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Introduction 

Many operations management planning and control problems require a series 
of decisions over time at an increasing level of detail. For example, there are at 
least two distinct decision making levels in most production operations. At the 
lowest level, detailed production scheduling decisions determine who will do a 
particular job on what machine and when. Considerations at this level include 
minimizing setups and meeting due dates. At a higher level, aggregate 
planning decisions are made concerning hiring and layoffs, overtime, 
production levels for product groups, ordering of raw materials, and setting 
due dates. The time horizon for aggregate decisions may range from several 
months to one year. At the time aggregate decisions are made, much detailed 
information is not known with certainty. This may include future product 
demand, job processing times, machine breakdowns, worker availability, and 
raw material availability. In addition, other details are deliberately ignored at 
the aggregate level. For example, the sequence dependent nature of setups is 
usually ignored, and product groups are used rather than individual stock­
keeping units. 

Let us consider a two-level decision situation in more general terms. At the 
aggregate level one has to decide upon the acquisition of resources. Precise 
information on what will ultimately be required of them is not yet available. 
Subsequently, at the detailed level, one has to decide on the actual allocation of 
the resources, when all the relevant information is at hand. The challenge of 
these hierarchical planning problems is to incorporate the initially imperfect 
detailed level information into the aggregate decision so as to arrive at an 
overall solution procedure that is optimal or nearly optimal. Specifically, the 
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costs of acquiring resources at the aggregate level have to be weighed against 
the benefits of having them available at the detailed level. 

The traditional approach to these types of problems is through the design of 
a hierarchical planning system. In such a system, each decision level is treated 
as a separate mathematical programming model. The various models are 
linked such that the solution of a higher level model generates part of the 
input for the model below it. 

There are two fundamental reasons for using a hierarchical approach. 
Reducing complexity. Breaking a problem into subproblems is a standard 

method for simplifying the solution process. A tenet of hierarchical planning is 
that this partitioning can be done so that the interaction effects between 
subproblems are acceptably weak. 

Coping with uncertainty. It is important to realize that the decisions at the 
various levels in the planning process need to be made at different points in 
time. For example, aggregate planning decisions are made early enough to 
implement plans for hiring/layoff, raw materials acquisition, etc.. On the other 
hand, a decision to assign a particular job to a specific machine can be 
postponed until the instant before the job begins processing. This is important 
in light of the fact that much data at the detailed level is uncertain at the time 
aggregate decisions are made. If detailed and aggregate decisions were 
combined in a single giant optimization model, as is sometimes proposed, the 
detailed decisions would be made earlier than necessary and hence would be 
based on less reliable forecasts of the uncertain data. The hierarchical 
approach postpones the detailed decisions as long as possible so that they can 
be based on more timely and hence more accurate data. 

A third advantage often attributed to hierarchical systems is that they 
parallel the hierarchical organization of most firms. While this is certainly an 
important consideration, we believe that hierarchical planning organizations, as 
well as hierarchical planning systems, are a response to the nature of the 
problems being solved, and to the need to reduce complexity and respond to 
uncertainty cited above. 

Past work in hierarchical planning has mainly consisted of building clever 
systems. The models have so far always been deterministic in nature. A 
natural question is how the quality of the decisions produced by such systems 
can be evaluated. We are interested both in comparing different systems and in 
direct evaluation of a single system. A very favorable and often applied 
method to compare different systems empirically is Monte Carlo simulation. In 
this approach higher level models are run with forecasts of the lower level 
data. Lower level models are run with actual data values generated randomly 
by the Monte Carlo method. We can often evaluate, either by analytic or by 
empirical methods, the degree of optimality of the solutions to the submode/ at 
each level. All of these evaluation methods fail to answer the question of how 
good a particular hierarchical system performs when compared to an optimal 
system. To answer this we need a measure of optimality for the entire system, 
not just for each subproblem. But then, first of all, we need a rigorous 
formulation of the optimization problem that the hierarchical system is 
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supposed to solve. 
A little thought should make it clear that no deterministic mathematical 

programming model can be appropriate if we wish to capture the uncertainty 
that exists at lower levels of the overall decision problem accurately. It would 
be more appropriate to represent this uncertainty by a stochastic model. This 
leads us into the theory of stochastic programming, which is the subarea of 
mathematical programming that considers problems with parameters 
represented by random variables. 

The stochastic program related to a hierarchical planning problem models 
lower levels accurately, using stochastic parameters for which probability 
distributions are specified. The objective at each level is to minimize known 
costs at that level plus the expected objective value of an optimal lower level 
solution. For example, consider the form such a model would take for a 
hierarchical job shop scheduling problem. At the time machines are acquired, 
only probabilistic information is available on the jobs to be processed. A 
two-stage stochastic programming model of this problem would select the 
number or the types of the machines so as to minimize the acquisition costs of 
the machines plus the expected cost of processing the jobs optimally on the 
acquired machines. 

For those who are familiar with stochastic programming theory, we notice 
that our concept of a multi-stage stochastic program is broader than what is 
common in the literature. According to the traditional interpretation each next 
stage reflects a recourse decision to correct infeasibilities due to the decision at 
the previous stage. Here we do not so much correct infeasibilities but we have 
to pay extra if our aggregate level decision differs from one that would have 
been optimal if all detailed level information would have been available before 
the aggregate decision was made. 

Unfortunately, the formulation of a hierarchical planning problem as a 
multi-stage stochastic programming problem does not bring us any closer to its 
optimal solution, because of the generally recognized computational difficulty 
of stochastic programming. The evaluation of a stochastic programming 
objective function in one point of its domain asks for the computation of the 
expected optimal solution value of the detailed level problem. In the case the 
problem parameters have a continuous distribution this amounts to the 
integration of a function, of which one evaluation requires the solution of a 
deterministic mathematical programming model. 

In this book we focus on hierarchical planning problems, of which the lower 
decision level is of a combinatorial nature. It therefore involves the solution of 
an integer rather than a linear programming problem as is common in the 
existing literature on stochastic programming. This adds another serious 
computational difficulty. 

Whereas for solving deterministic linear programming problems truly 
efficient methods (like Karmarkar's method) have been developed, no such 
method has been found so far for integer programming. None of the methods 
proposed in the sixties turned out to be able to solve any but the smallest 
problems within a reasonable amount of time. Even today, when linear 
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programming problems with thousands of variables are solved on a routine 
basis, integer programming problems with one hundred variables may already 
present insurmountable problems. 

The computational difficulties associated with integer programming appear 
to be fundamental. For a while, optimists could keep hoping that some totally 
new approach could provide a breakthrough to a truly efficient integer 
programming method. Computational complexity theory, however, put an end 
to that illusion in the early seventies, by showing that the computational 
difficulties encountered in solving integer programming problems are likely to 
be caused by the inherent complexity of the problem and not by the 
intellectual limitations of the researchers studying it. This theory associates the 
notion of an easy or we/I-solved problem with the existence of an algorithm 
whose running time is bounded by a polynomial function of the problem size 
(defined as the number of bits needed to encode a problem instance). In this 
sense the general integer programming problem is highly unlikely to be easy: it 
belongs to a class of notoriously difficult combinatorial optimization problems, 
the NP -hard problems, for which strong evidence exists that any solution 
method has, in the worst case, a running time that is a superpolynomial 
function of the problem size. 

The importance of the distinction between these two types of running times 
is revealed when large problem instances are considered. Table I (cf. [Garey & 
Johnson 1977]) illustrates the differences in growth rates among several 
running time functions. We note the explosive growth rates for the two 
exponential functions. 

Even more revealing is an examination of the effect of improved technology 
on algorithms having these running time functions. Table 2 shows how the 
size of the largest problem solvable in one hour would be affected if we had a 
computer 100 or 1000 times faster than our present one. We observe that with 
the 2n running time function a thousand fold increase in speed would only add 
IO to the size of the largest problem that can be solved in one hour, whereas 
with the n 5 algorithm this size almost quadruples. 

Thus an improvement in technology will not really help us in solving larger 
problems with algorithms that have an exponential running time. Our only 
hope is therefore through understanding the structure of the problems in order 
to arrive at faster algorithms. 

The intractability of both integer programming and stochastic programming 
justifies some pessimism about the optimal solution of stochastic integer 
programming problems. It would indeed be foolhardy to aim for the design of 
a solution method that solves any instance of these problems to optimality. As 
in integer programming one possible attitude towards these problems is to 
abolish the ideal of optimization and to settle for an approximation of the 
optimal solution. Thus, approximation methods or heuristics are looked for. 
Essentially, the hierarchical planning systems that we mentioned before are 
nothing but that: heuristics for stochastic integer programming. So we have 



5 

Size n 

running 10 20 30 40 50 60 
time 

function 
n .00001 .00002 .00003 .00004 .00005 .00006 

second second second second second second 
nz .0001 .0004 .0009 .0016 .0025 .0036 

second second second second second second 
nJ .001 .008 .027 .064 .125 .216 

second second second second second second 
n' . I 3.2 24.3 1.7 5.2 13.0 

second seconds seconds minutes minutes minutes 
2n .001 1.0 17.9 12.7 35.7 366 

second second minutes days years centuries 
3n .059 58 6.5 3855 2X 10~ 1.3 X 1013 

second minutes years centuries centuries centuries 

Comparison of several polynomial and exponential running time functions. 
(Copied with permission from M.R. Garey and D.S. Johnson, Computers and 
Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and 
Company. Copyright© 1979, Figure 1.2, p 7.) 

running 
time 
function 

n 
nz 

nJ 

n' 
2n 

3n 

Size of Largest Problem Instance 
Solvable in I Hour 

With present With computer 
computer I 00 times faster 

N1 100N1 
Nz lON2 

N3 4.64N3 
N4 2.5N4 

Ns Ns+6.64 

N6 N6+4.19 

With computer 
I 000 times faster 

1000N1 
31.6N2 
10N3 

3.98N4 

Ns+9.97 

N 6+6.29 

TABLE 2. Effect of improved technology on several polynomial and 
exponential time algorithms. (Copied with permission from M.R. Garey and 
D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP­
Completeness, W.H. Freeman and Company. Copyright© 1979. Figure 1.3, p 
8.) 
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returned to where we started. But we have gained something on our way. The 
formulation of hierarchical planning problems as stochastic integer 
programming problems provides a proper framework for a theoretical analysis 
of hierarchical planning systems, as opposed to an empirical one. Whereas an 
empirical analysis involves the evaluation of (necessarily arbitrary) 
computational experiments, we will now aim for a rigid estimate of the error 
of the heuristic, i.e., the absolute or relative difference between the heuristic 
solution value and the optimal one. As both must depend on realizations of 
the random parameters of the stochastic programming model, our performance 
analyses and the resulting quality statements are necessarily of a probabilistic 
nature. 

The design and analysis of hierarchical planning systems viewed as heuristics 
for stochastic integer programming problems are the subject of the first three 
chapters. In Chapter 1 a general approach is outlined. Stochastic models for 
hierarchical planning problems with two decision levels are formulated. We 
also indicate how to construct hierarchical planning systems for their solution. 
It is evident that a heuristic for scheduling problems will differ from one for 
vehicle routing problems. Therefore the hierarchical planning systems are 
unavoidably problem specific. However, the differences are mainly reflected in 
the part of the systems concerned with the solution of the detailed level 
decision problem. There is enough similarity between the various hierarchical 
planning systems with respect to the ways in which the aggregate level decision 
is derived and in which the detailed level heuristic is embedded in the system, 
to allow general design principles to be formulated. 

Also the performance analyses of our hierarchical planning systems have 
enough in common to allow for the application of general devices. We review 
various performance measures and exhibit some relations between them. For 
two stochastic integer programming problems of a general nature we design 
hierarchical planning systems along the above lines and derive sufficient 
conditions under which they satisfy various quality statements based on the 
performance measures. 

In Chapters 2 and 3 we consider some specific examples. In Chapter 2 we 
study hierarchical scheduling problems, i.e., problems, in which the detailed 
level involves the scheduling of jobs on machines. In Chapter 3 we study 
hierarchical routing problems, in which the detailed level asks for the routing 
of vehicles located at a central depot through customers, and hierarchical 
location problems, in which depots or service centers are to be located at the 
detailed level. For these problems hierarchical planning systems are designed 
and analyzed through application of the general principles outlined in Chapter 
1. 

The remaining part of this book is devoted to optimization methods rather 
than approximation methods for stochastic integer programming problems. As 
mentioned above it is virtually hopeless to aim for methods that solve any 
stochastic integer programming problem efficiently. As in integer 
programming, the only way to obtain computational success seems to be 
through the exploitation of special structure. One might investigate if some 
stochastic integer programming problems have enough structure to allow for 
the design of enumerative solution methods whose empirical behavior is 
satisfactory although they are not efficient in the formal sense. 
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Only a few results are available in this direction. In Chapter 4 optimization 
methods are designed for stochastic integer programming problems whose 
special structure is induced by the (discrete) distribution of the parameters 
which is concentrated on a small number of points. The relations that exist 
between the various feasible solutions of these problems can efficiently be 
exploited by dynamic programming recursions. Such methods have a running 
time that is bounded by a function that is polynomial in the problem size, but 
exponential in the above mentioned number of points with positive density. 

Finally, in Chapter 5, we aim for more general results. For this we need 
theoretical insight into the properties of stochastic integer programming 
objective functions. Unfortunately, certain theoretical properties of linear 
programming that have contributed to the design of successful stochastic linear 
programming algorithms are typically lacking for integer programming. For 
example, properties of optimal linear programming solution values viewed as 
functions of the parameters imply convexity of stochastic linear programming 
objective functions in the aggregate level decision variables. Stochastic integer 
programming objective functions, however, are generally non-convex, and if 
the random parameters have discrete distributions, they are even 
discontinuous. The main results that we derive in this chapter are that, for a 
general class of stochastic integer programming models, continuous 
distributions for the random parameters induce continuous but not necessarily 
convex objective functions, while discrete distributions lead to discontinuous 
objective functions. These results should be regarded as some initial theoretical 
insight in the structure of stochastic integer programming objective functions. 
They are still far removed from a well implemented stochastic integer 
programming algorithm. Directions for future research will be discussed. 
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A framework for the design and probabilistic analysis 

of hierarchical planning systems 

In the introduction we formulated hierarchical planning problems as multi­
stage stochastic integer programming problems. We explained their 
intractability and proposed hierarchical planning systems as heuristics for their 
solution. The stochastic programming model provides a proper framework for 
the analytical evaluation of the performance of such heuristics. In Chapters 2 
and 3 we will see that precise statements about the behavior of hierarchical 
scheduling, routing and location systems can be derived, such as asymptotic 
optimality in expectation, in probability or with probability l. 

Although the probabilistic analyses of these heuristics are different, the 
statements that can be derived are similar. Also, the hierarchical planning 
systems constructed have many features in common. The purpose of this 
chapter is to outline a general approach to the design and analysis of 
hierarchical planning systems. 

In Section l. l we will formulate two basic stochastic programming models 
for a hierarchical planning problem with two decision levels. In Section l .2 we 
will indicate how to construct heuristics for its solution. We will review the 
various ways to measure the performance of such heuristics in Section l .3 and 
exhibit relations between these measures in Section 1.4. We will use these 
concepts in Section 1.5 in analyzing a general two-level planning problem, of 
which many of the problems in Chapters 2 and 3 are special cases. In Section 
1.6 we analyze a general two-stage decision situation in which there is a 
possibility to adjust the first stage decision at a certain cost, when a realization 
of the stochastic parameters has become known. 



10 

1.1. Stochastic programming models 
Consider the typical two-stage decision situation outlined in the introduction. 

At the aggregate level, one has to decide upon the acquisition of resources. 
The first stage decision will be denoted by X, the set of feasible decisions by 
~ and the direct cost associated with X by f (X), where f: ~IR is a real 
function. Probabilistic information about future resource requirements is 
represented by a n -dimensional vector w. We will indicate random variables 
by boldface characters. We denote the set of all possible realizations of w by 
6Uf. 

The input to the detailed level consists of the first stage decision X and a 
realization w of the random vector w. The objective at the second stage is to 
decide upon a certain allocation of the resources acquired so as to minimize a 
cost y (X, w ), where y : ~X Rn ➔R is a real function. The optimal value of 
y(X,w) will be denoted by y*(X,w). We notice that, for a given X,y*(X,w) is a 
( complicated) function of the random vector w and hence a random variable in 
itself. The total cost of the acquisition decision X and the optimal allocation 
decision will be denoted by z*(X,w)= f (X)+y*(X,w). 

The stochastic programming formulation that naturally captures the 
uncertainty existing at the lower level is the two-stage decision model. Each of 
the two decision levels of the hierarchical planning problem corresponds to a 
stage in this model. The objective at the first stage is to determine a decision 
X*E~ such that the expected total cost Ez*(X ,w)=f(X)+Ey*(X,w) is 
minimized: 

Ez*(X* ,w) = minx E~{Ez*(X,w)}. 

In stochastic programming terminology, the first stage decision is made 'here 
and now', given imperfect information about the second stage, and it is 
therefore independent of a particular realization w of w. 

We also formulate the distribution model. Contrary to the two-stage decision 
model, the objective here is to determine a function X°: Rn ➔~ such that for 
each realization w of w the actual cost is minimized: 

z*(X0(w),w) = minx E~{z*(X,w)}, 'v'w E61if. 

Thus, before the aggregate decision is taken, we 'wait and see' until perfect 
information about the second stage is available. Solving this problem can be 
regarded as characterizing the minimum total cost achievable as a function of 
w. Although this model does not reflect the actual decision process in a 
hierarchical planning problem, it allows us to obtain more insight into the 
performance qualities of methods for its solution. 
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1.2. Two-stage stochastic programming heuristics 
As has been argued in the introduction, there is little hope to develop efficient 
optimization algorithms for the above stochastic programs. As to the two­
stage decision model, the determination of / (X ,w ) is often an NP-hard 
problem, so that a heuristic must be used at the second stage. Even if y •(x ,w) 
can easily be determined, it seems impossible to obtain a tractable 
representation of E/(X ,w), and the use of a heuristic at the first stage is 
generally unavoidable. The distribution model is at least as hard to solve to 
optimality. We will outline a two-stage heuristic approach; the heuristics at the 
first and second stage will be denoted by H I and H 2, respectively. 

At the first sta~e, we replace Ey .(X ,w) by an approximation y H'(X) and 
determine an X 'E 'X such that the approximate total cost zH'(X) = 
j(X)+yH'(X) is minimized : 

zH'(XH') = minx edzH '(X)}. 

In some cases, even this approximate first stage problem is NP-hard and 
another heuristic device is needed to solve it (see Sections 2.1.2 and 3.1.2). 

At the second stage, we allocate the resources acquired, achieving an 
approximate cost y H'(XH' ,w ). In some cases, the second stage problem does 
not require any approximation and H 2 denotes a polynomial-time optimization 
algorithm. The total cost of the entire heuristic for a realization w of w will be 
denoted by zH'(XH',w)= f (XH')+ yH'(XH ',w). 

The success of this heuristic approach evidently depends on the quality of 
yH'(X) as an approximation of Ey.(X,w) and of yH'(X,w) as an 
approximation of y *(X ,w) . In this context, use can be made of the existing 
literature on probabilistic analyses of combinatorial optimization problems and 
heuristics to solve them. Specifically, we can use results from probabilistic 
value analysis of combinatorial optimization problems. Although these 
problems may be difficult to solve, their optimal value often allows for a 
simple probabilistic description in terms of the problem parameters. Results in 
this direction were achieved for routing problems in [Beardwood et al. 1959] 
and [Steele 1981] and for location problems in [Hochbaum & Steele 1981] and 
[Zemel 1984]. 

We will also use results from probabilistic error analysis of heuristics for 
combinatorial optimization problems as were outlined in [Karp 1977] for 
routing problems and in [Fisher & Hochbaum 1980], [Hochbaum & Steele 
I 981 ], [Papadimitriou 1981] and [Zemel 1984] for location problems. 

1.3. Performance measures 
Before defining a number of ways to measure the performance of stochastic 
programming heuristics, we recall some concepts of stochastic convergence. A 
sequence of random variables x 1,x2, ..• is said to converge to a random variable 
X 
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(a) iri expectation if limn _ 00£ I Xn - x I = 0 
[notation: EI xn -x I-OJ; 

(b) in probability if limn --+aoPr { I Xn -x I ~t:} = 1 for every t:>0 
[notation: Xn -x (ip)]; 

(c) with probability l or almost surely if Pr{limn--+aoxn =x}=l 
[notation: xn-x (wpl)]. 

Some well-known relations between these types of convergence are given in 
Section 1.4. 

The quality of a solution provided by a two-stage heuristic (H 1,H 2) can be 
measured by comparing it with optimal solutions to the two-stage decision 
model and to the distribution model. The quality statements are of an 
asymptotic nature, i.e., they are concerned with problems of growing size 
reflected in the dimension of the random vector w. In the notation the index 
indicating the problem size is suppressed if it is clear from the context. 

In the context of the first model, one is primarily interested in the 
asymptotic behavior of the ratio of the expected costs 

EzH'(XH',w) 

Ez.(X*,w) 

We notice that the ratios defined in this section are well-defined since for each 
X and for each w E61.lf z•(X,w)>O. If the above ratio tends to 1 as the 
problem size tends to infinity, then we say that the approximation algorithm 
(H 1,H 2) is asymptotically expectation-optimal. If the heuristic depends on a 
given number t:>0 and has the property that, for each t:, the ratio tends to a 
number less than 1 +t:, then (H 1(t:), H i(t:)) is said to be an asymptotically 
expectation-optimal approximation scheme. 

Other obvious ideas are to investigate the asymptotic behavior of the ratio of 
the actual costs 

zH'(XH',w) and zH'(XH',w) . 

z·(x*,w) z·(X0 (w),w) 

If the first of both ratios tends to 1 (or, for each t:>0, to a number less than 
l +t:) in expectation, in probability or with probability 1, then we say that the 
approximation algorithm (or scheme) is asymptotically optimal in expectation, in 
probability or with probability 1. If the second ratio satisfies analogous 
properties, then the heuristic is said to be asymptotically clairvoyant rather than 
asymptotically optimal: in addition to the inaccuracy due to approximating the 
two-stage decision model, the relative loss caused by imperfect information 
also disappears in the limit. 

Still other measures are based on a comparison of the aggregate decisions 
XH', x• and X 0 (w). In case <X, is a set of numbers, one can directly investigate 
the limiting behavior of the ratios 

xH, xH, 
--and--
x• X 0 (w) 

(see e.g. Sections 2.1.1 , 2.3, 3.1.1). The first of these ratios is a deterministic 
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variable, but the second one is random and its convergence analysis results in 
probabilistic statements. Sometimes it mai even be possible to obtain good 
bounds on the differences xH, - X* and X ' - X 0 (w). In case 'X is a family of 
subsets, one possibility is to convert each set X E'X into a number W(X) by 
taking a weighted sum over its elements and to consider the ratios of or the 
differences between W(XH'), W(X*) and W(X°(w)) (cf. Sections 2.1.2, 3.1.2). 

1.4. Relations between performance measures 
Lemmas 1.1, 1.2 and 1.3 give fundamental relations between the three types of 
convergence of a sequence of random variables x1,x2, .•. to a random variable x. 
We refer to [Serfling 1980] for proofs and for examples which show that the 
inverse implications do not hold in general. 

Preliminary to Lemma 1.3 we give the following definition. Let I { x EA } be the 
indicator function of x which has value I if x EA and value 0 otherwise. 

DEFINITION. A sequence of random variables x1,x2, .. . is uniformly integrable if 

limc__.00supnE(lxn I llx.l >c) = 0. 

LEMMA 1.3. Suppose the sequence x 1,x2, .. . is uniformly integrable. Then 
Xn-?X (ip) ~ E lxn 1-E lxl and Exn-Ex . □ 

We will now investigate relations between the performance measures 
introduced in the previous section. To simplify notation, we will write 

z1l for zH'(XH',w), z* for z*(X*,w), z0 for z*(X0 (w),w). 

To simplify the analysis, we introduce the following assumptions that are 
usually satisfied in our applications. 

ASSUMPTION 1. 1. zH /z0 is uniformly integrable. 

ASSUMPTION 1.2. zH IE z0 

is uniformly integrable. 

ASSUMPTION 1.3. There exists a constant c 1 >0 such that for n sufficiently large 
z*/Ez*<c 1 (wpl). 

ASSUMPTION 1.4. There exists a constant c2>0 such that for n sufficiently large 
z* I Ez*>c 2 (wpl). 

ASSUMPTION 1.5. There exists a constant c3>0 such that for n sufficiently large 
z

0

/ Ez
0

>c3 (wpl). 
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-. -1 (wpl) 
z 

Tl.3 

Ez1l -1 
Ez0 

z1l 
£1-o -11-0 

z 
EI.2 ....._ _____________ ___. 

Tl.3 t 
EI.2 

0 

Ll.l Ll.3 :o 
I 

FIGURE l . l. Relations between performance measures 

-: valid implication ; --➔: invalid implication; 0 : Obvious; E: Example; L: 
Lemma; T : Theorem; t: if z8 !z* has a finite limit (wpl) 

In addition to these assumptions, we will use the basic properties of our 
models that z1l ~z°, z•~z°, z0 >0 and Ez8 ~Ez*; but it need not be true that 
z1l ~z• for every realization w E61if. Note that under Assumption l.l also z8 /z* 
is uniformly integrable, and that under Assumption 1.2 also z8 IE z* and 
z0 IE z0 are uniformly integrable. In each of the applications that we are 
considering in the following chapters we will investigate to what extent our 
assumptions are realistic. 

Figure 1.1 shows which relations hold under these assumptions, and which 
do not. We will first illustrate some of the invalid implications by means of 
two examples, and next prove the valid implications in three theorems. The 
examples are of a general non-asymptotic nature, but the variables satisfy the 
above properties, which are inherent to our models. 
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EXAMPLE 1. 1. E zH IE z* - I but E lzH /z* - I l~O and zH /z* + 1 (ip ). 
Let Pr {zH = 1,z• = 2} =½ and Pr {zH =2,z* = I}=+. We have EzH I Ez* = I 

but E lzH /z* - I I=¾ and zH /z* E {½,2} . □ · 

EXAMPLE 1.2. zH /z0 -l (wpl) but zH /z*~l (wpl). 
Let x be uniformly distributed on the unit interval [0,1] and let n denote 

problem size. For each n EN, define 

z~ = I, 

where the intervals I/! and In* are defined by 

I (n) = i[log,n I / H = [o _l _ l / . = 
' n ' I (n) ' n 

I 
4 

n = 4,5,6,7; 
l(n)=4 

1;, 

[
n - l(n) n - l(n)+I l 

I (n) ' I (n) 

3 
4 

FIGURE 1.2. Illustration of the intervals in Example 1.2 

(cf. Figure 1.2). We observe that limn ..... oo z/! = I (wpl) so that limn ..... oo 

z/! /z~ = I (wpl) as well ; however, with probability I limn -->oo z; does not exist 
and neither does limn ..... 00 z/! /z; . In probabilistic terms, we therefore have that 
z/! /z;- I with probability I but z/! 1z;- I only in probability. 

This example is due to H.C.P. Berbee. It will be shown in Theorem 1.3 (ii) 
that, if z/!iz; has a finite limit (wpl), then the implication is valid. □ 

Theorems 1.1 and 1.2 collect the implications between the various 
convergence properties in the context of the two-stage decision model and the 
distribution model, respectively. 
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THEOREM 1.1. 
(i) ijzH /z* - I l➔O ⇒ zH /z* ➔ I (ip ); 
(ii) z /z* ➔ I (ip) ⇒ E lzH /z* -1 l➔0 under Assumption 1.1; 
(iii) EI~ /z* -1 l ➔0 ⇒ E zH IE z• ➔ I under Assumption 1.3. 

PROOF. (i) This is immediate from Lemma 1.2. 
(ii) It is obvious that under Assumption 1.1, zH /z* -1 is also uniformly 
integrable. Hence, (ii) follows from Lemma 1.3. 
(iii) We bound EzH from above by 

ZH 
EzH = j zHdF(w).;;; j(I-. -ll+l)z*dF(w), 

z 

so that, under Assumption 1.3, for n sufficiently large 

EzH zH z• 
1.;;; -- .;;; 1 + j I- - ll-dF(w) 

Ez* z• Ez* 

.,;; l+c 1ElzH /z* - ll. 

Since EJ~ /z* - IJ➔0, we have E~ I Ez*➔ I. □ 

THEOREM 1.2. 
(i) El~ /z0

- IJ➔O ⇒ ZH /z0➔ l (ip); 
(ii) EzH !Ez0➔ l ⇒ ~ /z0➔ l (ip); under Assumption 1.5; 
(iii) zH /z0➔ l (ip) ⇒ EJzH /z0

- IJ➔0 under Assumption 1.1; 
(iv) zH /z

0 ➔ I (ip) ⇒ E ~IE z0 ➔ I under Assumptions 1.1 and 1.2. 

PROOF. (i) This is immediate from Lemma 1.2. 
(ii) For every £>0 we can bound EzH !Ez

0 from below by 

E ~ - f z H ____£_ >-: ____£_ - dF(w)~1+£E( lz"•> .(I+)). 
Ez0 z 0 Ez0 Ez0 

z ' 

So that, under Assumption 1.5, 

EzH 
Ez

0 
;:;a.I+E:C 3Pr{zH>z

0

(l+£)}. 

It follows from EzH I Ez0➔ l that Pr {zH >z
0 (l +£)}➔0 for every £>0, i.e., 

zH /z0➔ l (ip). 
(iii) Under Assumption 1.1, ~ /z°- I is uniformly integrable and we can apply 
Lemma 1.3 to obtain (iii). 
(iv) We can bound EzH I Ez

0 by 

}.;;; ~z; =E(zH /Ez
0

) 

~ zo ZH 
=E(-0 -E o lzff.;;;(1 +,)z")+E(-E o lzff >( l+,)z") 

z z z 
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ZH 
~(I +t:)+ £( Ezo lzH > (l+c)z"). 

Under Assumption 1.2, we have that zH I Ez0 is uniformly integrable. Therefore 
for every t:>0 there exists a constant 8 such that uniformly 
E(zH I Ez0 IZH !Ez">o)<t:, and hence 

~z; ~(l +t:)+ E(zH I Ez
0

lzH !Ez" .;;t,lzH > (I +,)z") 

~ 1 +t:+SPr {zH >(I +t:)z0

} + E(zH I Ez0 lzH !Ez">o) 

~ 1 +2t:+8Pr {zH >(I +t:)z0

}. 

Since zH/z
0

-1 (ip), we have Pr{zH>(l+t:)z
0

}-0 for every t:>0. It follows 
that E zH IE z

0 

- I. □ 

Theorem 1.3 states the relations between the two-stage decision model and 
the distribution model. 

THEOREM 1.3. 
(i) ~ /z0 

-1 (i~) => zH /z* -1 (ip), under Assumptions 1.2 and 1.4; 
(ii) Suppose z /z• converges to a constant L (wpl). Then zH /z0 -1 (wpl) 
=>ZH /z•-1 (wpl), under Assumptions 1.2 and 1.4. 

PROOF. (i) For every t:>0 we define 
' 

ZH 
6Zifo(t:) = { w: -

0 
> 1 +t:2}, 

z 

ZH 
6Zif1(t:) = { w: -. > 1 +t:2}, 

z 

ZH 
6Zif3(t:) = {w: -. <1-t:}. 

z 

E zH can be bounded from above by 

E~ = f zH dF(w) 

~ f zH dF(w) + (1 +t:2) f z*dF(w) + (1-t:) f z•dF(w), 
611f,(<) 61if,(<) 611f,(<) 

so that 

EzH zH z• 
1 ~ --. ~ j -. dF(w) + 1 + t:2 

- t: f -. dF(w ). 
Ez 611f,(<) Ez 61if,(<) Ez 
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UndeF Assumption 1.2, for every t:>0 there exists a c5>0 such that uniformly 
E(z1i I Ez* IzH ! Ez' > 6)<t:2. Therefore under Assumptions 1.2 and 1.4 we can 
bound EzH I Ez* by 

} .,;;;,_EzH I Ez*.,;;;,_t:2+ 1 +t:2+c5Pr {wE6Uf1(t:)} - t:e2Pr {wE6UfJ{t:)} 

that is, 

c5 2 
Pr{wE6Uf3(t:)} .,;;;,_ -Pr{wE6Uf1(t:)} + -t:. 

t:e2 C2 

Since z1l /z•-1 (ip), we have Pr{wE6Uf0(t:)}-0 for every t:>0 and, since 6Uf0(t:) 
";J 6Uf1(t:), Pr{wE6Uf1(t:)}-0 for every t:>0 as well. This result together with the 
above upper bound implies that for every t:>0, asymptotically 

2 
Pr {wE6Uf3(t:)} .,;;;,_-t:. 

C2 

We observe that lim, ..... 0 Pr { w E 6UfJ( t:)} = 0. Since Pr { w E 6UfJ( t:)} is a decreasing 
function oft: this implies that Pr{wE6Uf3(t:)}-0 for every t:>0. It follows that 
Pr { w E6Uf1(t:) n 6Uf3(t:) }-0 for every t:>0, i.e., zH /z* -1 (ip). 
(ii) Since z1l 1z0 -1 (wpl) and z0 ~z•, we know that L.,;;;,_}. By Theorem 1.l(ii), 
the uniform integrability of zH /z* and the assumption that limn ..... 00(zH /z*) 
exists, we have that 

1 =limn ..... 00E(zH /z*)= /limn ..... 00(zH /z*)dF(w)=L. D 

1.5. A general two-level planning problem 
We will first consider a specific, simply structured type of the distribution 
model formulated in Section 1. I. We will next show how results derived for 
this type of model also hold for a more general model by simple extensions of 
the arguments. 

The first model has CX=N and f (X)=cX at the aggregate level for a given 
constant c >0, and the objective is to determine a function X 0 :1Rn -N such 
that for each realization w of w 

z*(X°(w),w) = minx EN{cX+y*(X,w)}. 

Models of this type occur when one has to decide upon the acquisition of a 
number of identical resources each at a fixed cost c. Such models are studied 
in Chapters 2 (Sections 2.1.1 and 2.3) and 3 (Sections 3.1.1, 3.2, 3.3). They 
share some features that allow us to treat them in a general way. This general 
treatment concerns the design of the first stage heuristic as well as the analysis 
of the quality of the first stage decision and the entire hierarchical planning 
system. 

First of all, there typically is a lower bound on y *(X ,w) that can be written 
as the product of two factors, one depending only on X and the other only on 
w . More specifically, there exist a constant y>0 and a function g :!Rn -IR such 



that asymptotically for each XE~ 

~ ~ y*(X,w) (wpl). 
_xY 

19 

Secondly, there often is an approximation v of g(w) depending on the 
problem size and the probability distribution of w that is asymptotically 
accurate with probability I: 

~ - I (wpl). 
V 

Such value estimates are available for various combinatorial optimization 
problems, as has been mentioned already in Section 1.2. 

These characteristics lead to a simple heuristic H I for the first stage 
problem. DefiningyH'(X) = v I Xr', we have that asymptotically 

zH'(X) = cX +-v- ~ cX + y*(X,w) = z*(X,w) (wpl). (1.1) 
_xY 

Observing that zH' is an unimodal function, achieving its minimum at 
I 

X = (E'..p+I, 
C 

we conclude that XH' is determined by IIUillllllZlilg zH'(X) subject to 
XE { l X J, I Xl }n ~ - ( l X J and I Xl denote the integer rounddown and 
roundup of X respectively.) 

The third common feature is the existence of a second stage heuristic H 2 

that produces an upper bound on y *(X0 (w),w) which is asymptotically equal to 
the above probabilistic lower bound with probability I : 

H'(XH' ) 
y ,w - I (wpl). 
yH'(XH') 

No general recipe for the design of such a heuristic can be given, since the 
model considered here allows for a wide variety of problem types at the 
detailed level. In this situation, it can be proved that the heuristics H I and 
(H 1,H 2) are both asymptotically clairvoyant with probability 1. 

THEOREM 1.4. If XE~,f(X)=cX (c>0) and H 1 and H 2 are such that 
(A) yH'(X)=v I Xr'~y*(X,w) (wpl) asymptotically and 
(B) yH'(XH',w)!yH'(XH')-I (wpl), 
then 
(i) zH'(XH',w)/z*(X0 (w),w)-1 (wpl); 
{ii) XH'I X°(w)-1 {wpl). 

PROOF. (i) We can bound z*(X,w) from below (asymptotically with 
probability 1) and from above (deterministically) by 

cX +yH'(X) = zH'(X)~z*(X,w)~zH'(X,w) = cX +yH'(X,w) {wpl), 



20 

so that 

cXH'+yH'(XH'),;;;; z*(X0 (w),w),;;;; cXH'+yH'(XH',w)(wpl). 

Condition B then yields the desired result. 
(ii) Let n denote problem size. For each £>0 we define 

. XH' } 
6hf'(£) = {w: limsupn ..... 00-- < -

1
-}. 

X 0 (w) +£ 

The unimodality of zH' implies that for wE6hf'(£) asymptotically 

zH'((l +£)XH') ,;;;; zH'(X0 (w)) ,;;;; z*(X0 (w),w):,;;;; zH'(XH',w) (wpl). 

A tedious but straightforward calculation shows that for each n 

zH'((l +£)XH') _ (1 +£)y+(l +£)- y -~-~-~ - ....,,__"-'-___._ _ _,__ > 1. 
zH'(XH') y+ I 

Hence, we have for w E 6hf'(£) that 

. . zH'(XH',w) 
limmfn---+oo H H > 1 (wpl). 

z '(X ') 

On the other hand, we know that this limit is equal to I (wpl), so that 
Pr{wE6hf'(£)}=0 for every £>0. Similarly, 
Pr{liminfn---+ooXH'/X0 (w)> 1/(1-£)}=0. It follows that XH'/X0(w)➔ l (wpl). 

□ 

Obviously, many of the nice features of the above model no longer hold if the 
resources that are to be acquired are not identical, so that X is a set rather 
than a number and f (X) is a set function such as in Sections 2.1.2 and 3.1.2. 
We will show that extensions of notions from the previous model capture the 
difficulties inherent to these models and allow for the derivation of the same 
statements about the heuristic. 

Again there is often a lower bound on y*(X,w) that can be written as the 
product of a function w: Rn ➔R and in this case a set function h : ~ R: i.e., 
asymptotically 

y*(X,w) ~ h(X)g(w) (wpl). 

Using an approximation v of g(w), having the same qualities as in the previous 
model, and defining yH'(X) = vh (X) leads to the asymptotic lower bound 
function 

zH'(X) = f(X)+vh(X) ,;;;; f (X)+y*(X,w) = z*(X,w) (wpl). 

The determination of a set XH' that minimizes zH'(X) is a combinatorial 
selection problem. Theorem l .4(i) can be reformulated appropriately such as to 
hold for this new situation. 

THEOREM 1.5. If f : ~R and H I and H 2 are such that 
(A) yH'(X)=vh(X),;;;;y*(X,w) (wpl) asymptotically and 



(8) yH'(XH',w)lyH'(XH')-1 (wpl), 
then 

zH'(XH',w)/z*(X0 (w),w) - 1 (wpl). D 
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In most cases the above combinatorial selection problem is NP-hard, which 
suggests that approximating xH, is the only practical alternative. For the 
approximation X' we cannot guarantee that 

zH'(X') ,e;;;; rninx E~{z*(X,w)} (wpl). 

Nevertheless, in Theorem 1.6 we show that the same statement of Theorem 1.5 
can be established if we add an extra condition which requires that zH'(X') is 
a sufficiently good approximation of zH'(XH'). 

THEOREM 1.6. If f: 'X-IR and H I and H 2 are such that 
(A) yH'(X) = vh (X),e;;;;y *(X ,w) (wp 1) asymptotically, 
(8) yH'(X',w)1,H'(X')-I (wpl), and 
(C) zH'(X')lz '(XH')-1 
then 

zH'(X',w)/z*(X0 (w),w)-l (wpl). 

PROOF. Because of Condition A we can bound z*(X,w) from below 
(asymptotically with probability 1) and from above (deterministically) by 

f(X)+yH'(X) = zH'(X) ,e;;;; z*(X,w),e;;;;zH'(X,w) = f(X)+yH'(X,w) (wpl), 

so that 

f (XH')+yH'(XH') = zH'(XH'),e;;;;z•(X0 (w),w),e;;;;zH'(X',w) 

= f (X')+yH'(X',w) (wpl). 

It is obvious that, asymptotically, 

zH'(X',w) :s::: zH'(X',w) 
z*(X°(w),w) .__,, zH'(XH') (wpl). 

The latter term is equal to 

zH'(X',w) . zH'(X') 

zH'(X') zH'(XH') · 

Conditions B and C together yield the theorem. □ 

We finally note that, if in Theorems 1.4, 1.5 and 1.6 the probabilistic nature of 
the conditions is different (in probability or in expectation instead of with 
probability I), then the probabilistic statements about the asymptotic 
clairvoyancy that can be proved differ correspondingly. 
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1.6. A general recourse problem 
In this section we study a two-level planning problem, in which a recourse on 
the aggregate level decision is possible, after a realization of the random 
parameters has become known. 

As in the first model of the previous section we assume that we have to 
decide on a number X of resources at the aggregate level at a cost c each, so 
that f (X) = cX. Given a realization w of the random parameters at the 
detailed level, it is possible to acquire some extra resources X 1(w) at a price 
c 1>c each or to sell some of the acquired resources X2(w) at a price c2<c. 
With the resources that are ultimately available we have to solve the detailed 
level combinatorial problem, the optimal value of which is now denoted by 
y*(X+X1(w)-X2(w),w). The total cost of the two decisions is defined by 
z;(X,w)=cX + X 1(w)-Xi(w)+ y*(X + X 1(w)-Xi(w),w). 

The two-stage decision problem is to determine a value X* EN, for which 

Ez;(X* ,w) = minx EN { Ez;(x ,w) }. (1.2) 

The optimal solution of the distribution problem is equal to the one of the first 
model of Section 1.5 as this problem aims for the optimal choice of X given a 
realization of the random parameters before the aggregate level decision is 
made. It is obvious that here for each realization w of w X 1(w)=X2(w)=O. 

Along the lines of Section 1.5 we design and analyze a hierarchical system 
for the solution of the two-stage decision problem. Again we assume that an 
almost sure lower bound ony*(X,w) exists that can for each X be written as 

K!.!!2_<y*(X,w) (wpl) 
)(Y 

(y>O). This implies that asymptotically 

g(w) < *(X + X (w)-X (w)) 
(X + X 1(w)-Xi(w))Y y 1 2 (wpl). 

Hence, asymptotically, we can bound the second stage cost from below by 

. g(w) 
mmx,(w),X,(w)EN{c1X1(w) - c2X2(w)+ } (wpl). 

(X + X 1(w)-Xi(w))Y 

This minimum is determined from the first order Kuhn-Tucker conditions 

c1 - yg(w)/(X + X 1(w)-X2(w))Y+1 =O 

c2 - yg(w)/(X + X 1(w) - Xi(w))Y +1 =0. 

From these conditions we obtain: 
I 

c2J(Y + l >yg(w)~Xi(w)=X -(·.YK.(!!2.yr + I, X 1(w)=O; 
C2 

c2J(Y + 1 ,,;;;yg(w),,;;;c 1J(Y + 1~x 2(w)=X1(w)=O; 



J 

CJX'f+J<yg(w)==?Xi{w)=O, XJ(w)=(~)Y+J -X 
CJ . 

Now, a lower bound on the expected second stage cost is given by 
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oo J 

z%'(X)=cX+ f (cJ((l'KM)Y+J -X)+ g(w) J )dF(g(w)) 
CJ ..,,,{...,) -

~x,., (X+(~)y+J -X)Y 
y CJ 

..£..1...xy+I 

+ Yf g~)dF(g(w)) 

~xy+ I 

y 

~Xy+ I 

y 

f 
0 

oo _J_ C _J_ 

=cX + f ((ycY+g(w))y+J -cJX +((-J )'fg(w))Y+J )dF(g(w)) 

..£..1...xr +I 
y 

y 

J J 
~xr+ l 

y 

f 
0 

- C -
(c2X(ycYg(w))y+J -((-

2 
)'fg(w))y+J )dF(g(w)). 

y 

To obtain the heuristic first stage decision XH' we minimize zH'(X). The first 
order condition is given by 
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ao c1 Xv+'l y 

c -c 1 f dF(g(w)) - +, f g(w)dF(g(w))-
x ,+'1 xY X'+'; C 1 y C2 y 

(1.3) 

c,X'.,ly 

c2 f dF(g(w))=0. 
0 

As in Section 1.5 we assume that an approximation v of g(w) exist that is 
asymptotically accurate with probability I: g(w)/v-I (wpl). We will show 
that, if moreover asymptotically E(g(w)lv)= I, equation (1.3) is asymptotically 
satisfied by XH'=(yv/c)11<r + 1>. Substitution of this value in (1.1) yields 

C2 C1 
-p -p 

C C 00 

c -c2 f dF(g(w))-.£ f g(w)dF(g(w))-c 1 f dF(g(w)). 
0 P c, c, 

(1.4) 

-p -v 
C C 

Since g(w)/v-1 (wpl), the second and the fourth term in (1.4) tend to 0, and 
the third term tends to -c, which makes (1.4) asymptotically equal to 0. That 
xH, is indeed a global minimum is shown when we consider the second 
derivative of zH'(X): 

+ I ( + I) c,X' +' l y 
-cJ"(c2xr+ 11y)..r..:::!::....c2XY+ y y +2 f g(w)dF(g(w))-

y xY X'+ ' ; c, y 

_l__C Xy +l/yf(c xY + 1/y)..r±..!_C xY+_l__c xY+ 1/yf(c Xy + l/y) xr+ I I I y I xr+ I 2 2 

..r±..!_c 2xY + 
y 

We observe that this first stage decision is equal to the one in the first model 
of Section 1.5. (We omit the integer restriction on XH' as it does not influence 
asymptotic results.) For the second stage recourse decision we propose the 
following heuristic. If yg(w )>c 1(XH')11<r+ I) then we acquire an extra number 

of resources x7' (w)=(yg(w)/c 1) 11<r + I>-xH, _ If yg(w)<ci(XH')11<r + I) we sell 
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a humber of resources x;2 (w) = X"' -(yg(w)/c 2) 1'<r+ I)_ If 
c 2(XH')1'<r + 1>..;yg(w )..;c 1(X"')11<r+ 1> we neither acquire any extra resources 
nor sell any of the acquired resources. 

Again we assume the existence of a heuristic H 3 for the solution of the 
ultimate combinatorial optimization problem that, given a number X of 
resources, produces a value y"'(X ,w) the expectation of which is asymptotic to 
yH'(X)=vl )(Y The value produced by the entire hierarchical system 
(H i,H 2,H 3) is given by 

Ez%''H'(XH',w)=cXH, + E(c1X7' (w) ­

c2X;' (w) + y"'(X"' + X 1(w)- X i(w),w)). 

If zH'(X)=cX+v/)(Y is the lower bound on the objective function of the 
problem without a recourse possibility, (see (I. )) then the following theorem 
establishes that there is asymptotically no recourse, and the solution value 
produced by the hierarchical system (H 1 ,H 2,H 3) is asymptotic to the optimal 
value of the problem without recourse. 

THEOREM 1.7. If H I and H 3 are such that 
(A) yH'(X)=v/ )(Y..;y*(X,w) (wpl) asymptotically and 
(B)yH'(X"',w)/yH'(X"')-1 (wpl), 
then 

(i) x;2 (w)-O (wpl); 

(ii) x7'(w)-o (wpl); 

(iii) Ez%2'" '(XH',w)/ Ez*(X*,w)-I. 

PROOF. (i) For every t:>0 we have 

Pr {limn--+oox; , (w)>t:} =Pr {limn--+OO .K!.!!l <(1-t:)"Y+ I~}. 
P C 

The latter probability is O for every t:>0. 
(ii) This is proved analogously to (i). 
(iii) Given (i) and (ii), we can prove (iii) in the same way as we proved 
Theorem l .4(i). □ 
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Hierarchical scheduling problems 

In this chapter we consider job shop design and scheduling problems. The 
aggregate decision concerns the design of the shop while at the detailed level 
jobs are to be scheduled. 

In [Armstrong & Hax: 1977] and [Schwimer 1972] hierarchical systems have 
been described that use an integer programming model and simulation with an 
embedded heuristic sequencing rule to make the higher level decision. Then, 
the lower level decision is made with the heuristic sequencing rule. 

We will present hierarchical systems and analyses of their performance for 
some specific job shop design and scheduling problems, following the lines of 
the previous chapter. Three different types of problems are considered in the 
three sections that follow. In all the models the cost directly related to the first 
stage decision is known with certainty, but there is only stochastic information 
about some job characteristics. Thus, we will assume throughout this chapter 
that the processing times of the jobs, denoted by w1 for job J, are independent 
identically distributed random variables with finite expectation µ.. The random 
vector of processing times that corresponds to a problem with n jobs is 
denoted by w=(wi, . . . , wn)- Let 6lll denote the set of all possible realizations 
w of w. Throughout this chapter we will use the notation Wsum = ~Jn= 1 w1 and 
Wmax=max:j = l , ... ,n {wj }. 

In Section 2.1 the aggregate problem is to determine the number and types of 
machines to be acquired, while at the detailed level, given a realization of the 
job characteristics, we have to schedule the jobs on the available machines so 
as to minimize the maximum job completion time. There are several subsections 
in which a number of variants of the problem are studied. These variants are 
obtained by considering different types of machines and different stochastic 
assumptions on the number of jobs and on their processing times. 
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In Section 2.2 the first stage decision concerns the determination of a 
delivery time before which all jobs must be completed, while at the second 
stage we have to minimize the number of machines that allows the 
construction of a schedule for the jobs that satisfies the delivery time 
constraint set at the first stage. This problem is also known as the bin-packing 
problem. 

The hierarchical scheduling problem presented in Section 2.3 asks again for 
the determination of a set of machines to be acquired at the higher level. The 
lower level problem is to schedule the jobs on the acquired machines such as 
to minimize the sum of the job completion times. 

For each of the above problems we show how a simple heuristic has many 
of the performance qualities that were introduced in the previous chapter. 

2.1. Maximum job completion time 
The models studied in this section are all special cases of the following general 
stochastic programming model. At the first stage one has to select a subset X 
of machines to be acquired from a set ')R., of available parallel machines, given 
the number n of jobs to be processed and given the probability distribution of 
the vector w = (w1, .• • , wn) of their processing times. Let 'X= 2GJR, be the 
power set of ~ The direct acquisition cost is given as a function f: ~IR of 
X . 

The second stage problem is to determine a schedule for the jobs on the set 
X of machines selected at the first stage, given a realization w of w, such that 
each machine processes at most one job at a time, each job is processed during 
an uninterrupted period of length equal to its processing time, and no job is 
processed prior to time 0. The second stage objective is to minimize the 
maximum job completion time or 'makespan' . Let y *(X,w) denote this 
minimum value. Without loss of generality we may assume that the cost per 
time unit of the second stage schedule is I. The total cost of the first stage 
decision and an optimal second stage decision is denoted by z*(X ,w)= 
f (X)+y*(X,w). 

The two-stage decision problem is to determine a set of machines x• E'X 
such that 

Ez*(X*,w) = minx E-x,{Ez*(X,w)}. 

The distribution problem is to find a function X
0

: !Rn - ex that yields for each 
realization w of a w set of machines X 0

( w) such that 

z*(X0(w),w) = minx E-x,{z*(X,w)} , 'v'w E61if. 

Since computing y*(X,w) is an NP-hard problem [Karp 1972], determining 
Ey*(X ,w) as a function of X for an arbitrary given probability distribution of 
w seems virtually impossible. A heuristic approach is therefore the only 
practical method for the solution of large instances of this problem. 

In Subsection 2.1.1 we investigate the case in which the available machines 
are identical in cost and speed, whereas in Subsection 2.1.2 they are uniform ; 
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i.e., each machine has its own cost and speed. In Subsection 2.1.3 we consider 
two variants in which in addition to stochasticity in the processing times of the 
jobs there is uncertainty about their number. In the first variant n is still fixed 
but each job has a fixed probability p of entering the shop while in the second 
variant n itself is a random variable with a known probability distribution. 

2.1.1. Identical machines. In the first variant of the model described above we 
assume that identical parallel machines are available, at cost c each. The first 
stage problem is to determine a number rather than a set of machines. If we 
assume that an unlimited number of machines is available, we can take 'X to 
be the set of positive integers. The direct first stage cost is given by f(X)=cX. 
Note that we are encoutering here the simple model of Section 1.5. 

Along the lines of Section 1.5 we design a hierarchical system to solve the 
two-stage decision problem. The heuristic for the first stage is based on the 
replacement of Ey.(X,w) by an approximation yH'(X). The approximation is 
derived by applying an idea that is fundamental to many hierarchical planning 
systems: we suppress the combinatorial fine structure of the second stage 
problem. The maximum job completion time when all the machines have equal 
workload, which is equal to WsumlX, is obviously a lower bound ony•(X ,w). 
The required estimate is now taken to be equal to the expectation of this lower 
bound:yH'(X) = EwsumlX = nµIX. The resulting first stage problem is then 
to determine the value xH, that minimizes the lower bound function zH'(X) = 
cX + n µIX. We note that z H '(X) is a convex function. Its derivative is equal 
to O for X= Vnµlc. Since xH, must be a positive integer, xH, is determined 
as the value XE{ l Vnµlc J, rvnµ/c l} nN that minimizes zH'(X). 

At the second stage we schedule the jobs on the machines according to a list 
scheduling rule: the jobs are placed in an arbitrary fixed order ancl at each step 
the next job on the list is assigned to the earliest available machine (see Figure 
2.1). Let y H'(X,w) denote the earliest time when all jobs are completed under 
this heuristic, for given X and w, and let zH'(X,w)=cX+yH'(X,w) be the 
corresponding total cost. The heuristic solution value provided by the 
combination of the first and second stage heuristic is then 

zH'(XH',w) = cXH' + yH'(XH',w ). 

We will show that the heuristic (H 1,H 2) is asymptotically clairvoyant by 
verifying Conditions A and B of Theorem 1.4. Condition A is easily verified by 
the observation that the strong law of large numbers implies that wsum/n µ - I 
(wpl), so that, asymptotically, · 

nµ!X ,;;;;y•(X,w) (wpl). 

To show that the second condition of Theorem 1.4 is satisfied as well we make 
an additional assumption on the distribution function of the processing times. 

ASSUMPTION 2.1. The processing times w1, ... , wn have finite second moment. 
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FIGURE 2.1. 
Illustration of the list scheduling heuristic. 

C/!(X) 
J, 

Under this assumption the following lemma can be proved (cf. [Dempster et 
al. 1983]). 

LEMMA 2.1. Under Assumption 2.1, 
(i) limn_.00 Wma,/ Yn = 0 (wpl); 
(ii) limn _. 00£ Wma,/ Yn = 0. D 

The following theorem characterizes the value of an optimal solution of the 
second stage scheduling problem, given a number X of machines, and shows 
that, as the number of jobs tends to infinity, the relative error made by the list 
scheduling rule H 2 almost surely tends to 0. 

THEOREM 2.1. If X = 0 ( Yn ), then, under Assumption 2.1, 
(i)y*(X,w)/(nµ/X) - l (wpl); 
(ii) y H'(X ,w)/(n µIX) - l (wp 1 ). 

PROOF. Consider a schedule produced by the list scheduling rule on X 
machines for a realization w of w. Let L be the latest time that all machines 
are occupied and let job k be completed last ( cf. Figure 2.1 ). It follows from 
the nature of list scheduling that 

H W sum W sum 
y '(X ,w),;;;; L +wk ,;;;; ~+wk ,;;;; ~+wmax· 

Therefore, for each realization w of w, 

W sum H W sum 
~ ,;;;; y *(X,w),;:;;y '(X ,w),;;;;~+wmax· 

Division by n µIX yields 

W sum 
--,;:;; 

nµ 
y*(X,w) 

nµl x 
,;;;; _y_H~'(_X~,w~) 

nµIX 

(2.1) 
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Wsum Xwmax 
,,;;;;--+---

nµ, nµ, 

The strong law of large numbers implies that, since µ, is finite, 
Pr { (wsuml n µ,__,, 1} = 1. This observation, Lemma 2.1 (i) and the assumption 
that X=O(Vn) imply the theorem. □ 

In particular, Theorem 2.1 holds for xH, E {fvnµ,/cl, lYnµ,/c J}nN, so 
that Condition B of Theorem 1.4 is also satisfied. Theorem 1.4 now implies 
asymptotic clairvoyancy of the first stage heuristic H I and of the overall 
hierarchical system (H 1,H 2): 

THEOREM 2.2. Under Assumption 2.1, 
(i) zH'(XH',w)/z*(X0 (w),w)-1 (wpl); 
(ii) XH' I X 0 (w)__,, I (wp 1 ). □ 

It is easy to verify that, under the reasonable assumption that the 
distribution of the processing times has bounded support (i.e., constants wL 
and wu exist such that Pr{wL<w<wu} =l), Assumptions 1.1 up to 1.5 
from Section 1.4 are valid. This implies that the heuristic (H 1,H 2) satisfies a 
wide range of asymptotic optimality properties (cf. Figure 1.1). 

In addition to the probabilistic and asymptotic statements on the behavior 
of (H 1 ,H 2) , we can give a bound on the relative worst case error the heuristic 
produces when solving the two-stage decision problem. 

THEOREM 2.3. 

EzH'(XH',w) Ewmax 
,,;;;;J+ _r--· 

Ez*(X*,w) 2 vcnµ, 

PROOF. Taking expectations in inequality (2.1) yields 

Ew 
E H'(XH' ) .;:: ~ + E Y ,W ""' H Wmax· 

X' 

Hence, 

By the definition of xH, 

Ez*(X*,w);;;,, cXH'+ nHµ ;;;,, 2~ 
X' 

(2.2) and (2.3) together imply the theorem. □ 

.(2.2) 

(2.3) 

From this theorem and Lemma 2. l(ii) asymptotic expectation-optimality of 
(H 1,H 2) follows immediately. 
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2.1.2. Uniform machines. The model studied in this section is an extension of 
the model in Section 2.1 .1. The difference is that, at the first stage, one has to 
select a subset from a set ~ of uniform machines, knowing the cost c; and 
speed s; of each machine i E01L When at the second stage, job j is assigned to 
machine i, it has to be processed during a period of length w1 Is;. The set of 
feasible first stage decisions is 'X= 2GJ1t, the power set of 0IL In this model 
f(X)="'2,; Exc;. Corresponding to each XE 'X we define s(X)="'2,; Exs;. We 
assume that constants cL ,cu ,sL ,s u exist such that cL ,;;:;c; ,;;:;cu and 
sL ,;;:;s; ,;;:;s u for all i E01L 

The reader will realize that this problem is even harder than the problem 
with identical machines, so that a heuristic seems unavoidable for solving 
problem instances of a large size. With this problem we find ourselves in the 
situation of the second model sketched in Section 1.5. A hierarchical system 
will be devised along the lines of that section; by verifying Conditions A, B 
and C of Theorem 1.6 we will prove its asymptotic clairvoyancy with 
probability l. 

It is not difficult to verify that Wsumls(X) is a lower bound ony*(X ,w) for 
each X and for each realization w of w. As an approximation for Ey*(X,w) 
we take the expectation of this lower bound: yH'(X)=Ewsumls(X)=nµls(X). 
The resulting function to be minimized at the first stage of the heuristic is 

zH'(X) = f (X)+nµls(X) . (2.4) 

It is no longer possible here to imitate the procedure developed in the previous 
subsection. The determination of a set xH, that minimizes (2.4) is a 
combinatorial selection problem and it is very unlikely that this problem can 
be solved in polynomial time. 

LEMMA 2.2. The problem of minimizing zH'(X) over all X E'X is NP-hard. 

PROOF. We will show that the problem of minimizing (2.4) is a generalization 
of the following known NP-complete problem [Garey & Johnson 1979]: 

PARTITION: Given a set 5= {1 , .. . ,t} and positive integers a1 , ••• ,a 1,b with 
L,; E~a; =2b, does there exist a subset TC 5 such that L.i ETai =b? 

Given any instance of PARTITION, we construct an instance of our 
minimization problem defining ~='5, c; =s; =a; (i E'5) and nµ=b 2. It is 
easily verified that for a subset T C '5, L,; ET a; = b if and only if 
f(T)+nµls(T),;;:;2b. Hence, PARTITION yields a positive answer if and only 
if the minimum value of zH'(X) is at most 2b. □ 

If we aim to find a hierarchical planning system that solves our problem in 
polynomial time, then Lemma 2.2 suggests that already the solution to the 
heuristic first stage problem is to be approximated. We propose a greedy 
heuristic, which derives its name from its appetite for immediate improvement. 
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We define the ratio's q; =c;f s; (i E01L) and renumber the machines according 
to nondecreasing q;. Let C; = ~l = 1, S; = ~l = 1s;, Z; = C; + n µ./ S; (i E01L) and 
Z 0 = oo. The greedy heuristic selects a subset XG = { l, ... ,g} E<X where g is the 
largest index such that Zg _ 1 > Zg. The greedy decision xG is an 
approximation of xH, _ An absolute worst case bound on the quality of this 
approximation is established by Lemma 2.3. 

LEMMA 2.3. The greedy solution XG satisfies 
(i) Z)!_=min; EGJrJZ; }; 
(ii) z'H'(XG),;;;zH'(XH')+cu. 

PROOF. (i) The values Z; define a piecewise linear function Z ( S) on the 
interval (O,s(01L)] as follows: if S =AS; +(1-A)S;+i for some i ;;;.:o and AE[O,l], 
then Z ( S) == AZ 1 + ( I - A.)Z; + 1• This function is convex, since its slope over 
[S; ,S; + il increases with i: 

Z; +1-Z; 

S; +1-S; 

Z; -Z; - I (s; + I +s;)nµ ---- = q; +1-q;+----- > 0. 
S; -S; - 1 S; +1S;S; - 1 

Therefore, Sg is uniquely determined as the smallest value of S for which 
Z (S) takes on its minimum. 
(ii) There exists an ;;;;.:o such that S;,;;;s(XH'),;;;S;+I· Since C; is the 
minimum machine cost at which a total speed S; can be achieved, we have 
C; ,;;;J(XH'). Hence 

zH'(XG)_zH'(XH'),;;; (C;+1 + ;:1 )-(f(XH')+ s(:'t,)) 

The heuristic for the second stage problem again assigns the jobs to the 
machines according to a list scheduling rule. Let y H '( X, w) denote the earliest 
time by which all jobs are completed under this rule, for given X E<X and 
wE~, and let zH'(X,w)=f(X)+yH'(X,w). The overall procedure (H 1,H2) 

produces a solution with value 

zH'(XG,w) = f(XG) + yH'(XG,w). 

For an asymptotic analysis of the heuristic (H i,H 2), we first make some 
assumptions on the set 0IL of available machines. It is reasonable to assume 
that the values cL ,cu ,sL and s u, defined before, are constants rather than 
problem instance dependent variables. This will imply that the number of 
selected machines grows as Vn, as in Section 2.1.1. It is then also reasonable 
to assume that the number of available machines grows faster than Vn, but 
remains polynomially bounded in n in order to allow an efficient 
implementation of the greedy heuristic. We therefore require the following. 

ASSUMPTION 2.2. The parameters cL ,cu ,sL ,s u are fixed constants. Moreover, 
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there exist constants D >0, D'>O, such that 
Dn 112+ d,;;;; J '!JlLJ ,;;;;D 'n 112+d'_ 

To verify Condition A of Theorem 1.6 we notice that the strong law of large 
numbers implies that asymptotically 

s~i) ,;;;; y*(X,w) (wpl). 

From Lemma 2.3 (ii) it follows that 

zH'(XG) zH'(XH')+cu 1 ,;;;; ---"--__._ ,;;;; --'------''---
z H '( X H ') zH'(XH') 

As the latter term tends to 1 when n tends to infinity, Condition C of 
Theorem 1.6 is also satisfied. To verify Condition B we need a preliminary 
lemma that bounds the order of magnitude of the sum of the speeds of the 
machines selected by the greedy heuristic. We use the notation 
h 1(n)=0(h 2(n)) to indicate that there exist constants C>O and C'>O such 
that Ch 2(n ),;;;; I h 1(n) I ,;;;;C'hi(n) for n sufficiently large. 

LEMMA 2.4. Under Assumptions 2.1 and 2.2, s(XG) = 0(Vn). 

PROOF. Let qL =cL lsu and qu =cu lsL. We observe that zH'(XH') is not 
greater than the minimum lower bound value obtainable under the assumption 
that c; =cu and s; =sL for all i E~ We have seen in Subsection 2.1.1 that 
this value tends to 2-Vqunµ. Hence we may choose any q• >qu to insure 
that for n sufficiently large 

qL s(XG) + ___!!_1!:_ ,;;;; zH'(XG) 
s(XG) 

,;;;; 2 V q • n µ+cu = 0( Vn). 

Thus, a constant C' exists such that 

qLs(XG)+___!!_l!:_,;;;; C'Vn 
s(XG) ' 

which implies D Vn ,;;;;s(XG),;;;;D'Vn for 

D = C'-VC'2-4qLJL D' = C'+VC'2-4qLJL 
2qL ' 2qL 

D 

In the following theorem we give a characterization of the optimal value of the 
second stage scheduling problem, and show that as the riumber of jobs tends 
to infinity, the relative error of list scheduling tends to O almost surely. 



THEOREM 2.4. Ifs (X) = 0 ( Vn ), then, under Assumption 2.1, 
(i)y*(X,w)!(nµ.ls(X)) - 1 (wpl); 
(ii) y"'(X ,w)!(n µ.ls(X))-1 (wpl). 

PROOF. For every realization w of w we have 

w w w 
~ ~ •(X )~ " '(X )~~ + ~ s(X) ...... y ,w ...... y ,w ""'s(X) sL · 

Division by n µ.Is (X) yields 

Wsum ~ y*(X ,w) ~ y"'(X,w) 
nµ. ...._,, nµ.ls(X) ...._,, nµ.ls(X) 

Wsum s(X)wmax :,;;;;-- +----. 
nµ. nµ.sL 
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(2.5) 

By the strong law of large numbers, (wsum/nµ.-1 (wpl). Due to the finiteness 
of the second moment of~ • Wmax/Vn -o (wpl) (cf. Lemma 2. l(i)). The 
assumption that s(X) = O(Vn) implies (i) and (ii). D 

The combination of Lemma 2.4 and Theorem 2.4 implies that Condition B of 
Theorem 1.6 holds for (H 1,H 2). Theorem 1.6 then establishes the asymptotic 
clairvoyancy of the hierarchical system with probability 1. 

THEOREM 2.5. Under Assumption 2.1, 

z."'(XG ,w) - 1 (wpl). □ 
z (X0 (w),w) 

As in the previous subsection, we can derive a bound on the relative difference 
between the heuristic solution value to the two-stage decision problem and the 
optimal value. 

THEOREM 2.6. 

Ez"'(XG ,w) c u + EwmaxlsL 
--~~~:,;;;;1+-~====-

Ez*(X* ,w) 2-VcLnµ.lsu 

PROOF. Talcing expectations in (2.5) yields 

H Ewsum Ewmax 
Ev '(XG w) ~ --- + ---

._,, ' ___,, s(X) sL 

Hence, 

Ez " '(XG w) :,;;;; f (XG) + _!!_I!:._ + Ewmax 
' s(XG) SL 

Application of Lemma 2.3 (ii) yields 
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H G H n µ. u Ewmax Ez '(X ,w) ,s;;;f(X ') + _ _. __ + c + --
s(XH') SL 

By the definition of XH' 

Ez •(x• ,w) ;;a, f (XH') + n µ, 
s(XH') 

Inequalities (2.6) and (2.7) establish the theorem. □ 

(2.6) 

(2.7) 

Lemma 2. l(ii) applied to this worst-case bound again shows directly that 
(H .,H 2) is asymptotically expectation-optimal. 

2.1.3. Random number of jobs. In this section we consider extensions of the 
model in Section 2.1.1. In addition to uncertainty about the processing times 
of the jobs we postulate uncertainty about their number, i.e. the number of 
jobs becomes a random variable. The following theorem will show that under 
certain conditions on the distribution of the number of jobs, the results derived 
for the problem in Section 2.1.1 carry over to the problem situation considered 
here. 

THEOREM. 2.7. Given a sequence of random variables xi,x2, ... , a random variable 
x. and a sequence of random numbers Ni,N2, ... , independent of xi,x2, .... If xn-x 
(wpl) and Nn -oo (wpl), then xN. -x (wpl). 

PROOF. From the assumptions we have 

Pr {'v',>o3n(<)'v'n ;;.n(<): lxn -xl<t:} = 1 

and 

Pr {'v',> o3m(<l'v' n > m(<l:Nn ;;,,n,} = 1. 

These two probabilities combined yield 

Pr {'v',> o3k(,)= max(n(<),m(<))'v'n ;;.k(<):lxN. - xl<t:} = 1. □ 

A special case is obtained when we consider the number of jobs fixed but each 
job enters the shop with fixed probability p. In this case the number of jobs 
that enter the shop is a random variable that has a binomial distribution with 
expectation np . For this situation we define the independent random variables 
131 , j = 1, ... ,n as follows: 81 = 1 if job j enters the shop and 81 = 0 otherwise. 
Their common distribution is given by Pr { 131 = l} =p and Pr { 13 1 =O} = l - p. 
The random variables -r1 = 131 w1 (j = l , ... ,n) model the stochastic assumptions 
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of this problem. They are independent and identically distributed and have 
common expectation 

ET1 = pµ. 

Any reader can verify that the design and the analysis of the hierarchical 
system for the problem of Section 2.1 .1 carries over to this problem by simply 
substituting T for w and p µ. for µ.. 

In the second extension the number of jobs is a random variable n. We 
assume that n has mean 'IJ . The first stage heuristic of the hierarchical system 
that we devise for this problem is again based on the estimate Ewsum/ X of the 
optimal second stage cost. In this case 

Ewsum = ~n~ 1E(Wsumln=n )Pr {n=n} 

= JJ.~n00=1nPr{n=n} 

= nµ. 

For the solution of the second stage scheduling problem we use again the list 
scheduling rule. Analogously to the analysis in Subsection 2.1 it can be 
proved that the relative error produced by the hierarchical system (H 1 ,H 2), if 
compared to the optimal solution value of the two-stage decision problem, 
tends to O when µ. tends to infinity. 

2. 2. Delivery time 
The model studied in this section is the symmetric counterpart of the model 
described in Section 2.1 . While in the latter model a set of machines was 
chosen first and a schedule of the jobs constructed next so as to complete all 
jobs as early as possible, here the decisions are reversed. At the first stage a 
decision is asked with respect to a delivery time Y, within which all jobs must 
be completed, under the same stochastic assumptions on the jobs as in Section 
2.1. The cost of extending the delivery time by one unit is known with 
certainty and given by a function f: R-R. At the second stage, given a 
realization w of the job characteristics, one has to determine the minimum 
number of identical parallel machines, denoted by x*(Y,w), that allows a 
nonpreemptive schedule satisfying the delivery time constraint Y set at the 
first stage. We assume that the cost of a machine is 1. The total cost of the 
first stage decision Y and an optimal second stage decision will be denoted by 
z*(Y ,w)=f(Y)+x*(Y ,w). We will assume that f(Y)=dY, i.e., the cost of 
extending the delivery time by one unit is a fixed amount d. 

The overall objective of the two-stage decision problem is to determine a 
value y* for Y for which 

Ez*(Y',w) = minY ER{Ez*(Y,w)}. 

The distribution problem is to find a function Y°:!Rn -R such that for every 
realization w of w, 
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z*(Y°(w),w) = minY ER{z*(Y,w)}, 'v'w E62lf. 

We can interpret this hierarchical scheduling problem as a hierarchical bin 
packing problem. In a bin packing problem we are given n items with weights 
w 1, ••• ,wn and an unlimited supply of bins, each with the same capacity. The 
problem is to pack the items into a minimum number of bins. If we identify 
jobs with items, processing times with weights, delivery times with capacities 
and machines with bins, then the above hierarchical scheduling problem is the 
problem of choosing a capacity for the bins at the first decision level with only 
probabilistic information about the item weights, and packing the items into as 
few bins as possible at the second level, when a realization of the item weights 
is given. We have chosen for the presentation of this problem as a scheduling 
problem, however, because the cost structure under consideration is more 
natural in the scheduling context than in the bin packing context. 

As in the previous section, the second stage problem is NP-hard [Garey & 
Johnson 1979], which in conjunction with the stochastic formulation of the 
problem forces us again to look for heuristics for its solution. We will design a 
hierarchical system proceeding along the lines of the first model of Section 1.5. 
For each realization w of w, Wsum/Y is a lower bound on x*(Y,w). The 
e.iw.ectation of this lower bound provides an estimate of Ex*( Y ,w): 
x '( Y) = E Wsuml Y = n µ,I Y. The resulting first stage heuristic problem is to 
find a value yH, that minimizes the function 

zH'(Y) = dY + !!E.. y· 

From the first order condition for this convex function it follows that 
yH, = Ynµ,ld. 

For the solution of the second stage problem we use a heuristic that assigns 
jobs to machines according to the following rule. The jobs are placed in some 
fixed order, and the machines are indexed. The jobs are assigned to the 
machines in the given order, starting with job I on machine 1. Suppose job j 
is the next one to be scheduled, and let machine i be the highest indexed 
employed machine. Job j is assigned to machine i if this is feasible, i.e. if the 
addition of its processing time to the sum of the processing times of the jobs 
already assigned to machine i does not exceed the delivery time. Otherwise, 
job j is placed at the end of the list of jobs that are still to be scheduled, and 
job j + l is the first job assigned to machine i + I (see Figure 2.2). The 
number of machines required under this rule will be denoted by xH'(Y ,w ), for 
a given Y and a given realization w of w. The overall cost of the heuristic 
solution is 

zH'(YH',w) = dYH' + xH'(YH',w ). 

To prove asymptotic clairvoyancy with probability 1 of both the first stage 
heuristic H I and the overall heuristic (H 1,H 2) we will verify Conditions A and 
B of Theorem 1.4 for this model. The strong law of large numbers allows us to 
verify the first condition. It implies that Wsum/nµ,-1 (wpl) so that 
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To verify the second condition we need Assumption 2.1 (see Section 2.1.1) 
which states finiteness of the second moment of the random processing times, 
so that Lemma 2.1 can be used as a preliminary. The following theorem gives 
asymptotic characterizations of the optimal and the heuristic number of 
machines in the second stage scheduling problem, given Y . It shows that both 
are asymptotic to the lower bound n µ,I Y. 

THEOREM 2.8. If there exists a constant L ;;;,,o such that Yn I Y ➔L and 
Y ln ➔O, then 
(i) x'(Y,w)l(nµ,IY)➔ l (wpl); 
(ii) xH'(Y,w)l(nµ,IY)➔ l (wpl). 

PROOF. To bound xH'(Y,w) from above we observe that after having 
employed r w sum! Yl machines we have tried to fit all jobs at least once and a 
set of at most r w sum! Yl - 1 jobs remains to be scheduled, each of which has a 
processing time of at most Wmax· For this set of jobs we need at most another 
( r Wsum/ Yl -1)/ LY /wmaxJ machines. Thus 

w w w y 
~.;;;;x'(Y,w).;;;;xH'(Y,w) .,;; r ~ l +( r ~ l -1)/ L--J 

Y Y Y Wmax 

w w y 
.;;;;~+l+~/(-- - 1) 

Y Y Wmax 

Wsum Wsum WmaxlY 
=--+ 1 +--(----). 

Y Y 1-(wmax/Y) 

Division by n µ,I Y yields 
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Wsum x*(Y,w) xH'(Y,w) -- ~ -~-~~-~ ---~~-
n µ, n µ,I Y n µ,I Y 

Wsum Y Wsum Wmaxl Y 
~ --+-+--(----) 

nit nµ, nµ, l-(wmaxlY) 

The strong law of large numbers implies that Wsum/ n µ,- l (wp l ). Under the 
given conditions on Y and under Assumption 2.1, Lemma 2. l(ii) implies that 
Wmaxl Y -o (wpl). These two observations together with the condition that 
YI n -o imply the theorem. □ 

In particular, the conditions on Y are satisfied by YH 1 =Vnµ,ld, so that 
Theorem 2.8 implies that Condition B of Theorem l.4 is satisfied. Asymptotic 
clairvoyancy with probability l has now been established for both the first 
stage heuristic H I and the hierarchical system (H i,H 2). 

THEOREM 2.9. Under Assumption 2.1, 
(i) YH1/Y0 (w)-l (wpl); 
(ii) zH2(YH1,w)/z*(Y°(w),w)-l (wpl). D 

Also here we can derive a bound on the relative difference between the 
heuristic and the optimal solution value to the two-stage decision problem. 

THEOREM 2.10. 

E H,(yH1 ) (Ew2 )112 
Z ,W ~ l + sum (£((Yd W / v'nu,)/(l - Yd W / v'nu.))2)112_ 
Ez *(Y* ,w) 2n /J, max /J, max /J, 

PROOF. Taking expectations in (2.8) yields 

H Ewsum E(wsum(Wmax/Y)/(l-wmax/Y)) 
Ex '(Y,w)~ y +I+ y . 

Hence, 

E(w (w /YH 1)/(l-w ;yH1
)) 

EzH'(YH1,w)~dYH1+..!!.../!:._H +I+ sum max H max 
y1 y1 

Application of Holder's inequality (see [Serfling 1980, p. 352]) yields 

EzH'(YH1,w)~dYH1 + ..!!.../!:._H + 1 
y1 

(Ew2 )112 
+ ;u:: (E((wmax;yH1)/(l-wmax/YH1))2)l/2 

=2Vdnµ+l 

(2.9) 



By the definition of yH, 

Ez*(Y*,w) ;a: 2~ 

Inequalities (2.9) and (2. 10) establish the theorem. D 
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(2.10) 

To derive asymptotic expectation-optimality of (H 1 ,H 2) from the above 
theorem we observe that from Lemma 2.1 it follows immediately that 
(E((Vd Wma,J \Inµ,)/ (l - Vd Wmaxl \lnµ,))2) 1 12➔0. Moreover we can rewrite 
(Ews2um)1!2/nµ as 

E ""w 2 
_!_( "-' ' + n(n -1) µ2)1 12 
µ n2 n2 

Since ELw?ln 2➔0 and n(n -1)µ2/n 2➔µ2, we have that (Ew52um) 112/nµ➔ l. 
The above two observations establish the desired result. 

2.3. Average job completion time. 
The last model studied in this chapter is similar to the model studied in 
Section 2.1. l. The difference occurs at the second stage. Given a realization 
of the processing times of the jobs at the second stage of the model described 
here, we have to decide on a schedule of the jobs on the machines acquired, so 
as to achieve a minimum value of the average job completion time. This 
difference is important because, contrary to the minimization of the maximum 
job completion time, the scheduling problem in this model is not NP-hard but 
solvable in polynomial time by a simple priority rule. 

The first stages of both models are identical : a number X of identical 
machines that are to be acquired has to be decided on, given the cost c of a 
machine and the distribution of the job processing times. We again have 
'X= N. Let F(w 1) be the common distribution function of w1, . .. , wn and 
assume that it is continuous, with finite expectation µ. Let y *(X ,w) denote the 
optimal value of the second stage scheduling problems. Let us again assume 
that the cost per time unit is l. The total cost will be denoted by z *(X ,w) 
=cX+y*(X,w). 

The objective for the two-stage decision problem is to determine a value 
x· E'X such that 

Ez*(X*,w) = minx E'X.{Ez*(X,w)}. 

The objective of the distribution problem is to find a function X 0 :1Rn ➔'X that 
yields for each realization w of w machines X

0 (w) for which 

z*(X°(w),w) = minx E'X.{z *(X,w)}, 'v'w E6ln. 

As mentioned above, this scheduling problem has the feature that the second 
level problem can be solved in polynomial time for each realization of the 
processing times of the jobs. An optimal schedule can be constructed by 
assigning the jobs in order of increasing processing times to the first available 
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machine [Conway et al. 1967]. Let w< 1>,;:;;w<2>,;:;; · · · ,;:;;w<n) be the order 
statistics of w i, ... , wn. The optimality of the above shortest processing time 
first rule (SP'T-rule) implies that 

'(X ) = J_ ""'n l n - j + I J (j) y ,w n ...:.,; = I X w . 

The analysis of the expected value of this term as a function of X is not a 
trivial task. To find a suitable value of X at the aggregate level, we will still 
have to rely on a heuristic approach. As in the previous models, this first stage 
heuristic will again be based on a lower bound on the second level objective 
that is asymptotically accurate. Obvious lower and upper bounds on y • ( X , w) 
are given by 

l_""'n n-j+l (j),,,:::_ '(X ),,,:::.l_""'n n-j+X+l (j) ( 2.12) 
n ...:.,J =l X w -Y ,w "" n ...:.,J = I X w . 

As in the previous models, we will use the expected value of the lower bound 
as an approximation of the expectation of the optimal second stage cost. To 
calculate the bound, we first rewrite the lower bound as 

_!_ ""'n_ w - _l_""'n_ 0· - l)wV>. 
x...:.,1 - l J nX...:.,J - l (2.13) 

The expected value of the first term in (2.13) is equal to n µ,IX. The expected 
value of the second term is calculated as follows. Let F(x) be the common 
distribution function of the processing times. 

~j=i<J-1)£wVl 

oo n - I 
=n j ~i = 1(j - l)(j - l )F(x y- 1(1- F(x )f - J xdF(x) 

0 

00 n -2 
=n(n-l)j~r::J( k )F(xi(I-F(x)f - 2-kxF(x)dF(x) 

0 

00 

= n(n - I) f xF(x)dF(x). 
0 

The resulting lower bound on Ey*(X,w) is given by 

I oo 
yH'(X) = -(nµ,-(n - 1) f xF(x)dF(x)). 

X o 

Minimization of the lower bound 

zH'(X) = cX + yH'(X) 

yields the heuristic choice xH, for X at the aggregate level: xH, is the most 

favorable round-off of ((nµ,-(n - l)P)lc)112 with p= f xF(x)dF(x). We 
0 

observe that P can be readily calculated for some special cases of practical 
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importance. For example, if the processing times are uniformly distributed on 
an interval [a,b], then v=(b 3 - a 3)!(3(b -a)2), and if they come from a 
negative exponential distribution with parameter>.., then 11=3/(4>..). 

At the detailed level, we schedule the jobs on the XH' machines acquired 
using the SPT-rule. The overall heuristic solution value is given by 

z*(XH',w) = cXH'+y*(XH',w). 

As a preliminary for the analysis of the performance of the heuristic we will 
analyze the asymptotic behavior of the bounds in (2.12). We rewrite these 
inequalities for each w E6l!f as 

I I . · I 
nix~J=lwJ + nX~J=l(l - ;)wUl ,e;;;;-;f(X,w) (2.14) 

X+l ~n +-l-~n (1-_j_) (j) 
,e;;;; n2X £.,j =IW} nX.£.,J =I n W . 

We observe that 

Tn = _!_ ~'Jn = 1(1 - _j_ )wUl 
n n 

is an example of a so-called L-statistic, a linear combination of order statistics, 
which has the general form 

_!_ ~jn= if ( _j_ )wU l, 
n n 

where in our case J (t) = I - t . 
We establish the following almost sure convergence result for such statistics. 

The following theorem was proved in a more general form in [Serfling 1980]. 
The proof in our special case is however straightforward enough to merit 
presentation on its own. 

THEOREM 2.11. If J :[O, I]-IR is a continuous function, then 

_!_~/=1'(_j_)w(il- f xJ(F(x))dF(x) (wpl). 
n n 

0 

PROOF. If we define the empirical distribution function by 

Fn(x) = _!_IUlw1 ,e;;;;x}I, 
n 

then 

I . oo 

Vn = -~J=IJ(.L)w<J) = f xJ(Fn(x))dFn(x). 
n n 

0 

(2.15) 

We consider the inverse function F - 1(y) = infx{xlF(x)>y} of F(x) and 
observe that 
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However, v1 = F(w1) is uniformly distributed on [0,1] [Feller 1968] and hence 

Fn (F - 1(y )) = Vn (y ), 

where V n (y) is the empirical distribution function of n uniformly, 
independently distributed random variables. Thus, if we substitute x = F - 1(y) 
in (2.15), we obtain 

I 

Vn = j F - 1(y ).I (Vn (y ))dVn (y) (2.16) 
0 

I I 

= j F - 1(y )(J (Vn (y ))-J (y ))dVn (y )+ j F - 1(y ).I (y )dVn (y ). 
0 0 

Since J (t) is continuous on [O, I] and hence uniformly continuous, we may use 
the fact that 

limn-+oosupyE[O,l]JVn(y) -y J = 0 (wpl) 

(the Glivenko-Cantelli Lemma [Billingsley I 979, p. 232]) to conclude that, for 
any t>O, with probability 1, 

Ii 
I 
JJF - 1(y)J(Vn(y))dVn(y) - JJF - 1J(y)dVn(y) I 

m sup ,;;;; £. 
n-+oo JJF - 1(y)dVn(y) 

(2.17) 

Because of the strong law of large numbers, the denominator in (2.17) 
converges toµ (wpl), and hence 

I 

limsupn-+oo j F - 1(y )(J (Vn (y )) - J (y ))dVn (y) =O (wp I). (2.18) 
0 

We again invoke the strong law of large numbers to analyze the second term 
in the right hand side of (2.16) 

I 

limn -+oo f F - 1(y ).I (y )dVn (y) = limn-+oo _!_ L.t= 1F - 1(v; ).I (v; ) 
o n 

(2.19) 

I 

= JF - 1(y)J(y)dy (wpl). 
0 

Together (2.18) and (2.19) imply the theorem. □ 

As a special case, we obtain 
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(2.20) 

We will establish asymptotic clairvoyancy of the heuristic by verifying the 
conditions of Theorem 1.4. Condition A is not satisfied in this case because 
zH 1(X) is not an almost sure lower bound on the optimal value of the 
distribution problem. Therefore we compare zH1(XH1) to a value that is such a 
lower bound. If we define, for each X E N and for given w , 

and 

zLB(X,w) = cX+yLB(X,w), 

then we can derive from (2.12) that, 

z'(X0 (w),w);;;,, minx El\l{zLB(X,w)}. 

(2.21) 

(2.22) 

(2.23) 

The value XLB(w) that minimizes zLB(X,w) is given by xLB(w) = ynTnlc , 
wherezLB(XLB(w),w)= 2vcnr:,. We have that 

2cn(µ--n-µ) V n-1 

ZLB (XLB (w),w) 2~ 

Application of (2.20) to this ratio yields 

ZH1(XH1) 
LB LB - 1 (wpl). 

z (X (w),w) 
(2.24) 

We can again characterize the value of an optimal solution of the second stage 
problem asymptotically. We will see that it is asymptotically equal to yH 1(X). 

THEOREM 2.12. If X = o (n ), then 

y'(X,w) - I (wpl). 
n(µ-v)IX 

PROOF. Using (2.12) we can write 

n T ,,;::: '(X ) ,,;::: n T + 1 X + 1 X n .._,, Y ,w .._,, X n -;;--y-wsum· 

Division of (2.25) by n (µ; v) yields 

y'(X,w) ~l+ Wsum(X + 1) 
n(µ-v)IX µ-p n 2(µ-v) 

· (2.25) 

(2.26) 

As X = o (n ), the strong law of large numbers implies that 
wsum(X + l)/(n 2(µ-v))-0 (wpl). This together with (2.20) implies the 
theorem. D 
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Obviously, 

yH'(X) 
n(µ, - v)/X 

n -1 
n (µ,- --µ,)! X 
____ n ___ - I. 

n(µ,-v)!X 

We have deterministically that 

ZLB (XLB (w ),w ),s;;;z*(X0 (w ),w ),s;;;cxH, +y *(XH',w). 

Division by zH'(XH') yields 

ZLB (XLB (w),w) ~ z *(X0 (w),w) ~ cXH' + y *(XH',w) 
zH'(XH') .._,, zH'(XH') .._,, cXH'+y H'(XH'). 

(2.27) 

As XH' E { L((n µ,-(n - l)v)/ c )1 /2 J, f((n µ, - (n - l)v)/ c )1121} n 1\1 , Theorem 
2.12 together with (2.27) implies that the latter term of the above inequalities 
tends to I with probability I. This observation together with (2.24) implies 
asymptotic clairvoyancy of the hierarchical system. From the definition of 
zLB (XLB (w),w) it is easy to prove (cf. Theorem 1.4 (ii)) that for every £>0, 

Pr{lim XLB(w) < _1_} = 0 
n-oo Xo(w) 1 +£ 

and 

Pr{lim xLB(w) > _I_} = 0. 
n -oo X 0 (w) 1- f 

This together with the fact that 

XH' 
Pr {limn_oo LB I} = 

X (w) 

implies the second part of the following theorem. 

THEOREM 2.13. 
(i) z*(XH' ,w)/z*(X0 (w),w)-I (wpl); 
(ii) XH'IX0 (w)-I (wpl). □ 

If the second moment Ew'f is finite we can even establish the rate at which 
z*(XH',w)/z*(X0 (w),w) converges to I, something that was not done in previous 
cases. For this purpose, we make use of a result that is established in the 
following theorem. As in the case of Theorem 2.11 a generalization of this 
theorem was proved in [Serfling 1980]. 

THEOREM 2.14. If J:[0,1]-IR is a continuously differentiable function, then with 
probability 1 

lim SUPn-oo V Yn _!_~n= J(L)w'J ) - f
00 

xJ(F(x))dF(x) < oo. 
loglog n n 1 1 n 

0 
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PROOF. In this proof we will use the notation that was introduced in the proof 
of Theorem 2.11 : 

I I 

Un - JF - 1(y)J(y)dy = JF - 1(y)(J(Vn(y)) - J(y))dVn(y) (2.28) 
0 0 

I I 

+ JF - 1(y)J(y)dVn(y)- JF - 1(y)J(y)dy 
0 0 

and analyze the right hand side of (2.28) in parts. 
Since J(t) is continuously differentiable on [0,1), we may apply the mean 

value theorem to conclude that there exists a 0E(0,l) such that 

(2.29) 

with 

Wn(y) = 0Vn(y) + (l-0)y. 

Since V n (y) is an increasing function and F - 1 (y);;;,,, 0, we may conclude, after 
substitution of (2.29) in the first term of the right hand side of (2.28) that 

I 

I JF - 1(y)(J(Vn(y)) - J(y))dVn(y)I ~ 
0 

I 

SUPy e [O, I] I Vn(y )-y I JF - l(y) IJ'(Wn (y )) I dVn (y ). 
0 

Now, since Fis continuous [Chung 1949), we have 

. Vnlimsupn ..... oolVn(y)-yl 1 

lim supn ..... oo V = 2 (wpl). 
2loglogn 

Furthermore, there exists a constant M such that 

I I 

f F-l(y) IJ'(Wn(y )) I dVn(y )~M f F - 1(y)dVn(y ), 
0 0 

because J '(y) is continuous on [0, I]. Now, 

I 

limn ..... 00 J_ j F - 1(y )dVn (y) = 1. 
/J-o 

Hence, with probability 1, 

Vn I I 

lim supn ..... oo V n JF - 1(y)J(Vn(y))dVn(y)- JF - 1(y)J(y)dVn(y) < 00. 
loglogn O 0 

The last two terms of the right hand side of (2.28) can be rewritten as 

I 

_!_ ~/= 1F - 1(v; )J(v; )- f F - 1(y)J(y )dy 
n o 
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If Ewr<oo, we may apply the law of the iterated logarithm [Hartman & 

(2.31) 

Together (2.30) and (2.31) imply the theorem. □ 

We use Theorem 2.14 to analyze the convergence rate of z*(XH',w)I 
z *(X0 (w),w). From (2.29) and (2.31) we obtain 

cXH'+ nTn + 1 XH'+l Wsum 

z*(XH ',w) XH , n xH, 1~-~~~~-----------
z *(X0(w),w) 2~ 

From the definition of XH' we have 

cXH' (c(nµ, - (n - l)v))112 - (cnTn)112 
---- - 1=-----------
(cn Tn )112 (en Tn )112 

1 
-µ, + (µ, - v) - Tn 
n 

(2.32) 

Hence, Theorem 2.14 applied once again to the special case that J (t) = 1 - t 
yields that 

lim supn--+oo I cXH ,
112 

- 11( · n )112 < oo (wpl). (2.33) 
(cnTn) loglogn 

Furthermore, 

nTn 

Jim XH' = ( c(n µ. - (n - l)v) )1 12 = 1 (wpl). (2.34) 
n--+oo (cnTn)l /2 cn(µ, - v) 

We observe that 

C 
(2.35) 

Together, (2.33), (2.34) and (2.35) imply that with probability I 

(2.36) 
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= lim SU ---- 1----- (---)112 < 00 

I 

nTn 11 eXH, I n 
Pn ..... oo (enTn)l12 (enTn)1 12 loglogn . 

Finally 

2 
-wsum 

Ii n n 112 _ 
m supn ..... oo 112 ( l l ) - 0 (wpl). 

( en T n ) og og n 
(2.37) 

We apply (2.33), (2.36) and (2.37) to (2.32) to arrive at the following strong 
extension of Theorem 2.13. 

THEOREM 2.15. 

. I z*(XH' w) I n 112 lim sup ' -1 (---) < oo (wpl). 
n ..... oo z *(X0 (w),w) log2log2n □ 

We finally establish the rate of convergence of the heuristic solution at the 
aggregate level to the optimal one in the following theorem. 

THEOREM 2.16. 

lim supn ..... oo Ix;<:.) - I In 
114 < oo (wpl). 

PROOF. Recall zLB(XLB(w),w). We have 

z LB (XLB (w),w)..;;z *(X0 (w),w)..;;z LB (XLB (w),w) + l_ Ljn= 1 w1. (2.38) 
n 

We now compute X 1(w) and X2(w) such that 

2 
zLB(X1(w),w) = zLB(X2(w),w) = zLB(XLB(w),w)+-LJ=1w1. 

n 

To do so, we solve the equality 

eX + nTn = 2(enT )112 + l_ ""n w X n n ~; = I J 

rewritten as 

eX2-(2(enT )112 + l. ""n w)X +nT = 0, 
n n ~J = I J n 

to find two roots 

X (w) = ( nTn )1/2 + _l ""n= W -(.1_ ""n= W (enTn)l /2+ (-l ""n= W )2)1 /2 1 e en ~ 1 1 1 en ~ 1 1 1 en ~ 1 1 1 

and 

_ nTn 1/2 l ""n 2 ""n T 1/2 I ""n )2 1/2 X 2(w) - (--) + -~1 = 1w1 +(-~'1 =1wJ<en n) +(-~'J =1w1 ) . 
e en en en 
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The definitions of X 1(w), Xi(w) and X0 (w) imply that X 1(w)<X0 (w)<X2(w) 
and hence 

(2.39) 

Now 

(_l_ ""n w(enT )112) 112 
(enTn) 112 

en~1 = 1 I n X 1(w) 
----+---------<--

eXH, xH, xH, 
(2.40) 

and 

Xi(w)-X,(w) ~ _2_(_l_""n ·( T )"2)1/2 +-2-(_1 ""n ·) 
H _,, H ~; = 1w1 en n H ~; = 1w1 . X ' X ' en , X ' en , 

(2.41) 

As 

(2.39), (2.40), (2.41) together with (2.34) and the strong law of large numbers 
imply the theorem. □ 

For this problem we can also estab_lish a worst case bound on the relative 
error the heuristic produces with respect to the optimal solution of the two­
stage decision problem. 

THEOREM 2.17. 

PROOF. 

Ez*(XH ',w) 

Ez*(X*,w) 

I -Ew XH'+ I sum 
<!+(---) n . 

xH, 2ve(nµ,-(n - l)P) 

Using the bounds in (2.12) we have 

H, n 1 XH'+ l 
H eX +-H Tn +- H Ewsum 

Ez*(X ',w) < ___ X __ ' ___ n __ X_' __ _ 

Ez*(X* ,w) zH'(XH ') 

The observation that eXH, +-n-ET =z H'(XH') and z H'(XH');;,, 
XH ' n 

2 Ve (n µ, - (n - 1 )P) yields the theorem. □ 

Asymptotic expectation-optimality of the heuristic follows easily from the 
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definition of xH ,_ 





3 

Hierarchical vehicle routing and 

location problems 

Vehicle routing problems, in which customers have to be served from a central 
depot by one or more vehicles, have acquired the reputation of being 
notoriously difficult on one hand and of being of great practical importance on 
the other hand. These problems are usually formulated under the assumption 
that perfect information about the customers is available. In actual practice, 
this assumption is not always justified. In particular, the medium or long term 
planning problem of acquiring a suitable fleet of vehicles has to be solved with 
vague and at best probabilistic information about what will ultimately be 
required of them. 

Hierarchical routing problems, involving the trade-off between the cost of 
acquiring vehicles now and the expected benefits of having them available at a 
later stage, form the first class of problems studied in this chapter. 

Proceeding along the lines of Chapter 1, we will present hierarchical systems 
for some special cases of the vehicle routing problem and analyze their 
performance. In the problems under consideration we assume that the costs 
directly related to a first stage decision are known with certainty, whereas only 
stochastic information is available about some of the customer characteristics. 
Thus, we will assume that the locations of the customers are independent 
identically distributed random variables with known probability distributions. 

In Section 3.1 the aggregate problem is to determine the number and types 
of vehicles to be acquired, while at the detailed level, given a realization of the 
customer characteristics, we have to route the vehicles available through the 
customers so as to minimize the length of the longest route assigned to any of 
them. This detailed level criterion is convenient since it works in favor of a 
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reasonable division of labor among the vehicles. 
Location problems, that are the subject of Section 3.2, deal with the location 

of depots from which customers must be served. The hierarchical location 
problem that we study in this chapter asks for a decision of the number of 
depots to be established at the aggregate level, when only stochastic 
information is available about the locations of customers that are to be served 
from these depots. At the detailed level, given a realization of the customer 
locations, the depots must be located so as to minimize the sum of the 
distances of the customers to the depots, where the distance of a customer to 
the depots is defined as the Euclidean distance of that customer to the nearest 
depot. The set of possible locations for the depots will be restricted to the 
customers locations. The detailed level problem is known as as a median­
location problem. It is NP-hard in itself. 

The hierarchical location and routing problem that we study in Section 3.3 
can be viewed as a generalization of the hierarchical location problem above. 
Whereas in that problem each customer is served individually, here customers 
are served in groups by vehicles, that have a capacity of serving only a limited 
number of customers. The aggregate level decision still concerns the number of 
depots to be established, under the same stochastic assumptions as in the 
hierarchical location problem. At the detailed level the depots are to be 
located and vehicles are to be routed from the depots through the customers so 
as to minimize the total distance to be traveled. Also, in this case the detailed 
level problem is NP-hard. 

Each of the above problems is defined in the plane. The locations of the 
customers are independent and have common uniform distribution on a region 
that is for each of the problems defined in the respective section. The vector 
that represents the random locations of the n customers will be denoted by w . 
Let the set of all possible realizations of w be denoted by G/Jf. 

3. 1. Hierarchical vehicle routing 
In this section we study variants of the following stochastic programming 
model. At the first stage one has to acquire a fleet X of vehicles with 
unlimited capacity, to be selected from a set '!)IL of available vehicles. Let 
'X= 201t be the power set of ':)IL The direct acquisition cost is given as a 
function f :~~ of X. The vehicles are used to serve n customers from a 
single depot. We assume that the customers are located randomly in a circular 
area R with radius r, with the depot at its center. The distribution is uniform. 

Subsequently, at the second stage, the vehicles that have been acquired have 
to be routed from the depot through the n customers, a realization of whose 
locations is now given. For each X E'X and each realization w of w let v/(X ,w) 
be the length of the route assigned to the i th vehicle in an optimal solution of 
the second stage problem. We assume that the detailed level cost is 
proportional to the length of the longest route. Hence the second stage optimal 
cost is defined by 
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y*(X,w) = max; EX {v/(X,w)}. 

The sum of the first stage cost f (X) and the cost of an optimal second stage 
decision is denoted by z*(X,w) = f(X)+y*(X,w). The two-stage decision 
objective is to find a set of vehicles x• C '!X, such that 

Ez*(X*,w) = rninx c;;'X{Ez*(X,w)}. 

The distribution problem is to find a function X0

: 61!f- '!X, that yields for each 
realization w of w a set of vehicles X 0 (w) for which 

z*(X(w),w) = rninx c;;'X{z*(X,w)}, 'v'w E61il. 

Determining Ez*(X,w) as a function of X requires integration of the function 
y *(X ,w ), a single evaluation of which requires the solution of an NP-hard 
problem [Garey & Johnson 1979]. 

The section is divided into three subsections. In Subsection 3.1.1 we assume 
that the available vehicles are identical in cost and speed, whereas in 
Subsection 3.1.2 we assume that they are uniform, i.e., each vehicle has its own 
cost and speed. In Subsection 3.1.3 we study two variants of the problem in 
which in addition to stochasticity in the location of the customers, there is 
uncertainty about the number of customers to be served at the detailed level. 

3.1.1. Identical vehicles. In this subsection we assume that the available 
vehicles are identical. Each of them has a cost c, so that at the aggregate level 
one has to decide on a number X of vehicles to be acquired. In this case we 
thus have '!X,= ~ and f (X) = cX. 

This is a special case of the simple model outlined in Section 1.5. Along the 
lines given there we will design a hierarchical system to solve the two-stage 
decision problem and show that the system is asymptotically clairvoyant with 
probability 1 by verification of Conditions A and B of Theorem 1.4. 

A lower bound ony*(X,w) can be derived as follows. For each realization w 

of the customer locations, let t*(w) be the length of an optimal traveling 
salesman tour through all customers, i.e. a tour that visits each customer 
exactly once. Since the sum of the lengths of the optimal routes of X vehicles, 
L/= 1v/(X,w) is greater than or equal to t*(w), we have 

y*(X,w) = max; = I, ... ,x{v/(X,w)} ;;a, ~L/= 1v/(X,w) (3.1) 

;;a, ~t*(w). 

To estimate t *(w)/ X we apply a theorem due to Steele [Steele 198 I] which 
extends earlier work by Beardwood et al. [Beardwood et al. 1959], and which 
characterizes asymptotically the optimal value of a traveling salesman tour. 

THEOREM 3.1. If n customers are distributed uniformly over a compact region R 
with area v(R ), then there exists a constant /3>0 such that 
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t*(w) 
. ~ - /3 (wpl). 
vnv(K) 

□ (3.2) 

In our problem R is a circular region with radius r , so that v(R)='TTr 2
. 

Substitution of this in (3.2) yields, in view of (3.1 ), that the function 

zH'(X) = cX + Ji_ y;;;;:z (3.3) 
X 

is asymptotically an almost sure lower bound on z *(X ,w ). As a heuristic 
decision at the aggregate level, we now choose the number of vehicles equal to 
the integer value XH' that minimizes zH'(X). Since zH'(X) is a convex 
function of X, the first order condition, given by 

C - jl._ -,;;;;;;z = 0 x2 
implies that xH, is equal to the most favorable round off of 

[ P';' ]+n± 
At the detailed level we have to route xH, vehicles through n customers 

with locations given by w, so as to minimize the maximum length of any route 
assigned to a vehicle. We propose to solve this problem by means of a 
partitioning heuristic that is similar to Karp's heuristic [Karp 1977] for the 
Euclidean traveling salesman problem. Roughly, the heuristic consists of three 
steps. At first, R is partitioned into smaller subregions, each of which contains 
no more than d customers for some parameter d that is yet to be determined. 
In the second step, an optimal traveling salesman tour is constructed through 
the customers in each of these subregions. In the third and final step, the tours 
are combined in a suitable manner to form the routes for the vehicles. 

The partitioning of the circular area in the first step is carried out by means 
of cuts, of which we distinguish two types. We represent the location of each 
customer by its polar coordinates. A radial cut of a region splits up the region 
by means of the radius through the customer in the region with median 
angular coordinate (see Figure 3. la). Similarly, a circular cut splits up a region 
by means of the circle arc (with the depot as center) through the customer in 
the region with median radial coordinate (see Figure 3.lb). 

In a round of cutting, each subregion existing at the beginning of the round 
is split up exactly once. We carry out K of these rounds, with 

K = flog ( n - l) l 
2 (d - l) 

We start our cutting procedure from the circular area with one radius 
arbitrarily fixed. The first K / 2 rounds involve only radial cuts, thus creating 
2K 12 sectors; the last K 12 rounds involve only circular cuts. We number the 
2K subregions obtained by starting with an arbitrary sector, numbering the 



FIGURE 3. la. 
Radial cut 

FIGURE 3.1 b. 
Circular cut 
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subregions according to increasing distance from the depot, and continuity on 
the adjacent sector in, say, clockwise direction until all subregions have been 
numbered. The jth region will be denoted by RJ<w) (j = 1, ... ,2K) (see Figure 
3.2). It is easy to show that the above cutting procedure (which is simpler 
than the one proposed in [Karp 1977]) results in subregions containing no 
more than d customers each. 

FIGURE 3.2. The subregions 
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LEMMA 3.1. R1 ( w) (j = l , ... ,2K) contains at most d customers. 

PROOF. By induction we will show that the number of customers in each of 
the subregions existing after k rounds of cutting is no more than 

-2!_+_1_+ ... +1-+l = n-2 + 2. 
2k 2k - 1 2 2k 

After one round of cutting one of the subregions contains n 12 customers and 
the other (n /2)- 1 or n /2 depending on the parity of n . The customer on the 
splitting segment is added to both subregions so that for k = 1 the hypothesis 
is obviously satisfied. Suppose that it is also satisfied for k - 1 rounds. If in 
the k th round we split a region with (n - 2)!2k - 1 + 2 customers the number of 
customers in each of the two newly created subregions is at most 

(_n_+-1-+ · · · +1-+1)1-+1 = ..2!_+-1-+ · · · +1-+l 
2k - I 2k - 2 2 2 2k 2k - I 2 ' 

which verifies the induction hypothesis. Therefore, after K rounds of cutting 
the above upper bound is smaller than or equal to 

( ~ =i )(d - 1) + 2, 

which is no more than d if and only if d :s;;n . □ 

In the second step of the heuristic, an optimal traveling salesman tour of 
length t*(RJ<w ),w) is formed through the customers (including those on the 
boundary) in each region R/w) by means of a suitable optimization method. 
Let the graphical configuration corresponding to such a tour be indicated by 
T*(R1(w),w). It is not difficult to see that the union of these tours defines an 
Euler graph, i.e., a connected graph on the set of all customers in which each 
customer has even degree. Euler's theorem implies that there exists a spanning 
walk that passes through each edge exactly once. The length of this spanning 

walk is W(w)=~?: 1 t*(RJ<w),w). 
In the final step we assign each customer to a specific vehicle, in such a way 

that the route for each vehicle is approximately equal to W(w)/X. We do so 
in the obvious manner, by considering R 1(w),R 2(w),R 3(w), ... until we find the 
greatest I such that 

l> = W(w)!X-~J = 1t*(R1(w),w);;,. 0. 

If l>>O, we divide T*(R1+ 1(w),w) into two parts. The customers on the part 
with length l>, together with the customers on the tours T*(R 1(w ),w ), ... , 
T*(R1(w ),w) are assigned to the first vehicle. The customers on the other part 
are the first ones to be assigned to the second vehicle. We continue this 
procedure until each vehicle has a set of tours (including at most two partial 
tours) assigned to it whose lengths sum exactly to W(w)/X . 

The union of these tours does not necessarily define a spanning walk. In 
general, it will not be connected and have the form depicted in Figure 3.3 in 
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heavy lines. As indicated in the figure at most eight additional dotted segments 
may be required to create a spanning walk. 

FIGURE 3.3. From a set of tours to a spanning walk 

. Two additional segments (indicated by + + +) are needed to connect the 
depot to the customer that is closest to it. It is easy to see that the total length 
of the additional segments is a constant y(w) depending only on r. The 
resulting spanning walk can be transformed into a tour by subsequent 
application of two operations. The first one deletes a loop (see Figure 3.4a). 
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The second operation is applied whenever a node u has degree greater than 
two and has no loop (see Figure 3.4b). Then a pair of edges (u 1,u) and (u 2,u) 
exists that does not form a cut set of the spanning walk; i.e., if we remove this 
pair from the walk, the walk remains connected. These edges are removed and 
replaced by the single edge (u 1,u2)-

• 
u 

a 
l 
u 

FIGURE 3.4a. 
Deletion 

• 

FIGURE 3.4b. 
Substitution 

The triangle inequality ensures that the result1ng tour has no greater length 
than the original spanning walk. The lengths of the resulting routes are 

denoted by v;H'(X ,w) (i = l, ... ,X). The longest of them has length denoted by 
yH'(X ,w ), which is the value produced by the second stage heuristic, for each 
realization w of the customer locations. The value produced by the 
hierarchical system formed by the first stage and the second stage heuristics H 1 

and H 2 for a given realization w of w is given by 
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zH'(XH',w) = cXH, + yH'(XH',w ). 

It is not difficult to see that, subject to the usual assumption that each 
elementary operation on real numbers requires unit time, the above second 
stage heuristic can be implemented so as to require a running time that is 
polynomial in the number of customers, provided that d is chosen to depend 
appropriately on n. 

In the first step, all customers have to be sorted with respect to their angular 
as well as to their radial coordinates. In addition, each round of cutting takes 
linear time. Altogether, this step requires O (n logn) time. 

The second step, calculation of an optimal traveling salesman tour in each 
subregion, can be carried out in 0(8'1) time per region for some constant 0>2 
(e.g., by dynamic programming [Held & Karp 1962)) and hence in O(n8'1 Id) 
time overall. 

In the third step, the assignment of each customer to a vehicle takes time 
that is linear in the number of subregions and in the number of vehicles. This 
includes the time needed to create the extra segments, which is proportional to 
d2XH,_ 

Since the first stage heuristic requires a constant amount of time and results 
in XH' = 0 (n 114

), the overall running time of the hierarchical system is 
O (n logn + n 8'1 Id+ d 2n 114

). If we take d equal to log2n, this running time is 
O(n 2/logn). 

To prove asymptotic clairvoyancy of both the first stage heuristic H I and 
the hierarchical system (H 1,H 2) we verify Conditions A and B of Theorem 1.4 
in Section 1.5. Verification of A is easy from (3.1) and Theorem 3.1. The error 
analysis of the detailed level partitioning heuristic, which leads to the 
verification of Condition B, is much harder. 

As a preliminary we will prove two lemmas that together yield an upper 
bound on the length of the spanning walk constructed in the first two steps of 
the heuristic. 

Consider a subregion RJ<w) and let T*(w)nR1(w) denote the intersection of 
the optimal tour through n customers with R1 ( w ) . Let per (R) be the perimeter 
of the region R . The proof of the following lemma is from [Karp 1977). 

LEMMA 3.2. 

t*(RJ<w),w)-t*(w)nR1(w) :s:;;; fper(R1(w)). 

PROOF. Let T*(w)nRJ<w) consist of k continuous curves C 1,C2, ... , Ck. 
(see Figure 3.5). 

Let the 2k end points of these curves, in clockwise order around the 
boundary of R1 ( w ), be r I h,···hk. Assume without loss of generality that 
lr 1r 2I + lr3r 4I + · · · + lrik - 1r2k I :s::;; lr2r 3I + · · · + lr2kr 1I , where lr;/;, I 
denotes the distance from r;, tor;, along the boundary of R1(w). Consider the 
walk consisting of the following three parts: the curves C 1, ••• ,Ck; two copies of 
each of the segments r 1r 2, r 3r 4, •• ,r2k _ 1r 2k; and one copy of each of the 
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FIGURE 3.5. Converting T•(w)nR1(w) into a walk 

segments r 2r 3, r 4,r5, ••• ,rikr 1• Then the length of the first part is t*(w)nR1(w), 
and the sum of the lengths of the second and third part is less than or equal to 
½ the perimeter of R/w ). As the length of an optimal traveling salesman tour 

through the customers in R1(w) is smaller than the length of this spanning 
walk the lemma follows. □ 

From Lemma 3.2 it follows that 

W(w) = ~J: 1t*(R/w),w),;;;~J: 1t*(w)nRJ<w)+ ½~J: iPer(R1(w)) 

= t*(w )+ ½ ~J: iJ)er(R1(w )). 

Our cutting procedure, which is different from the one in [Karp 1977] is not 
only simpler to implement, but also leads to a more exact evaluation of 

~J: iPer(R1(w)). 

LEMMA 3.3. 

~J: iPer(RJ<w)) = O(Vn/d). 

PROOF. After K 12 radial cuts, the sum of the perimeters of the sectors is 
clearly equal to 

2K !2(2r) + 2wr. (3.4) 

In the first round of circular cuts, all sectors are split by circle arcs, the sum of 
which is certainly smaller than 2wr, so that (3.4) is increased by no more than 
4wr. In the second round, the increase is bounded in a similar manner by 8wr. 
Hence, the overall increase is bounded by 

(2K !2- l)4wr. (3.5) 

Since K = flog2((n -1)/(d -1))1 , (3.4) and (3.5) together imply the lemma. □ 



From the above two lemmas an upper bound can be derived 
length for each vehicle, and hence, onyH'(X,w): 

H'(X w) ~ W(w) + ( ) ,;:::: ~+ O(~) y ' X yw ..._,, X X . 
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on the route 

(3.6) 

This upper bound is used in the following theorem, which establishes an 
asymptotic characterization of the optimal solution and the heuristic solution 
of the second stage vehicle routing problem and shows that they are 
asymptotic to the same form. 

THEOREM 3.2. 
(i) y*(X,w)l(/3~1 X)---'>l (wpl); 
(ii) yH'(X,w)/({3~! X ---'>1 (wpl). 

PROOF. (3.1) and (3.6) together yield 

~,;:::: •(X ),;:::: H'(X ),;::::~+ 0(~) X -._,,y ,w -._,,y ,w ..._,, X X . 

Division by f ~ yields, 

t•(w) ,;:::: y'(X,w) ,;:::: yH'(X,w) ,;:::: t•(w) + 0(~) 
{3~....,,{3~/X..._,,{3~/X..._,,{3~ {3~. 

Ford =log2n, we have 

O(~) 0 
{3~ --

This observation, Theorem 3.1 and (3.8) together imply the theorem. □ 

(3.7) 

(3.8) 

Theorem 3.2 shows that Condition B of Theorem 1.4 is also satisfied so that 
asymptotic clairvoyancy with probability I of the heuristic H I and (H i,H 2) is 
established. 

THEOREM 3.3. 
(i) ZH~XH',w)/z·(x

0

(w),w)- (wpl); 
(ii) X 1/X0(w)---'>l(wpl). □ 

For the verification of Assumptions 1.1-5 it is sufficient to verify that for 
sufficiently large n there exist constants C I and C 2 such that with probability 
1, 

C 1Yn ~t•(w)~C2Yn. 

The upper bound is established deterministically in [Few 1955]. The lower 
bound is derived in [Karp & Steele 1985, Exercise 5]. Therefore Theorem 3.3 
implies a whole range of other convergence properties as well ( cf. Figure 1.1 ). 
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3.1.2. Uniform vehicles. This subsection is an extension of the previous 
subsection in the same way that Subsection 2.1.2 was one of Subsection 2. l. l. 
At the first stage we have to select a subset from a set ~ of uniform vehicles, 
knowing the cost c; and the speed S; of each vehicle i E<JlL The set of first 
stage feasible solutions is CX= 2~ , the power set of <JlL In this model the first 
stage cost are defined as f(X)=L; EX c;. Corresponding to each XE 'X we 
define s(X)=L; Exs; . We assume that constants cL,cu,sL,su exist such that 
CL ~C; ~cu and SL ~S; ~Su (i E~). 

The second stage objective is to determine routes for the vehicles selected so 
as to minimize the maximum time required for any of the vehicles to traverse 
its route. Using the notation of the previous subsection we write the optimal 
second stage cost now as 

y•(X,w) = max; EX {v/(X ,w)ls; }. 

Similar to relation (3. l ), here 

.(Xw);;;,, ~ 
y ' s(X) 

for each X and each realization w of w. And, analogously to (3.3) the function 

zH'(X) = c(X)+_J}_y;;:;;;'i­
s(X) 

(3.9) 

tends to be a lower bound on z •(x ,w ), with probability I. Minimization of 
this function is NP-hard, so that we need an approximation of the minimum 
XH '. As in Subsection 2. l.2, a greedy heuristic will be used. We renumber the 
vehicles according to nondecreasing ratios c; Is; (i E~)- Let C; = Lk = 1ck> 
S; = Lk = 1sk> Z; = C; + n µIS; (i E~) and Z 0 = oo . The greedy heuristic selects 
a subset XG={l , .. . ,J}C~ where/ is the largest index such that Z1 _ 1>Z1 . 

The quality of the greedy solution XG is established in the following lemma, 
the proof of which is similar to the proof of Lemma 2.3 and therefore omitted 
here. 

LEMMA 3.4. The greedy solution xG satisfies 
(i) Z 1 =min; E~fZ; }; 
(ii) zH'(XG)~z 8 '(XH')+cu . □ 

The heuristic for the solution of the second stage problem first constructs a 
spanning walk through all the customers, in the same way as was done in the 
previous subsection. Subsequently, rather than · cutting the walk into pieces of 
equal length, we allocate a part of length W ( w )s; Is ( XG) to the i th vehicle and 
transform this part into a route also in the manner described in the previous 

subsection. Let the length of the resulting route be denoted by vt'(XG ,w ), 
and let the heuristic value of the second stage routing problem be defined by 

yH'(XG ,w) = max; Ex" {V;H'(XG ,w)ls; }. 
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The value of the solution produced by the entire hierarchical system is denoted 
by 

zH'(XG,w) = f(XG)+yH'(XG,w). 

For an asymptotic analysis of the heuristic (H 1,H 2), we first have to restrict 
the set ~ of available vehicles, just as we had to restrict the set of available 
machines in Subsection 2.1.2. 

ASSUMPTION 3. I. The parameters c L ,cu ,s L ,s u are fixed constants. Moreover, 
there exist constants D >0, D '>0, 8'~8>0 such that 
Dn 114+6~1~~D'n 114+6'_ 

Verification of Condition A of Theorem l.6 is simple from the construction 
of zH'(X). 

To verify Condition C of Theorem 1.6 we notice that Lemma 3.4 (ii) implies 
that 

zH'(XG) zH'(XH')+cV I ~ _ _,.____,_ ~ _ __,,..,.~=--
zH'(XH') zH'(XH') 

The latter term tends to I when the number n of customers goes to infinity. 
This, together with inequality (3.3) implies Condition C. For the verification 
of Condition B we prove the following theorem, which shows that the heuristic 
value and the optimal value of the second stage problem are asymptotic to the 
same function, with probability 1. 

THEOREM 3.4. 

(i) y*(X,w) -1 (wpl); 
t3-v,;:;;'5-1s(X) 

(ii) yH'(X,w) -1 (wpl). 
/3 v,;:;;;:'5-Is ( X) 

PROOF. It is easy to see that analogous to (3.7) we have for this problem 

~ ,;:: *(X ),;:: H'(X ),;::~ + O(Vnld) (3.10) 
s(X) -Y ,w --,,y ,w """"'s(X) s(X) 

Division by 13-v,;:;;'5-is(X) yields 

(3.11) t*(w) 
~ 

y*(X,w) 
~ 

yH'(X,w) 

/3 v,;:;;;:'5- /3 v,;:;;;:'5-Is ( X) /3 v,;:;;;:'5-Is ( X) 

~ t*(w) + O(Vnld) 
/3 v,;:;;;:'5- /3 v,;:;;;:'5- . 

Since we have chosen d = log n , 

O(Vnld) O 
/3 v,;:;;;:'5- - . 
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This observation, Theorem 3.1 and (3.11) imply the theorem. □ 

Theorem 3.4 implies directly that Condition B of Theorem 1.6 holds for 
(H 1,H 2). Theorem 1.6 then establishes asymptotic clairvoyancy of the 
hierarchical system, with probability I. 

THEOREM 3.5. 

zH'(XG ,w) 1 ( 1) □ 
z *(X0 (w),w) - wp . 

3.1.3. Random number of customers. In this section we consider extensions of 
the model in Subsection 3.1.1. In addition to uncertainty about the location of 
the customers we postulate uncertainty about their number at the aggregate 
level. Theorem 2. 7 implies that the results of Section 3.1 carry over to this 
situation. A special case is obtained when the number of customers is fixed 
but each of the customers places an order with some fixed probability p. In 
this case the number N of customers to be visited is a random variable that 
has a binomial distribution and expectation np. Then 

~=~--- IK 
Fn YN V -;;· 

Since Nin -P (wpl), Theorem 2.7 implies that 

~ y; -/3~ (wpl). 

Any reader can verify that the results of Subsection 3.1.1 carry over to this 
situation by substitutingp7rr2 for 1Tr

2
• 

3.2. A hierarchical location problem 
In this section we consider a two-level decision problem with a depot location 
problem at the detailed level. With only probabilistic information about the 
locations of n customers one has to decide upon the number X of depots to be 
established. The set-up cost c is fixed for each depot. Hence f (X)=cX : We 
assume that the customers are located in a compact region R with area v(R ), 
according to the model described in the introduction to this chapter. 

Let the cost to serve a customer be proportional to its distance to the depot 
from which it is served. Then, at the second stage, given a realization of the 
customer locations, the depots must be located so as to minimize the sum of 
the distances of each of the customers to its nearest depot. This problem is 
known in the literature as a median location problem. We assume that the cost 
per distance unit is I. For the stochastic programming objective we use the 
notation that we have used so far throughout this book. In [Papadimitriou 
1981] it is proved that determination of the optimal second stage costy*(X,w) 
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is an NP-hard combinatorial optimization problem. A heuristic to solve the 
two-stage decision problem is devised and analyzed along the lines of Section 
1.5. Actually, this is no more than an application of results for median location 
problems available in the literature [Papadimitriou 1981 ], [Zemel 1984]. 
Specifically, in [Zemel, 1984] an asymptotic characterization of the optimal 
solution value of a median location problem is established. 

n 
THEOREM 3.6. ff X = o (--), then for a = 0.377196 ... 

logn 

y*(X,w)/n - a(v(R)IX) 112 (wpl). □ 

We use this result to formulate our heuristic first stage problem as 
determination of the integer value XH' that minimizes the function 

zH'(X) = cX+an(v(R)/X)112. 

zH'(X) is a convex function and it is easy to compute that XH' is equal to the 
most favorable integer round-off of ( ½an -J v(R )/ c )213. The heuristic that we 

use for the solution of the second stage median location problem was proposed 
for the first time in [Papadimitriou 1981]. It received the telling name of 
'honeycomb' heuristic. The region R is tiled with hexagons each with area 
v(R )I xH, and in each of them a depot is established. In each of the hexagons 
that are ;,roper subsets of R a depot is located. Obviously their number is less 
than X ', and it may be completed to xH, by the location of depots in 
hexagons that are selected arbitrarily from the hexagons that intersect the 
boundary of R . In each hexagon the depot is located in the customer location 
that has minimal total distance to the other customers in the hexagon in 
question. In [Zemel 1984] it is shown that this heuristic is asymptotically 
optimal with probability I if X = o (n /logn ). Since in our heuristic 
XH'~(½an -Vv(R )I c )213

, the latter condition is satisfied and Zemel's result 

implies Condition B of Theorem 1.4. We note that the estimate used in the 
first stage problem is not so much a lower bound on the optimal value but 
rather an almost sure asymptotically accurate approximation of the optimal 
value. Hence a stronger condition than Condition A of Theorem 1.4 is 
satisfied. As a result the hierarchical planning system proposed is 
asymptotically clairvoyant with probability I. 

3.3. A hierarchical location and routing problem 
As has been argued in the introduction to this chapter, the problem that we 
study in this section can be regarded as an extension of the hierarchical 
location problem studied in the previous section. 

At the aggregate level one has to decide upon a number X of depots to be 
established at a cost c each. At the detailed level the depots are to be located 
and the n customers must be served by vehicles, each of which is located at a 
depot and has a capacity of serving q customers. The customers are located 
randomly in a compact region R with area v(R) according to the model 
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described in the introduction to this chapter. The second stage objective is to 
locate the depots and route the vehicles so as to minimize the total distance to 
be traveled to serve all customers, given a realization of their locations. The 
optimal cost is indicated by u * ( X, w) for any X and any realization w of w. 
The sum of this cost and the first stage cost f (X) = cX is denoted by z *(X ,w ). 

The above second stage problem is NP-hard, since it generalizes the median 
location problem (see Section 3.2), in which q = 1. Along the lines of Section 
1.5 we devise a hierarchical planning system to solve the two-stage decision 
problem and we prove that this system is asymptotically clairvoyant with 
probability I. For the formulation of a heuristic first stage problem we first 
define y*(X,w) as the optimal solution value of the median location problem 
with X depots and customer locations represented by w. Then the following 
lemma establishes a lower bound on u*(X,w). 

LEMMA 3.5. 

u*(X,w);;;,,, 2y*(X,w) 
q 

PROOF. Consider a group of q customers to be served by one vehicle. In one 
or another way the vehicle has to reach the customer in this group that is 
farthest from a depot, and return from there to the depot. This implies that 
the length of any route for this vehicle through this group of q customers is at 
least twice the distance from this customer to its nearest depot. This is 
certainly more than or equal to twice the average distance of the q customers 
to their nearest depots, given the depot location. Summation over disjunct 
groups of at most q customers, the union of which is the group of all n 
customers, yields that the total distance to be traveled is at least the sum of the 
distances of the n customers to their nearest depot divided by q, which is the 
optimal median location cost divided by q. □ 

We combine this lemma with the asymptotic characterization of the optimal 
value of the median location problem given in Theorem 3.6 so as to arrive at 
an approximation uH'(X) of u*(X,w) that satisfies Condition A of Theorem 1.4 
for the values X that satisfy X = o (n /logn ): 

uH'(X) = 2an (P(_R )/ X)112_ 
q 

The heuristic first stage decision XH' is then the integer value of X that 
minimizes 

zH'(X) = cX + 2an (P(R )/ X)112_ 
q 

The function zH'(X) is convex. It turns out that XH' is equal to the most 
favorable integer round-off of (an -,,/;{R)I cq )213

. We observe that given this 
value Condition A of Theorem 1.4 is indeed satisfied. 
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The heuristic that we devise for the second stage distribution problem is a 
composition of the honeycomb heuristic described in Section 3.2 for the 
location of the depots and a tour partitioning heuristic proposed in 
[Haimovich & Rinnooy Kan 1983] for the routing of the vehicles. In the first 
step of the tour partitioning heuristic a traveling salesman tour through all n 
customers is constructed using a space partitioning heuristic similar to the one 
described in Section 3.1.1. At the second step this tour is cut into pieces that 
contain q customers each. Each of these q-chains is connected to a depot as 
follows. We select the customer in the chain that is closest to any of the 
depots, and we add the corresponding segment to the chain. In this way we 
obtain a spanning tree through the q customers and a depot. This is 
transformed into a spanning walk by duplicating the tree. The spanning walk 
is then converted into a tour for a vehicle by means of the operations 
described in Section 3.1.1. The cost of the heuristic second stage 
configuration, denoted as JI'( X , w ), is bounded from above by twice the length 
of the traveling salesman tour produced plus twice the sum of the lengths of 
the additional segments mentioned above. An upper bound on the traveling 
salesman tour has been established already in Section 3.1.1, and is equal to the 
length of an optimal traveling salesman tour denoted by t • ( w) plus a term that 
is O(Vn ll<;r,; ). An upper bound on the sum of the lengths of the segments 
added is y '(XH',w)lq , since from each group of q customers we consider 
only the one closest to a depot established by the honeycomb heuristic. It is 
trivial that the corresponding distance is less than the average distance of the 
q customers to their nearest depots. The above observations together yield 

uH'(XH' ,w ):s;;;21 •(w)+ O(Vn /logn )+2y H'(XH' ,w )lq. 

Therefore 

uH'(XH',w) :s;;; 1•(w) + O(v'n llogn) + 
uH'(XH') (c v(R )) 113{an I q )213 (c v(R ))"3(an I q )213 

yH'(XH',w) 

(c v(R)) 113(an lq)213 
· 

Since 1 •(w) is asymptotic to /3V n v(R) ( cf. Theorem 3.1) the first term of the 
right hand side of the above inequality tends to O with probability 1. 
Obviously, the second term tends to 0. As XH' =o(n !logn ), the almost sure 
asymptotic optimality of the honeycomb heuristic together with Theorem 3.6 
implies that the third term tends to 1 with probability I. The above implies 
that the second stage cost is asymptotically determined only by the lengths of 
the segments, which can be interpreted as the median-location cost of n I q 
groups of customers, where each group is considered as one entity. Together, 
these three observations imply that uH'(XH',w )/uH'(XH') tends to I with 
probability I. This implies in its tum that the hierarchical system (H 1,H 2) 

satisfies Condition B of Theorem 1.4. Now, this theorem establishes asymptotic 
clairvoyancy of the hierarchical system as a whole. 
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Stochastic integer programming by 

dynamic programming 

Whereas the preceding three chapters dealt with heuristics for stochastic 
integer programming problems, this chapter is devoted to true optimization 
methods. 

As has been argued in the introduction, the only hope to achieve anything 
useful in this direction is through the exploitation of special structure. The 
special structure of the stochastic integer programming problems in this 
chapter is derived first from the special structure of the second stage 
combinatorial problems and secondly from the assumption that the stochastic 
parameters have discrete distributions with a fixed (small) number of points in 
which the probability mass is concentrated. For example, in the hierarchical 
scheduling problem that we consider in Section 4.1 we assume that the 
processing times of the jobs can take on only a limited number of possible 
values. 

We will show how this structure leads to recurrence relations between the 
various feasible solutions of the problems, which can be efficiently exploited by 
dynamic programming routines. Analysis of the routines will show that their 
running times are polynomially bounded in the problem size (such as the 
number of jobs in the scheduling problem) but exponential in the number of 
possible realizations of the stochastic parameters. 

In Sections 4.1 and 4.2 we consider the two hierarchical scheduling problems 
described in Sections 2.1 and 2.2 respectively. We will refer to the hierarchical 
scheduling problem of Section 2.2 as the hierarchical bin packing problem. In 
Section 4.3 we present a dynamic programming algorithm for solving a 
hierarchical multi-knapsack problem. This problem can be viewed as a capital 
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budgeting problem. At the aggregate level one has to decide on the sizes of 
budgets that are to be reserved for financing a number of projects at the 
detailed level. Each of the budgets has a given unit price and each of the 
projects requires a certain amount of the budgets and has a profit, which is 
initially known only stochastically. A remarkable feature of this problem is 
that the solution of the distribution version can be read directly from the 
problem parameters and does not require any recursive calculations (see 
Section 4.3.1 ). 

In each of the sections there is a subsection in which the basic dynamic 
programming algorithm for the problem in question is presented and a 
subsection in which we report on computational results. In the latter 
subsections we study the shape of the objective function of the two-stage 
decision problem as a function of the first stage decision variables. In Sections 
4.1.2 and 4.2.2 we compare heuristic and optimal values. In Sections 4.1 and 
4.2 we use the notation of Sections 2.1 and 2.2 respectively. 

4.1. Dynamic programming for hierarchical scheduling 
In this section we restrict ourselves to instances of the problem described in 
Section 2.1 in which the processing times w1, ••• , wn have a common discrete 
distribution with a fixed number k of distinct values a 1, . • . ,ak in its support. 
We will show in Subsection 4.1.1 that this restriction allows for the 
construction of a dynamic programming algorithm that calculates the values of 
the optimal solutions of the problem for all possible realizations of the 
processing times and for each relevant number of machines, and hence solves 
the problem in a time that is polynomial in the number n of jobs but 
exponential in k. Refinements of this algorithm are presented subsequently. In 
Subsection 4.1.2 we report on computational experience obtained by 
implementation of the dynamic programming routine. 

4.1.1. Dynamic programming. As mentioned in Section 2.1 determining the 
optimal second stage scheduling cost y*(X,w) in NP-hard. Let us denote by 
w =[ni, ... ,nd the vector of processing times in which the value a1 occurs n1 
times, for j = 1, ... ,k . 

One can obtain an optimal schedule on X machines by assigning a certain 
subset of jobs optimally to X - 1 machines and putting the remaining jobs on 
another machine. This observation leads to the following recurrence relations: 

y*(X,[n 1, ••• ,nk ])=min{ max{y*(X -1,[n, -ft,· ··,nk -Ftc DJ'*(l ,[e,, .. . ,fltc])} 

j0.;;;~.;;;nj(j = l, ... ,k)} (X>l), 

y*(l,[n 1, . • . ,nk ])= L.f= 1n1aJ . 

Computation of y*(X,w) by a dynamic programming algorithm based on this 
recursion requires O(XITj = 1n1) time, which is exponential in k but 
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polynomial for fixed k . 
In the more general context of the two-stage scheduling problem, we assume 

that the processing times have a common discrete distribution with k integral 
values a 1, ••• ,ak in its support. The independence of the processing times implies 
that w=[n1, .•• , nk] has a multinomial distribution. The idea is now to go 
through the entire recursion once in order to compute y *(X ,w) for all values 
X E { l, .. . ,n} and for all realizations w E61JS, where 61J.f is given by 

61J.f= {[n 1, ... ,nk JI0.;;;;n1 .;;;;n (j = l, ... ,k ), n 1 + ... + nk = n } . 

The distribution model is then solved by the selection, for each w E61JS, of a 
value of X that minimizes z*(X,w)=cX+y*(X ,w). The two-stage decision 
model is solved by the determination of a value of X that minimizes Ez *(X ,w) 
=cX + ~w e 6llf Pr{w = w }y *(X ,w). 

A straightforward application of the above dynamic programming algorithm 
requires O(nk) comparisons for each of the O(n k+ 1

) pairs (X,w), and hence 
0 (n Zk+ 1) time altogether. The multinomial probabilities are easily computed 
within this time bound. 

A more efficient implementation of the algorithm is obtained as follows. Let 
a 1 = max{ a 1, •• • ,ak }. It is not hard to see that, for any X and w =[n 1, . • • , nk] 

r~: = lnj aj / Xl .;;;;y*(X ,[n 1, . .. , nk ]),;;;; r~f= ,n} aj / Xl +a I - l. 

The lower bound is trivial, and the upper bound follows from the observation 
that any list scheduling algorithm will start every job strictly before the lower 
bound. Further, we assume without loss of generality that in the above 
recurrence relations the second maximand attains the maximum: 

y *(X ,[n 1, • •• ,nk ]) = y *(l ,[f1, ••• , fl,, ]) for some f1, • •• , fl,,. 

We can therefore restrict our attention to vectors [f1, • •. , r,, ] that yield a value 
y *(l ,[f1, • • • , fl,,]) within a given range of a 1 integers. This implies that only a 
single value of f1 has to be considered for given ~ ... , r,, and that O(nk - I) 

comparisons suffice for each pair (X ,w ). The overall running time is thereby 
reduced to O(n 2k). 

Other, more intricate, refinements lead to a running time of 
0 (n 2k - I ark - 3 1ogna 1). Although that implementation is more efficient for 
small values a 1, ••• , ak , it is of little avail in view of the results that will be 
presented in Section 4.2.1. 

4.1.2. Computational results. The dynamic programming algorithm was coded 
in PASCAL and run on a CD Cyber 170-750 to solve several instances of the 
two-stage scheduling problem. The solution of instances with 100 jobs and two 
possible processing time values or with 50 jobs and three processing time 
values required about 30 seconds. The values of k considered are admittedly 
small, but the values of n are realistic and the running times are such that the 
brute force approach of this chapter should not be dismissed on grounds of 
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manifest inefficiency. 
We illustrate the numerical results on a set of representative instances given 

by 

C = I , 

n = 1, ... , 100, 

k = 2, a 1 = 18, a 2 = 14, 

Pr{w1 =ai}=Pr{w1 =a 2}= ½ (j=l, ... , n). 

Figure 4.1 shows four functions of the number of jobs: 
- the minimal lower bound minx{zH'(X)} mentioned in Section 2.1.1; 

the minimal expected total cost Ez*(X*,w) (the optimum for the two-stage 
decision model); 
the expected minimal total cost Ez *(X0 (w),w) (the optimum for the 
distribution model, averaged over all realizations); 
the expected approximate total cost obtained by the heuristic designed in 
Section 2.1.1. 

Note that the last three functions are defined only for integral n; linear 
interpolation has been applied to improve the presentation. The distribution 
model yields slightly better results than the two-stage decision model on 
average, as expected. A comparison between the optima and the lower and 
upper bounds confirms that the absolute differences are significant while the 
relative differences disappear with increasing problem size. 

For the case that n = 100, Figure 4.2 shows three functions of the first stage 
decision variable, the number X of machines: 

the lower bound zH'(X); 
the expected total cost Ez*(X,w) in case of an optimal second stage 
decision; 
the expected total cost in case of an approximate second stage decision. 

Note that we have interpreted X as a continuous variable: acquisition of a 
fractional machine costs a fraction of c but yields no benefit at the second 
stage; the vertical line segments correspond to discontinuities. In spite of the 
smoothing effect due to averaging over all realizations, both the optimal and 
the approximate cost functions are highly nonconvex and multimodal. The 
functions consist of a first stage component, which is linear and increasing, 
and a second stage component, which is nonconvex and nonincreasing. 
Addition of the two components can turn the nonconvexities into local 
minima, and small values of c appear to be most effective in this respect. 
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4.2. Dynamic programming for hierarchical bin packing 
As in the previous section we will show that, when we restrict ourselves to k 
distinct values a 1, • •• ,ak as possible realizations of each of the item sizes, for 
fixed k , we can use a dynamic programming algorithm to solve the 
hierarchical bin packing problem within polynomial time. This algorithm and 
a refinement of it are presented in Subsection 4.2.1. In Subsection 4.2.2 we 
report on computational experience obtained by implementation of the 
algorithm. 

4.2.1. Dynamic programming. As mentioned in Section 2.2 determining the 
optimal second stage bin packing cost x*(Y ,w) for given Y and w is NP-hard. 
We write w =[n 1, ••• , nk] to denote the vector in which the value a1 occurs n1 
times, for j = 1, ... ,k. 

The following dynamic programming algorithm is due to [Held, Karp & 
Shareshian 1963]. Let C(Y ,w) be the total amount of capacity needed to pack 
items with weights specified by w into bins of capacity Y. It is assumed that 
C(Y,w) includes the slack capacity of each bin (which is equal to Y minus the 
total weight of the items assigned to that bin) except for the slack capacity of 
the last bin. Thus, if C(Y ,w) = xY - A with xE Z + and Q.;;;;A<Y , then an 
optimal packing requires x bins and the last bin has a slack capacity of A. Let 
~(Y ,w,a) be the extra capacity needed when an item with weight a is added 
to this packing: 

{

a ifA;;,,,a , 
~( y 'w ,a) = A+ a if A< a. 

It is not hard to see that 

C(Y ,[n 1, •• . , nd)=min1,;;;1,;;;k ,n
1
>o{ C(Y ,[n 1, .. . , n1 _ 1,n1 - 1,nJ +b···,nd) 

+~(Y,[n 1, ••• , n1 _ 1,n1 - I ,n1+1, ••• , nd,a1 )} 

(n 1 + · · · + nk >0), 

C(Y,[0, ... ,0]) = 0. 

We finally have that x*(Y ,w) = fC(Y,w)!Yl-
For the two-stage bin packing problem, we make the same assumptions 

concerning the distribution of the stochastic parameters as in Section 4.1.1 and 
apply the same strategy to obtain solutions to both stochastic optimization 
models. Since the values a 1, . .. , ak are integral, there is no loss of generality 
in considering only integral capacities Y. Let a max= max { a 1, ••• , ak } and 
note that I.;;; Y .;;;;namax· The algorithm requires a fixed number of 
comparisons for each of the O ( n k + 1 a max) pairs ( Y , w ), and hence O ( n k + 1 a max) 
time altogether. 

A more efficient implementation of the algorithm is obtained as follows. Let 
a sum=Lf=1n1a1 . It is not hard to see that, for any Y and w =[ni, .. . ,nd 
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f asuml Yl ..;;x *(Y ,[n (, ... , nd)..;;2 f asuml Yl -1. 

The lower bound is trivial. The upper bound is a performance guarantee of the 
following simple heuristic: deal with the items in a fixed order and fill each of 
r asuml Yl bins successively, thereby splitting an item if necessary; next, 
reassign each of the split items to a separate bin, of which no more than 
fa sum! Y7 - I will be needed. Addition of the first stage cost yields 

dY +asuml Y ..;;z*(Y,[n 1, ... ,nd)..;;dY +2asuml Y + I. 
These lower and upper bound functions are both convex in Y. The function 
z*(Y,w) therefore attains its minimum for a value of Y that is bounded by the 
two values of the argument for which the lower bound is equal to the 
minimum of the upper bound. A straightforward calculation shows that the 
latter values are given by (l/2+(2a 50md)112+ (a sumd+(2a 50md) 112 +1/4)112)/d. 
This implies that for all nk realizations w only O((namaxld)112) values of Y 
have to be considered. The overall running time is thereby reduced to 
O(nk + inar:{~d - 112). 

Due to the relation between the two-stage scheduling and bin packing 
problems that was observed above, the Y*(x ,w) values from Section 4.1.l 
could be used to derive the x*(Y,w) values needed here and vice versa, as long 
as the set { a 1, • • • , ak } is the same in both cases. The former recursion has the 
advantage of requiring strictly polynomial time; the latter one is 
pseudopolynomial but much faster for small values a 1, .. . , ak. 

4.2.2. Computational results. For the typical problem instance given by 

d I, 

n - 100, 

k = 2, a 1 = 18, a 2 = 14, 

Pr {w1 =a i} =Pr {w1 =a2} =f (j = 1, ... ,n ), 

Figure 4.3 shows three functions of the first stage decision variable, the 
capacity Y: 
- the lower bound zH'(Y); 

the expected total cost Ez*(Y,w) in case of an optimal second stage 
decision; 
the expected total cost in case of an approxjmate second stage decision. 

An investigation of these and other results leads to the same conclusions 
concerning running time, quality of lower and upper bounds, and the 
occurrence of multiple local minima as in Section 4.1.2. 
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4. 3. Dynamic programming for hierarchical mu/ti knapsack 
At the aggregate level of the capital budgeting problem that we consider here, 
one has to decide on the sizes X 1 , •• • ,Xm of m budgets that are to be reserved 
for financing a number of projects, while knowing the cost C; of reserving one 
unit of budget i (i = l , ... ,m ), the requirement r;1 of project j out of budget i 
(i = 1, ... ,m, j = 1, ... ,n ), and the probability distribution of the vector 
w=(w1, ••. , wn) of revenues that the projects will yield. It is assumed that all 
c; ,riJ and w1 are nonnegative and that the riJ are integral. At the detailed level, 
after X = (X 1 , ••• ,Xm) has been determined, a realization w of w becomes 
known, and one has to decide on a selection S of the projects that maximizes 
the total revenue y*(X,w) within the budget constraints: 

y*(X,w )=maxs (;;(l, ... ,n i{ LJ ES w1 I LJ ESriJ .;;;;X; (i = 1, ... ,m )}. 

The total profit of the budgeting decision X and the optimal selection decision 
is denoted by z*(X,w)= - Lt=1c;X; +y*(X,w). 

In the two-stage decision model, the objective is to determine a vector 
X* E IR+ such that 

Ez*(X*,w) = maxx ER':'{Ez *(X,w)}. 

Let 6?.l) be the set of all possible realizations of w. In the distribution model, 
the objective is to determine a function X 0

:6?.l)-1R + such that 

z *(X0 (w ),w) =maxx ER':'{ z *(X,w )},'v'w E6l!f. 

4.3.1 . The distribution model. The knapsack problem, i.e., the second stage 
problem with m = I, is already NP-hard [Garey & Johnson 1979]. 
Surprisingly, the distribution model is easily solved to optimality. For each 
w E6?.l), the selection S (w) of profitable projects · is given by 
S(w)=U lw1 -Lt=1c;riJ>O}. The minimum budgets needed to finance these 
projects are equal to X;°(w)= LJ ES(w{iJ(i = 1, ... ,m ), and the corresponding 
total profit is 

z *(X
0

(w ),w) = Lj ES(wiwJ - Lt= 1c; rij ), 'v'w E6l!f. 

In the situation that each revenue w1 can assume only k distinct values, the 
determination of X 0 requires O (mn) computations for each of kn realizations 
w. 

4.3.2. Dynamic programming. 
The second stage multiknapsack problem is solvable by a classical dynamic 
programming algorithm from [Bellman 1957]. Let Fj(X,w) be the maximum 
revenue if only the first j projects can be selected, for given budgets 
X = (X 1, •• • ,Xm) and revenues w = (w 1, ••• , wn ). An optimal selection is either 
restricted to the first j - I projects or includes project j : 
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Fj((X1, ... , Xm),w)=max{F1_ ,((X, , ... ,Xm) ,w), 

F1 - 1((X,-r11, ... , Xm -rm1),w)+w1 }(j = l , ... ,n), 

{

O if X 1 = · · · =Xm =O, 
Fo((Xi,••·,Xm),w)= -oo otherwise. 

Since the requirements riJ are integral, also the budgets X; can be assumed to 
be integral. Computation of y*(X,w)=Fn(X,w) requires a single comparison 
for each of Ilt=1X; vectors X'.;:;;X at each of n successive stages, and hence 
O(n ITt= 1X;) time altogether. 

For the two-stage multi.knapsack problem, we again consider the situation in 
which each revenue w1 can assume only k distinct values, for a fixed k . Let 
R; = ~j = 1riJ and note that O.;:;;X; .;:;;R; (i = I, ... , m ). At stage j, only the k1 

different realizations of (w1, . •• , w1) need to be distinguished (j = l, ... ,n ). The 
algorithm therefore has to consider O(kil1;";, 1R;) pairs (X ,w) at stage j. 
Summation over all j yields an O (e ITt= 1R;) time bound for the computation 
of ally *(X ,w) and also for the determination of a budget vector x• that is 
optimal in expectation. 

4.3.3. Computational results 

The dynamic programming algorithm was coded in PASCAL and run on a CD 
Cyber 170-750 to solve several instances of the two-stage knapsack problem. 
We set m = l at the outset and did not attempt to solve proper multi.knapsack 
problems, for which m ;;;.2. We assumed independence of the revenues w1 and 
tried to make the second stage knapsack problem nontrivial by specifying a 
high correlation between the expected revenue Ew1 of project j and its budget 
requirement r 11 . The solution of instances with twelve projects and two 
possible revenue values for each of them required about ten seconds. 

For the problem instance given by 

m = I, c = I, 

n = 12,Pr{w1 =a 11 }=Pr{w1 =a 21 }=f (j=l, ... ,n), 

with the values of r 11 , a 11 , a 21 (j = l , ... ,n) given in Table 4.1, Figure 4.4 shows 
the expected total profit Ez *((X 1),w) as a function of the budget size X 1• Note 
that the profit is shown only for integral X 1; the line segments that start from 
the points shown with a slope -c 1 and that indicate the profit for fractional 
X I have been deleted. Even if we restrict our attention to integral values of 
X 1, the profit function has many local maxima. 

j I 2 3 4 5 6 7 8 9 10 11 12 

r11 5 2 9 13 IO 8 4 7 IO 6 4 9 
a,J 7 4 12 17 15 12 5 9 14 9 6 I 
a21 3 6 11 8 7 1 4 7 7 2 8 

TABLE 4.1. Knapsack: numerical data 
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The structure of stochastic integer 

programming problems 

In this short chapter we investigate the structure of objective functions of 
stochastic integer programming problems as a first step towards the 
development of optimization methods for their solution. We have seen in the 
previous chapter that these functions can be discontinuous and non convex. 
These are properties that do not work in favor of the design of a successful 
optimization routine. However, the problems studied in Chapter 4 were of a 
restricted nature. In this chapter a much broader class of stochastic integer 
programming problems is considered. In Section 5.1 we define a general 
stochastic integer programming problem and we analyze its objective function. 
The main results, that we derive are that, when the parameters have a 
continuous distribution, the objective function is continuous but not 
necessarily convex and if the parameters have a discrete distribution, it is in 
general discontinuous. 

These results represent no more than an initial theoretical insight into the 
structure of stochastic integer programs. We are still far from a general 
algorithm for such problems. In Section 5.2 we review some directions for 
future research that may lead to such an algorithm. 
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5.1. The stochastic integer programming objective function 
Let us consider the general linear programming model 

min ex 

s.t. Ax =b, 

x;;.oO 

(5.1) 

(5.2) 

(5.3) 

with c ,x E Rn and b E Rm and A E Rm X Rn . The fundamental extension that 
is obtained by the additional constraint 

(5.4) 

yields the general integer programming problem. We have already discussed the 
computational difficulties that this extension gives rise to. Many of these 
difficulties carry over to stochastic integer programming. 

Let us define the random vectors qEIRk, pEIR 1 and the random matrices 
WEIR' X IRk, TEIR1 X IRn. From the general two-stage stochastic linear 
programming problem 

min ex+ E min{ qy I Wy ;;.oTx +pt,Y ;;..OtY EIRk} (5.5) 

s.t. Ax = b, (5.6) 

X ;;;,.Q (5.7) 

we derive the general two-stage stochastic integer programming problem 

min ex+ E min{ qy I Wy ;;.oTx +p, y ;;..o, y EZk} (5.8) 

s.t. Ax =b , (5.9) 

X ;;;,.Q, (5.10) 

xEzn . (5 .11) 

To study the shape of the stochastic integer programming objective function 
we introduce the concept of a value function. If we consider c and A in (5.1) 
and (5.2) as being fixed, then the optimal solution to the linear program (5.1-3) 
and the integer program (5.1-4) are functions of the right hand side b . These 
functions, denoted by QLP (b) and Q1 (b) respectively, are called value 
functions. 

In [Blair & Jeroslow 1982] the classes of value functions of linear and 
integer programs are characterized. They showed that these can be 
constructed iteratively by simple operations. Each value function of a linear 
program is obtained by starting with linear functions of the form Ab (A E Rm), 
and by repeating finitely often the operations of taking sums, taking maxima 
and taking nonnegative multiples of the functions already obtained. And 
reversely, each function that can be constructed in this way is the value 
function of some linear program. Thus, for example, the function QLP ((b i,b 2)) 

=max{2b 1+fb 2,b 1+5b 2} is the value function of some two-constraint linear 

program. 
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The value function of an integer program is obtained in the same way 
except that the operation of taking integer round-ups is added to the set of 
operations. Also here each function that can be constructed in this way is the 
value function of some integer program. Thus, for example, the function 
Q 1 ((b 1,b2)) =max{2b 1+ f b2,b 1+3b 2 + f¾b 2l} is the value function of some 
two-constraint integer program. The addition of the round-up operation 
induces the irregular behavior of integer programming value functions. 
Whereas, by the way they are constructed, linear programming value functions 
are continuous, piecewise linear and convex, integer programming value 
functions are in general discontinuous. Consider for example the simple value 
functions 

QLP (b )=rnin{y lY ~b J' ~O} 

and 

Q 1 (b)=rnin{y lY ~bJ' ~OJ' El}. 

Their graphs, depicted in Figure 5.1 , show the peculiar discontinuities that 
integer programming can generate. 

FIGURE 5. la. FIGURE 5.lb. 
Graph of QLP (b) Graph of Q 1 (b) 

The above features of the value functions carry over to the objective 
functions of stochastic programming problems. For a given realization 
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(q ,P ,W,T) of (q,P,W,1), 

QLP(Tx +p )=min{qy IWy ~Tx +pJJ ~O} 

is the value function of a realization of the second stage problem of the 
stochastic linear program (5.1-3). We notice that it is a random function. The 
expected optimal second stage cost is given by the function 

qt--P (x)=Eq.p ,w ,TQLP (Tx +p) 

that depends only on the first stage decision variable x . In a similar way we 
define the functions 

Q 1 (Tx +p )=min{qy IWy ~Tx +pJJ ~O,y El.k} 

and 

q)! (x )=Eq.p ,w ,TQ 1 (Tx +p). 

When the random parameters have discrete distributions with a finite number 
of points with positive density, then the functions (j)_,LP (x) and Cfi (x) are convex 
combinations of a finite number of value functions. Therefore the objective 
functions of the corresponding stochastic linear programs are piecewise linear 
and convex, whereas the objective functions of the stochastic integer programs 
may be discontinuous. To illustrate the above we consider the following simple 
functions: 

zLP (x )=x + Emin{y [y ~p- x J' ~O} (5.12) 

and 

z1 (x)=x + Emin{y [y ~p-x J' ~OJI El.}, (5.13) 

where pis a random variable with distribution Pr{p=2}= Pr{p=2.5}=f. 

Their graphs are given in Figure 5.2. As in the deterministic programming 
examples, the objective function of the stochastic linear program is piecewise 
linear and convex and the objective of the stochastic integer program is 
discontinuous. 

For stochastic programming models with a continuous distribution on the 
random parameters we may expect smoother objective functions. This is 
illustrated by an analysis of the functions zLP (x) and z1 (x) given above, 
where we now assume that p is uniformly distributed on the interval [2,2 + y] 
with y< I. Their graphs are given in Figure 5.3. The stochastic linear 
programming objective function is no longer piecewise linear but still convex. 

The stochastic integer programming objective function is no longer 
discontinuous. The latter observation will be generalized in the following 
theorem. 

Consider the stochastic program (5.8-11) with only p and T random. We 
define for each realization (p ,T) of (p,1) 



FIGURE 5.2a. 
Graph of z LP (x) 

FIGURE 5.2b 
Graph of z1 (x) 

FIGURE 5.3a FIGURE 5.3b 
Graph of zLP (x)(p~U[2,2+y]) Graph of z 1 (x)(p~U[2,2+y]) 

Q 1 (Tx +p)=min{qylWy ~Tx +p,y ~O,y EZk }. 

Its expected value is given by 

'.i (x )=EQ1 (Tx +p). 
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Let f (p ,T) be the joint density function of p and T. Let g(T) be the marginal 
density function of T and let h (p IT) be the conditional density function of p 
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given T . 

THEOREM 5.1. If f(p,T) is continuous with support (IT,E) and Q 1(Tx+p) is 
bounded with probability 1, then (})! (x) is continuous. 

PROOF. We will prove that for every £>0 there exists a /3 such that for any 
pair of vectors x and x' satisfying llx - x '11 00 .s;;;/3, we have that 
I(})! (x )-(})! (x ')I,,;;;£. Let i be the n -dimensional vector consisting of all onces. 
For a fixed value £>0 we choose any pair x and x' such that x'=x +l3i, for a 
value of 13 that is to be determined later. For given p and T it is easy to see 
that 

Q1(Tx'+p)=Q 1 (Tx +p +l3Ti). 

Therefore 

l(})f (x') - (})f (x)I = 

If fQ 1(Tx+p+l3Ti)f(p,T)dpdT - f fQ 1(Tx+p)f(p ,T)dpdTI 
E n E n 

We substitute p ' - l3T i for p in the first term of the right hand side of the 
above equality. This yields 

l(})f (x ')-(})f (x )I= If f Q 1 (Tx + p ')f (p '-l3Ti,T)dp 'dT-

ff Q 1 (Tx +p)f(p ,T)dpdTI , 
E Il 

where Il'=Il +l3Ti. We write p instead of p' again: 

l(})f(x)-(})f(x)l = lf f Q 1(Tx+p)J(p-l3Ti,T)dpdT+ 
E Il' \ Il 

f f Q 1(Tx+p)J(p-l3Ti,T)dpdT -
E Il'n ll 

f f Q 1(Tx +p)f(p,T)dpdT-
E n nn' 

f f Q 1 (Tx +p)f(p,T)dpdTI 
Eil \ Il' 

.s;;;lf f Q 1(Tx +p)J(p-l3Ti,T)dpdTJ+ 
E Il' \ Il 

If f Q1 (Tx +p)f(p,T)dpdTI+ 
E Il \ Il' 

If f Q 1 (Tx +p)(f(p-l3Ti,T) - J(p,T))dpdTI 
E nnn• 

By assumption, for each x there exists a finite L such that Q 1 (Tx + p ).s;;;L for 
almost every realization p ,T of (p,T) Therefore the above absolute difference is 
bounded from above by 
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Lj j f(p - lfft,T)dpdT+Lj j f(p ,T)dpdT (5.14) 
E TT' \ TT E TT \ TT ' 

+Llf f (f(p - 8Tt,T) - f(p ,T))dpdTI 
:c: TT n TT ' 

We consider each of the above three terms separately. We rewrite the first 
term as 

Lj g(t) f h(p - 8TilT)dpdT. 
E TT' \ n 

Because under our assumption that/(p,t) is continuous, g(plT) is continuous 
and we have that for each £>0 we can choose 81(€) small enough such that 

f h(p -8,(€)TtlT)dp ~-(-
TT ' \ TT 3L 

and hence 

L f g(T) f h(p -81(£)TtlT)dpdT~~-
:c: n ' \ n 

3 
(5.15) 

In the same way we can for each £> 0 choose 82(£) such that for 
II' = II +82(£)Tt . 

Lj j f(p ,T)dpdT~~-
E TT \ TT ' 3 

(5.16) 

As f is a continuous function of p , for each £> 0 there exists a 83(€) such that 

Hence 

Llf f (f(p-8J(£)Tt,T)-J(p,T))dpdTl<L f f 
3
~ dpdT~;. (5.17) 

:c:n n n- ETT n TT' 

If we choose 8= min{8 1(£),82(£),83(€)} then (5.14), (5.15), (5.16) and (5.17) 
together imply the theorem. D 

We note that the boundedness condition on Q 1 (Tx +p) is a rather strong 
requirement in integer programming. However, if the density function f (p , T) 
has bounded support, then the condition is met for problems with all 
coefficients positive. 

As we have seen in Figure 5.3b continuous objective functions of stochastic 
integer programming problems are not necessarily convex. The success of 
algorithms for stochastic linear programs is partially due to the convexity of 
their objective functions. If integrality constraints appear only at the first 
stage of a stochastic program, then· the expected optimal second stage cost is 
still convex in the first stage decision variables and the problem can be dealt 
with by fairly conventional adaptations of stochastic linear programming 
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methods (see e.g. [Wollmer 1981 ]). The nonconvexities induced by integrality 
constraints at the second stage cause more fundamental problems. It is not al 
all obvious how these difficulties can be dealt with. In the following section, we 
give some directions for future investigations that might lead to practically 
useful stochastic integer programming methods. 

5.2. Directions for future research 
In the previous section we examined the shape of objective functions of 
stochastic integer programming problems without making attempts to use the 
insights acquired for the construction of an algorithm. This is mainly due to 
the fact that the nonconvexity of the functions does not lead to a natural 
proposal for such an algorithm. To imitate solution procedures that are 
successful for stochastic linear programs requires more than minor 
modifications because of the integrality constraints on the variables. 

One possibility may be to imitate the L-shaped method for stochastic linear 
programming, which is based on Benders' decomposition [Wets 1983), by 
substitution of the stochastic integer programming objective function by a 
convex approximation. More specifically, if we consider a stochastic 
minimization problem and define the epigraph of the objective function as the 
set of all points lying above or on the function, then the minimum of the 
function is the lowest point of the epigraph (see Figure 5.4). This is also the 
lowest point of the convex hull of this epigraph. Therefore, minimization of the 
function can be replaced by minimization of the convex hull of its epigraph. 
Determination of this convex hull is not surprisingly, a nontrivial task. But a 
useful insight can be derived from [Blair & Jeroslow 1979). They define the 
carrier function of an integer programming value function as the function that 
is obtained by deleting the round-up operators from its description. The 
epigraph of a carrier function is convex and contains the convex hull of the 
epigraph of the corresponding value function. It would be interesting to see if 
and how carrier functions can be used in a decomposition method to solve the 
stochastic integer programming problem. 

Another possible approach for the optimization of multimodal objective 
functions is to use a global optimization algorithm. In the literature on global 
optimization, a variety of algorithms is presented (see [Timmer 1984) for a 
review). For reasons indicated many times before, we are interested in 
methods that require only a small number of function evaluations. For 
example, we may consider global optimization methods that represent the 
function to be optimized as a realization of a stochastic process (see [Boender 
1984]). 

A drawback of the latter type of algorithm is that it ignores most prior 
information about the shape of the function. For example, in some cases it 
may be possible to compute a Lipschitz constant for the objective function of 
a stochastic integer program, given the probability distribution of the random 
parameters and the values of the non-random parameters. In such cases one 
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FIGURE 5.4. The epigraph and its convex hull 

could use this information in a global optimization algorithm similar to the 
one presented in [Evtushenko 1971]. 

The construction of optimization methods for stochastic integer 
programming represents a formidable challenge. Notwithstanding the high 
asymptotic quality of the heuristics discussed in previous chapters, we hope 
that this challenge will be properly responded to by further research. 
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Samenvatti ng 

Stochastische programmeringsproblemen zijn mathematische 
programmeringsproblemen waarvan sommige parameters als kansvariabelen 
gemodelleerd warden om de onzekerheid over hun waarde weer te geven. Voor 
de onbekende parameters is gewoonlijk een kansverdeling gespecificeerd. Er 
zi jn twee soorten optimaliseringsmodellen in de stochastische programmering. 

Het eerste is het distributiemodel, waarbij een optimale beslissing voor elke 
realisatie van de stochastische parameters wordt gezocht. Dit geeft als resultaat 
de kansverdeling van de optimale waarde van het stochastische 
programmeringsprobleem. Deze benadering, waarbij de beslissing genomen 
wordt zodra perfecte informatie beschikbaar is, is voomamelijk van theoretisch 
belang. 

Het tweede model is het twee-fasen beslissingsmodel, waarbij we een 
beslissing zoeken die in verwachting optimaal is. Bij de waardering van een 
beslissing houden we rekening met de kosten van een latere beslissing die 
genomen kan warden om de eerste bij te stellen zodra een realisatie van de 
kansvariabelen bekend wordt. In <lit model wordt de eerste beslissing genomen 
gegeven imperfecte informatie. We kunnen de bijstelling van de beslissing ruim 
zien. Het betreft niet alleen een noodzakelijke actie als de realisatie ongelukkig 
uitvalt, maar elke mogelijke actie die onder de gegeven omstandigheden tot een 
in totaal betere beslissing leidt. 

Het onderzoek op <lit gebied heeft zich tot nu toe bijna volledig 
geconcentreerd op stochastische lineaire programmering. In het 
distributiemodel leidt elke realisatie van de stochastische parameters in dit 
geval tot een gewoon lineair programmeringsprobleem. In het twee-fasen 
beslissingsmodel, is het bijstellingsprobleem in de tweede fase een lineair 
programmeringsprobleem, waarbij de rechterzijde van de restricties gewoonlijk 
bepaald wordt door de beslissing uit de eerste fase. Dit impliceert dat de 
verwachte kosten van de tweede fase een convexe functie zijn van de 
beslissingsvariabelen uit de eerste fase. Succesvolle algoritmen voor het 
lineaire twee-fasen probleem maken uitvoerig gebruik van deze convexiteit. 

Door geheeltalligheidseisen aan sommige van de beslissingsvariabelen op te 
leggen betreden we het gebied van de stochastische geheeltallige 
programmering. De complexiteit van de te bestuderen problemen wordt hierbij 
drastisch verhoogd. Een reden hiervoor is dat er voor de oplossing van lineaire 
programmeringsproblemen methoden bestaan die op theoretische gronden 
efficient genoemd kunnen worden, terwijl dergelijke methoden voor 
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geheeltallige programmering ontbreken. Een andere reden is dat, in het twee­
fasen beslissingsmodel, geheeltalligheid van de beslissingsvariabelen in de 
tweede fase niet-convexiteiten en zelfs discontinu"iteiten in de verwachte kosten 
in de tweede fase kan veroorzaken, zodat de de algoritmen voor het lineaire 
geval niet eenvoudig aangepast kunnen worden. 

Stochastische geheeltallige programmering biedt niet alleen veel theoretische 
uitdagingen. Het is ook een practisch hulprniddel voor het modelleren van 
hierarchische planningsituaties die voorkomen bij operationele 
beheersactiviteiten. Dergelijke situaties vragen om een reeks beslissingen over 
de tijd, die in toenemende mate gedetailleerd zijn en waarbij steeds meer 
informatie beschikbaar komt. Er kunnen tenrninste twee beslissingsvineaus 
onderscheiden worden : een geaggregeerd niveau, waarop beslissingen genomen 
moeten worden over de aanschaf van hulpbronnen, zoals machines, 
vrachtwagens of mankracht, zonder dat er exacte informatie over het 
toekomstige gebruik ervan aanwezig is, en een gedetailleerd niveau, waarop, 
gegeven deze exacte informatie, taken aan de hulpbronnen toegewezen worden. 
Geheeltalligheidseisen kunnen op het eerste niveau voorkomen als de 
hulpbronnen alleen in gehele aantallen aangeschaft kunnen worden, en op het 
tweede niveau als het toewijzingsprobleem combinatorisch van aard is. 

Vanwege de inherente moeilijkheid van stochastische geheeltallige 
programmering lijkt het redelijk om niet optimaliteit van de beslissingen te 
eisen maar ons tevreden te stellen met benaderingen hiervan. Daarom is een 
groot dee! van het onderzoek in dit proefschrift gericht op het ontwerpen en 
analyseren van benaderingsmethoden of 'heuristieken'. Zo worden eenvoudige 
heuristieken voorgesteld voor de oplossing van verscheidene twee-fasen 
productie- en distributieplanningproblemen. Probabilistische analyses van deze 
heuristieken leiden dan tot exacte uitspraken over de kwaliteit van de 
benaderingen. Bijvoorbeeld kunnen we afleiden dat voor voldoend grote 
problemen de relatieve fout die de heuristiek maakt in een bepaalde 
stochastische zin heel klein wordt. Voor het ontwerpen en analyseren van de 
heuristieken wordt een algemeen kader gepresenteerd. 

Voor het 'optimaal' oplossen van stochastische geheeltallige 
programmeringsproblemen moeten we ons beperken tot problemen met een 
dusdanig speciale structuur dat exploitatie hiervan kan leiden tot een efficiente 
optimaliseringsalgoritme. Zo beperken we ons voor een aantal van · de 
bovengenoemde hierarchische planningproblemen tot situaties vaarbij de 
stochastische parameters een discrete verdeling hebben met de kansmassa 
geconcentreerd op een eindig aantal punten. Elke realisatie van deze 
problemen leidt tot een combinatorisch optimaliseringsprobleem, dat oplosbaar 
is met behulp van een dynarnische programmeringsalgoritme. Het gehele 
stochastische programmeringsprobleem wordt dan opgelost in een grate 
recursie, waarin de aparte dynarnische programmeringsberekeningen voor alle 
individuele realisaties gecombineerd worden. Computerexperimenten hiermee 
geven enig empirisch inzicht in de doelstellingsfuncties van stochastische 
geheeltallige programmeringsproblemen. 
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Verdere onderzoekingen naar de vorm van de doestellingsfunctie tonen aan 
dat een onderscheid tussen discrete en continue kansverdelingen van de 
stochastische parameters gemaakt dient te worden. In het laatste geval komen 
er, onder bepaalde voorwaarden, geen discontinu'iteiten voor. De resultaten die 
we hier afleiden voor de vorm van de doelstellingsfuncties moeten beschouwd 
worden als niet meer dan een eerste stap in de richting van een theorie voor 
stochastische geheeltallige programmering. 





Definieer de optimale waarde van een meer-dimensionaal knapzakprobleem als 

Zn =max{~/= 1c1x1 I~/= 1aiJx;1 ~nb;(i = l, ... ,m ),x1 E {0,1} (j = l , ... ,n )} 

waarbij O~b; ~ 1, CJ ;;;.o, aij ;;;.o (i = l, ... ,m ;j = l, ... ,n ). Beschouw een 
stochastisch model van <lit probleem waarbij de coefficienten c1 en a;1 
onafhankelijke identiek verdeelde kansvariabelen zijn. Dan bestaat er een 
constante L zodat met kans l 

Deze constante kan berekend worden als de rninimumwaarde van de volgende 
convexe functie: 

waarbij 

{

1 alsc1-~t= 1A;a; 1;;;.0, 
xi(A)= 0 anders. 

M. MEANTI, A.H.G. RINNOOY KAN, L. STOUGIE, C. VERCELLIS (1984). A 
probabilistic analysis of the mu/ti-knapsack value function, Working paper 
# 1611-84, Massachusetts Institute of Technology, Cambridge, MA. 

II 

We kunnen de optimale opllossing Zn van het meer-dimensionale 
knapzakprobleem uit de vorige stelling benaderen met behulp van een 'greedy' 
heuristiek die als volgt beschreven kan worden. Gegeven m gewichten 
w 1 , •• • , wm, rangschikken we de objecten j = l , ... ,n naar afnemende waarden van 
de verhoudingen 

Objecten worden dan in deze volgorde geselecteerd totdat het volgende te 
selecteren object een van de restricties zou schenden als het aan de knapzak 
toegevoegd zou worden. Wanneer we de gewichten gelijkstellen aan de 
waarden A1, ••• ,Am die de functie L(A) uit de vorige Stelling rninimaliseren, dan 
gaat de relatieve fout die de heuristiek maakt bijna zeker naar nul. 
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III 

Gegeven een aantal aardappelrassen, een aantal aardappelziektes en, voor elk 
van de rassen, de verzameling ziektes waarvoor het vatbaar is, selecteer een zo 
klein mogelijk aantal aardappelrassen zodanig dat elk paar ziektes door ten 
minste een aardappelras uit de selectie onderscheiden wordt. 

Als elk aardappelras voor precies twee ziektes vatbaar is, dan kan het 
probleem als volgt gemodelleerd worden. Elke aardappelziekte correspondeert 
met een punt in een graaf en elk aardappelras met een kant in die graaf. De 
doelstelling is dan om in de graaf zoveel mogelijk disjuncte paden van lengte 2 
te vinden. Dit probleem is NP-moeilijk [Lageweg et al. 1980]. 

B.J. LAGEWEG, J.K . LENSTRA, A.H.G. RINNOOY KAN (1980). Uit de practijk 
van de besliskunde. A.K. LENSTRA, H .W. LENSTRA, J.K. LENSTRA (eds.). 
Tamelijk briljant: opste//en aangeboden aan Dr. TJ. Wansbeek, Amsterdam. 

IV 

Voor de oplossing van het probleem uit de vorige stelling formuleren we de 
volgende heuristiek. Kies eerst zoveel mogelijk disjuncte paden van lengte 2, en 
verbind vervolgens de resterende losse punten en paden van lengte I aan de 
gekozen paden van lengte 2. Op deze manier wordt een verzameling 
aardappelrassen geselecteerd die in het slechtste geval 1 keer zo groot is als een 

optimale verzameling aardappelrassen. 
Deze oplossing kan verbeterd worden door onderling disjuncte groepen van 

k samenhangende configuraties uit de oplossing te beschouwen en binnen de 
verkregen deelgrafen de optimale oplossingen te bepalen. In het geval k = 2 is 
de verhouding tussen de heuristische en de optimale oplossing in het slechtste 
geval ¾. V oor k = 3 is deze verhouding f [Lageweg et al.]. 

B.J. LAGEWEG, J.K. LENSTRA, J.B. ORLIN, L. STOUGIE (te verschijnen). The 
minimum test set problem. 



V 

Aan de verzameling testfuncties in [Dixon & Szego 1978], die gebruikt worden 
voor het vergelijken van globale optimaliseringsprocedures (cf. [Boender et al. 
1982]), dient een functie te worden toegevoegd waarvoor de kans zeer klein is 
<lat een lokale zoekprocedure gestart in een willekeurig getrokken punt uit het 
domein van de functie naar het globale optimum convergeert. 

C.G.E. BOENDER, A.H.G. RINNOOY KAN, L. STOUGIE, G.T. TIMMER (1982). A 
stochastic method for global optimization. Math. Programming 22, 125-140. 
L.C.W. DIXON, G .P. SZEG0 (1978). Towards global optimisation 2, North­
Holland, Amsterdam. 

VI 

De elfstedentocht beschrijft de kortste gesloten route door de elf 
stempelsteden. 

E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN, D.B. SHMOYS (1985). 
The traveling saleman problem: a guided tour of combinatorial optimization, John 
Wiley & Sons, Chichester, England. 

VII 

De schade die wilde ganzen in Nederland aan landbouwgewassen en grasland 
aanrichten zal verminderen als de jacht op deze vogels wordt afgeschaft. 

VIII 

Het is verwerpelijk om de bezinkingsput van de voormalige suikerfabriek in 
Oud-Beijerland met recreatieve plannen te bedreigen. De put heeft een 
volkomen miskende ornithologisch educatieve waarde. Bijna alle vogelsoorten 
van het noordelijke Deltagebied komen er voor. Bovendien wordt de 
observatie van de vogels vergemakkelijkt doordat de put dichtbij de bebouwde 
kom ligt en omringd wordt door een dijk. 

L. STOUGIE, M. STOUGIE. Vogelwaarnemingen, Admiraal de Ruyterstraat 143, 
Oud-Beijerland. 



IX 

Bij de consumptie van stroop wordt er helaas meestal geen weloverwogen 
keuze gemaakt tussen de verschillende merken. Op spekpannekoeken 
verdienen de varieteiten met een zachte smaak de voorkeur, terwijl de soorten 
met een branderige smaak juist tot hun recht komen op een boterham met 
boter. Voor wie zijn hele huishouden met een pot stroop wenst te doen is de 
echte Zeeuwse stroop de gulden rniddenweg. 


