
3

A Generalized Parallel Task Model for Recurrent
Real-Time Processes

VINCENZO BONIFACI, IASI–Consiglio Nazionale delle Ricerche

ANDREAS WIESE, Max Planck Institute for Informatics

SANJOY K. BARUAH, University of North Carolina

ALBERTO MARCHETTI-SPACCAMELA, Sapienza Università di Roma

SEBASTIAN STILLER, Technische Universität Braunschweig

LEEN STOUGIE, CWI & Vrije Universiteit Amsterdam

A model is considered for representing recurrent precedence-constrained tasks that are to execute on multi-

processor platforms. A recurrent task is specified as a directed acyclic graph (DAG), a period, and a relative

deadline. Each vertex of the DAG represents a sequential job, while the edges of the DAG represent precedence

constraints between these jobs. All the jobs of the DAG are released simultaneously and need to complete

execution within the specified relative deadline of their release. Each task may release jobs in this manner

an unbounded number of times, with successive releases occurring at least the specified period apart. Con-

ditional control structures are also allowed. The scheduling problem is to determine whether a set of such

recurrent tasks can be scheduled to always meet all deadlines upon a specified number of identical processors.

This problem is shown to be computationally intractable, but amenable to efficient approximate solutions.

Earliest Deadline First (EDF) and Deadline Monotonic (DM) are shown to be good approximate global sched-

uling algorithms. Polynomial and pseudo-polynomial time schedulability tests, of differing effectiveness, are

presented for determining whether a given task set can be scheduled by EDF or DM to always meet deadlines

on a specified number of processors.

CCS Concepts: • Theory of computation → Scheduling algorithms; • Software and its engineering

→ Real-time schedulability;

Research by Leen Stougie was partially supported by the Netherlands Organisation for Scientific Research (NWO) through

the Gravitation Programme Networks (024.002.003).

Earlier versions of this work appeared in the proceedings of the IEEE Real-Time Systems Symposium, San Juan, Puerto Rico,

2012, the EuroMicro Conference on Real-Time Systems, Paris, France, 2013, and the EuroMicro Conference on Real-Time

Systems, Lund, Sweden, 2015.

Authors’ addresses: V. Bonifaci, Istituto di Analisi dei Sistemi ed Informatica, Consiglio Nazionale delle Ricerche, via

dei Taurini 19, 00185 Rome, Italy; email: vincenzo.bonifaci@iasi.cnr.it; A. Wiese, Max Planck Institute for Informatics,

Saarbrücken, Germany; email: awiese@mpi-inf.mpg.de; S. K. Baruah, Computer Science Department, University of North

Carolina at Chapel Hill, NC, USA; email: baruah@cs.unc.edu; A. Marchetti-Spaccamela, Dipartimento di Ingegneria In-

formatica Automatica e Gestionale, Sapienza Università di Roma, via Ariosto 25, 00185 Rome, Italy; email: alberto@

diag.uniroma1.it; S. Stiller, Institute for Mathematical Optimization, Technische Universität Carolo-Wilhelmina zu Braun-

schweig, Universitätsplatz 2, 38106 Braunschweig, Germany; email: sebastian.stiller@tu-bs.de; L. Stougie, Centrum

Wiskunde & Informatica, P.O. Box 94079, 1090 GB Amsterdam, Netherlands; email: Leen.Stougie@cwi.nl.

Author’s current mailing address: A. Wiese, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Beauchef

851 Of. 705 Piso 7, Santiago Centro, Chile; S. K. Baruah, McKelvey School of Engineering, Washington University in St.

Louis, Campus Box 1100, 1 Brookings Drive, St. Louis, MO 63130-4899, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2329-4949/2019/06-ART3 $15.00

https://doi.org/10.1145/3322809

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CWI's Institutional Repository

https://core.ac.uk/display/301632827?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:permissions@acm.org
https://doi.org/10.1145/3322809

3:2 V. Bonifaci et al.

Additional Key Words and Phrases: Precedence constraints, multiprocessor platform, directed acyclic graph,

conditional control-flow, schedulability test, approximation algorithm

ACM Reference format:

Vincenzo Bonifaci, Andreas Wiese, Sanjoy K. Baruah, Alberto Marchetti-Spaccamela, Sebastian Stiller, and

Leen Stougie. 2019. A Generalized Parallel Task Model for Recurrent Real-Time Processes. ACM Trans. Parallel

Comput. 6, 1, Article 3 (June 2019), 40 pages.

https://doi.org/10.1145/3322809

1 INTRODUCTION

Many real-time systems can be modeled as being composed of a finite number of independent re-
current processes or tasks, each of which generates a potentially infinite sequence of jobs that need
to be executed. Since its origins in the late 1960s up until the early 1990s, the discipline of real-time
scheduling has primarily dealt with determining how multiple recurrent processes, each with a rel-
atively simple internal structure, can be scheduled upon a shared processor (Liu 1969a, 1969b; Liu
and Layland 1973; Dertouzos 1974; Leung and Merrill 1980). More recently, the convergence of two
important long-term trends in real-time computing—the increasing prevalence of multiprocessor
platforms and increased complexity in the internal structure of individual recurrent processes—has
thrown up significant challenges to this traditional perspective of real-time scheduling.

—Multiprocessors. As processor manufacturers seek to provide large improvements in per-
formance without corresponding increases in power and energy requirements, scaling
trends in processor design have tended to move away from increasing clock frequencies
to increasing the number of cores per processor. This trend toward multicore platforms
has exposed a significant shortcoming of earlier recurrent task models—they fail to expose
the parallelism that may exist within the workload generated by individual recurrent tasks,
thereby preventing the exploitation of such parallelism by runtime scheduling mechanisms.
This motivates the need for more expressive task models for recurrent processes that allow
for the modeling of partial parallelism within individual tasks, as well as for representing
precedence dependencies between different parts of a single task. Unfortunately, such issues
are not particularly well understood; as Saifullah et al. (2013) have observed, “the growing
importance of parallel task models for real-time applications poses new challenges to real-
time scheduling theory that has mostly focused on sequential task models.”

—More complex recurrent processes. Accompanying this trend toward increased paral-
lelism has been a trend toward increased complexity in the functionalities implemented
within individual recurrent processes. In particular, the early models for recurrent real-time
processes, such as the Liu and Layland model (Liu and Layland 1973) and the three-parameter

sporadic tasks model (Mok 1983) assume that each task models straight-line code; however,
all but the simplest real-time code today contains conditional constructs (e.g., if-then-else’s)
governed by guards whose values cannot always be determined prior to runtime. This trend
toward more complex control-flow structures in recurrent real-time processes has indeed
been somewhat addressed in the prior real-time scheduling literature (see, e.g., Baruah
(1998) and Stigge et al. (2011)) but in the context of models for uniprocessor platforms.

The concurrent consideration of both parallelism and conditional execution gives rise to a plethora
of important and interesting challenges; this article reports upon our efforts at addressing some
of these challenges. We present a parallel task model that we call the sporadic DAG model that is
designed with the explicit purpose of exposing parallelism that may be present within the work-
load generated by individual recurrent processes. In this model, a recurrent task is specified as a

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

https://doi.org/10.1145/3322809

A Generalized Parallel Task Model for Recurrent Real-Time Processes 3:3

directed acyclic graph (DAG), a period, and a relative deadline. Each vertex of the DAG represents
a sequential job, while the edges of the DAG represent precedence constraints between these jobs.
We additionally propose the conditional sporadic DAG model as an enhancement of the sporadic
DAG model, to enable the modeling of situations in which control structures within the code be-
ing modeled by the task may mean that different activations of the task cause different parts of
the code to be executed. We consider real-time workloads that can be modeled as a collection
of independent conditional sporadic precedence-constrained tasks that execute upon a platform
comprisingm identical processors. We assume that the platform is fully preemptive and that it al-
lows global interprocessor migration, although we assume that each job within a task may execute
on at most one processor at each instant of time. We study the behavior of two well known global
scheduling policies: global Earliest Deadline First (EDF) and global Deadline Monotonic (DM) (Leung
and Whitehead 1982; Liu and Layland 1973).

2 BACKGROUND CONCEPTS AND RELATED WORK

2.1 Feasibility, Schedulability, and Speedup Bounds

We will see that a single (regular or conditional) sporadic DAG task set may in general generate
infinitely many different individual collections of jobs during different runs; a task set T is said to
be feasible upon a specified platform if a valid schedule exists on that platform for every collection
of jobs that may be generated by the task set T .

Given a scheduling algorithm ALG, a task set is said to be ALG-schedulable upon a specified
platform if ALG meets all deadlines when scheduling any collection of jobs that may be generated
by the task set upon that platform.

An important requirement of hard real-time systems is to guarantee prior to runtime that all
deadlines will be met; such guarantees are given by schedulability tests. A schedulability test for
a given scheduling algorithm ALG is an algorithm that takes as input a description of a task set
and the specifications of an execution platform and provides as output an answer to whether the
system is ALG-schedulable upon the specified platform. A schedulability test is exact if it correctly
identifies all schedulable and unschedulable task sets. It is sufficient if it correctly identifies all un-
schedulable task systems but may misidentify some schedulable systems as being unschedulable.
For any scheduling algorithm to be useful for hard-deadline real-time applications, it must have
at least a sufficient schedulability test that can verify that a given job system is schedulable. It has
been observed (Baker and Baruah 2007, p. 3-3) that the quality of the scheduling algorithm and
the schedulability test are inseparable, since there is no practical difference between a system that
is not schedulable and one that cannot be proven to be schedulable.

We say that a scheduling algorithm ALG has a speedup bound α , where α is a real number greater
or equal than 1 if any task system that is feasible onm unit speed processors is ALG-schedulable on
m speed-α processors. With respect to schedulability tests, we define speedup bounds as follows.
We say an ALG-schedulability test has speedup bound α if any task system that is feasible on m
unit speed processors is determined by the test to be ALG-schedulable on m speed-α processors.
(Note that such a test may also give a positive answer for systems for which there is no schedule
on m unit speed processors but that are ALG-schedulable on m speed-α processors. In this sense,
the value α , that is, the speedup bound of the test, is a metric for quantifying the quality of the
approximation of the test.)

2.2 Results in This Paper

The major contribution of this article is to give bounded-speedup and efficient schedulability tests
for sets of unconditional or conditional multiple precedence-constrained tasks, where each task’s

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

3:4 V. Bonifaci et al.

precedence constraints are specified by a DAG, and the tasks’ deadlines are arbitrary. The main
results of the article are to show a 2 − 1/m speedup bound for EDF and a corresponding pseudopoly-

nomial time schedulability test with speedup bound 2 − 1/m + ϵ (for any ϵ > 0), thus improving and
extending previous results; the bound matches the best bound for a sequential sporadic task set
(Baruah et al. 2010; Bonifaci et al. 2012), showing that parallel threads and precedence constraints
do not influence the effectiveness of EDF. Moreover, in addition to EDF, the analysis is extended
to the Deadline Monotonic scheduling algorithm, showing a 3 − 1/m speedup bound and a corre-

sponding pseudopolynomial time schedulability test with speedup bound 3 − 1/m + ϵ (for any ϵ > 0);
also in this case, the speedup bound matches the best bound known for a sequential sporadic task
set (Baruah et al. 2010).

Our tests described above have pseudopolynomial time complexity; we complement these pseu-
dopolynomial tests with simpler, polynomial time sufficient conditions to test EDF and DM schedu-
lability. We show how the conditional case can be reduced to the unconditional case by means of
an appropriate transformation.

Last but not least, we present an extension to precedence-constrained tasks in which each indi-
vidual sequential operation may have a distinct intra-task deadline, as opposed to a unique deadline
per task. This is a significant enhancement of the expressiveness of the model; it allows the specifi-
cation of more and less stringent timing requirements for different parts of the same task, resulting
in a conditional sporadic DAG model that is even more flexible.

2.3 Prior Results

It is known (Ullman 1975) that the preemptive scheduling of a given collection of precedence-
constrained jobs on a multiprocessor platform is NP-hard in the strong sense; this intractability
result is easily seen to hold for the sporadic DAG model as well.

For the sequential sporadic task model (Mok 1983) there exist schedulability tests with speedup
factor of 2 − 1/m when the scheduling algorithm is Earliest Deadline First (EDF) and 3 − 1/m when
the scheduling algorithm is Deadline Monotonic (DM) (Baruah et al. 2010; Bonifaci et al. 2012).1

Our model also generalizes the fork-join model that has been introduced by Lakshmanan et al.
(2010) and further generalized in subsequent work (Andersson and de Niz 2012; Nelissen et al. 2012;
Saifullah et al. 2013). In the fork-join model, the execution requirement of a task is an alternate
sequence of parallel and sequential threads that are represented as sequential and parallel seg-
ments; parallel segments need to synchronize before starting the execution of the next sequential
segment. Saifullah et al. (2013) analyzed the case of implicit deadlines (i.e., Di = Ti) and all parallel
threads with the same worst-case execution requirement and showed a global EDF-schedulability
test with speedup 4 and a partitioned DM-schedulability test with speedup 5. The article also ex-
tends the above results to the special case of the DAG model where each vertex of the DAG has
unit execution time.

Nelissen et al. (2012) considered the same model consisting of a sequence of parallel and se-
quential threads, with the assumption that relative deadlines of the tasks are not larger than the
corresponding periods. The authors showed a speedup bound of 2 for a certain class of algorithms,
which includes PD2, U-EDF, LLREF, and DP-Wrap. Andersson and de Niz (2012) considered a simi-
lar model and showed that EDF has a speedup bound of 2 − 1/m. We remark that the schedulability
test provided by Andersson and de Niz is not efficient and no bound on its running time is provided.
Independently of our work, Li et al. (2013, 2015) also showed a speedup bound of 2 − 1/m for global
EDF for arbitrary deadline precedence-constrained tasks, though without a schedulability test. For

1Note, however, that in Baruah et al. (2010) and Bonifaci et al. (2012), it is assumed that subsequent jobs generated by the

same task cannot be parallelized.

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

A Generalized Parallel Task Model for Recurrent Real-Time Processes 3:5

the special case of implicit deadline tasks, they additionally provided a linear-time schedulability
test with speedup bound 4 − 2/m (a similar result is discussed by Saifullah et al. 2014). In subse-
quent work, Li et al. (2014) focus on implicit deadline precedence-constrained tasks and present
a federated scheduling strategy and a corresponding linear-time schedulability test with speedup
2 − 1/m, as well as linear-time schedulability tests with speedup 2.619 for global EDF and 3.733 for
global Rate Monotonic, respectively.

With regards to conditional execution of parallel code. to the best of our knowledge the multi-

DAG model proposed by Fonseca et al. (2015) represents the first attempt at concurrently mod-
eling both intra-task parallelism and conditional execution in recurrent real-time task systems.
The multi-DAG model models each recurrent task as a collection of “execution flows,” each of
which represents a different flow of control through the code being modeled by the task; each
such execution flow is explicitly modeled as a separate DAG.

Although the multi-DAG model does indeed succeed in achieving its goal of generalizing the
sporadic DAG model to represent conditional control-flow constructs, this generalization comes
at a significant price in terms of computational complexity. As stated above, each possible flow
of control (called “execution flow”) through the code modeled by an individual task is explicitly
represented by a separate DAG, and the number of such flows is an important parameter in deter-
mining the efficiency of the schedulability analysis and runtime scheduling algorithms proposed
in Fonseca et al. (2015). But there may in general be exponentially many different flows through a
graph. Consider, for example, code structured like this:

if (C1) then {S11} else {S12}
if (C2) then {S21} else {S22}
if (C3) then {S31} else {S32}
.
.
if (Cn) then {Sn1} else {Sn2}

where each (Ci) represents a Boolean condition, and each {Sij} a block of straight-line code.
It is evident that such a code fragment may have 2n different execution flows through it; hence,
requiring explicit enumeration of all execution flows and having the number of such flows be a
determinant in the computational complexity of scheduling and schedulability analysis algorithms
mean that these algorithms all have exponential worst-case runtime.

We model a recurrent conditional precedence-constrained task by introducing conditional ver-
tices, next to job-vertices. These conditional vertices come in pairs c, c̄ . Informally speaking, vertex
c can be thought of representing a point in the code where a conditional expression is evaluated
and, depending upon the outcome of this evaluation, control will subsequently flow along exactly
one of several different possible paths in the code. It is required that all these different paths meet
again at a common point in the code, represented by the vertex c̄ . We will define this requirement
formally in Section 3. Tasks without conditional vertices will be often referred to as unconditional

tasks.

2.4 Outline of the Paper

The remainder of this article is organized as follows. In Section 3, we formally define the notation
and terminology used in describing our task model. In Section 4, we show that the problems we
seek to solve are intractable; hence, we are unlikely to obtain efficient algorithms for solving them
exactly. (This fact provides justification for the fact that our algorithms provide approximate solu-
tions, rather than exact ones.) We also show how parallel scheduling anomalies can complicate the
analysis even when the task set comprises only one task. In Section 5, we present a general result
for work-conserving algorithms (Section 5.2), and we use it to derive the speedup bounds for EDF

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

3:6 V. Bonifaci et al.

(Section 5.3) and DM (Section 5.4). We present and analyze a corresponding pseudopolynomial
time EDF- and DM-schedulability test in Section 6 that for arbitrary ϵ > 0 either guarantees that a
task set is EDF-schedulable (respectively, DM-schedulable) on m processors of speed 2 − 1/m + ϵ
(respectively, 3 − 1/m + ϵ) or proves that the task set is infeasible on m processors of unit speed.
Section 7 presents a transformation from conditional tasks to unconditional tasks that allows us
to apply the tests from Section 6 also in the conditional case. In Section 8, we move on to sim-
pler sufficient schedulability conditions that can easily be tested in polynomial time. Section 9
presents the extension to the case of distinct intra-task deadlines. We conclude with some remarks
in Section 10.

3 MODEL AND DEFINITIONS

In the sporadic DAG model, the input consists of a task set (or task system) T = (τ1,τ2, . . . ,τn), a
list of n dag-tasks (or simply tasks). A dag-task τi (i = 1, . . . ,n) is specified by a tuple (Gi ,Di ,Ti),
where Gi is a vertex-weighted directed acyclic graph and Di and Ti are positive integers.

The DAG Gi is specified as Gi = (Vi ,Ei), where Vi is a set of vertices and Ei a set of directed
edges between these vertices; it is required that these edges do not form any oriented cycle. We
assume that Gi has exactly one source vertex and one sink vertex. Each setVi is the disjoint union
of three sets Ri ,Ci , C̄i representing three types of vertices. Each v ∈ Ri denotes a sequential oper-
ation (to which we will refer as a “job” throughout the article). Each job v ∈ Ri is characterized by
a processing time ev ∈ N , also known as worst-case execution time (wcet). The conditional vertices
(c ∈ Ci , c̄ ∈ C̄i) come in pairs. They are used to represent an “if-then-else” test. Each c ∈ Ci repre-
sents an “if,” having two edges going out to job-vertices: one to a job-vertex v1 ∈ Ri representing
the case that the “if” in c holds and one to a vertex v2 ∈ Ri otherwise. Thus, from c either the sub-
graph starting in v1 is taken, and this subgraph ends in some job-vertex v̄1 ∈ Ri , or the subgraph
starting in v2 is taken, which ends in some other job-vertex v̄2 ∈ Ri . From each of v̄1 and v̄2, an
edge is going into the “end if” conditional vertex c̄ ∈ C̄i . We assume that each of the subgraphs
between v1, v̄1 and between v2, v̄2 have only one incoming edge (the edge (c,vk), k = 1, 2) and
only one outgoing edge (the edge (v̄k , c̄), k = 1, 2). More formally,

(1) For each k ∈ {1, 2}, letV ′
k
⊆ Vi and E ′

k
⊆ Ei denote the vertices and edges on paths reach-

able from vk that do not include vertex c̄ . By definition, vk is the sole source vertex of the
DAG G′

k
= (V ′

k
,E ′

k
). It must hold that v̄k is the sole sink vertex of G′

k
.

(2) It must hold that V ′1 ∩V ′2 = ∅. Additionally, with the exception of (c,vk), there should
be no edges in Ei into vertices in V ′

k
from vertices not in V ′

k
, for each k ∈ {1, 2}. That is,

Ei ∩ ((Vi \V ′k) ×V ′
k

) = {(c,vk)} should hold for all k .

In what follows, we will often treat the conditional vertices as job-vertices and refer to all
vertices of Vi as job-vertices. The edges represent precedence relations between the jobs: If
(v1,v2) ∈ Ei , then job v1 must complete execution before job v2 can begin execution. In this case,
v1 is called a predecessor of v2. We emphasize the special role of the conditional vertices: After the
conditional job c ∈ Ci has been executed, exactly one of its two successor jobs becomes eligible
for execution, and c̄ ∈ C̄i can be executed only after exactly one of its two predecessor jobs has
completed.

The sub-DAG between a pair c ∈ Ci , c̄ ∈ C̄i is called a conditional construct. Conditional con-
structs can be nested. We will use the term inner-most conditional construct to denote a conditional
construct that does not contain any other one.

Notice that in the construction of the DAG, we assumed that either outcome of a conditional test
leads to a subgraph that starts and ends with a single job. We can always ensure this by introducing,
if necessary, dummy job-vertices with processing time 0. Similarly, the assumption that Gi has a

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

A Generalized Parallel Task Model for Recurrent Real-Time Processes 3:7

Fig. 1. The DAG of an example conditional sporadic DAG task. Vertices denote jobs; the numbers within

vertices denote the wcets of the jobs. Small solid circles denote jobs with wcet equal to zero. Diamonds and

ovals denote conditional start and end vertices, respectively, and rectangles denote non-conditional vertices.

(The large rectangle encloses a single conditional construct in the DAG that will be referenced later in this

document.)

single source and a single sink is without loss of generality. Also, similarly, the out-degree and
in-degree of 2 of c and c̄ , respectively, is without loss of generality, by using dummy conditional
vertices. If desired, then we can also associate a processing time ec ∈ N to a start conditional vertex
c , meaning that the evaluation of the logical condition is itself a sequential operation requiring a
wcet of ec ; this is equivalent to the insertion of a regular job vertex with wcet equal to ec in front
of the conditional vertex c . End conditional vertices typically have an associated processing time
equal to zero, but a nonzero processing time could be similarly accomodated.

An example conditional sporadic dag-task is depicted in Figure 1. Small solid circles denote
“dummy” vertices, which correspond to jobs with wcet equal to zero. Diamond and oval vertices
denote start and end conditional vertices, respectively; there are two pairs of conditional vertices
in this DAG, each with branching factor equal to two. (For those reading this on a color medium,
the upper conditional construct is represented in blue; the lower conditional construct in red.) The
semantics of this dag-task are as follows. Whenever a dag-job is released, the dummy source vertex
has zero execution requirement and therefore immediately completes execution. Two vertices,
with wcets 3 and 6, respectively, both become eligible for execution. Once both these jobs have
completed, three jobs become eligible simultaneously.

—A conditional expression with a wcet of 1 is evaluated; depending upon the outcome of this
evaluation, either three jobs each with wcet equal to 8, or two jobs each with wcet equal to
10, are executed. After these jobs complete, a single job with wcet equal to 12 is executed.

—Another conditional expression that has a wcet of 2 is evaluated. Depending upon the out-
come of this evaluation, either a single job with a wcet equal to 8, or two jobs with wcet
equal to 4 and 6, respectively, are executed.

—A single job with wcet equal to 12 is executed.

The positive integer Ti is called the period of task τi . A release or arrival of a dag-job of task τi

at time-instant t means that all |Vi | jobs v ∈ Vi are released at time-instant t ; t is called the release

date of both the dag-job and the jobs that compose it. The period denotes the minimum amount of
time that must elapse between the release of successive dag-jobs of task τi : If a dag-job is released

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

3:8 V. Bonifaci et al.

at t , then the next dag-job of of task τi cannot be released prior to time-instant t +Ti . We also
assume all release dates to be integer. We say a job v is available at time t if all the predecessor
jobs of v (if any) have completed execution at time t ; v itself has not been completed at time t and
t is greater than or equal to the release date of v .

The positive integer Di is called the (relative) deadline. If a dag-job is released at time-instant
t , then all |Vi | jobs that constitute it must complete execution by time-instant t + Di (the absolute

deadline of those jobs).

Remark 3.1. If Di > Ti , then task τi may release a dag-job prior to the completion of its
previously-released dag-jobs. We do not require that all jobs of a dag-job complete execution before
jobs of the next dag-job can start executing.

Remark 3.2. We assume that each job requires an integer number of units of execution time
(less than or equal to its wcet). Note, however, that even though we assume the execution times to
be integers, when analyzing algorithms with increased speed (as we will, for example, do for EDF
with speed 2 − 1/m in Section 5), a job could be completed at a non-integral point in time, even if
it is never preempted. Therefore, in the analysis it is possible for jobs to be started or preempted
at fractional time instants.

Some additional notation and terminology:

—A chain in Gi is a sequence of vertices v1,v2, . . . ,vk ∈ Vi such that (vj ,vj+1) is an edge in
Gi , 1 ≤ j < k . The length of this chain is defined to be the sum of the wcets of all its vertices:∑k

j=1 evj
.

—We denote by len(Gi) the length of the longest chain in Gi . Notice that for this definition
the existence of conditional vertices is irrelevant. It is easy to see that len(Gi) can be com-
puted in time linear in the number of vertices and the number of edges in the acyclic graph
Gi by first obtaining a topological order of the vertices of the graph and then running a
straightforward dynamic program.

—We define vol(Gi) as the maximum total wcet of a single dag-job that can be generated
by task τi . Contrary to len(Gi), in this notion conditional constructs do play a crucial role.
In every possible realization of the DAG either of the two pathways in every conditional
construct is taken. Clearly, for computing vol(Gi) the largest of the two, of every conditional
construct, has to be taken into account. We observe that a polynomial time algorithm for
computing the volume of a conditional dag-task can be obtained as a consequence of the
main result of Section 7.

For our example task τ1 of Figure 1, a dag-job has maximum total wcet if the upper branch
is taken for the upper conditional and the lower branch for the lower conditional, meaning that
vol(G) = 70; for this graph, we also have len(G) = 29.

Throughout the article, we denote the length of a time interval I by |I |. We summarize in
Table 1 the most common notations used throughout the article.

4 HARDNESS OF THE DAG MODEL

4.1 Computational Complexity

As mentioned in the Introduction, the multiprocessor scheduling of sporadic dag-tasks is an NP-
hard problem. Indeed, even for a single unconditional dag-task for whichD = T , determining feasi-
bility is easily seen to be equivalent to the makespan minimization problem for preemptive sched-
uling of a set of precedence constrained jobs on identical processors, or P |prec,pmtn |Cmax, using
scheduling notation (Graham et al. 1979) (diverging, only in this subsection, a bit from notation

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

A Generalized Parallel Task Model for Recurrent Real-Time Processes 3:9

Table 1. Notation

n number of tasks
m number of processors

α , β speedup factors
ϵ error factor
T task set
τi ith task
Di relative deadline of τi

Ti period of τi

Gi DAG of τi

Vi vertex set of Gi

Ei edge set of Gi

v,v ′ job-vertices
ev wcet of v
Ri regular vertex set
Ci start conditional vertex set
C̄i end conditional vertex set

len(Gi) length of Gi

vol(Gi) volume of Gi

t , t ′ time instants
I , I ′ time intervals
|I | length of I

J , J ′ job collections
j, j ′ jobs
r j release date of j
dj absolute deadline of j
ej (unknown) execution time of j
S∞ idealized schedule
t∗ critical safe instant
t ′
f

deadline miss instant

x fully-busy time in I ′

y non-fully-busy time in I ′

Y non-fully-busy instants set
gen(T) set of job collections

that can be generated by T
workJ (I) work of J done by S∞ due in I
worki (t) worst-case workload of τi

due in an interval of length t
ŵi (t) approximation of worki (t)
λT workload density of T

rdemJ (t) remaining demand of J
in S∞ after t time units

rdemi (t) worst-case remaining demand
of τi in S∞ after t time units

introduced in the previous section). Therefore, the problem is NP-hard in the strong sense (Ullman
1975).

Proposition 4.1. The problem of determining the feasibility of a set of dag-tasks is NP-hard in

the strong sense, even when n = 1 and D = T .

The above hardness result can be strengthened in some cases. If job preemptions are only al-
lowed at integer multiples of the processor’s clock cycle, then the problem P |prec,pmtn |Cmax is
equivalent to P |prec,pj = 1|Cmax, for which a result of Lenstra and Rinnooy Kan (1978) implies that
determining the feasibility of a dag-task set is NP-hard in the strong sense even when allowing a
processor speedup of 4/3 − ϵ , for any ϵ > 0.

We also remark that, when the number of processors m is not part of the input (that is, it is a
constant), the complexity of the feasibility problem for a single unconditional task with D = T is
related to that of a long-standing open problem, known in scheduling notation as Pm |prec,pj =

1|Cmax, which appears as open problem “OPEN8” from the original list of Garey and Johnson (1979)
and is still open.

4.2 Parallel Scheduling Anomalies

Since a dag-task may legally generate infinitely many different collections of dag-jobs, it would be
helpful to identify a single collection as representing the “worst-case” collection, in the sense that
if this worst-case collection is feasible (respectively, ALG-schedulable by some algorithm ALG),
then all legal collections are also feasible (respectively, ALG-schedulable). One reasonable can-
didate for the status of such worst-case behavior is the synchronous arrival sequence, in which

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

3:10 V. Bonifaci et al.

Fig. 2. An example dag-task. The number above each vertex denotes the wcet of the corresponding job.

Fig. 3.

Fig. 4. A parallel scheduling anomaly.

successive dag-jobs arrive as soon as they are able to do so, i.e., exactly T time units apart. (Intu-
itively, the synchronous arrival sequence is a reasonable candidate, since it maximizes the amount
of execution that needs to be completed over a given interval.) However, the synchronous arrival
sequence does not consider the parallelism between different jobs within the same dag-job; it turns
out that, as a consequence, the synchronous arrival sequence need not in fact correspond to the
worst-case behavior of a dag-task set, even when the task set consists of a single unconditional
task.

Proposition 4.2. A dag-task set T might be infeasible onm processors even when n = 1 and the

synchronous arrival sequence of T is feasible onm processors.

Proof. Consider the unconditional dag-task withT = 2, D = 4, consisting of five jobs, depicted
in Figure 2. Suppose we wish to schedule this task on three processors P1, P2, P3. We present below
(Figure 3) a schedule in Gantt-chart like notation for the synchronous arrival sequence.

As the schedule demonstrates, the synchronous arrival sequence is feasible. Jobs j1 and j2 first
execute in parallel for one time unit. This is followed by job j3 executing sequentially for two time
units, after which jobs j4 and j5 execute in parallel for one time unit. All jobs complete execution
within four time units of the release of the dag-job to which they belong.

However, if one dag-job is released at time 0 and the second dag-job is released at time 3 (instead
of 2), then one of the two dag-jobs cannot complete on time.

The problem, as illustrated in Figure 4 the schedule above, is that if the first dag-job completes
by its deadline, then the second dag-job cannot exploit the parallelism of j1 and j2 by executing

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

A Generalized Parallel Task Model for Recurrent Real-Time Processes 3:11

them in parallel. This requires that these jobs of the second dag-job execute sequentially one after
the other, thereby causing the dag-job to miss its deadline (which is at time-instant 7). �

5 SPEEDUP BOUNDS FOR COLLECTIONS OF JOBS

This section considers what we call a consistent collection J of jobs. The set of jobs in a sequence
of dag-jobs generated by a dag-task set T will be an example of a consistent collection of jobs.
Arguing about job collections instead of DAG task sets makes the results somewhat more general
and—more importantly—easier to present. We now define the consistent collection model.

Definition 5.1. A collection of jobs J is a sequence of jobs that are revealed online over time,
i.e., a job j ∈ J becomes known upon the release of j. Each job j ∈ J is characterized by a release
date r j ∈ N ∪ {0}, an absolute deadline dj ∈ N , an unknown execution time ej ∈ N , and a set of
predecessor jobs Jj , which are the jobs that have to be finished before j can become available.
The actual execution time ej of a job is discovered by the scheduler only when the job signals
completion.

We call such a collection of jobs J a consistent collection of jobs if we also have, for every prede-
cessor job j of job k , that r j = rk and dj ≤ dk . Observe that every collection of jobs generated by a
dag-task set is consistent, since all jobs that constitute a given dag-job have identical release date
and, if dj > dk with j preceding k , then we can without loss of generality reset dj to dk without
affecting schedulability. Recall that a job j is available at time t if t ≥ r j and all predecessors of j
have been completed, while j is not yet completed.

5.1 The Idealized Schedule

Given a collection of jobs J , suppose that infinitely many (or, say, cardinality of J) processors of unit
speed were available. In this case, the following scheduling algorithm would be optimal: Allocate
one processor to each job and schedule each job as soon as it becomes available. Denote by S∞ the
resulting schedule; it is easy to see that the following claims hold:

—(K1) S∞ starts and ends processing jobs at integral time instants.
—(K2) S∞ dominates all valid schedules of J , in the following sense: At any point in time and

for any job, S∞ has processed at least as much of that job as any valid schedule of J did upon
a platform ofm unit speed processors.

Since, usually, the number of available processors will be smaller than the number of jobs, the
schedule S∞ cannot be implemented in general. Still, in light of property (K2) above, S∞ is useful
to establish comparisons with valid schedules.

Example 5.2. Consider the dag-task of Figure 2. Its synchronous arrival sequence is scheduled
by S∞ as depicted in Figure 5.

In the following subsections, we analyze EDF and DM by comparing them to S∞. To this end,
we need some additional definitions.

Definition 5.3. Let ALG be a scheduling algorithm and α ≥ 1. An α-counterexample for ALG is
a consistent job collection J such that J is correctly scheduled by S∞ on unit speed processors but
incorrectly scheduled by ALG on m speed-α processors (that is, S∞ completes each job of J by its
deadline, while ALG does not). A minimal α-counterexample is an α-counterexample J such that
no J ′ � J is an α-counterexample.

Definition 5.4. Let ALG be a scheduling algorithm and J an α-counterexample for ALG, for some
α ≥ 1. A safe instant is a time t such that ALG has processed at least the same amount of every job

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

3:12 V. Bonifaci et al.

Fig. 5. The idealized schedule S∞ for the synchronous arrival sequence of the DAG task in Figure 2 (only a

prefix of the schedule is shown).

during [0, t] as S∞ did during [0, t]. The critical safe instant t∗ is the largest safe instant that is not
larger than the release date of the first job on which ALG fails.

Note that the definition is well posed: The critical safe instant of ALG exists since 0 is, trivially, a
safe instant.

Example 5.5. Consider again the parallel scheduling anomaly considered in Section 4.2. The
job collection shown in Figure 4 is a 1-counterexample for EDF. However, it is not minimal, since
removing the second occurrence of either j5 or j4 (but not both) creates a smaller 1-counterexample.
The critical safe instant t∗ here is 3.

5.2 Analysis of Work-Conserving Algorithms

A work-conserving algorithm is a scheduling algorithm that never leaves processors idle while
there are available jobs. We give a general lemma concerning work-conserving algorithms. From
this lemma, speedup bounds for EDF and DM will directly follow.

Lemma 5.6. Let ALG be a work-conserving algorithm and α , β ≥ 1 be such that whenever ALG

admits a minimal α-counterexample J ∗, there exist intervals I = [t∗, tf], I ′ = [t∗, t ′
f
] such that:

—t∗ is the critical safe instant;

—t ′
f

is the time at which ALG misses a deadline;

— |I |/β ≤ |I ′ | ≤ |I |;
—during I ′, ALG only executes jobs with deadline in I .

Then for any consistent job collection J and any integerm ≥ 1, at least one of the following holds:

(1) all jobs in J are completed within their deadlines under ALG onm processors of speed α , or

(2) J is not schedulable by S∞ (with unit speed), or

(3) there is an interval I such that any valid speed-1 schedule for J onm processors must process

more than (αm −m + 1) · |I |/β units of work within I .

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

A Generalized Parallel Task Model for Recurrent Real-Time Processes 3:13

Fig. 6. Illustration of the analysis in Lemma 5.6. The overall time span of the shaded intervals in I ′ is x . The

overall time span of the non-shaded intervals in I ′ is y = |I ′| − x . The total work processed by ALG during

I ′ is at least αmx + αy.

Proof. Let J be a consistent collection of jobs and assume that neither (1) nor (2) hold; that
is, under ALG on m speed-α processors, some job j ∈ J fails to meet its deadline dj , while J
is feasible with unit speed on a sufficiently large number of processors. In other words, J is a
α-counterexample for ALG.

Consider a minimal α-counterexample J ∗ ⊆ J . By the assumption, there must exist intervals I , I ′

with the properties required in the hypothesis. We now claim that, within I ′, ALG processes more
than (αm −m + 1) |I ′ | units of work. This claim gives the lemma due to the following reasoning:
If ALG processes more than (αm −m + 1) |I ′ | units of work within I ′, then the idealized scheduler
S∞ processes at least the same amount of work during I , because, by the assumptions, t∗ is itself
a safe instant and, again by assumption, ALG is only processing jobs with deadline in I . Hence,
every valid schedule for J ∗ (by property (K2) of S∞) has to process more than

(αm −m + 1) |I ′ | ≥ (αm −m + 1) |I |/β

units of work during I . Therefore, the same must be true for any valid schedule for J (since J ∗ ⊆ J).
To prove the claim on the amount of work done by ALG during I ′, let x denote the total length

of intervals within I ′, where in ALG’s schedule all m processors are busy, and let y = |I ′ | − x .
Observe that in ALG’s schedule at least one processor is always busy during I ′, because ALG is
work conserving (this is illustrated in Figure 6).

We now claim that αy < |I ′ |. First assume that this is not the case and αy ≥ |I ′ |. Denote by
Y1, . . . ,Yk ⊆ I ′ the subintervals of I ′ where not all processors are busy, and let Y = Y1 ∪ . . . ∪ Yk .
We define t0 to be the least time t ≥ �t∗
 such that

α ·
����[t∗, t] ∩ Y ���� ≥ �t∗
 − t∗.

By property (K1) of S∞, during all time instants within [t∗, t0) ∩ Y all jobs are available for ALG that
are scheduled by S∞ during [t∗, �t∗
). Since during all these instants ALG, being a work-conserving
algorithm, does not use all processors and runs the processors with speed α , and by time t0 it has
processed at least as much of every job as S∞ has by time �t∗
.

We define instants th , h = 1, . . . , t ′
f
− �t∗
 using an analogous pattern: th is defined as the least

t ≥ �t∗
 + h such that

α ·
����[t∗, t] ∩ Y ���� ≥ �t∗
 − t∗ + h. (1)

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

3:14 V. Bonifaci et al.

Note that we are still assuming that αy ≥ |I ′ |, and hence h∗ = t ′
f
− �t∗
 is well defined. In fact,

th∗ = t ′
f
, since t ′

f
satisfies Equation (1) for h = h∗:

αy = α ·
����[t∗, t ′f] ∩ Y

���� ≥ �t∗
 − t∗ + t ′f − �t∗
 = |I ′ |.
We prove by induction that up to time th ALG has processed as much of every job as S∞ has by

time �t∗
 + h. The caseh = 0 was proven above. Now suppose that the claim is true for someh ≥ 0.
Then, again by property (K1), at each time instant during [th , th+1) ∩ Y all jobs are available for
ALG that S∞ works on during [�t∗
 + h, �t∗
 + h + 1). Since during all these instants ALG does not
use all processors and runs the processors with speed α , by time th+1 it has processed at least as
much of every job as S∞ by time �t∗
 + h + 1. By induction, the claim is true for h∗ = t ′

f
− �t∗
, and

hence at time th∗ = t ′
f

ALG has processed as much of every job as S∞. This yields a contradiction,

since we assumed that S∞ constructs a valid schedule while ALG does not.
Therefore, we must have αy < |I ′ |. Then during I ′ ALG processes at least

αm · x + αy = αm(|I ′ | − y) + αy

= αm |I ′ | − αmy + αy

= αm |I ′ | − α (m − 1)y

> (αm −m + 1) |I ′ |

units of work, and by construction of I ′, any valid schedule has to process during the interval I all
work that ALG processes during I ′. �

Theorem 5.7. Let ALG be a work-conserving algorithm satisfying the hypothesis of Lemma 5.6

with α ≥ 1 + β − 1/m. Then any consistent job collection J that is feasible on m processors of unit

speed is ALG-schedulable onm processors of speed α .

Proof. Let J be a consistent job collection that is feasible onm processors of unit speed. Since
ALG satisfies the hypothesis of Lemma 5.6, we know that at least one of the following holds:

(1) all jobs in J are completed within their deadline under ALG on m processors of speed α ,
or

(2) J is not schedulable by S∞ (with unit speed), or
(3) there is an interval I such that any valid schedule for J must process more than (αm −

m + 1) |I |/β units of work within I .

Since J is assumed feasible on m processors of unit speed, it must also be schedulable by S∞,
therefore case (2) is excluded.

Also, since J is feasible on m processors of unit speed, J admits a valid schedule that processes
during any interval I at mostm · |I | units of work. This excludes case (3), because

(αm −m + 1) |I |/β ≥ m |I |.

Hence case (1) must hold. �

Since every collection of jobs generated by a dag-task set is consistent, we obtain the following
corollary.

Corollary 5.8. Let ALG be a work-conserving algorithm satisfying the hypothesis of Lemma 5.6

with α ≥ 1 + β − 1/m. Then any dag-task set that is feasible on m processors of unit speed is ALG-

schedulable onm processors of speed α .

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

A Generalized Parallel Task Model for Recurrent Real-Time Processes 3:15

5.3 Analysis of EDF

At any time, the EDF scheduler processes the m jobs with minimum deadline that are currently
available (breaking ties arbitrarily).

We show that EDF satisfies the hypothesis of Lemma 5.6 with β = 1, α = 2 − 1/m.

Lemma 5.9. Let J ∗ be a minimal α-counterexample for EDF, where α = 2 − 1/m. Then there is an

interval I = I ′ = [t∗, t ′
f
] such that:

—t∗ is the critical safe instant;

—t ′
f

is time at which EDF misses a deadline;

—during I , EDF only executes jobs with deadline in I .

Proof. Let j ∈ J ∗ be the job for which EDF fails to meet the deadline. We let t ′
f
= dj . By the

minimality of J ∗, J ∗ does not contain any job j ′ with deadline larger than dj ; otherwise, such a job
could be removed from J ∗ to obtain a smaller α-counterexample (we are using the fact that J ∗ is
consistent: If dj′ > dj , then j ′ cannot precede j, nor any indirect predecessor of j). Therefore, all
the jobs that EDF processes during I must have their deadline in I . �

Theorem 5.10. Any consistent collection of jobs that is feasible on m processors of unit speed is

EDF-schedulable onm processors of speed 2 − 1/m.

Proof. Follows by Lemma 5.9 and Theorem 5.7. �

Corollary 5.11. Any dag-task set that is feasible onm processors of unit speed is EDF-schedulable

onm processors of speed 2 − 1/m.

The above bound is tight: Examples are known, even without precedence constraints, of feasible
collections of jobs that are not EDF-schedulable unless EDF’s speedup is at least 2 − 1/m (Phillips
et al. 2002).

5.4 Analysis of DM

Recall that the relative deadline of a job j is the difference (dj − r j) between its absolute deadline
and release date. At any time, the DM scheduler processes the m jobs with minimum relative
deadline that are currently available (breaking ties arbitrarily).

We can show that DM satisfies the hypothesis of Lemma 5.6 with β = 2, α = 3 − 1/m.

Lemma 5.12. Let J ∗ be a minimal α-counterexample for DM when run at speed α = 3 − 1/m. Then

there are intervals I = [t∗, tf], I ′ = [t∗, t ′
f
] such that:

—t∗ is the critical safe instant;

—t ′
f

is the time at which DM misses a deadline;

— |I |/2 ≤ |I ′ | ≤ |I |;
—during I ′, DM only executes jobs with deadline in I .

Proof. Let j ∈ J ∗ be the job for which DM fails to meet the deadline. We let tf = 2dj − r j and
t ′
f
= dj . By definition of critical safe instant we have t∗ ≤ r j . Hence,

|I ′ |
|I | =

dj − t∗

2dj − r j − t∗
≥

dj − r j

2dj − 2r j
=

1

2
.

The other inequality, |I ′ | ≤ |I |, follows from t ′
f
≤ tf .

Finally, by the minimality of J ∗, J ∗ does not contain any job j ′ with deadline dj′ larger than
2dj − r j . In fact, assume there was such a job j ′. If the relative deadline of j ′ is at most dj − r j ,

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

3:16 V. Bonifaci et al.

then j ′ is released after dj and therefore its removal would yield a smaller counterexample; if the
relative deadline of j ′ is larger than dj − r j , then j ′ never interferes with the execution of job j (by
definition of DM) and again by removing j ′ from J ∗ we would obtain a smaller counterexample.
Therefore, all the jobs that DM processes during I ′ must have their deadline in I . �

Theorem 5.13. Any consistent collection of jobs that is feasible on m processors of unit speed is

DM-schedulable onm processors of speed 3 − 1/m.

Proof. By Lemma 5.12 and Theorem 5.7. �

Corollary 5.14. Any dag-task set that is feasible onm processors of unit speed is DM-schedulable

onm processors of speed 3 − 1/m.

6 PSEUDOPOLYNOMIAL TIME TESTS WITH BOUNDED SPEEDUP

In this section, we present a pseudopolynomial time test for both EDF- and DM-schedulability that
is based on a characterization of the amount of work that a feasible dag-task set requires. In fact,
after starting with basic preliminaries that hold for any dag-task, in this section we will derive the
tests for unconditional dag-tasks. In the next section, we will then extend the tests to conditional
dag-tasks, essentially by transforming conditional dag-tasks into unconditional dag-tasks that are
equivalent in terms of relevant parameters (length, volume, and workload density).

6.1 Derivation of the Schedulability Test(s)

In the following, we present a pseudopolynomial time test for both EDF- and DM-schedulability
that is based on a characterization of the amount of work that a feasible dag-task set requires.

Recall the definition of S∞ from Section 5. Suppose we are given a set T of dag-tasks. Lem-
mata 5.6 and 5.9 imply that, to assert that EDF feasibly schedules any consistent job collection
J that can be generated by T when given speed α , it suffices to ensure that for any such job
collection J ,

—Condition 1: J is S∞-schedulable, and
—Condition 2: there is no interval I during which every valid schedule for J must finish

more than (αm −m + 1) · |I | units of work.

However, if any of the two conditions fails (with α ≥ 2 − 1/m) then the task set is infeasible onm
unit speed processors. Using Lemmata 5.6 and 5.12 allows a similar reasoning for DM (withα ≥ 3 −
1/m). Therefore, a natural schedulability test will check both conditions and return “schedulable”
if and only if both of them are satisfied.

Remark 6.1. Observe that both conditions are monotone in the execution times of the job col-
lection. That is, if they are satisfied by a collection of jobs with some execution times, they are also
satisfied by a similar collection of jobs with decreased execution times. This allows us to focus on
the wcets of the jobs when verifying the conditions.

Verifying Condition 1. It is easy to check whether every job collection that can be generated by
T is correctly scheduled by S∞: This is the case if and only if len(Gi) ≤ Di for all i = 1, . . . ,n. This
can be tested in linear time by computing each len(Gi) as discussed in Section 3.

Verifying Condition 2. For the remainder of this section, we can focus on verifying the second

condition. For a collection of jobs J and an interval I , we denote by workJ (I) the amount of work
done by S∞ during I on the jobs in J whose deadlines are in I . The motivation for this quantity is

that any valid schedule with unit speed machines has to execute at least workJ (I) units of work
during I .

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

A Generalized Parallel Task Model for Recurrent Real-Time Processes 3:17

Example 6.2. Consider again the collection of jobs J that was analyzed in Figure 4. Let I = [3, 7];
then the deadlines of all jobs are in I . The amount of work done by S∞ during I is 8: 2 for the last

two jobs of the first dag-job, plus 6 for the jobs of the second dag-job. Therefore, workJ (I) = 8.

Definition 6.3. Given a dag-task set T , let gen(T) be the set of job collections that may be
generated by T and define

workT (t) = sup
J ∈gen(T)

sup
t0≥0

workJ ([t0, t0 + t]).

λT = sup
t ∈N

workT (t)

t
.

Intuitively, the quantity λT denotes the maximum “workload density” that an interval can have.
In particular, if λT > m, then the system is infeasible, since there is a job sequence for T and an
interval I during which more thanm · |I | units of work have to be finished by any schedule.

We want to compute the maximum workload density, to test Condition 2; that is, to test whether
or not λT ≤ m. We cannot afford to compute λT with perfect precision: That would be an NP-hard
task already in the case of sequential tasks (Eisenbrand and Rothvoss 2010). However, computing
the workload density up to an ϵ error factor, for some small ϵ > 0, is sufficient, as shown in the
next lemma. The lemma states that with a certain extra speedup EDF and DM are still feasible if
the workload density is slightly higher than m. So, if we can at least distinguish whether λT is
greater than m, or less than or equal to slightly more than m, then we can either conclude the
task set is EDF-schedulable (or DM-schedulable) with an appropriate speedup or that for some job
sequence in gen(T), no valid unit speed schedule exists.

Lemma 6.4. Let T be a dag-task set. Let ϵ ≥ 0 and suppose that λT ≤ (1 + ϵ)m for any t ∈ N and

that T is feasible on a sufficiently large number of unit-speed processors. Then T is EDF-schedulable

onm processors of speed 2 − 1/m + ϵ and DM-schedulable onm processors of speed 3 − 1/m + 2ϵ .

Proof. We give the proof for EDF; the one for DM follows by exactly the same arguments and
is therefore omitted. Suppose that EDF fails on some job collection J ∈ gen(T) when running at
speed α = 2 − 1/m + ϵ ; i.e., J is an α-counterexample. Then by Lemmata 5.6 and 5.9 we can choose
β = 1 and conclude that there is an interval I in which any valid schedule must finish more than

(αm −m + 1) · |I | = (2m − 1 + ϵm −m + 1) |I | = (1 + ϵ)m |I |

units of work. This contradicts that λT ≤ (1 + ϵ)m. �

Therefore, to approximately test the feasibility of T , it suffices to estimate λT . We summarize
this in the following lemma.

Lemma 6.5. Let ϵ ≥ 0 and λ̂T be such that λT /(1 + ϵ) ≤ λ̂T ≤ λT . Assume that T is feasible on

a sufficiently large number of unit-speed processors. Then

(1) if λ̂T > m, T is infeasible onm unit speed processors;

(2) if λ̂T ≤ m, T is EDF-schedulable onm speed-(2 − 1/m + ϵ) processors and DM-schedulable

onm speed-(3 − 1/m + ϵ) processors.

Proof. In case (1), we have λT ≥ λ̂T > m. Thus, there is a job collection J ∈ gen(T) and an

interval I such that workJ (I) > m |I |, and hence T is not feasible onm unit speed machines.

In case (2), we have λT ≤ (1 + ϵ)λ̂T ≤ (1 + ϵ)m. Thus, Lemma 6.4 yields the claim. �

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

3:18 V. Bonifaci et al.

Given a dag-task set T , a (1 + ϵ)-approximation algorithm for λT is an algorithm computing a

value λ̂T that fulfills

λT /(1 + ϵ) ≤ λ̂T ≤ λT .

In other words, it computes a value not larger than the true maximum work density but also not
much smaller than it. Note that these are exactly the conditions required in Lemma 6.5. Thus, we
can reformulate the lemma:

Corollary 6.6. Let ϵ ≥ 0. A (1 + ϵ)-approximation algorithm for λT yields an EDF-schedulability

test for T with speedup 2 − 1/m + ϵ and a DM-schedulability test for T with speedup 3 − 1/m + ϵ .

Corollary 6.7. Let T = (τ1,τ2, . . . ,τn) be a dag-task set such that:

(1) len(Gi) ≤ Di for each i = 1, 2, . . . ,n;

(2) λT ≤ m.

Then T is EDF-schedulable with speed 2 − 1/m on m processors and DM-schedulable with speed 3 −
1/m onm processors.

Approximation of λT . From here on in this section, we concentrate on dag-tasks that do
not contain any conditional vertices. We construct a (1 + ϵ)-approximation algorithm for λT for
any given ϵ > 0. By Corollary 6.6, this allows us to test the second condition for speedup factors
arbitrarily close to 2 − 1/m for EDF and arbitrarily close to 3 − 1/m for DM. The running-time of
the (1 + ϵ)-approximation algorithm will be proportional to 1/ϵ . Thus, by increasing the running
time of the test, one can decrease the required speedup factor.

Recall that λT represents the maximum relative load of an interval (over all possible job col-
lections). Given an interval, its total workload is the sum of the workloads caused by the tasks
τ1, . . . ,τn . Since the tasks are independent, we can equivalently write

λT = sup
t ∈N

∑n
i=1 worki (t)

t
,

where worki (t) is the maximum amount of work that may be done by S∞ on jobs of task τi that
are due in an interval of length t (i.e., the maximum workload caused by task τi during an interval
of length t). This maximum is achieved when the deadline of some dag-job of τi coincides with the
rightmost endpoint of the interval; in fact if this is not the case we can increase its release time
without decreasing worki (t). Moreover, the other dag-jobs of τi are released as closely as possible.
That is, if the interval is (without loss of generality) [t0, t0 + t], then there is

—one dag-job with release date t0 + t − Di and deadline t0 + t ,
—one dag-job with release date t0 + t − Di −Ti and deadline t0 + t −Ti ,
—one dag-job with release date t0 + t − Di − 2Ti and deadline t0 + t − 2Ti ,
— . . .
—in general, one dag-job with release date t0 + t − Di − kTi , up to a k such that t0 + t − (k +

1)Ti ≤ t0 (more dag-jobs would not contribute to the amount of work done by S∞ during
[t0, t0 + t]).

We call such a sequence of dag-jobs the backward-aligned sequence for τi .
As a consequence of this structure, worki (t) is piecewise linear as a function of t , with a number

of pieces that is O (|Vi | · t/Ti), as each dag-job is responsible for at most |Vi | pieces.

Example 6.8. Consider the task set T consisting only of the dag-task of Figure 2. Its backward-
aligned sequence is depicted in Figure 7. The corresponding function work is illustrated in

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

A Generalized Parallel Task Model for Recurrent Real-Time Processes 3:19

Fig. 7. The backward-aligned sequence for the work(t) function for the dag-task of Figure 2. For compact-

ness, distinct dag-jobs are vertically aligned.

Fig. 8. The work function for the dag-task of Figure 2.

Figure 8. Moving backward from the most recently released to the least recently released dag-
job, we can see that the work(t) function takes value 2 for t = 1, value 2 + 1 = 3 for t = 2, value
3 + 3 = 6 for t = 3, and value 3(t − 1) for t > 3. The quantity λT is equal to

sup

{
2

1
,

3

2
,

6

3
,

9

4
, . . . ,

3(t − 1)

t
, . . .

}
= 3.

A simple pseudopolynomial time algorithm to compute worki (t) is Algorithm 1. The algorithm
accumulates, for each t ′ = 1, . . . , t , the number of processors that are busy during [t0 + t − t ′, t0 +
t − t ′ + 1) in the S∞ schedule of the backward-aligned sequence.

For the purpose of obtaining a good approximation of λT , it suffices to approximately compute
supt ∈N worki (t)/t for each task τi . In the next lemma, we first prove some (rough) upper and lower
bounds for the quantity worki (t).

Lemma 6.9. For any unconditional dag-task τi = (Gi ,Di ,Ti),

worki (t) ≥ max

(⌊
t +Ti − Di

Ti

⌋
, 0

)
· vol(Gi), (2)

worki (t) ≤
⌈
t

Ti

⌉
· vol(Gi). (3)

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

3:20 V. Bonifaci et al.

ALGORITHM 1: Workload computation

worki (t):

W ← 0
for t ′ ← 1 to t

do

W ←W + B (t0 + t − t ′)
(B (x) = n. of busy processors in [x ,x + 1) during
S∞’s schedule of the backward-aligned sequence)
returnW

Proof. Equation (2): There can be as many as �(t +Ti − Di)/Ti � releases of τi -dag-jobs in an in-
terval of length t whose release date and deadline fall within the interval; each of them contributes
vol(Gi) to the work function.

Equation (3): There cannot be more than �t/Ti
 releases of τi -dag-jobs in an interval of length
t whose deadlines fall within the interval. These dag-jobs are the only ones that contribute an
amount of work larger than 0. �

The number of linear pieces of the function worki (t) can be large. Therefore, we approximate
worki (t) by a function ŵi (t) defined as follows:

ŵi (t) =

{
worki (t) if t ≤ Ti/ϵ + (1 + 1/ϵ)Di
t−Di

Ti
vol(Gi) if t > Ti/ϵ + (1 + 1/ϵ)Di .

We also define ŵ(t) =
∑n

i=1 ŵi (t).

Lemma 6.10. The function ŵi is piecewise linear and has

O

(
1

ϵ
· |Vi | ·

(
1 +

Di

Ti

))

many linear pieces.

Proof. Define T ∗i = Ti/ϵ + (1 + 1/ϵ)Di . On interval (T ∗i ,∞), the function ŵi (t) is linear by
construction (that is, it has only one linear piece). For the interval [0,T ∗i], observe that ŵi (t) is
piecewise linear and continuous and it can change its slope only when a job has finished pro-
cessing in S∞. The number of jobs of τi released during [0,T ∗i] is bounded by |Vi | · �T ∗i /Ti
 =
O (1

ϵ
· |Vi | · (1 + Di

Ti
)), which implies the claim. �

We will now use the function ŵ(t) =
∑n

i=1 ŵi (t) instead of the term
∑n

i=1 worki (t) to (approxi-
mately) compute λT . Summing the bound of Lemma 6.10 for all tasks, we get:

Corollary 6.11. The function ŵ is piecewise linear and has

O ��1

ϵ
·

n∑
i=1

|Vi | ·
n

max
i=1

(
1 +

Di

Ti

)	

many linear pieces.

For piecewise linear functions ϕ with few pieces, one can compute supt ∈N ϕ (t)/t efficiently,

which allows us to compute λ̂T and eventually to infer EDF- or DM-schedulability.

Lemma 6.12. Let ϕ : N → N be a piecewise linear function with �ϕ linear pieces and assume the

value of the limit limt→∞ ϕ (t)/t is known. Then the value supt ∈N ϕ (t)/t can be found by evaluating

ϕ in O (�ϕ) points.

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

A Generalized Parallel Task Model for Recurrent Real-Time Processes 3:21

Proof. Let [a,b] be a piece of ϕ, that is, a maximal interval in which ϕ is linear. Then ϕ (t)/t
is monotone in [a,b], so that max(ϕ (a)/a,ϕ (b)/b) ≥ ϕ (t)/t for all t ∈ [a,b]. Therefore, to com-
pute supt ∈N ϕ (t)/t it suffices to compute the value of ϕ in �ϕ + 1 points (one of these “points” is
t = ∞). �

With this preparation, it remains to show that each ŵi (t) approximates worki (t) sufficiently
well, implying that also ŵ(t) is close to work(t).

Lemma 6.13. For all i = 1, . . . ,n and all t ∈ N ,

1

1 + ϵ
worki (t) ≤ ŵi (t) ≤ worki (t).

Proof. First observe that worki (t) ≥ ŵi (t), since for all t > Ti/ϵ + (1 + 1/ϵ)Di , by Equation (2),

worki (t)

vol(Gi)
≥

⌊
t +Ti − Di

Ti

⌋
≥ t +Ti − Di

Ti
− 1

=
t − Di

Ti
=

ŵi (t)

vol(Gi)
.

Moreover, again for t > Ti/ϵ + (1 + 1/ϵ)Di we have, using Equation (3),

worki (t)

ŵi (t)
≤ �t/Ti

t−Di

Ti

≤ t/Ti + 1

t/Ti − Di/Ti

=
t +Ti

t − Di
≤ (Di +Ti)/ϵ + Di +Ti

(Di +Ti)/ϵ + Di − Di
= 1 + ϵ . �

Corollary 6.14. For all t ∈ N ,

1

1 + ϵ
work(t) ≤ ŵ(t) ≤ work(t).

Lemma 6.15. For any ϵ > 0 there is a pseudopolynomial time (1 + ϵ)-approximation for λT .

Proof. By Lemma 6.12, to compute λ̂T we need to invoke the function ŵ a number of times
proportional to the number of its linear pieces. Such a number is bounded by Corollary 6.11 and
it is pseudopolynomial. Note also that the limit limt→∞ ŵ(t)/t is simply

∑n
i=1 vol(Gi)/Ti . We can

conclude that λ̂T can be computed in pseudopolynomial time (Algorithm 2), as long as one knows
how to determine the set Qi of endpoints of intervals in which each function worki is linear. This

will be discussed in Section 6.2. By Corollary 6.14, λ̂T is a good approximation to λT . �

ALGORITHM 2: Load estimation

Load(T , ϵ):

for i ← 1 to n
do

Qi ← LinInt(τi , ϵ)
(see Section 6.2)

Q ← ⋃n
i=1 Qi

λ̂T ← max
(
maxt ∈Q

∑n
i=1 ŵi (t)/t ,

∑n
i=1 vol(Gi)/Ti

)
return λ̂T

Theorem 6.16. Let ϵ > 0. There is a pseudopolynomial time EDF-schedulability test with speedup

2 − 1/m + ϵ , and a pseudopolynomial time DM-schedulability test with speedup 3 − 1/m + ϵ .

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

3:22 V. Bonifaci et al.

Proof. Follows by Corollary 6.6 and Lemma 6.15. The pseudocode description of the test is
summarized in Algorithm 3. �

Example 6.17. Let us see how Algorithm 3 behaves for the dag-task set consisting of the task
in Figure 2, when taking ϵ = 1/3 and m = 3. Notice that, as discussed in Section 4.2, at least 4
unit speed processors are necessary to schedule the task; but the test is still allowed to return
“EDF-schedulable with speed 2” as long as the task is indeed EDF-schedulable on 3 speed-2 pro-
cessors (since 2 − 1/m + ϵ = 2 − 1/3 + 1/3 = 2). This is indeed the case, as the reader can easily
check.

ALGORITHM 3: EDF/DM-schedulability test

Sched(T ,m, ϵ):

for i ← 1 to n
do

len(Gi) ← length of the
longest chain in Gi

if ∃i : len(Gi) > Di then return “infeasible”

λ̂T ← Load(T , ϵ)

if λ̂T > m then return “infeasible”
return “EDF-schedulable with speed 2 − 1/m + ϵ

and DM-schedulable with speed 3 − 1/m + ϵ”

Recall that in this example D = 4, T = 2. Since len(G) = 4 ≤ D, the first test passes. The ap-
proximate work ŵ(t) is equal to work(t) for t ≤ T /ϵ + (1 + 1/ϵ)D = 22 and equal to 3(t − 4) for

t > 22. The supremum of ŵ(t)/t is 3, which is achieved for t → ∞. So λ̂T = 3 and the second test
also passes. The Algorithm therefore returns “EDF-schedulable with speed 2” (as well as “DM-
schedulable with speed 3”).

6.2 Determination of the Linearity Intervals

As discussed in the proof of Lemma 6.15, the only missing part of the test is a subroutine to deter-
mine, for each task τi , the linearity intervals of the function worki (up to the threshold T ∗i —recall
the proof of Lemma 6.10). Recall that the evaluation of worki (t) requires considering a generic
interval [t0, t0 + t] and the S∞ schedule of the backward-aligned sequence of τi ’s dag-jobs inside
this interval.

Consequently, the endpoints of the linearity intervals are given by the following expressions:

—aq,v = Di + q ·Ti − RT(v),
—bq,v = Di + q ·Ti − (RT(v) − ev),

where q ranges on nonnegative integers, v ranges onVi (the nodes of τi ’s DAG Gi), ev is the wcet
of v , and RT(v) corresponds to the response time of v in the S∞ schedule. The quantity RT(v) can
be easily computed as follows:

—RT(v) = ev +maxu : u precedes v RT(u), if v has some predecessor,
—RT(v) = ev , if v has no predecessors.

Note that we need only consider the values ofq ≥ 0 such thataq,v orbq,v are less than the threshold
T ∗i (by the proof of Lemma 6.10). We summarize the resulting procedure in Algorithm 4.

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

A Generalized Parallel Task Model for Recurrent Real-Time Processes 3:23

ALGORITHM 4: Determination of linearity intervals

LinInt(τi , ϵ):

do

T ∗i ← Ti/ϵ + (1 + 1/ϵ)Di

Ai ← ∪q≥0,v ∈Vi
{aq,v : aq,v ≤ T ∗i }

Bi ← ∪q≥0,v ∈Vi
{bq,v : bq,v ≤ T ∗i }, where

aq,v = Di + q ·Ti − RT(v),
bq,v = Di + q ·Ti − (RT(v) − ev).

return Ai ∪ Bi

7 FROM UNCONDITIONAL TASKS TO CONDITIONAL TASKS

In this section, we will extend the schedulability tests of the previous section for unconditional
tasks to conditional tasks by transforming any conditional task into an equivalent unconditional
task, in the sense that they have the same relevant parameters len, vol, and the same work function.

Before presenting the transformation we find it helpful to define an additional function for
conditional tasks called the remaining demand function, denoted rdem. Let Ji denote all possible
complete collections of jobs that comprise a single dag-job of τi ; each collection J ∈ Ji corresponds
to a different conditional flow of execution (by J being “complete”, we mean that all job-vertices
of Gi arising from that flow of execution are included in J). Then for each J ∈ Ji , all jobs in J have
a common release date and a common deadline—the release date and deadline of the dag-job that
generates them. In line with notation used so far, we use S∞ (J) to denote, for any job collection J ,
the idealized schedule obtained by allocating a unit speed processor to each job in J the instant it
is available for execution, and executing this job upon its allocated processor until it completes.

Definition 7.1. Consider any J ∈ Ji for a dag-job of a given conditional dag-task τi , and let t
denote any positive real number. Let rdemJ (t) denote the amount of work remaining to be executed
in schedule S∞ (J) a duration t time units after the release date of the dag-job. Moreover, rdemi (t)
is defined to be the maximum value of rdemJ (t) over all collections of jobs J ∈ Ji .

Note that rdemi (t) expresses the maximum amount of work that can remain to be executed, if a
single dag-job of task τi were to execute for t time units upon infinitely many unit speed processors
(that is, the maximum difference between the wcet’s of all the jobs in J and the amount of execution
that has already occurred).

The significance of the remaining demand function arises from its relationship with the work
function, as captured by the following lemma.

Lemma 7.2. Consider a conditional dag-task τi . For all t ≥ 0,

(i) if 0 ≤ t ≤ Di , then we have

worki (t) =
�Di /Ti �∑

h=0

rdemi (Di − t + hTi).

(ii) if 0 < Di < t , then for k = �(t − Di)/Ti � + 1, we have

worki (t) = k · vol(G) +
�Di /Ti �∑

h=0

rdemi (Di − t + (k + h)Ti).

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

3:24 V. Bonifaci et al.

Fig. 9. Computing work(τi , 70, 1) for the task of Figure 11.

Fig. 10.

Proof. Recall that worki (t) is defined as the maximum value, over all job collections J that may
be generated by τi , of the amount of execution occurring within some interval of duration t in the
schedule S∞ (J) of jobs in J that have deadlines within this interval.

First, observe that for all t ≥ Di according to the definition of the rdem function, with respect
to a dag-task τi that can be successfully scheduled by S∞, we have rdemi (t) = 0.

As in the case of unconditional tasks in the previous section, we now observe that the maximum
of worki (t) is achieved when the dag-job of τi that contributes to J with highest deadline has a
deadline that coincides with the rightmost endpoint of the interval, so w.l.o.g. assume that the
interval on which worki (t) is achieved is of the form [Di − t ,Di]. Analogously as we have seen
in Section 6.1, the maximum workload is achieved when we have a backward-aligned sequence of
dag-jobs, that is, the deadlines of the dag-jobs contributing to worki (t) are Di − hTi , h = 0, 1, . . .
(the only difference being that now distinct dag-jobs may result in different job-vertices ofGi being
released). An example is illustrated in Figure 9.

We now consider the case t ≤ Di and prove (i). When t ≤ Di ≤ Ti , for intervals of duration t ,
there is exactly one dag-job that contributes to worki (t) (Figure 10).

Upon infinitely many unit speed processors, the maximum work remaining to be done (Di − t)
time units after the dag-job’s arrival is, by definition, rdemi (Di − t). It is evident from the definition
of the work function and from the picture above that this is also equal to worki (t). If Di < Ti since
�Di/Ti � = 0 (i) is proven; if Di = Ti , then we observe that when h = 1 then Di − t + hTi > Di and
hence rdemi (Di − t + hTi) = 0 and hence (i) is also proven.

If, however, t ≤ Ti < Di , then there may be multiple dag-jobs contributing to worki (t). Let
h = 0, 1, . . . , index the dag-jobs backward so that the last released dag-job has index 0. Then the
maximum work remaining to be done on the hth dag-job in the S∞ (J) schedule at time Di − t is
exactly rdemi (Di − t + hTi). It follows from the definition of the work function that the sum of
such terms equals worki (t). Finally, note that only the first �Di/Ti
 such terms can be nonzero.
This implies

worki (t) =
�Di /Ti
∑

h=0

rdemi (Di − t + hTi)

=

�Di /Ti �∑
h=0

rdemi (Di − t + hTi) + rdemi (Di − t + �Di/Ti
Ti).

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

A Generalized Parallel Task Model for Recurrent Real-Time Processes 3:25

Fig. 11. The DAG Gi of an example conditional dag-task τi . For this task, Di = 15 and Ti = 20. Note that

len(Gi) = 11 and corresponds to taking the lower branch of the conditional, while vol(Gi) = 25 and corre-

sponds to taking the upper branch.

We now show that rdemi (Di − t + �Di/Ti
Ti) = 0. Leth = �Di/Ti
 and note that 0 ≤ t ≤ Ti < Di

implieshTi ≥ Di andDi − t + hTi ≥ Di − t + Di ≥ Di . Therefore whenh = �Di/Ti
 and 0 ≤ t ≤ Di

we have rdemi (Di − t + hTi) = 0. This concludes the proof of (i).
To prove (ii), we reduce the computation of worki (t), t > Di , to the computation of worki (t −

Ti). When t > Di , at least one entire scheduling window of a dag-job of τi fits in the interval
considered by the work function, and therefore worki (t) = worki (t −Ti) + vol(Gi). This can be
repeated �(t − Di)/Ti � + 1 times, thus proving (ii) and completing the proof of the Lemma. �

We have thus reduced the problem of computing worki (t) for all t to that of computing rdemi (t)
for values of t ≤ Di . We first illustrate with an example how to compute rdemi (t). Consider a task
τi with parameters Di = 15 and Ti = 20, and a DAG Gi depicted in Figure 11.2 According to Gi , a
conditional expression having wcet equal to 1 is evaluated each time a dag-job of τi is released.
Depending upon the outcome of this evaluation, we must execute either three jobs of wcet 8, each
of them executable in parallel, or two jobs of wcet 10, each of them executable in parallel. There
is no execution cost (and hence no wcet) associated with recombining the branches; hence, the
conditional vertex depicting the end of the conditional construct has a wcet of zero.

Notice that |Ji | = 2 for this task; i.e., there are two possible flows of execution through this DAG
for a single dag-job of τi , depending upon whether the upper or the lower branch is taken upon
evaluation of the conditional expression. We consider these two cases separately; the resulting
functions are depicted graphically in Figure 12.

—The upper branch is taken. The amount of work remaining is depicted as the line beginning
at the point (0, 25) in Figure 12 (the blue line, for those reading this on a color medium).
At the beginning, there are 25 units of work remaining to be done. Only one job—the one
corresponding to the conditional vertex—executes over the interval [0, 1); hence the slope
of the line during this interval is −1. Once the conditional expression has been evaluated,
three jobs execute in parallel for eight time units; hence the slope is −3.

—The lower branch is taken. The amount of work remaining is depicted as the line beginning
at the point (0, 21) in Figure 12 (the red line). At the beginning, there are 21 units of work
remaining to be done. As in the case above, only the job corresponding to the conditional
vertex executes over the interval [0, 1); hence the slope of the line during this interval is
−1. Once the conditional expression has been evaluated, two jobs execute in parallel for
10 time units; hence, the slope is −2.

2Observe en passant that this DAG is the same as the part of the DAG in Figure 1 enclosed in a large rectangle, representing

the upper conditional construct of that task.

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

3:26 V. Bonifaci et al.

Fig. 12. Remaining work (y-axis) as a function of time elapsed (x-axis) since the release of a dag-job of the

task τi .

It is immediately evident from Figure 12 that for values of t ≤ 5, executing the upper branch leaves
more work remaining to be done after t time units (this is depicted as the blue line); for values of
t ≥ 5, executing the lower branch leaves more work remaining to be done (the red line); i.e., the
upper envelope of the two individual rdem functions3 corresponding to the two different paths
through the conditional code represents the maximum amount of remaining work for all values
of t , and rdemi (t) is therefore the upper envelope of the two individual rdem lines plotted in
Figure 12.

The above discussion exemplifies that it is not possible to identify one particular path through
the code such that simply evaluating this path suffices for determining the worst-case behavior
of the task for all values of t . In fact, for different values of t there are different paths through
the conditional code that represent the “worst case”; i.e., leaving the maximum amount of work
remaining to be done.

Let us now apply Lemma 7.2 to compute worki (t) for the example task τi for values of t =
65, 70, 72, and 78. Observe that k = 1 + �(t − Di)/Ti � = 3 for 55 ≤ t < 75, and k = 4 for t ≥ 75,
and hence k · vol(Gi) = 25 × 3 = 75 for t = 65, 70, 72, while k · vol(Gi) = 25 × 4 = 100 for t = 78.
Therefore, according to Lemma 7.2,

worki (65) = 75 + rdemi (10) = 75 + 2 = 77

worki (70) = 75 + rdemi (5) = 75 + 12 = 87

worki (72) = 75 + rdemi (3) = 75 + 18 = 93

worki (78) = 100 + rdemi (17) = 100 + 0 = 100.

The approach considered for computing the rdem function of the example dag-task has an obvious
generalization:

—Determine the function rdemJ (t) for each J ∈ Ji .
—Take the upper envelope: rdemi (t) = maxJ ∈Ji

rdemJ (t).

Notice that this approach suffers from the same problem as the multi-DAG model of Fonseca
et al. (2015): The number of distinct possible flows of execution, and hence the number of

3The upper envelope of a collection of functions is defined to be the pointwise maximum of these functions.

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

A Generalized Parallel Task Model for Recurrent Real-Time Processes 3:27

Fig. 13. The DAG obtained by transforming the upper conditional construct of Figure 1.

distinct collections of jobs J for which we would need to compute rdemJ (t), may be exponen-
tial in the size of the DAG. Therefore, the overall algorithm suggested would require exponential
time. We will develop a more efficient approach that avoids explicitly computing the rdem function
for all possible J ∈ Ji .

7.1 Schedulability of Conditional Dag-task Sets

Given a task system of conditional dag-tasks, we will efficiently transform each conditional dag-
task τi into an “equivalent” unconditional one τ̂i , in the sense that both have the same len, vol,
deadline, and period parameters, and they will satisfy the property that

worki (t) = �worki (t) for all t ≥ 0. (4)

It will then follow that a conditional dag-task set T is feasible if and only if the equivalent un-

conditional dag-task set T̂ is feasible. Therefore, we can then apply the pseudo-polynomial time
schedulability tests of Section 6 to unconditional dag-task sets to obtain a pseudo-polynomial time
EDF schedulability test and DM schedulability test for conditional dag-task sets that has speedup
factor (2 − 1/m + ϵ) and (3 − 1/m + ϵ), respectively, for any constant ϵ > 0.

We first illustrate this transformation for our example task of Figure 11. Consider a task τ̂i with

D̂i = Di = 15 and T̂i = Ti = 20 that has the DAG Ĝi depicted in Figure 13. It is readily verified that
the remaining work function of this task is identical to the upper envelope of the two remaining
work functions depicted in Figure 12. Hence, tasks τi and τ̂i have identical rdem functions (and,
therefore, identical work functions). Hence τ̂i is an unconditional dag-task that is “equivalent” to
τi in the sense that both have the same work functions.

To obtain τ̂i , we set out to construct an unconditional dag-task with rdem function equal to the
upper envelope of the two rdem functions plotted in Figure 12:

—Since the upper envelope has a slope of −1 over the interval [0, 1), we introduced a single
vertex with wcet = (1 − 0) = 1.

—The slope of the upper envelope is then −3 over the interval [1, 5); this is modeled by adding
a second “layer” of three vertices, each with wcet = (5 − 1) = 4, as successor vertices.

—The slope of the upper envelope is subsequently −2 over the interval [5, 11); this is modeled
by adding a third layer of two vertices, each with wcet = (11 − 5) = 6, as successor vertices.

—The final layer with a single vertex with wcet = 0 represents the end of the conditional
construct.

Notice that we have added edges from each vertex in each layer to all vertices in the immediately
succeeding layer and that the volume and the length of τ̂i are equal to the volume and length of
τi , respectively.

As mentioned, we should avoid explicitly computing all rdem functions for all the (possibly
exponentially many) possible execution flows. How to do so in transforming a conditional dag-
task into an equivalent unconditional one, we illustrate first by another more complete example,
prior to formally proving it.

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

3:28 V. Bonifaci et al.

Fig. 14. Transforming the lower conditional construct of Figure 1.

Fig. 15. A conditional construct. Vertices s1 and t1 (vertices s2 and t2, respectively) are the sole source vertex

and sink vertex of G′1 (G′2, respectively).

We already observed that the DAG in Figure 11 appears as one conditional construct in the
larger DAG of Figure 1—the one that is enclosed within a larger rectangle. If we were to replace
that entire conditional construct in the DAG of Figure 1 with the DAG of Figure 13, then we would
obtain a conditional DAG with one fewer conditional construct, for which (by Theorem 7.3 below)
the work function is identical to the work function of the DAG of Figure 1.

We can do likewise for the other (lower) conditional construct in the DAG of Figure 1; Figure 14
depicts the application of a similar transformation to this lower conditional construct. Finally,
Figure 16 depicts the unconditional DAG resulting from applying both transformations (and some
cosmetic changes—deletions of the dummy source and sink vertices).

The transformation algorithm. We now describe our algorithm for transforming a conditional

dag-task τi into an equivalent unconditional dag-task τ̂i , with D̂i = Di and T̂i = Ti . To obtain Ĝi ,
we start out with the DAG Gi and repeatedly

(1) identify an innermost conditional construct;
(2) construct an unconditional DAG that is equivalent to this innermost conditional construct

(we describe below how to do so); and
(3) replace the identified innermost conditional construct with the constructed equivalent

unconditional DAG,

until there are no remaining conditional constructs in the DAG.
We now describe how to construct an equivalent unconditional DAG from a single innermost

conditional construct that is notated as in Figure 15.

—Separately construct the rdem functions for the collections of jobs corresponding to all the
vertices in {c, c̄} ∪V ′1 and {c, c̄} ∪V ′2 , respectively. Each rdem is piecewise linear, with the
number of linear segments bounded from above by the number of vertices in the graph, and
each linear segment has a negative integer slope.

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

A Generalized Parallel Task Model for Recurrent Real-Time Processes 3:29

Fig. 16. The DAG of Figure 1 with both conditional constructs removed.

—Determine the upper envelope of these two rdem functions. This upper envelope is piece-
wise linear, each linear segment has a negative integer slope, and the total number of linear
segments is bounded from above by twice the number of vertices in {c, c̄} ∪V ′1 ∪V ′2 .

—Construct a DAG Ĝ = (V̂ , Ê) that has the same rdem function as the upper envelope de-
termined above. This graph is constructed as a “layered” one, with as many layers as there
are linear segments in the upper envelope plus 1. The number of vertices in the kth layer
is equal to the (negation of the) slope of the kth segment of the upper envelope, and each
vertex is labeled with a wcet equal to the duration of the time axis spanned by this kth
segment. The last layer consists of a single sink vertex with wcet = 0. There is an edge from
each vertex in a layer to each vertex in the immediately succeeding layer.

The resulting DAG Ĝ = (V̂ , Ê) is the equivalent unconditional DAG. Before stating the theorem
we observe two simple properties of the basic transformation defined above:

—(VP) The volume of Ĝ is equal to the volume of G;

—(LP) The length of Ĝ is equal to the length of G.

Theorem 7.3. Let τi denote a conditional dag-task, and τ̂i denote the (perhaps conditional) dag-

task obtained by replacing an innermost conditional construct in the DAG Gi of τi by an equivalent

unconditional DAG Ĝi as described above.

Then, for all t , 0 ≤ t ≤ Di , rdemi (t) = �rdemi (t) (and therefore worki (t) = �worki (t) for all t).

Before presenting the proof we provide some intuition, restricting to the case of a constrained
deadline task τi . Let Ji denote all possible complete collections of jobs that comprise dag-jobs of
τi and that have their deadlines in the considered interval. If Di ≤ Ti , then, for any given t , there
is at most one dag-job that is released and due within the considered interval. We will see that the

volume of Gi and Ĝi are the same; for this reason we can now focus on collections of jobs that
belong to just one dag-job of τi .

Let us assume that the innermost conditional construct that is replaced in τi is notated as in
Figure 15.

Consider any pair J1 ∈ Ji , J2 ∈ Ji of such complete collections of jobs comprising a single dag-
job of τi , that differ only in the choices they make with regard to the conditional construct that
is selected for replacement. That is, exactly one of J1, J2 contains (jobs corresponding to) all the
vertices in V ′1 , while the other contains (jobs corresponding to) all the vertices in V ′2 ; other than
these differences, they both contain (jobs corresponding to) exactly the same collection of vertices.

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

3:30 V. Bonifaci et al.

Let Δ be the difference between the sum of the wcets of all the jobs in V ′1 and the sum of the

wcets of all the jobs in V ′2 . Consider the functions rdemJ1 (t) and rdemJ2 (t) as functions of t . At

time-instant t = 0, rdemJ1 (t) − rdemJ2 (t) = Δ.
Observe that the schedules S∞ (J1) and S∞ (J2) are identical prior to the instant, to say, the time at

which both begin the execution of the job corresponding to the conditional vertex c of Figure 15.

Hence, at to , we still have that rdemJ1 (to) − rdemJ2 (to) = Δ.
Examining the schedules S∞ (J1) and S∞ (J2) at times > to and prior to the execution of vertex c̄

in either schedule, we observe that

—Those jobs that belong in both J1 and J2 execute at the same times in both schedules; hence,
the decrease in the remaining demand due to the execution of these jobs proceeds in exactly

the same manner both in rdemJ1 (t) and in rdemJ2 (t).
—Of course, the execution of the jobs belonging to exactly one of J1 or J2 proceeds differently

in the schedules S∞ (J1) and S∞ (J2); the manner in which these executions happen is rep-
resented in the rdem functions that were separately constructed for the collections of jobs
corresponding to the vertices in {c, c̄} ∪V ′1 and {c, c̄} ∪V ′2 , respectively.

At times > to and prior to the execution of vertex c̄ in either schedule, we can therefore consider
the rdem functions for each of J1 and J2 as the sum of a part that is identical in both, and a part
that is equal to the rdem functions that were separately constructed for the collections of jobs
corresponding to the vertices in {c, c̄} ∪V ′1 and {c, c̄} ∪V ′2 , respectively. And as was argued in the
case when we considered a single conditional construct in isolation (and therefore had only two
possible flows of execution), the upper envelope of both individual rdem functions represents a
tight upper bound on the rdem function over both the flows of execution that are represented by
the part of J1 and J2 that differ from each other.

Note that both len and vol of Gi and Ĝi are the same.
The correctness follows by observing that by construction, the DAG Ĝ = (V̂ , Ê) that replaces

the conditional construct has an rdem function exactly equal to this upper envelope. We are now
ready to prove Theorem 7.3.

Proof. We use the shorthand f J (t) = rdemJ (t). We already observed that

rdemi (t) = max
J ∈Ji

f J (t), (5)

where Ji is the set of possible complete collections of jobs comprising dag-jobs of the original task
τi . Similarly, �rdemi (t) = max

J ∈Ĵi

f J (t), (6)

where Ĵi is the set of possible complete collections of jobs comprising dag-jobs of the transformed
task τ̂i . To prove the theorem we need to show that for all t the right-hand sides of Equations (5)
and (6) are equal.

Given τi and t there are at most ki (t) = �t/Ti
 dag-jobs of τi with deadlines in an interval of
length t that have deadlines that are Ti far apart.

Let J j
i (Ĵ j

i) be the collection of jobs comprising a single dag-job j of Ji (Ĵi), j = 1, 2 . . . ,ki (t).

Clearly, if J ∈ Ji , then there exist disjoint sets J j ∈ J j
i , j = 1, 2 . . . ,ki (t) such that J =

⋃ki (t)
j=1 J j .

Hence,
⋃ki (t)

j=1 J
j

i = Ji and
⋃ki (t)

j=1 Ĵ
j

i = Ĵi ; since jobs of J j
i and J j′

i (Ĵ j
i and Ĵ j′

i) belong to

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

A Generalized Parallel Task Model for Recurrent Real-Time Processes 3:31

different dag-jobs of τi we can write

max
J ∈Ji

f J (t) =

ki (t)∑
j=1

max
J ∈J j

i

f J (t), (7)

max
Ĵ ∈Ĵi

f Ĵ (t) =

ki (t)∑
j=1

max
Ĵ ∈Ĵ j

i

f Ĵ (t). (8)

Therefore to prove that the right-hand sides of Equations (5) and (6) are equal, it is sufficient to

show that for all t and all j, j = 1, 2 . . . ,ki (t), max
J ∈J j

i
f J (t) = max

Ĵ ∈Ĵ j
i
f Ĵ (t).

In the proof of Lemma 7.2, we have shown that the maximum value of rdem is achieved when

jobs of J 1
i (Ĵ 1

i) have deadline at t and jobs of J j
i (Ĵ j

i) have deadline at t − (j − 1)Ti (i.e., that
dag-jobs of τi are backwardly aligned). Therefore, for j = 1, 2 . . . ,ki (t), we have

max
J ∈J j

i

f J (t) = max
J ∈J 1

i

f J (t − (j − 1)Ti),

max
Ĵ ∈Ĵ j

i

f Ĵ (t) = max
Ĵ ∈Ĵ 1

i

f Ĵ (t − (j − 1)Ti).

The above implies that to prove the theorem it is sufficient to show that for all t

max
J ∈J 1

i

f J (t) = max
Ĵ ∈Ĵ 1

i

f Ĵ (t). (9)

There is a natural bijection between job collections in Ĵ 1
i and pairs of job collections in J 1

i : We

associate to Ĵ ∈ Ĵ 1
i the pair J1, J2 ∈ J 1

i such that all the jobs generated from conditional branches,

except the one being transformed, are the same in J1, J2 as they are in Ĵ . Then, J1 and J2 correspond
to the two possible completions of these set of jobs with the jobs generated inside the conditional
branch being transformed. In particular, J1, J2 differ only in the jobs belonging to the conditional
construct being transformed.

In the sequel, we will use this bijection: Given Ĵ , then J1 and J2 are the sets associated to Ĵ .
Hence, to prove Equation (9), it is sufficient to show that for all Ĵ ∈ J 1

i

f Ĵ (t) = max{ f J1 (t), f J2 (t)} for all t .

We now analyze in more detail the structure of the functions f Ĵ , f J1 , f J2 and of the correspond-

ing schedules S∞ (Ĵ), S∞ (J1), S∞ (J2). To do so, we need to distinguish the jobs according to whether
they (1) precede—or are unrelated to—the conditional section being transformed, (2) belong to the
conditional section or to its replacement, or (3) follow the conditional section. More formally, if G
and Ĝ stand for the original and transformed DAGs, respectively, then we define:

(1) A (A1, A2, respectively) to be the set of jobs of Ĵ (J1, J2, respectively) whose corresponding

vertices are not reachable from c in Ĝ (G); and α (t) (α1 (t), α2 (t)) to be the cumulative

remaining demand of A (A1, A2) at time t in schedule S∞ (Ĵ) (S∞ (J1), S∞ (J2)).
(2) B (B1, B2) to be the set of jobs of Ĵ (J1, J2) whose corresponding vertices are reachable from

c but not from c̄ , plus c̄ , in Ĝ (G); and β (t) (β1 (t), β2 (t)) to be the cumulative remaining

demand of B (B1, B2) at time t in schedule S∞ (Ĵ) (S∞ (J1), S∞ (J2)).
(3) C (C1,C2) to be the set of jobs of Ĵ (J1, J2) whose corresponding vertices are reachable from

c̄ , excluding c̄ , in Ĝ (G); and γ (t) (γ1 (t), γ2 (t)) to be the cumulative remaining demand of

C (C1, C2) at time t in schedule S∞ (Ĵ) (S∞ (J1), S∞ (J2));

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

3:32 V. Bonifaci et al.

(4) t1 (t2, respectively) to be the instant at which S∞ (J1) (S∞ (J2), respectively) completes the
job corresponding to the conditional vertex c̄ .

Note that the sets A,B,C form a partition of Ĵ and therefore, for all t ,

f Ĵ (t) = α (t) + β (t) + γ (t).

Similarly, for all t it holds that

f J1 (t) = α1 (t) + β1 (t) + γ1 (t)

f J2 (t) = α2 (t) + β2 (t) + γ2 (t).

Without loss of generality, assume that t1 ≥ t2. We observe that:

(P1) α (t) = α1 (t) = α2 (t) for all t . The jobs in A, A1, and A2 correspond to the same vertices of
the original and transformed DAGs and are scheduled at exactly the same times in all three

schedules S∞ (Ĵ), S∞ (J1), and S∞ (J2).
(P2) β (t) = max(β1 (t), β2 (t)) for all t . This follows by construction of the transformed inner DAG

and by the fact that execution of conditional vertex c starts at the same time in each of the
three schedules.

(P3) β (t) = β1 (t) ≥ β2 (t) for all t ≥ t2. At any time t with t2 ≤ t < t1, the jobs in B1 have not
all completed in S∞ (J1), while all jobs in B2 have completed in S∞ (J2), so β1 (t) > 0 = β2 (t).
And for t ≥ t1, β (t) = β1 (t) = β2 (t) = 0.

(P4) γ (t) = γ1 (t) ≥ γ2 (t) for all t . The jobs in C , C1 and C2 correspond to the same vertices of
the original and transformed DAGs. The start time of any job j is given by the length of
the longest chain of jobs from the source to j. The start time of a job ofC1 in S∞ (J1) cannot

be earlier than the start time of the corresponding job of C2 in S∞ (J2), since t1 ≥ t2. Using
property (LP) of the basic transformation, we also have that the start time of a job j ∈ C in

S∞ (Ĵ) equals the start time of the corresponding job j1 ∈ C1 in S∞ (J1).
(P5) γ (t) = γ1 (t) = γ2 (t) for all t < t2. Before t2, no job ofC ,C1, orC2 has yet received execution

in any of the three schedules.

Combining the above points we obtain that, when t < t2,

f Ĵ (t) = α (t) + β (t) + γ (t)

= α (t) +max(β1 (t), β2 (t)) + γ (t) (by (P2))

= max(α (t) + β1 (t) + γ (t),α (t) + β2 (t) + γ (t))

= max(α1 (t) + β1 (t) + γ1 (t),α2 (t) + β2 (t) + γ2 (t))

(by (P1), (P5))

= max(f J1 (t), f J2 (t)),

while for t ≥ t2,

f Ĵ (t) = α (t) + β (t) + γ (t)

= α1 (t) + β1 (t) + γ1 (t) (= f J1 (t))

(by (P1), (P3), (P4))

≥ α2 (t) + β2 (t) + γ2 (t) (= f J2 (t)).

(by (P1), (P3), (P4))

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

A Generalized Parallel Task Model for Recurrent Real-Time Processes 3:33

Therefore, we have shown that f Ĵ (t) =max f J1 (t), f J2 (t) holds for all t and the theorem is
proved. �

7.2 Preservation of Schedulability Properties by the Transformation

As we have seen, the transformation from a conditional task to an equivalent unconditional task
preserves the vol and len parameters, as well as the work and remaining demand functions. There-
fore, it allows to approximately test schedulability using the approach for unconditional tasks pre-
sented in Section 6.

We note, however, that the transformation does not preserve schedulability. That is, it may
happen that the conditional task is schedulable where the unconditional is not. This is rather
intuitive, since it may happen that the volume of the conditional task occurs on a completely
different conditional branch of the graph than the one on which the critical path occurs, whereas
the equivalent unconditional task combines these two in one graph.

An example is a conditional task consisting of only one conditional construct with, in one
branch, 3 parallel jobs with wcet 8, and in the other branch a single job with wcet 12. If the deadline
is 12, then whatever branch is taken, a preemptive schedule is always able to complete the jobs
on 2 machines within the deadline. The transformation yields an equivalent unconditional task
that starts with 3 parallel jobs with wcet 6 all preceding a single job with wcet 6. Clearly, this task
cannot be scheduled within the deadline on 2 machines.

The transformation neither preserves non-schedulability. As an example, think of the condi-
tional task consisting of only one conditional construct with in one branch 3 parallel jobs with
wcet 8 all preceding a job with wcet 9. In the other branch, there are two parallel jobs with wcet
20 each. If the deadline is 20, then if the first branch is taken it cannot meet the deadline on 2
machines. However, within a S∞ schedule the second branch has always the highest remaining
demand. Thus, the equivalent unconditional task consists simply of the second branch of the con-
ditional task, which is in fact schedulable within the deadline on two machines.

7.3 Time Complexity of the Transformation

Before concluding this section, we briefly discuss the time complexity of the transformation pro-
cedure. We bound the time complexity in terms of two parameters: the size (number of nodes and
edges) of the DAG G being transformed, which we denote by |G|, and the maximum nesting level
of the conditionals in G, which we denote by ν (G). Trivially, ν (G) ≤ |G|, but typically we expect
ν (G) to be much smaller than |G|.

Theorem 7.4. The time complexity of the transformation algorithm applied to a conditional DAG

G is bounded above by some polynomial in 2ν (G) · |G|.

Proof. Recall that the transformation algorithm in Section 7.1 operates in phases, by repeatedly
transforming one conditional construct at a time (an innermost one), thus producing a sequence

of equivalent DAGs G (0) (= G),G (1),G (2), . . . ,G (k), . . . with less and less conditional constructs,

until an unconditional DAG Ĝ is arrived at. The proof of the claim is based on the following
observations:

—In each phase, exactly one conditional construct is removed, therefore the number of inter-
mediate equivalent DAGs produced is at most the number of conditional constructs of G
(which is clearly less than the size of G);

—Each step (1), (2), and (3) of a transformation phase described in Section 7.1 can be carried
out in time that is polynomial in the size of the conditional sub-DAG being transformed
in that phase. This is easily seen for steps (1) and (3); for step (2), note that the complexity

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

3:34 V. Bonifaci et al.

is dictated by the number of linear pieces of the upper envelope of the rdem functions of
the two sub-DAGs spanned byV ′1 andV ′2 , which is at most twice the size of the conditional
sub-DAG being replaced;

—Thus, the size of G (k+1) is at most twice the size of G (k) . Moreover, as long as

G (k+1),G (k+2), . . . ,G (k ′) are obtained by transforming conditional constructs that are not

nested in G (k) , the size of G (k ′) is at most twice the size of G (k) . It follows that the size
of Ĝ, and of each intermediate DAG G (k) , is at most 2ν (G) times the size of G. The claim
follows. �

While the bound in Theorem 7.4 may be exponentially large for dag-tasks for which ν (G) is com-
parable to |G|, note that alternative approaches based on enumerating execution flows have an
exponential complexity even when ν (G) = 1 (recall the example in Section 2.3). In contrast, when-
ever ν (G) is constant, Theorem 7.4 provides a polynomial-time bound.

8 SIMPLER SUFFICIENT CONDITIONS FOR SCHEDULABILITY

We complement the results of the previous sections with two simpler sufficient conditions for EDF-
and DM-schedulability, respectively, that can be easily checked in polynomial time.

In this section we assume, without loss of generality, that the DAG tasks τi are ordered according
to nondecreasing Di (breaking ties arbitrarily). Since all conditions are stated only in terms of the
parameters len(Gi), vol(Gi), Di ,Ti , they apply equally well to unconditional and conditional DAG
task sets.

8.1 EDF-Schedulability

Theorem 8.1. Let T = (τ1, . . . ,τn) be a DAG task set satisfying the following conditions, for some

δ ∈ (0, 1]:

(i) len(Gk) ≤ δDk , k = 1, 2, . . . ,n,

(ii) for each k , k = 1, 2, . . . ,n, either

∑
i :Ti ≤Dk

vol(Gi)

Ti
+

∑
i :Ti >Dk

vol(Gi)

2Dk
≤ (1 − δ)m + δ

2

or ∑
i :Ti ≤Dk

vol(Gi)

Ti
+

n∑
i=1

vol(Gi)

Dk
≤ (1 − δ)m + δ .

Then T is EDF-schedulable onm unit-speed processors.

Proof. Suppose by contradiction that EDF fails to complete a dag-job of a task τk . Let j be the
first dag-job of task τk that misses its deadline dj . W.l.o.g., we assume that there are no dag-jobs
with a deadline later than dj . Consider the interval I = [r j ,dj). Denote by x the total amount of
time during I where all processors are busy. Let y = (dj − r j) − x = Dk − x , i.e., y denotes the total
amount of time in I during which not all processors are busy.

We first observe that y ≤ δDk . This follows from the observation that whenever a processor is
idle, EDF must be executing a job belonging to the longest chain of the last dag-job released by τk

and, hence, y ≤ len(Gk), which is assumed to be at most δDk (condition (i)).
Condition y ≤ δDk implies that x ≥ (1 − δ)Dk . Now, since the total amount of execution occur-

ring over the interval I is greater than or equal to (mx + y), we conclude that the total work done
by EDF during I is at least ((1 − δ)m + δ)Dk .

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

A Generalized Parallel Task Model for Recurrent Real-Time Processes 3:35

Now recall inequality Equation (3) from Section 6 and observe that the total amount of work
due in I is bounded above by

∑
i :Ti ≤Dk

⌈
Dk

Ti

⌉
vol(Gi) +

∑
i :Ti >Dk

vol(Gi)

≤ 2Dk
���

∑
i :Ti ≤Dk

vol(Gi)

Ti
+

∑
i :Ti >Dk

vol(Gi)

2Dk

	

≤ ((1 − δ)m + δ)Dk ,

or, in case the alternative assumption is satisfied,

∑
i :Ti ≤Dk

⌈
Dk

Ti

⌉
vol(Gi) +

∑
i :Ti >Dk

vol(Gi)

≤ Dk
���

∑
i :Ti ≤Dk

vol(Gi)

Ti
+

n∑
i=1

vol(Gi)

Dk

	

≤ ((1 − δ)m + δ)Dk ,

where we have used either of condition (ii) and the fact that �z
 ≤ 2z when z ≥ 1. This contradicts
the assumption that EDF fails and completes the proof of the theorem. �

8.2 DM-Schedulability

Theorem 8.2. Let T = (τ1,τ2, . . . ,τn) be a DAG task set satisfying the following conditions, for

some δ ∈ (0, 1]:

(i) len(Gk) ≤ δDk , k = 1, 2, . . . ,n,

(ii) for each k , k = 1, 2, . . . ,n, either∑
i :Ti ≤2Dk

vol(Gi)

Ti
+

∑
i :Ti >2Dk

vol(Gi)

4Dk
≤ (1 − δ)m + δ

4

or ∑
i :Ti ≤2Dk

vol(Gi)

Ti
+

n∑
i=1

vol(Gi)

2Dk
≤ (1 − δ)m + δ

2
.

Then T is DM-schedulable onm unit-speed processors.

Proof. Suppose by contradiction that DM fails to complete a dag-job of a task τk . Let j be
the first dag-job of task τk that misses its deadline dj in the minimal instance J that violates the
theorem, i.e., J is an instance with the smallest number of dag-jobs that violates the theorem.
W.l.o.g., assume that there are no dag-jobs with a deadline later than 2dj − r j .

Consider the intervals Î = [r j ,dj) and I = [r j , 2dj − r j); the crucial observation in this case is

that, during Î , DM processes jobs that have their deadline in I .
Denote by x the total amount of time during Î when all processors are busy according to the

DM schedule. Let y = (dj − r j) − x = Dk − x , i.e., y denotes the total amount of time in Î during
which not all processors are busy.

We first observe that y ≤ δDk . This follows from the observation that whenever a processor is
idle, DM must be executing a job belonging to the longest chain of the last dag-job released by τk

and hence y ≤ len(Gk), which is assumed to be at most δDk .

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

3:36 V. Bonifaci et al.

Condition y ≤ δDk implies that x ≥ (1 − δ)Dk . Now, since the total amount of execution occur-

ring over the interval Î is greater than or equal to (mx + y), we conclude that the total work done

by DM during Î is greater than or equal to ((1 − δ)m + δ)Dk .
Again recall inequality Equation (3) from Section 6 and observe that the total amount of work

due in I is bounded above by

∑
i :Ti ≤2Dk

⌈
2Dk

Ti

⌉
vol(Gi) +

∑
i :Ti >2Dk

vol(Gi)

≤ 4Dk
���

∑
i :Ti ≤2Dk

vol(Gi)

Ti
+

∑
i :Ti >2Dk

vol(Gi)

4Dk

	

≤ ((1 − δ)m + δ)Dk ,

or, in case the alternative assumption is satisfied,

∑
i :Ti ≤2Dk

⌈
2Dk

Ti

⌉
vol(Gi) +

∑
i :Ti >2Dk

vol(Gi)

≤ 2Dk
���

∑
i :Ti ≤2Dk

vol(Gi)

Ti
+

n∑
i=1

vol(Gi)

2Dk

	

≤ ((1 − δ)m + δ)Dk ,

where we have used either of condition (ii) and the fact that �2z
 ≤ 4z when z ≥ 1/2. This contra-
dicts the assumption that DM fails and completes the proof of the theorem. �

9 TASKS WITH INTRA-TASK DEADLINES

In this section, we present a schedulability test for unconditional tasks with intra-task deadlines.
Throughout this section we assume that the given dag-tasks do not have any conditional vertices.
Additionally, we extend our model by defining a specific deadline for each job of the task. Formally,
we assume that each task τi is specified by a tuple (Gi ,Ti) where as before Ti is a positive integer
denoting the period length of the task. Since we do not allow conditional vertices, the DAG for each
task τi is specified as Gi = (Ri ,Ei) where each vertexv ∈ Ri corresponds to a sequential operation
(a job in our terminology) that is characterized by a processing time ev ∈ N and now additionally
a relative deadline Dv . If a dag-job of task τi is released at time instant t , then each job v ∈ Ri

constituting it must complete execution by time t + Dv .
In this model, we can assume without loss of generality that the jobs generated by a task are

consistent, meaning that whenever there are two jobs v,v ′ ∈ Ri such that v is a predecessor of v ′,
then Dv ≤ Dv ′ . If this was not the case, then we could simply change Dv to Dv ′ without affecting
schedulability.

Similarly as in Section 6, we need to check whether the following two conditions are satisfied
for any collection of jobs J that can be released by the given task set:

—Condition 1: J is S∞-schedulable, and
—Condition 2: there is no interval I during which every valid schedule for J must finish

more than (αm −m + 1) · |I | units of work.

We explain now how to check these conditions.
Condition 1. It suffices to check for every task whether one single dag-job is correctly scheduled

on S∞. To this end, we need to check for each jobv ∈ Ri of a dag-task τi whether all its predecessors

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

A Generalized Parallel Task Model for Recurrent Real-Time Processes 3:37

finish before time Dv − ev on S∞. This can be done easily in polynomial time by simulating S∞’s
schedule; we omit the details.

Condition 2. As in Section 6, we analyze the workload density that an interval can have and
define, for any collection J of jobs that might be generated from task set T , and any interval I ,
workJ (I) as the amount of work done by S∞ during I on the jobs of J that are released during I and
have their deadlines in I . Note that it might be that of two jobs in J belonging to the same dag-job,

one of them contributes to workJ (I) and the other does not. We define worki (t), workT (t), and
λT accordingly: worki (t) denotes the maximum amount of work that may be done by S∞ on jobs
of task τi that are due in an interval of length t (i.e., the maximum workload caused by task τi

during an interval of length t). Similarly, workT (t) denotes the same for the set of tasks T .
Approximation of λT . As before, we define λT = supt ∈N (workT (t)/t), which can be written

as

λT = sup
t ∈N

∑n
i=1 worki (t)

t
.

Again, since it is coNP-hard to compute λT exactly (Eisenbrand and Rothvoss 2010), we compute

an approximation λ̂T instead. In the setting of intra-task deadlines, this maximum is achieved
when the deadline of some job of a dag-job of τi coincides with the rightmost endpoint of the
interval and the other dag-jobs of τi are released as closely as possible. As before, this is the case
because if this was not true, then we could increase the release time of the last dag-job without
decreasing worki (t), and the same argumentation works in case that the other dag-jobs of τi are
not released as closely as possible.

Computing worki (t) is now more complicated than before. Even though we know that the max-
imum workload in an interval is achieved when some job v of a dag-job has its deadline on the
rightmost endpoint of the interval, we do not know which one this is. Even more, for different
values of t this job might be different. Therefore, when computing worki (t) we have to try all jobs
of τi as a candidate v . This is shown in Algorithm 5, which, for a given t , iterates over all v ∈ Ri .
For each candidate v , the algorithm computes (similarly to Algorithm 1) the maximum work per-
formed by S∞ in [t0, t0 + t] for jobs due before t0 + t , assuming that v has its deadline at t0 + t ;
finally, it returns the highest value found.

ALGORITHM 5: Workload computation for intra-task deadlines

worki (t):

Wmax ← 0
foreach v ∈ Ri

do

W ← 0
for t ′ ← 1 to t

do

W ←W + Bv (t0 + t − t ′)
(Bv (x) = n. of busy processors in [x ,x + 1) during
S∞’s schedule of a backward-aligned sequence
where an instance of job-vertex v has its deadline at time t0 + t)

if W >Wmax

thenWmax ←W
returnWmax

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

3:38 V. Bonifaci et al.

As before, it suffices to approximately compute supt ∈N worki (t)/t for each task τi . For a dag-job
of τi we define Dmax

i := maxv ∈Ri
Dv . Then, the statements of Lemma 6.9 hold accordingly and we

have that

worki (t) ≥ max

(⌊
t +Ti − Dmax

i

Ti

⌋
, 0

)
· vol(Gi), (10)

worki (t) ≤
⌈
t

Ti

⌉
· vol(Gi). (11)

As in Section 6, we define the function ŵi for each task τi by

ŵi (t) =
⎧⎪⎨⎪⎩

worki (t) if t ≤ Ti/ϵ + (1 + 1/ϵ)Dmax
i

t−Dmax
i

Ti
vol(Gi) if t > Ti/ϵ + (1 + 1/ϵ)Dmax

i

,

and we define ŵ(t) :=
∑n

i=1 ŵi (t)for all t .

Lemma 9.1. For all t ∈ N it holds that

1

1 + ϵ
work(t) ≤ ŵ(t) ≤ work(t).

Proof. Consider a task τi . As in Lemma 6.13, we can show that worki (t) ≥ ŵi (t), since for all
t > Ti/ϵ + (1 + 1/ϵ)Dmax

i , by Equation (10),

worki (t)

vol(Gi)
≥

⌊
t +Ti − Dmax

i

Ti

⌋
≥

t +Ti − Dmax
i

Ti
− 1

=
t − Dmax

i

Ti
=

ŵi (t)

vol(Gi)
.

Moreover, again for t > Ti/ϵ + (1 + 1/ϵ)Dmax
i , we have, using Equation (11),

worki (t)

ŵi (t)
≤ �t/Ti

t−Dmax
i

Ti

≤ t/Ti + 1

t/Ti − Dmax
i /Ti

=
t +Ti

t − Dmax
i

≤
(Dmax

i +Ti)/ϵ + Dmax
i +Ti

(Dmax
i +Ti)/ϵ + Dmax

i − Dmax
i

= 1 + ϵ .

This proves that 1
1+ϵ

worki (t) ≤ ŵi (t) ≤ worki (t) for all t . Using work(t) =
∑n

i=1 worki (t) and
ŵ(t) =

∑n
i=1 ŵi (t), the claim of the lemma follows. �

For our pseudopolynomial time test observe that ŵ(t) can change its slope only on integral time
points. Thus, it is piecewise linear with at mostTi/ϵ + (1 + 1/ϵ)Dmax

i + 1 many linear pieces. Using

Lemma 6.12, we compute the value λ̂T := supt ∈N ŵ(t)/t in time O (1
ϵ

(Ti + D
max
i)). Then, λ̂T is a

(1 + ϵ)-approximation to λT that we computed in pseudopolynomial time. Lemma 6.5 also holds
in the context of intra-task deadlines, and thus we obtain the following theorem.

Theorem 9.2. Let ϵ > 0. There is a pseudopolynomial time EDF-schedulability test with speedup

2 − 1/m + ϵ , and a pseudopolynomial time DM-schedulability test with speedup 3 − 1/m + ϵ for sets

of unconditional dag-tasks with intra-task deadlines.

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

A Generalized Parallel Task Model for Recurrent Real-Time Processes 3:39

10 CONCLUSIONS AND FUTURE WORKS

In this article, we have closed the gap between feasibility analysis for the sequential sporadic task
model and that of its parallel generalization, in which each sporadic task is modeled as a DAG
of precedence constraints and/or conditional structures. We have shown that, even for dag-tasks,
global EDF has a tight speedup bound of 2 − 1/m, wherem is the number of processors, while DM
has a speedup bound of at most 3 − 1/m. We have also presented polynomial and pseudopolyno-
mial time tests for determining whether a set of sporadic dag-tasks can be scheduled by EDF or
DM to meet all deadlines on a specified number of processors. It is remarkable that the speedup
bound of the pseudopolynomial time test matches that of the best EDF- and DM-schedulability
tests known for ordinary (sequential) sporadic task sets, see Baruah et al. (2010) and Bonifaci
et al. (2012), for implicit-deadline and constrained-deadline tasks.4 This suggests that better
speedup bounds can only be achieved by algorithms with a higher degree of sophistication than
global EDF.

To handle conditional tasks, we exhibited a general transformation to unconditional tasks that
preserves the relevant quantities for our tests, thus allowing to carry over the schedulability anal-
ysis. We have also provided faster sufficient polynomial time schedulability tests and an extension
of the model to tasks with intra-task deadlines.

An interesting direction for future work is to provide speedup bounds for sufficient schedula-
bility tests based on simpler conditions, such as the polynomial time schedulability tests that we
proposed in Section 8. While very efficient schedulability tests for implicit-deadline dag-tasks have
been analyzed in the literature, such as the linear tests by Li et al. (2013, 2014, 2015) and Saifullah
et al. (2014), no linear-time or even truly polynomial time tests with bounded speedup are known
for constrained or arbitrary-deadline tasks.

ACKNOWLEDGMENT

The authors thank Enrico Bini for very stimulating discussions, and the anonymous reviewers for
many useful suggestions.

REFERENCES

Björn Andersson and Dionisio de Niz. 2012. Analyzing global-EDF for multiprocessor scheduling of parallel tasks. In Pro-

ceedings of the 16th International Conference on Principles of Distributed Systems. Springer, 16–30.

Theodore Baker and Sanjoy Baruah. 2007. Schedulability analysis of multiprocessor sporadic task systems. In Handbook of

Real-Time and Embedded Systems, Sang H. Son, Insup Lee, and Joseph Y.-T Leung (Eds.). Chapman Hall/CRC Press.

Sanjoy Baruah. 1998. A general model for recurring real-time tasks. In Proceedings of the Real-Time Systems Symposium.

IEEE Computer Society Press, 114–122.

Sanjoy K. Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and Sebastian Stiller. 2010. Improved multiprocessor

global schedulability analysis. Real-Time Syst. 46, 1 (2010), 3–24.

Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and Sebastian Stiller. 2012. A constant-approximate feasibility test for

multiprocessor real-time scheduling. Algorithmica 62, 3–4 (2012), 1034–1049.

Michael L. Dertouzos. 1974. Control robotics: The procedural control of physical processes. In Proceedings of the Interna-

tional Federation for Information Processing Congress. North-Holland, Amsterdam, 807–813.

Friedrich Eisenbrand and Thomas Rothvoss. 2010. EDF-schedulability of synchronous periodic task systems is coNP-hard.

In Proceedings of the 21st Symposium on Discrete Algorithms, Moses Charikar (Ed.). SIAM, Philadelphia, PA, 1029–1034.

4An analogous conclusion cannot be drawn for arbitrary-deadline tasks since in the sequential arbitrary-deadline task

model it is typically required that a job complete execution before the subsequent job of the task may begin to execute; in

contrast, in the sporadic DAG model we do not require that all jobs of a dag-job complete execution before jobs of the next

dag-job of the same task may begin to execute.

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

3:40 V. Bonifaci et al.

José Carlos Fonseca, Vincent Nélis, Gurulingesh Raravi, and Luís Miguel Pinho. 2015. A multi-DAG model for real-time

parallel applications with conditional execution. In Proceedings of the ACM/ SIGAPP Symposium on Applied Computing

(SAC’15). ACM, 1925–1932.

Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.

H. Freeman, New York.

Ronald L. Graham, Eugene L. Lawler, Jan K. Lenstra, and Alexander H. G. Rinnooy Kan. 1979. Optimization and approxi-

mation in deterministic sequencing and scheduling: A survey. Ann. Discr. Math. 5 (1979), 287–326.

Karthik Lakshmanan, Shinpei Kato, and Raj Rajkumar. 2010. Scheduling parallel real-time tasks on multi-core processors.

In Proceedings of the IEEE Real-Time Systems Symposium. IEEE, Los Alamitos, CA, 259–268.

Jan K. Lenstra and Alexander H. G. Rinnooy Kan. 1978. Complexity of scheduling under precedence constraints. Operat.

Res. 26, 1 (1978), 22–35.

Joseph Y.-T. Leung and M. L. Merrill. 1980. A note on preemptive scheduling of periodic, real-time tasks. Inf. Process. Lett.

11, 3 (1980), 115–118.

Joseph Y.-T. Leung and Jennifer Whitehead. 1982. On the complexity of fixed-priority scheduling of periodic, real-time

tasks. Perform. Eval. 2, 4 (1982), 237–250.

Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher D. Gill. 2013. Analysis of global EDF for parallel tasks. In Proceedings

of the Euromicro Conference on Real-Time Systems. IEEE, 3–13.

Jing Li, Jian-Jia Chen, Kunal Agrawal, Chenyang Lu, Christopher D. Gill, and Abusayeed Saifullah. 2014. Analysis of feder-

ated and global scheduling for parallel real-time tasks. In Proceedings of the Euromicro Conference on Real-Time Systems.

IEEE, 85–96.

Jing Li, Zheng Luo, David Ferry, Kunal Agrawal, Christopher D. Gill, and Chenyang Lu. 2015. Global EDF scheduling for

parallel real-time tasks. Real-Time Syst. 51, 4 (2015), 395–439.

Chung L. Liu. 1969a. Scheduling algorithms for hard real-time programming of a single processor. JPL Space Progr. Sum.

37–60, II (1969), 31–37.

Chung L. Liu. 1969b. Scheduling algorithms for multiprocessors in a hard real-time environment. JPL Space Progr. Sum.

37–60, II (1969), 28–31.

Chung L. Liu and James W. Layland. 1973. Scheduling algorithms for multiprogramming in a hard-real-time environment.

J. ACM 20, 1 (1973), 46–61.

Aloysius K. Mok. 1983. Fundamental Fesign Problems of Distributed Systems for the Hard Real-time Environment. Ph.D.

Dissertation. Laboratory for Computer Science, Massachusetts Institute of Technology. Available as Technical Report

No. MIT/LCS/TR-297.

Geoffrey Nelissen, Vandy Berten, Joël Goossens, and Dragomir Milojevic. 2012. Techniques optimizing the number of

processors to schedule multi-threaded tasks. In Proceedings of the Euromicro Conference on Real-Time Systems. IEEE,

321–330.

Cynthia A. Phillips, Clifford Stein, Eric Torng, and Joel Wein. 2002. Optimal time-critical scheduling via resource augmen-

tation. Algorithmica 32, 2 (2002), 163–200.

Abusayeed Saifullah, David Ferry, Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher D. Gill. 2014. Parallel real-time

scheduling of DAGs. IEEE Trans. Parallel Distrib. Syst. 25, 12 (2014), 3242–3252.

Abusayeed Saifullah, Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher D. Gill. 2013. Multi-core real-time scheduling

for generalized parallel task models. Real-Time Syst. 49, 4 (2013), 404–435.

Martin Stigge, Pontus Ekberg, Nan Guan, and Wang Yi. 2011. The digraph real-time task model. In Proceedings of the IEEE

Real-Time and Embedded Technology and Applications Symposium. IEEE, Los Alamitos, CA, 71–80.

Jeffrey D. Ullman. 1975. NP-complete scheduling problems. J. Comput. Syst. Sci. 10, 3 (1975), 384–393.

Received February 2017; revised May 2018; accepted December 2018

ACM Transactions on Parallel Computing, Vol. 6, No. 1, Article 3. Publication date: June 2019.

