:

• S(x) = {e+, e−};

• S(x) is a union of directed simple cycles;

• S(x) = C ∪ {e−} where C is a negative directed simple cycle of G;

• S(x) = C ∪ {e+} where C is a positive directed simple cycle of G.

Proof. If S(x) contains both e+ and e− then, because of minimality of sup-
port, S(x) = {e+, e−}. If S(x) and {e+, e−} are disjoint sets, then by
Lemma 2.3 the set S(x) is a union of simple cycles.

Suppose that S(x) contains e− but does not contain e+. Let us consider
F = S(x) \ {e−}. By Lemma 2.3, S(x) \ {e−} is a union of simple cycles.
Let C be one of them. We show that C is negative and C = S(x) \ {e−}.
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If not and C has weight 0, then by Lemma 2.4, C is the support of an
extreme ray that does not contain e−. This contradicts the fact that x is an
extreme ray.

If not and C is positive, C ∪ {e+} is the support of an extreme ray,
say x′. Let α = x′

e+ > 0 be the value of the coordinate e+ of x′. Let
β = xe− > 0 be the value of the coordinate e− of x. Let z ∈ R

|E+2| be the
vector such that zi = 1 if i ∈ {e−, e+} and zi = 0 otherwise. The vector
y = (1/α)x′ + (1/β)x − z is positive and M+y = 0. Therefore, y ∈ Γ and
S(y) = C ⊆ S(x) \ {e−}. This contradicts the fact that x is an extreme ray.
We conclude that C is a negative simple cycle and therefore C∪{e−} = S(x).

Analogously, if S(x) contains e+ but does not contain e−, then the support
of x is C ∪ {e+} for some positive simple cycle C.

As a corollary, we obtain the following crucial observation for our results.

Theorem 2.6. Let G = (V, E, w) be a directed weighted graph and let F ⊂ E.

Then the following two statements are equivalent:

• F is a negative simple directed cycle;

• F ∪ {e−} is the support of an extreme ray of Γ.

Our first result follows directly from this theorem in combination with a
result from Khachiyan et al. (2008).

Theorem 2.7. Given a cone {x ∈ R
n | Ax = 0, x ≥ 0} and a coordinate

i, enumerating all extreme rays that contain i in their support is not in PT

unless P=NP.

Proof. Khachiyan et al. (2008) showed that enumerating negative cycles of
a weighted directed graph G is not in PT unless P=NP. By Theorem 2.6,
searching for negative cycles in G is equivalent to searching for extreme rays
of Γ having e− in their support. Since, given G, we can construct Γ in
polynomial time, the theorem follows.

The proof of the hardness of enumerating all negative cycles in a directed
weighted graph made by Khachiyan et al. (2008) is done by a reduction
from the CNF satisfiability problem: a well-know NP-complete problem of
deciding if a boolean expression φ in conjunctive normal form has a positive
assignment. The proof also shows (this is not explicitly mentioned in the
paper) that the problem of deciding if there exists a negative cycle that uses
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a given arc u is NP-hard. In fact, from an instance φ of the CNF satisfiability
problem, the authors construct a weighted directed graph G such that there
is a one-to-one correspondence between a positive assignment of φ and a
negative cycle that uses a particular arc of G (called (um+n, u0) in the proof).
We use this result to prove the following theorem.

Theorem 2.8. Given a cone {x ∈ R
n | Ax = 0, x ≥ 0} and two coordinates

i and j, deciding if there exists an extreme ray of the cone that has both ri

and rj in its support is NP-complete.

Proof. Verifying that a vector x ∈ R
n is an extreme ray can be done in

polynomial time, hence the problem is in NP. On the other hand, we know
from Khachiyan et al. (2008) that the problem of deciding if there exists a

negative cycle in a graph that uses a given arc u is NP-hard. By Theorem 2.6,
this is equivalent to deciding if there exists an extreme ray of Γ that contains
e− and u in its support. Since, given G, we can construct Γ in polynomial
time, the theorem follows.

3. Conclusion

Elementary modes analysis has often been used as a way to understand
the cellular characteristics of a metabolic network (Stelling et al., 2002). An
elementary mode can be seen as a minimal set of reactions that can work
in steady state independently of the other reactions in the network. It has
therefore served as a mathematical model for the possible metabolic pathways
of a cell.

In this paper, we proved some complexity results related to the search
and enumeration of elementary modes. Theorem 2.7 implies that is not
possible to enumerate in polynomial total time all the elementary modes
having a given reaction in their support unless P=NP. In biological terms,
based only on the stoichiometry of the network, this means that enumerating
all possible pathways that contain a given reaction is a hard task. Theorem
2.8 further shows that, given two reactions, it is hard to decide if there exists
an elementary mode whose support contains both reactions.

Both results provide some idea about the complexity of enumerating all
elementary modes. Although the question of whether this enumeration can
be done in polynomial total time remains unanswered and is indeed a major
open issue, the results presented here give some insights of which strategies
could be useful to answer to this question. Moreover, enumeration of all
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elementary modes corresponds to a special case of the enumeration of vertices
of a bounded polyhedron, whose complexity is, in its turn, one of the major
open questions in computational geometry.

Beyond that, Schwartz and Kanehisa (2006) have shown that all ele-
mentary modes are not equal contributors to physiological cellular states.
It remains an open biological question of how to identify elementary modes
that are physiologically relevant to which Schwartz and Kanehisa (2006) pro-
vide some pointers. Once this is fully answered, it will then become an open
question whether such subset of all elementary modes can be more efficiently
enumerated.
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Klamt S and von Kamp A. 2009. Computing paths and cycles in biological 
interaction graphs. BMC Bioinformatics, 10:181. 
 
Answer: We do not think that this reference is relevant to our 
article. While Klamt et von Kamp describe methods to compute cycles 
having a biological sense, in our paper we use enumeration of negative 
cycles as a problem that is related to the enumeration of elementary modes only by its complexity. 
 
> 4)The meaning of lowercase gamma is not mentioned in the manuscript. 

*Detailed Response to Reviewers



 
Answer: We have modified the text accordingly (lowercase gamma deleted). 
 
5)The meaning of SAT (Satisfiability ...) on page 9 could be explained. 
 
Answer: We have modified the text accordingly  (label #1-5 in .tex file). 
 
> 6) On pages 9/10 in the conclusions the authors write: 
 
> "Theorem 2.7 implies that is not possible to enumerate in polynomial 
total time all the elementary modes having a given reaction in their 
support unless P=NP. In biological terms, based only on the stoichiometry 
of the network, this means that enumerating all possible pathways that 
contain a given reaction is a hard task. Theorem 2.8 further shows that, 
given two reactions, it is hard to decide if there exists an elementary 
mode whose support contains both reactions. 
Both results provide some idea about the complexity of enumerating all 
elementary modes. Although the question of whether this enumeration can 
be done in polynomial total time remains unanswered and is indeed a major 
open issue, the results presented here give some insights of which strategies 
could be useful to answer to this question." 
 
> For some readers not experienced in the field (and I have to confess that 
I'm also not an expert in complexity theory) it might be 
confusing that enumerating all EMs having a given reaction is a hard 
problem whereas for computing all EMs it is not clear yet whether it 
is polynmial or not. This might suggest that computing all EMs could 
be simpler (faster) than computing only a special subset of them (which 
is obviuosly not the case). 
It would be helpful if the authors could clarify this point - as far 
as I understand, the case of computing the EMs with a given reaction 
could be harder than computing all EMs only when normalizing it to the 
output size. 
 
Answer: We have modified the text accordingly (label #1-6 first issue in .tex file). 
 
> Related to this, in the introduction section the authors mention the 
relatedness between EMs and vertex enumeration. The title of the 
reference [6] might suggest that vertex (and thus EM) computation 
is hard - but this is not true as the results of [6] refer only to 
unbounded polyhedra. 
 
Answer: We have modified the text accordingly (label #1-6) last issue in .tex file). 
 
Reviewer #2:  
 
> MINOR ISSUES 
> (1) page 7, proof of Lemma 2.4, ff 
Maybe I overlooked it, but I could not find an explanation of the <gamma>(C) notation. 
 
Answer: We have modified the text accordingly (lowercase gamma deleted). 
 



> (2) page 8, second to last section of the proof 
current: C U {q+} 
probably meant: C U {e+} 
second occurrence in last section 
 
Answer: We have modified the text accordingly. 
 
> (3) page 9, Conclusion, line 4 
typo: netowrk (instead of network) 
 
Answer: We have modified the text accordingly. 
 
 
 
 


