
Algorithms, Haplotypes

and Phylogenetic Networks

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op donderdag 29 januari 2009 om 16.00 uur

door

Leo Jan Joseph van Iersel

geboren te Hellevoetsluis

ii

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. L. Stougie
en
prof.dr. G.J. Woeginger

Copromotor:

dr. J.C.M. Keijsper

iii

Preface

Before I started my PhD in computational biology in 2005, I had never even
heard of this term. Now, almost four years later, I think I have some idea
of what is meant by it. One of the goals of my PhD was to explore different
topics within computational biology and to see where the biggest opportunities
for discrete/combinatorial mathematicians could be found. Roughly speaking,
the first two years of my PhD I focussed mainly on problems related to hap-
lotyping and genome rearrangements and the last two years on phylogenetic
networks. I must say I really enjoyed learning so much about both mathe-
matics and biology. It was especially amazing to learn how exact, theoretical
mathematics can be used to solve complex, practical problems from biology.
The topics I studied clearly show how extremely useful mathematics can be
for biology. But I also learned that there are many more interesting topics in
computational biology than the ones that I could study so far. The number
of opportunities for discrete mathematicians is absolutely immense. I did not
include my studies on genome rearrangements in this thesis, because my most
interesting results [Hur07a; Hur07b] are not directly related to biology. This
work is nevertheless interesting to mathematicians and I recommend them to
read it. I can certainly conclude that also in this field there is a vast number of
opportunities for mathematicians and that the topic genome rearrangements
provides numerous beautiful mathematical problems.

I could never have written this thesis without a great amount of help from
many different people. I want to thank my supervisors Leen Stougie and
Judith Keijsper for guiding me, for helping me, for correcting my mistakes, for
supplying ideas and for the enjoyable time I had while working with them. I
also want to thank the Dutch BSIK/BRICKS project for funding my research
and Gerhard Woeginger for giving me the opportunity to work in his group
and being my second promotor. I want to thank Jens Stoye and Julia Zakotnik
for the work we did together and for the great time I had in Bielefeld. I want
to thank Ferry Hagen and Teun Boekhout for helping me to make my work
relevant for “real” biology. I also want to thank John Tromp, Rudi Cilibrasi,
Cor Hurkens and all others I worked with during my PhD. I want to thank Erik
de Vink and Mike Steel for reading and commenting my thesis. I want to thank
my colleagues from the Combinatorial Optimisation group at the Technische

iv

Universiteit Eindhoven for the pleasant working conditions and the fun things
we did besides work. I especially want to thank Matthias Mnich, not only a
great colleague but also a good friend, for all his ideas, his humour and our
good and fruitful cooperation. I also want to thank Steven Kelk. I must say
that I was very lucky to work with Steven during my PhD. He introduced me
to problems, had an enormous amount of ideas, found the critical mistakes in
my proofs and made my PhD a success both in terms of results and in terms of
enjoying work. Finally, I want to thank Conno Hendriksen and Bas Heideveld
for assisting me during my PhD defence and I want to thank them and all my
other friends and family for helping me with everything in my life but research.

v

Contents

Preface iii

1 Introduction 1

1.1 Computational Biology . 1

1.2 Algorithms and Computational Complexity 2

1.3 Algorithms for Computational Biology 4

1.4 Problems from Haplotyping . 5

1.4.1 Single Individual Haplotyping 6

1.4.2 Population Haplotyping 9

1.5 Problems from Phylogenetics 11

2 Single Individual Haplotyping 17

2.1 Introduction . 17

2.2 Minimum Error Correction (MEC) 18

2.2.1 Complexity of Gapless-MEC 19

2.2.2 Approximability of 1-Gap-MEC 20

2.2.3 Binary-MEC . 24

2.2.4 MEC with more than two Haplotypes 25

2.3 Longest Haplotype Reconstruction (LHR) 28

2.3.1 Polynomial-time Algorithm for Gapless-LHR 28

2.3.2 Complexity and Approximability of 1-Gap-LHR 30

2.4 Conclusion and Open Problems 36

vi Table of Contents

3 Population Haplotyping 37

3.1 Introduction . 37

3.2 Complexity of Population Haplotyping Problems 41

3.3 Polynomial-time Algorithms . 43

3.3.1 Parsimony Haplotyping 43

3.3.2 Minimum Perfect Phylogeny Haplotyping 48

3.4 Approximation Algorithms . 56

3.5 Conclusion and Open Problems 62

4 Phylogenetic Networks 65

4.1 Introduction . 65

4.2 Preliminaries . 70

4.3 Complexity of Constructing Networks from Triplets 77

4.3.1 Sufficiency and Necessity of Network Level 77

4.3.2 A Unique Level-k Network 79

4.3.3 From Uniqueness to Intractability 85

4.4 Constructing Level-1 Networks in Exponential Time 90

4.5 Constructing Simple Level-k Networks 97

4.6 Constructing Level-2 Networks from Dense Triplet Sets 101

4.6.1 Algorithm and Proof . 102

4.6.2 Practical Experiments 116

4.7 Minimising Reticulations . 117

4.7.1 Minimum Reticulation Level-1 Networks 117

4.7.2 Minimum Reticulation Level-2 Networks 122

4.7.3 Simulations . 129

4.8 Networks Consistent with Precisely the Input Triplet Set . . . 134

4.9 Open Problems . 142

Summary 145

Samenvatting 147

Curriculum Vitae 149

References 151

Index 161

1

Chapter 1

Introduction

1.1 Computational Biology

Nowadays, biology is for an important part being studied at the molecular
level. A series of important discoveries in the 20th century showed that study-
ing molecules such as DNA, RNA and proteins can help us to describe, predict
and manipulate the functioning and development of organisms, as well as their
evolution. One of the first important discoveries in this direction by Oswald
Avery in 1944 [Ave44] showed that the hereditary information of organisms
is (partly) stored in the long DNA molecules present in each cell of an or-
ganism. Later, in 1953, a great breakthrough was made when James Watson
and Francis Crick [Wat53] discovered the molecular structure of DNA. This
discovery eventually led to the ability to find the sequence of nucleotides in
a DNA molecule. James Watson also started, in 1990, the well-known Hu-
man Genome Project. In 2003 this project completed a description of the
human DNA and most of the genes that it encodes [Int01; Ven01]. A good
introduction to molecular biology has been written by Lewin [Lew00].

This progress in molecular biology has triggered opportunities for mathemati-
cians and computer scientists. Algorithms translated into computer programs
have been the basis of the enormous developments in this field. It is clear
that mathematical modelling, problem solving and algorithm design and im-
plementation will continue to play an important role in the description and
prediction of the functioning and evolution of organisms on the basis of molec-
ular data. The books by Clote and Backofen [Clo01], Waterman [Wat95] and
Pevzner [Pev00] provide an excellent introduction to the field of computational
biology : the field that applies mathematics and computer science to problems
from or inspired by biology.

2 CHAPTER 1. INTRODUCTION

The problems studied in computational biology are derived from many differ-
ent areas of biology. Only a selection is studied in this thesis, which consists of
two main parts. The first part, Chapters 2 and 3, considers problems from the
field called haplotyping. See Bonizzoni et al. [Bon03] for an introduction to
this field. Haplotypes are sequences describing the most important positions of
an individual’s DNA and can thus be seen as a kind of fingerprints of that in-
dividual. Deducing correct and precise haplotypes from measured data can be
difficult and leads to interesting mathematical problems. Chapter 2 considers
the problem of reconstructing two haplotypes of an individual from haplotype
fragments that may contain errors. Chapter 3 considers reconstructing the
haplotypes of a whole population simultaneously, from ambiguous “genotype”
data.

The second part of this thesis considers problems from phylogenetics, the study
of the evolution of species and populations. This rich field has been approached
from many different perspectives; see Nei and Kumar [Nei00] for an overview.
The traditional way to describe an evolutionary history is to use a tree-shape
with leaves representing currently living organisms. The focus in this thesis
is on reconstructing phylogenetic networks, which display evolutionary histo-
ries that cannot be displayed by a tree. Such a situation can for example be
the result of evolutionary events like recombinations or hybridisations. These
events cause that two lineages that previously diverged from each other com-
bine again later in time. Mathematically, such histories can be displayed by
a directed acyclic graph. Phylogenetic networks can also be used in the con-
text of tree-like evolution, when there is uncertainty about the exact shape of
this tree. In Chapter 4, algorithms will be developed for the reconstruction of
phylogenetic networks.

1.2 Algorithms and Computational Complexity

To be able to describe the problems and summarise the results in this thesis, it
is necessary to give a short introduction to complexity theory. For a complete
introduction see Garey and Johnson [Gar79] or Ausiello et al. [Aus99].

Polynomial-time Algorithms and NP-hardness
Computational biology and other application areas of mathematics, such as
logistics and communication technology, usually offer problems that have to be
solved repeatedly for different inputs. A precise list of instructions, to be used
for solving the problem for each such input, is called an algorithm. There are
many different kinds of problems and many different types of algorithms. For
an optimisation problem, an algorithm preferably finds an optimal solution in
an efficient way. Informally, an algorithm is considered efficient if it computes
a solution, for each reasonable sized input, in a reasonable time. The following
class of algorithms has been introduced to formalise efficiency.

1.2. ALGORITHMS AND COMPUTATIONAL COMPLEXITY 3

Definition 1.1. An algorithm is said to be polynomial-time if its running
time is bounded by a polynomial function of the input size.

The class P consists of those problems that can be solved by a polynomial-
time algorithm. These problems are called (computationally) tractable. For
many problems however, there are no polynomial-time algorithms known. To
be able to assess for which problems it is unlikely to be fruitful to search for
polynomial-time solutions, the notion of NP-hardness has been introduced.
Intuitively, the class of NP-hard problems consists of those problems for which
the existence of a polynomial-time algorithm is considered very unlikely. The
class NP consists of all decision problems for which a solution can be checked
in polynomial time. An NP-hard problem is at least as hard as any problem in
NP (for formal definitions of the classes NP and NP-hard see [Gar79; Aus99]).
In fact, if someone would solve an NP-hard problem in polynomial time, then
this would imply that P = NP, and it would enable us to efficiently solve all
problems known to be in the class NP. In computational mathematics and
computer science an NP-hardness proof is therefore considered a strong advice
not to look for an optimal polynomial-time algorithm. Whether a problem is
tractable or NP-hard (or neither) is often called its (computational) complexity
(although there are many more complexity classes, see [Pap94]).

Solving NP-hard Problems
For NP-hard problems, other types of algorithms are required. One possibility
is to settle for an approximation algorithm. Such an algorithm produces solu-
tions that are not necessarily optimal, but whose objective value is, even for a
worst-case input, at most a bounded distance away from the optimum. For a
minimisation problem, an r-approximation algorithm returns a solution with
an objective value that is at most r times the objective value of an optimal
solution. Here, r is called the approximation ratio (defined in a similar way for
maximisation problems). An approach that describes a (1 + ε)-approximation
for all ε > 0 and runs in time polynomial in the input size (but not necessarily
in 1

ε) is called a polynomial time approximation scheme (PTAS).

It can be useful to provide evidence that algorithms with certain approximation
guarantees are unlikely to be found. For this reason, APX-hardness has been
introduced as an approximation counterpart of NP-hardness. Informally, the
class APX-hard contains those problems for which a PTAS is unlikely to exist
(in the same sense as above). Proving APX-hardness thus forms a stronger
result than proving NP-hardness. However, such a result does not provide
any information about the existence of an r-approximation algorithm for some
fixed r. For some problems, even stronger inapproximability results can be
shown, but this will not be done in this thesis.

A different approach to solving NP-hard problems is to maintain the require-
ment that an optimal solution has to be found, but to allow the algorithm a
non-polynomial running time. Such an algorithm is called an exact algorithm.
The running time of an exact algorithm for an NP-hard problem is usually

4 CHAPTER 1. INTRODUCTION

an exponential function of the input size. If the exponent of that function is
small, then such an algorithm can still be practical, in cases where optimal
solutions are required.

Finally, an approach that is very popular in practice is what mathematicians
call a heuristic. Such an algorithm is not guaranteed to find an optimal solu-
tion and does not guarantee any approximation ratio. Its quality is evaluated
on basis of its performance in practice. Such algorithms thus need to be
thoroughly tested on practical data. Heuristics are often shown to perform
particularly well in practice but many heuristics hardly provide insights in the
structure of a problem and might therefore be of little help for developments
in the long run.

1.3 Algorithms for Computational Biology

Objective Functions and the Parsimony Principle
Formulating biological problems in a mathematical way usually involves formu-
lating an objective that needs to be optimised. In application areas as logistics,
there is usually a clear objective: maximise profit or minimise cost. On the
contrary, a biological problem often does not state an explicit objective to be
optimised. The ultimate goal is in general to find the “real” solution and there
are various ways to asses how likely it is that a certain solution is the “real”
solution. In some cases, this likelihood can be explicitly computed under a
certain model of probability. In these cases, one tries to find a solution with a
maximum likelihood. In other cases, specific properties of the real solution can
be formulated and the objective can then be to find a solution that possesses
(as many as possible of) these properties.

Another popular approach is to use the parsimony principle, also known as Oc-
cam’s razor, which states “entia non sunt multiplicanda praeter necessitatem”,
meaning that one should not choose a solution that makes more assumptions
than necessary. For example, in phylogenetics this suggests that the best so-
lution is the one that assumes the smallest number of evolutionary events.
Sometimes, such a most parsimonious solution can be equal to the most likely
one, especially when the probability of the evolutionary events is very small.
For many of the problems considered in this thesis, the parsimony principle is
part of the motivation for the formulated objective.

Computational Biology and Combinatorial Mathematics
Computational biology and combinatorial mathematics are often related in a
natural way. Problems studied by mathematicians can turn out to be relevant
in computational biology and problems from computational biology can have
applications in other fields. A nice example is the algorithm constructed by
Aho et al. [Aho81], which combines a set of small trees (with three leaves
each) into a single large tree “consistent” with each of the small trees (cf.
Section 1.5). This algorithm has been designed with an application concerning

1.4. PROBLEMS FROM HAPLOTYPING 5

relational expressions in mind. The application to phylogenetics is due to Mike
Steel [Ste92] and this algorithm is now a well-known and important result in
this field.

Another fascinating example is the relation between the evolution of DNA
and the sorting of pancakes. Differences between the DNA of two species
are often caused by evolutionary events in which a part of a DNA molecule
gets reversed. Therefore, a common way to measure the evolutionary distance
between the DNA of two species (using the parsimony principle) is to calculate
the minimum number of such reversals needed to turn the first molecule into
the other. This problem is called sorting by reversals and has already been well-
studied before the relation to computational biology became clear, sometimes
motivated by the relation to sorting pancakes. Imagine a stack of pancakes of
different types or sizes that one wishes to sort by repeatedly flipping a couple
of pancakes on top of the stack with a spatula. From a mathematical point of
view, sorting the stack of pancakes with a minimum number of flips is almost
the same problem as sorting by reversals, the only difference being that a block
of pancakes can only be flipped when it is on top of the stack. This problem has
been studied already in 1979 by Gates and Papadimitriou [Gat79], but only
much later in relation to computational biology, e.g. by Bafna and Pevzner
[Baf96]. In continues to be studied both in computational biology [Ber04] and
in a pure mathematical setting [Hur07a; Hur07b].

Borders of Tractability
In Sections 1.4 and 1.5, the computational, biological problems are introduced
that are investigated in this thesis. In their most general form, these problems
are all NP-hard. Thus, after proving NP-hardness, this thesis investigates
how these problems can be approached. This is done by considering many
different restricted versions of the problems. It is shown for different problems
that they remain NP-hard even in very restricted cases. In addition, it is
shown how imposing other restrictions enables us to design polynomial-time
algorithms. This thesis thus investigates the border between tractability and
NP-hardness of computational biology problems. It does not only show NP-
hardness in the most general case, but attempts to completely characterise
where the problems remain NP-hard and where they become tractable. In
addition, for the NP-hard versions of the problems, the approximability is
explored. Both approximation algorithms and APX-hardness results are given.
Finally, an exponential-time exact algorithm is given that solves one of the
most general, NP-hard, problems considered in this thesis.

1.4 Problems from Haplotyping

The genetic information of organisms is stored in long molecules, called chro-
mosomes. A simplified model of these molecules describes them as long se-
quences of the nucleotides A (adenine), C (cytosine) , T (thymine) and G

6 CHAPTER 1. INTRODUCTION

(guanine). Surprisingly, the genomes of for example two humans have identi-
cal nucleotides at more than 99% of the positions. The other positions, where
variation is observed within a species, are called SNPs (Single Nucleotide Poly-
morphisms). For almost all of these SNPs, only two out of the four nucleotides
are observed. That implies that, mathematically, chromosomes can be viewed
as binary strings, where each position of the string describes the nucleotide
that this individual has at a certain SNP. These binary strings are called hap-
lotypes.

The situation is slightly more complicated, because the DNA of so called diploid
organisms (such as humans) consists of pairs of chromosomes. The general
goal is therefore to obtain two haplotypes per individual. However, the two
chromosomes of a pair are difficult to sequence separately, which leads to
interesting problems. Firstly, the problem of reconstructing the two haplotypes
of an individual from a collection of haplotype fragments. This problem, called
Single Individual Haplotyping, is explained in detail in Section 1.4.1. Another
interesting problem arising in this field is to reconstruct all haplotypes of a
population from a collection of “genotypes”, where each genotype describes the
two haplotypes of an individual, but in an ambiguous way. This Population
Haplotyping problem is explained in Section 1.4.2. Each of these practical
problems leads to a number of mathematical problem formulations, which will
all be described shortly.

1.4.1 Single Individual Haplotyping

The Single Individual Haplotyping problem arises when trying to obtain the
two haplotypes of a chromosome-pair of an individual. The laboratory inves-
tigations usually return fragments of the two sequences, and our general goal
is to merge these fragments into the two haplotypes. The first main compli-
cation is that it is not known which fragment comes from which chromosome.
Secondly, the merging process can be disturbed by measurement errors in the
fragments.

To formalise the problem, haplotype fragments are described by sequences of
the symbols ’0’, ’1’ and ’−’, where a ’−’ is called a hole and denotes that
the fragment does not give any information about this specific SNP. A gap in
a haplotype fragment is a maximal contiguous block of holes that is flanked
on both sides by non-hole symbols. For example, the fragment ---0010---
has no gaps, -0--10-111 has two gaps, and -0-----1-- has one gap.
The input to Single Individual Haplotyping problems is an SNP matrix M
having entries from {0, 1,−}, with each row of the matrix corresponding to
a haplotype fragment. An input matrix is said to be gapless if there are no
rows with gaps. For example, a possible gapless input matrix of haplotype
fragments is in Figure 1.1.

If in a certain column one row has a 1 and another row has a 0, then these two

1.4. PROBLEMS FROM HAPLOTYPING 7



1 0 0 1 − − − − −
0 1 1 − − − − − −
− − 0∗ 0 0 1 0 1 −
− − 0 1 1 0 − − −
− − − − 0 1 1∗ 1 1
− − − − − 0 1 1 0


Figure 1.1: A gapless input matrix of haplotype fragments. This matrix can be made
feasible by either flipping the elements with a ∗ or by removing the third row.

rows can not represent fragments of the same haplotype (unless one of these
two entries is erroneous). In this case, these two rows are said to conflict . An
SNP matrix M is feasible if the rows of M can be partitioned into two sets
such that all rows within each set are pairwise non-conflicting. If this is the
case, then there exist two haplotypes (binary strings) such that each row of M
does not conflict with at least one of the two haplotypes. On the other hand,
when a matrix is not feasible, then it is still possible that all fragments come
from two haplotypes, if errors have been made during sequencing. To model
such errors, define a flip as converting a 0 entry to a 1, or vice-versa. The first
concrete problem considered in this thesis is Minimum Error Correction
(MEC), introduced by Greenberg et al. [Gre04]. The objective in MEC is to
flip as few entries of the input matrix as possible to arrive at a feasible matrix.

Minimum Error Correction (MEC)

Input: An SNP matrix M .
Output: The smallest number of flips needed to make M feasible.

For example, consider the gapless SNP matrix from Figure 1.1 and suppose
we flip the element in the 3rd row and 3rd column to 1 and that we also flip
the element in the 5th row and 7th column to 0. Then the 2nd, 3rd and 5th

row become pairwise non-conflicting while this was already true for the 1st, 4th

and 6th row. Thus, this matrix can be made feasible by only two flips. The
two resulting haplotypes are 011001011 (for the 1st, 4th and 6th row) and
100110110 (for the 2nd, 3rd and 5th row). Since it turns out that it is not
possible to make this matrix feasible with just one flip, the optimal value of
MEC is in this case two.

There are various interesting versions of this problem. In Gapless-MEC, the
input matrix is gapless; in 1-Gap-MEC, each row of the input matrix has
at most one gap; and, finally, in Binary-MEC, the input matrix does not
contain any holes (i.e. it only contains 0s and 1s). This last version is only
of theoretical interest, while the first two versions are also of practical interest
since they correspond to possible data generated by two different sequencing
techniques.

The second problem considered in this thesis is Longest Haplotype Recon-

8 CHAPTER 1. INTRODUCTION

struction (LHR), introduced by Lancia et al. [Lan01]. This problem has the
same input as MEC but a different objective. Only in relation to LHR, haplo-
types potentially contain holes. If M is a feasible SNP matrix, then a feasible
partition of the rows of M is a bipartition of these rows into two sets, Ml

and Mr, such that the rows within each set are pairwise non-conflicting. For
each Mi (i ∈ {l, r}), let the associated haplotype Hi be defined as the result
of combining the rows of Mi as follows: the j-th column of Hi is set to 1 if
at least one row from Mi has a 1 in column j, is set to 0 if at least one row
from Mi has a 0 in column j and is set to a hole if all rows in Mi have a hole
in column j. Two haplotypes H1 and H2 are said to explain M if they are the
associated haplotypes of a feasible partition (Ml,Mr) of the rows of M .

For example, suppose one side of the partition contains rows 10--, -0-- and
---1; then the associated haplotype we get from this is 10-1. The length of
a haplotype is defined as the number of positions where it does not contain a
hole; the haplotype 10-1 thus has length three, for example. The objective of
LHR is to find two haplotypes that explain a subset of the rows of M and to
maximise the sum of the lengths of the two haplotypes.

For example, consider again the input matrix from Figure 1.1 and remember
that the 1st, 4th and 6th row were already pairwise non-conflicting (giving the
associated haplotype H1 = 100110110). Now, observe that also de 2nd and
5th row are non-conflicting and that from these rows we can build the haplotype
H2 = 011-01111. This input matrix can thus be made feasible by removing
the 3rd row, and the haplotypes H1 and H2 explain the resulting matrix. The
value of this solution, which turns out to be optimal, is 17: the sum of the
lengths of H1 and H2.

Longest Haplotype Reconstruction (LHR)

Input: An SNP matrix M .
Output: Two haplotypes that explain a feasible subset of the rows of M ,

maximising the sum of the lengths of the two haplotypes.

For LHR, the same restricted versions are considered as for MEC. The most
important results in this thesis with respect to the complexity of MEC and
LHR are summarised in Table 1.1.

MEC LHR

Binary Open (Section 2.2.3) Trivial
Gapless NP-hard (Section 2.2.1) P (Section 2.3.1)
1-Gap APX-hard (Section 2.2.2) APX-hard (Section 2.3.2)

Table 1.1: The new state of knowledge regarding MEC and LHR.

From the APX-hardness of the 1-Gap case of MEC and LHR, it follows di-
rectly that these problems are both also APX-hard (and thus NP-hard) in

1.4. PROBLEMS FROM HAPLOTYPING 9

general. The main open problem is the complexity of Binary-MEC, which
has therefore been studied in a more general context. In Section 2.2.4, it is
shown that Binary-MEC becomes NP-hard when the number of haplotypes
is not fixed at two, but part of the input. The complexity of Binary-MEC
itself remains open.

All these results will be presented in Chapter 2 and have been published pre-
viously in [Cil05; Cil07].

1.4.2 Population Haplotyping

It is often considered too expensive to obtain experimentally (fragments of)
the two haplotypes of an individual. In these cases, the experiments only
provide genotypes. For a certain SNP, such a genotype describes which two
nucleotides are present on the two chromosomes, but it does not describe
which nucleotide is on which chromosome. Mathematically, these genotypes
can be seen as sequences of three different symbols. For example, if the two
haplotypes are 011 and 010, then the corresponding genotype is 012: the
genotype is equal to the two haplotypes wherever they are equal to each other,
and the genotype gets a 2 at positions where the haplotypes differ.

Given two haplotypes, it is thus easy to find the corresponding genotype. A
more interesting problem arises when the data consists of genotypes and ones
wishes to reconstruct the haplotypes. For a single genotype, this would be
an impossible task since there is simply not enough information available.
However, interesting mathematical problems arise when the genotypes of a
whole population are considered simultaneously and the goal is to find all the
corresponding haplotypes of that population.

Various criteria have been introduced to assess which set of haplotypes is most
likely to be the set corresponding to these genotypes. The first, well-studied,
criterion asks to find the smallest possible set of haplotypes that is able to
“resolve” all genotypes. This criterion is motivated by the parsimony principle
combined with the observation that in practice the number of different haplo-
types in a population is much smaller than the number of individuals [Gus03].
A different criterion is to find a set of haplotypes that resolves the genotypes
and can, in addition, be embedded as the leaves of a “perfect phylogeny”;
an evolutionary tree with biologically-motivated restrictions. Finally, also a
combination of the previous two criteria has been studied.

To formalise the problems, we introduce the input as a genotype matrix G
with entries from {0, 1, 2}, rows corresponding to genotypes and columns corre-
sponding to SNPs. The output is a haplotype matrix H with elements in {0, 1};
the columns of H also correspond to SNPs, but its rows correspond to haplo-
types. Two rows h1 and h2 of H are said to resolve a row g of G if g(j) = h1(j)
for all j with h1(j) = h2(j) and g(j) = 2 otherwise. A haplotype matrix H re-
solves a genotype matrix G if for each row g of G, containing at least one 2,

10 CHAPTER 1. INTRODUCTION

there are two rows h1 and h2 of H resolving g and each row g of G without 2s
is also a row of H. The first population haplotyping problem studied in this
thesis can now be formulated. The formulation was first suggested by Earl
Hubbell, who proved the problem to be NP-hard in general (see [Gus03]).

Parsimony Haplotyping (PH)

Input: A genotype matrix G.
Output: A haplotype matrix H with a minimum number of rows that re-

solves G.

A perfect phylogeny is a tree describing the evolution of a set of haplotypes
with the restriction that each SNP mutates at most once in the whole tree.
To formalise this, each vertex of the tree is labelled by a haplotype and each
edge is labelled by the SNPs that have a different value in the two haplotypes
connected by this edge. That each SNP mutates at most once means that
each SNP labels at most one edge. A haplotype matrix H is said to admit
a perfect phylogeny if there exists a perfect phylogeny with the rows of H
labelling its leaves. This definition enables us to formally define the second
population haplotyping problem considered in this thesis, introduced by Bafna
et al. [Baf04].

Minimum Perfect Phylogeny Haplotyping (MPPH)

Input: A genotype matrix G.
Output: A haplotype matrix H with a minimum number of rows that re-

solves G and admits a perfect phylogeny.

Like PH, also MPPH is NP-hard in general [Baf04]. In response to this in-
tractability, this thesis investigates restricted cases of both these problems and
explores in which cases these problems remain NP-hard and when they become
polynomial-time solvable. In a (k, `)-bounded instance, the input genotype ma-
trix G has at most k 2s per row and at most ` 2s per column (cf. [Sha06]).
When k or ` is a “∗”, this means that these instances are bounded only by the
number of 2s per column or per row, respectively.

Previous work on these (k, `)-bounded instances has shown that PH(3, ∗) and
PH(4, 3) are APX-hard [Lan04; Sha06]. In this thesis it is shown that even
PH(3, 3) is APX-hard. Furthermore, polynomial-time algorithms are given
for PH(2, ∗) and PH(∗, 1). As far as MPPH is concerned, there have been
no prior results beyond the above mentioned NP-hardness result. Here it is
shown that MPPH(3, 3) is APX-hard and that, like their PH counterparts,
MPPH(2, ∗) and MPPH(∗, 1) are polynomial-time solvable. The complexity
of both PH(k, `) as MPPH(k, `) can thus be summarised as in Figure 1.2.

The main open problem, for both PH and MPPH, is the complexity of (∗, 2)-
bounded instances. Therefore, this problem has been studied in the restricted
version in which the compatibility graph of the input genotype matrix is a
clique. (Informally, the compatibility graph shows for every pair of genotypes

1.5. PROBLEMS FROM PHYLOGENETICS 11

k

1 2 3 4 *

1 Polynomial-time solvable
2

3
? APX-hard4

*

Figure 1.2: The complexity landscape of both PH(k, `) and MPPH(k, `).

whether those two genotypes can use common haplotypes in their resolution.)
Sharan et al. showed that PH(∗, 2) is polynomial-time solvable in this special
case [Sha06]. This thesis shows how also this special case of MPPH(∗, 2) can
be solved in polynomial time.

The fact that both PH and MPPH already become APX-hard for (3, 3)-
bounded instances means that, in terms of deterministic approximation al-
gorithms, the best that one can in general hope for is constant approxima-
tion ratios. This thesis gives approximation algorithms for both PH(∗, `) and
MPPH(∗, `) that have a constant approximation ratio for each fixed `. The
approximation-ratios are summarised in Table 1.2.

Approximation ratio

PH(∗, `) 3
2` + 1

2

PH(∗, `) with at least one 2 per genotype 3
4` + 7

4 −
3
2

1
`+1

MPPH(∗, `) 2`

MPPH(∗, `) with at least one 2 per genotype ` + 2− 2
`+1

Table 1.2: Approximation ratios achieved in this thesis (for ` ≥ 2).

All these results will be presented in Chapter 3 and have been published pre-
viously in [Cil05; Ier06; Ier08a].

1.5 Problems from Phylogenetics

Phylogenetics studies the evolutionary relationships between groups of organ-
isms. These groups are called taxa and can for example be species or different
variants of a species. The simplest form of an evolutionary history is a tree-
shape, called a phylogenetic tree, see Figure 1.4. However, biological processes
as recombination, hybridisation and horizontal gene transfer can obstruct de-
scription of an evolutionary history by a tree. Such evolutionary events are

12 CHAPTER 1. INTRODUCTION

called reticulation events and in a mathematical graph model they can be dis-
played as vertices with indegree two and outdegree one. This leads to the
notion of phylogenetic networks, directed acyclic graphs where the leaves (ver-
tices with outdegree zero) represent the taxa, there is one root and all other
vertices have either indegree one and outdegree two (split vertices) or indegree
two and outdegree one (reticulations).1

The second part of this thesis studies the reconstruction of such phylogenetic
networks from triplets; phylogenetic trees for three taxa. These triplets form
the basic building blocks of phylogenetic trees in the sense that each phyloge-
netic tree can be uniquely described by a set of triplets. Thus, if phylogenetic
trees are available as input, triplets can be induced from the trees. Moreover, if
sequence data is available as input, one can compute a triplet for each combina-
tion of three sequences by using well-known methods as Maximum Parsimony
or Maximum Likelihood. Here it is studied how the obtained triplets can be
combined into a phylogenetic network.

A simple example of this problem is displayed in Figure 1.3. Suppose we
consider four species named a, b, c and d. In Figure 1.3(a) is a possible
input triplet set; the first triplet representing the evolutionary relation among
species a, b and c and the second triplet among species b, c and d. In this
case a possible evolution for all four species is depicted in Figure 1.3(b), which
in some sense respects the evolutionary relationships defined by the triplets.
This is formalised in the following definition.

Definition 1.2. A network N is consistent with a triplet xy|z if N contains
a subdivision of xy|z, i.e. if N contains distinct vertices u and v and pairwise
internally vertex-disjoint paths u→ x, u→ y, v → u and v → z.

a b c b d c

(a) Evolutionary relationships of two
triples of species.

a b cd

(b) Possible evolutionary history of all
four species.

Figure 1.3: A fundamental problem in phylogenetics: how can we construct one large
evolutionary history from various smaller ones?

1Many other definitions of phylogenetic networks have been proposed, sometimes using
undirected graphs or directed graphs with vertices with outdegree greater than two.

1.5. PROBLEMS FROM PHYLOGENETICS 13

Figure 1.4: Ernst Haeckel’s Monophyletic tree of organisms, 1866.

14 CHAPTER 1. INTRODUCTION

If we add one triplet, as in Figure 1.5(a), there is no tree-like evolution pos-
sible anymore. One of the input triplets could be incorrect. However, it is
also possible that the real evolutionary history is not tree-like. For example,
if species d originated from a hybridisation between an ancestor of c and a
common ancestor of a and b, meaning that the evolutionary history of these
four species is the one visualised in Figure 1.5(b). This latter evolutionary
history is an example of a phylogenetic network; one that is consistent with
all input triplets.

c d aa b c

b d c

(a) Evolutionary relationships of three
triples of species.

a b cd

(b) Possible evolutionary history of all
four species.

Figure 1.5: Example input set of triplets that is consistent with a phylogenetic network.

The above model of a phylogenetic network allows for many different degrees of
complexity, ranging from trees to complex webs of frequently diverging and re-
combining lineages. In Section 4.3.1, it will be shown that, if we do not put any
further restrictions on the constructed network, then there is a single network
which is consistent with any input triplet set. However, this does not commu-
nicate any useful information. Therefore, this thesis puts restrictions on the
complexity of a network. Two distinct measures of complexity are considered.
Firstly, the total number of reticulations in the network is considered. The
second measure of complexity considers the non-treelike parts of the network;
the biconnected components (formally defined in Section 4.2). A network is
said to be a level-k network if each biconnected component contains at most k
reticulations. For example, the tree in Figure 1.3(b) is a level-0 network and
in Figure 1.5(b) is a level-1 network. One of the motivations for introducing
the level of a network is the hope that, for small k, constructing level-k net-
works might be tractable. This leads to the first problem from phylogenetics
considered in this thesis.

Consistent Level-k Network (CL-k)

Input: A triplet set T .
Output: A level-k network consistent with all triplets in T (if such a network

exists).

1.5. PROBLEMS FROM PHYLOGENETICS 15

This problem CL-k was shown to be NP-hard for k = 1 [Jan06a] and in
Section 4.3 it is shown that this problem is in fact NP-hard for all k > 0.
However, Jansson and Sung [Jan06b] also showed that this problem becomes
polynomial-time solvable for k = 1 if the input triplet set is dense, i.e. if it
contains at least one triplet for each combination of three taxa. In Section 4.6
of this thesis, it is shown that it is even possible to construct level-2 networks
from dense triplet sets in polynomial time.

The dense level-2 algorithm described in Section 4.6 has been tested and ap-
plied to biological data consisting of sequences of different isolates of the yeast
Cryptococcus gattii . The evolutionary relationships between these isolates are
of special interest since one version of this yeast turned out to be dangerous.
Normally, Cryptococcus gattii is only seen in tropical and subtropical regions.
However, since 1999, the yeast is also seen on the Westcoast of Canada, where
it caused many human infections and even some fatalities [Kid04]. Because
recombinations could be the cause of this outbreak, constructing phylogenetic
networks for this yeast is particularly interesting.

Not surprisingly, triplet data can, like any kind of biological data, contain
errors. The next problem considered in this thesis also attempts to construct
level-k networks from triplets. However, this problem also takes into account
that some of the input triplets might not be derived correctly.

Maximum Consistent Level-k Network (MaxCL-k)

Input: A triplet set T .
Output: A level-k network consistent with the maximum number of triplets

in T that any level-k network is consistent with.

Because CL-k is NP-hard, it follows directly that also the more general prob-
lem MaxCL-k is NP-hard for all k > 0. Moreover, also MaxCL-0 is NP-hard
[Bry97; Jan01; Wu04] and, in Section 4.3, it is shown that MaxCL-k even
remains NP-hard for dense input triplet sets, for all k ≥ 0. It is therefore
interesting to explore exponential-time approaches to this problem. In Sec-
tion 4.4, an exponential-time exact algorithm is presented, which solves this
problem for level-1.

Given that a level-k network consistent with all input triplets exists, a next
question to ask is whether it is also possible to find such a network with a
minimum number of reticulations. Minimising reticulations is well-studied in
(slightly) different contexts [Son04; Bar05; Bor07b]. It derives its legitimacy
from the parsimony principle, discussed in Section 1.2.

Minimum Reticulation Level-k Network (MinRL-k)

Input: A triplet set T .
Output: A level-k network consistent with all triplets in T (if such a network

exists) and containing a minimum number of reticulations over all
such networks.

16 CHAPTER 1. INTRODUCTION

As a direct result of the NP-hardness of CL-k, also MinRL-k is NP-hard in
general for all k > 0. However, in Section 4.7, it is shown that for dense triplet
sets MinRL-1 and MinRL-2 are both polynomial-time solvable. For k > 2,
the complexity of the problem MinRL-k remains, like the complexity of CL-k,
open.

This thesis concludes with a positive result that holds for all k. This result is
interesting under a stronger assumption on the quality of the input triplets.
Namely, under the assumption that the input triplet set contains all triplets
consistent with the network. This implies that we are looking for networks
that are not only required to be consistent with all input triplets but that are,
in addition, not consistent with any other triplets. If this is indeed the case, we
say that the network reflects the triplet set. It turns out that constructing a
level-k network reflecting an input triplet set (if such a network exists) can be
done in polynomial time for each fixed k. It is even possible to construct such
a network that minimises simultaneously both the level of the network and the
total number of reticulations in the network. Formally, the last algorithm in
this thesis, in Section 4.8, solves the following problem in polynomial time.

Minimum Reflective Level-k Network (RefL-k)

Input: A triplet set T .
Output: A level-k network N that reflects T (if such a network exists) and,

ranging over all such networks, minimises both the level and the
number of reticulations used.

Table 1.3 summarises all complexity results in this thesis regarding CL-k,
MaxCL-k, MinRL-k and RefL-k. The results will be presented in Chapter 4
and have been published previously in [Ier08b; Ier08c; Ier08d].

General Dense

CL-k In P for k = 0 [Aho81] In P for k = 1 [Jan06b]
NP-hard for k = 1 [Jan06a] In P for k = 2 (Section 4.6)

NP-hard for k ≥ 2 (Section 4.3) Open for k ≥ 3
MaxCL-k NP-hard for k = 0 NP-hard for all k

[Bry97; Jan01; Wu04] (Section 4.3)
NP-hard for k ≥ 1 (←)

MinRL-k NP-hard for k ≥ 1 In P for k ≤ 2 (Section 4.7)
(implicitly in [Jan06a]) Open for k ≥ 3

RefL-k In P for all k (Section 4.8) Identical to the general case

Table 1.3: The new state of knowledge regarding constructing level-k networks from
triplets. The ← denotes that this result follows from the one in the cell to the right.

17

Chapter 2

Single Individual Haplotyping

2.1 Introduction

Haplotypes are binary strings, representing the most interesting sites (SNPs)
of an individual’s DNA, and can thus be thought of as a “fingerprint” for that
individual (see Section 1.4). This chapter considers the reconstruction of the
haplotypes of an individual using (potentially) incomplete and/or imperfect
fragments of sequencing data. This biologically-motivated field of SNP and
haplotype analysis has spawned a rich variety of combinatorial problems, which
are well described in surveys such as [Bon03] and [Hal03].

This chapter focusses on two such combinatorial problems, both variants of
the Single Individual Haplotyping Problem (SIH) [Lan01]. This problem arises
from the fact that diploid organisms, such as humans, have two versions of each
chromosome; one each from the individual’s mother and father. SIH amounts
to determining the two haplotypes of an individual given fragments of sequenc-
ing data where the fragments potentially have read errors and, crucially, where
it is not known which of the two chromosomes each fragment was read from.
This chapter considers two well-known variants of the problem: Minimum Er-
ror Correction (MEC) and Longest Haplotype Reconstruction (LHR), both
defined in Section 1.4.1.

These problems have been discussed - sometimes under different names - in
papers such as [Bon03], [Pan04], [Gre04] and (implicitly) [Lan01]. One ques-
tion arising from this discussion is how the distribution of holes in the input
data affects computational complexity. Two special cases of MEC and LHR
that are considered to be practically relevant are the gapless case and the 1-
gap case. In the gapless case each haplotype fragment consists of a contiguous
block of 0s and 1s, while in the 1-gap case there can be two disjoint such blocks,
separated by a block of holes. In both cases there can be holes to the left and
to the right of these blocks.

18 CHAPTER 2. SINGLE INDIVIDUAL HAPLOTYPING

Section 2.2.1 describes the first proof that Gapless-MEC (and hence 1-Gap-
MEC and also the general MEC) is NP-hard. This is done by reduction from
MAX-CUT. (As far we are am aware, other claims of this result are based
explicitly or implicitly on results found in [Kle98b]; as will be discussed in
Section 2.2.3, the results in [Kle98b] cannot be used for this purpose.)

The NP-hardness of 1-Gap-MEC (and general MEC) follows immediately
from the proof that Gapless-MEC is NP-hard. However, the NP-hardness
proof for Gapless-MEC is not approximation-preserving, and consequently
tells us little about the (in)approximability of Gapless-MEC, 1-Gap-MEC
and general MEC. In this respect, Section 2.2.2 provides a proof that 1-Gap-
MEC is APX-hard, thus excluding (unless P=NP) the existence of a Poly-
nomial Time Approximation Scheme (PTAS) for 1-Gap-MEC (and general
MEC).

In Section 2.2.3 the problem Binary-MEC is defined, where the input matrix
contains no holes. It is argued that the complexity of this problem is still
- intriguingly - open. Subsequently, a version of binary-MEC is considered
where the number of haplotypes is not fixed at two, but is part of the input.
It is shown that this problem is NP-hard in Section 2.2.4.

In Section 2.3.1 it is shown that Gapless-LHR is polynomial-time solvable
and a dynamic programming algorithm for this problem is given which runs
in time O(n2m + n3) for an n × m input matrix. This improves upon the
result by Lancia et al. [Lan01] which also showed a polynomial-time algorithm
for Gapless-LHR but under the restricting assumption of non-nested input
rows.

Finally, Section 2.3.2 proves that LHR is APX-hard (and thus also NP-hard)
in the general case, by proving the much stronger result that 1-Gap-LHR is
APX-hard. Although there is a claim in [Lan01], made very briefly, that LHR
is NP-hard in general, this is not substantiated. Therefore, our result is the
first proof of hardness for both 1-Gap-LHR and general LHR.

2.2 Minimum Error Correction (MEC)

For a length-m string X ∈ {0, 1,−}m, and a length-m string Y ∈ {0, 1}m, we
define d(X, Y) as the number of mismatches between the strings i.e. positions
where X is 0 and Y is 1, or vice-versa; holes do not contribute to the mismatch
count. Recall the definition of feasible from Section 1.4.1; an alternative, and
equivalent, definition (which is used in the proofs in this section) is as follows.
An n × m SNP matrix M is feasible if there exist two strings (haplotypes)
H1,H2 ∈ {0, 1}m, such that for all rows r of M , d(r, H1) = 0 or d(r, H2) = 0.

In addition, recall that a flip is where a 0 entry is converted to a 1, or vice-
versa. Flipping to or from holes is not allowed and the haplotypes H1 and H2

may not contain holes.

2.2. MINIMUM ERROR CORRECTION (MEC) 19

2.2.1 Complexity of GAPLESS-MEC

Gapless-MEC

Input: A gapless SNP matrix M .
Output: The smallest number of flips needed to make M feasible.

Theorem 2.1. Gapless-MEC is NP-hard.

Proof. We give a reduction from MAX-CUT, which is the problem of com-
puting the size of a maximum cardinality cut in a graph. Let G = (V,E)
be the input to MAX-CUT, where E is undirected. (We identify, without
loss of generality, V with {1, 2, ..., |V |}.) We construct an input matrix M for
Gapless-MEC with 2k|V | + |E| rows and 2|V | columns where k = 2|E||V |.
We use M0 to refer to the first k|V | rows of M , M1 to refer to the second
k|V | rows of M , and MG to refer to the remaining |E| rows. M0 consists of
|V | consecutive blocks of k identical rows. Each row in the i-th block (for
1 ≤ i ≤ |V |) contains a 0 at columns 2i − 1 and 2i and holes at all other
columns. M1 is defined similar to M0 with 1-entries instead of 0-entries. Each
row of MG encodes an edge from E: for edge {i, j} (with i < j) we specify
that columns 2i− 1 and 2i contain 0s, columns 2j − 1 and 2j contain 1s, and
for all h 6= i, j, column 2h − 1 contains 0 and column 2h contains 1. (See
Figures 2.1(a) and 2.2(b) for an example of how M is constructed.)

Suppose t is the largest cut possible in G and s is the minimum number of
flips needed to make M feasible. We claim that the following holds:

s = |E|(|V | − 2) + 2(|E| − t). (2.1)

From this t, the optimal solution of MAX-CUT, can easily be computed.
First, note that the solution to Gapless-MEC is trivially upper bounded by
|V ||E|. This follows because we could simply flip every 1 entry in MG to 0;
the resulting overall matrix would be feasible because we could just take H1

as the all-0 string and H2 as the all-1 string. Now, we say a haplotype H has
the double-entry property if, for all odd-indexed positions (i.e. columns) j in
H, the entry at position j of H is the same as the entry at position j + 1.
We argue that a minimal number of feasibility-inducing flips will always lead
to two haplotypes H1,H2 such that both haplotypes have the double-entry
property and, further, H1 is the bitwise complement of H2. (We describe such
a pair of haplotypes as partition-encoding.) This is because, if H1,H2 are not
partition-encoding, then at least k > |V ||E| (in contrast with zero) entries in
M0 and/or M1 will have to be flipped, meaning this strategy is doomed to
begin with.

Now, for a given partition-encoding pair of haplotypes, it follows that - for
each row in MG - we will have to flip either |V | − 2 or |V | entries to reach its

20 CHAPTER 2. SINGLE INDIVIDUAL HAPLOTYPING

v1 v2

v3 v4

(a) Example input to MAX-
CUT.



0 0 − − − − − −
− − 0 0 − − − −
− − − − 0 0 − −
− − − − − − 0 0
1 1 − − − − − −
− − 1 1 − − − −
− − − − 1 1 − −
− − − − − − 1 1
0 0 1 1 0 1 0 1
0 0 0 1 1 1 0 1
0 0 0 1 0 1 1 1
0 1 0 1 0 0 1 1




32 copies

 MG

(b) Constructed matrix M .

Figure 2.1: Example of the reduction in Theorem 2.1.

nearest haplotype. This is because, irrespective of which haplotype we move
a row to, the |V | − 2 pairs of columns not encoding end-points (for a given
row) will always cost 1 flip each to fix. Then either 2 or 0 of the 4 “endpoint-
encoding” entries will also need to be flipped; 4 flips will never be necessary
because then the row could move to the other haplotype, requiring no extra
flips. Gapless-MEC thus maximises the number of rows which require |V |−2
rather than |V | flips. If we think of H1 and H2 as encoding a partition of the
vertices of V (i.e. a vertex i is on one side of the partition if H1 has 1s in
columns 2i− 1 and 2i, and on the other side if H2 has 1s in those columns), it
follows that each row requiring |V | − 2 flips corresponds to a cut-edge in the
vertex partition defined by H1 and H2. The expression (2.1) follows.

2.2.2 Approximability of 1-GAP-MEC

1-Gap-MEC

Input: An SNP matrix M with at most 1 gap per row.
Output: The smallest number of flips needed to make M feasible.

To prove that 1-Gap-MEC is APX-hard an L-reduction will be given. This
is a specific type of approximation-preserving reduction, first introduced in
[Pap91]. If there exists an L-reduction from a problem X to a problem Y, then
a PTAS for Y can be used to build a PTAS for X. Conversely, if there exists an

2.2. MINIMUM ERROR CORRECTION (MEC) 21

L-reduction from X to Y and X is APX-hard then so is Y. See (for example)
[Hoo01] for a succinct discussion of this. We will reduce from CUBIC-MIN-
UNCUT, which is the problem of finding the minimum number of edges that
have to be removed from a 3-regular graph in order to make it bipartite.
Our first goal is thus to prove the APX-hardness of CUBIC-MIN-UNCUT,
which itself will be proven using an L-reduction from the APX-hard problem
CUBIC-MAX-CUT.

To help the reader, we reproduce here the definition of an L-reduction.

Definition 2.1. (Papadimitriou and Yannakakis [Pap91]) Let A and B be
two optimisation problems. An L-reduction from A to B is a pair of functions
R and S, both computable in polynomial time, such that for any instance I
of A with optimum cost Opt(I), R(I) is an instance of B with optimum cost
Opt(R(I)) and for every feasible solution s of R(I), S(s) is a feasible solution
of I such that:

Opt(R(I)) ≤ αOpt(I), (2.2)

for some positive constant α and:

|Opt(I)− c(S(s))| ≤ β|Opt(R(I))− c(s)|, (2.3)

for some positive constant β, where c(S(s)) and c(s) represent the costs of S(s)
and s, respectively.

Observation 2.1. CUBIC-MIN-UNCUT is APX-hard.

Proof. We give an L-reduction from CUBIC-MAX-CUT, the problem of find-
ing the maximum cardinality of a cut in a 3-regular graph. (This problem is
shown to be APX-hard in [Ali97]; see also [Ber99].) Let G = (V,E) be the
input to CUBIC-MAX-CUT.

Note that CUBIC-MIN-UNCUT is the “complement” of CUBIC-MAX-
CUT, as expressed by the following relationship:

CUBIC-MAX-CUT(G) = |E| −CUBIC-MIN-UNCUT(G). (2.4)

Here, and throughout this chapter, P (I) is used to denote the optimal value
of problem P on input I.

To see why (2.4) holds, note that for every cut C, the removal of the edges
in E \ C will lead to a bipartite graph. On the other hand, given a set of
edges E′ whose removal makes G bipartite, the complement is not necessarily
a cut. However, given a bipartition induced by the removal of E′, the edges
from the original graph that cross this bipartition form a cut C ′, such that
|C ′| ≥ |E \ E′|. This proves (2.4), and the mapping (just described) from E′

to C ′ is the mapping we use in the L-reduction.

22 CHAPTER 2. SINGLE INDIVIDUAL HAPLOTYPING

Now, note that property (2.2) of the L-reduction is easily satisfied (taking
α = 1) because the optimal value of CUBIC-MIN-UNCUT is always less
than or equal to the optimal value of CUBIC-MAX-CUT. This follows from
the combination of (2.4) with the fact that a maximum cut in a 3-regular graph
always contains at least 2/3 of the edges: if a vertex has less than two incident
edges in the cut then we can get a larger cut by moving this vertex to the
other side of the partition.

To see that property (2.3) of the L-reduction is easily satisfied (taking β = 1),
let E′ be any set of edges whose removal makes G bipartite. Property (2.3) is
satisfied because E′ gets mapped to a cut C ′, as defined above, and combined
with (2.4) this gives:

CUBIC-MAX-CUT(G)− |C ′| ≤ CUBIC-MAX-CUT(G)− |E \ E′|
= |E′| −CUBIC-MIN-UNCUT(G).

This completes the L-reduction from CUBIC-MAX-CUT to CUBIC-MIN-
UNCUT, proving the APX-hardness of CUBIC-MIN-UNCUT.

We also need the following observation.

Observation 2.2. Let G = (V,E) be an undirected, 3-regular graph. Then
we can find, in polynomial time, an orientation of the edges of G so that each
vertex has either in-degree 2 and out-degree 1 (“in-in-out”) or out-degree 2 and
in-degree 1 (“out-out-in”).

Proof. (We assume that G is connected; if G is not connected, we can apply
the following argument to each component of G in turn, and the overall result
still holds.) Every cubic graph has an even number of vertices, because every
graph must have an even number of odd-degree vertices. We add an arbitrary
perfect matching to the graph, which may create multiple edges. The graph is
now 4-regular and therefore has an Euler tour. We direct the edges following
the Euler-tour; every vertex is now in-in-out-out. If we remove the perfect
matching edges we added, we are left with an oriented version of G where
every vertex is in-in-out or out-out-in. This can all be done in polynomial
time.

Theorem 2.2. 1-Gap-MEC is APX-hard.

Proof. We give a reduction from CUBIC-MIN-UNCUT. Consider an arbi-
trary 3-regular graph G = (V,E) and orient the edges as described in Obser-
vation 2.2 to obtain an oriented version of G,

−→
G = (V,

−→
E), where each vertex

is either in-in-out or out-out-in. We construct an |E| × |V | input matrix M
for 1-Gap-MEC as follows. The columns of M correspond to the vertices
of
−→
G and every row of M encodes an oriented edge of

−→
G ; it has a 0 in the

2.2. MINIMUM ERROR CORRECTION (MEC) 23

column corresponding to the tail of the edge (i.e. the vertex from which the
edge leaves), a 1 in the column corresponding to the head of the edge and it
has holes in the remaining columns.

We prove the following:

CUBIC-MIN-UNCUT(G) = 1-Gap-MEC(M). (2.5)

We first prove that:

1-Gap-MEC(M) ≤ CUBIC-MIN-UNCUT(G). (2.6)

To see this, let E′ be a minimal set of edges whose removal makes G bipartite,
and let |E′| = k. Let B = (L∪R,E \E′) be the bipartite graph (with biparti-
tion L ∪R) obtained from G by removing the edges E′. Let H1 (respectively,
H2) be the haplotype that has 1s in the columns representing vertices of L
(respectively, R) and 0s elsewhere. It is possible to make M feasible with k
flips, by the following process: for each edge in E′, flip the 0 bit in the corre-
sponding row of M to 1. For each row r of M it is now true that d(r, H1) = 0
or d(r, H2) = 0, proving the feasibility of M .

The proof that

CUBIC-MIN-UNCUT(G) ≤ 1-Gap-MEC(M) (2.7)

is more subtle. Suppose we can render M feasible using j flips, and let H1 and
H2 be any two haplotypes such that, after the j flips, each row of M is distance
0 from either H1 or H2. If H1 and H2 are bitwise complementary then we can
make G bipartite by removing an edge whenever we had to flip a bit in the
corresponding row. The idea is, namely, that the 1s in H1 (respectively, H2)
represent the vertices L (respectively, R) in the resulting bipartition L ∪R.

However, suppose the two haplotypes H1 and H2 are not bitwise complemen-
tary. In this case it is sufficient to demonstrate that there also exists bitwise
complementary haplotypes H ′

1 and H ′
2 such that, after j (or fewer) flips, ev-

ery row of M is distance 0 from either H ′
1 or H ′

2. Consider thus a column of
H1 and H2 where the two haplotypes are not complementary. Crucially, the
orientation of

−→
G ensures that every column of M contains either one 1 and

two 0s or two 1s and one 0 (and the rest holes). A simple case analysis shows
that, because of this, we can always change the value of one of the haplotypes
in that column, without increasing the number of flips. (The number of flips
might decrease.) Repeating this process for all columns of H1 and H2 where
the same value is observed thus creates complementary haplotypes H ′

1 and H ′
2,

and - as described in the previous paragraph - these haplotypes then determine
which edges of G should be removed to make G bipartite. This completes the
proof of (2.5).

The above reduction can be computed in polynomial time and is an L-reduction.
From (2.5) it follows directly that property (2.2) of an L-reduction is satisfied

24 CHAPTER 2. SINGLE INDIVIDUAL HAPLOTYPING

with α = 1. Property (2.3), with β = 1, follows from the proof of (2.7), com-
bined with (2.5). Namely, whenever we use (say) t flips to make M feasible, we
can find s ≤ t edges of G that can be removed to make G bipartite. Combined
with (2.5) this gives:

|CUBIC-MIN-UNCUT(G)− s| ≤ |1-Gap-MEC(M)− t|.

2.2.3 BINARY-MEC

From a mathematical point of view it is interesting to determine whether MEC
remains NP-hard when the input matrix is further restricted. Let us therefore
define the following problem.

Binary-MEC

Input: An SNP matrix M that does not contain any holes.
Output: The smallest number of flips needed to make M feasible.

To elaborate, it is claimed in several papers (e.g. [Alo99]) that a problem equiv-
alent to Binary-MEC is NP-hard. Such claims inevitably refer to the seminal
paper Segmentation Problems by Kleinberg, Papadimitriou, and Raghavan
(KPR), which has appeared in multiple different forms since 1998 [Kle98b;
Kle98a; Kle04]. However, the KPR papers actually discuss two superficially
similar, but essentially different, problems: one problem is essentially equiva-
lent to Binary-MEC, and the other is a more general (and thus, potentially,
a more difficult) problem. This more general problem allows the entries of the
input matrix to be drawn arbitrarily from R, which makes it much easier to
prove NP-hardness. Communication with the authors [Pap05] has confirmed
that they have no proof of hardness for the former problem, i.e. the problem
that is essentially equivalent to Binary-MEC.

Thus we conclude that the complexity of Binary-MEC is still open. From an
approximation viewpoint the problem has been quite well-studied; the problem
has a Polynomial Time Approximation Scheme (PTAS) because it is a special
form of the Hamming 2-Median Clustering Problem. A randomised PTAS was
demonstrated in [Ost02] and later a deterministic PTAS in [Jia04]. Other
approximation results appear in [Kle98b], [Alo99], [Kle04] and a heuristic for
a similar problem appears in [Pan04]. We also know that, if the number of
haplotypes to be found is specified as part of the input (and not fixed as 2), the
problem becomes NP-hard; we prove this in the following section. Finally, it
may also be relevant that the “geometric” version of the problem (where rows
of the input matrix are not drawn from {0, 1}m but from Rm, and Euclidean
distance is used instead of Hamming distance) is also open from a complexity
viewpoint [Ost02]. (However, the version using Euclidean-distance-squared is
known to be NP-hard [Dri04].)

2.2. MINIMUM ERROR CORRECTION (MEC) 25

2.2.4 BINARY-MEC with more than two Haplotypes

Let us now consider a generalisation of the problem Binary-MEC, where the
number of haplotypes is not fixed as two, but part of the input.

Parameterised-Binary-MEC (PBMEC)

Input: An SNP matrix M that contains no holes, and a natural number
k ≥ 1.

Output: The smallest number of flips needed to make M feasible under k
haplotypes.

The notion of feasible generalises easily to k ≥ 1 haplotypes: an SNP matrix
M is feasible under k haplotypes if the rows of M can be partitioned into k
groups such that all the rows within each group are pairwise non-conflicting.
Given an SNP matrix M and a natural number k, the problem PBMEC thus
aims to find haplotypes H1, . . . ,Hk minimising

DM,k(H1, . . . ,Hk) =
∑

rows r of M

min(d(r, H1), d(r, H2), ..., d(r, Hk)). (2.8)

We define OptTuples(M,k) as the set of unordered optimal k-tuples of hap-
lotypes for M i.e. those k-tuples of haplotypes which have an optimal DM,k

score. Denote this optimal score by PBMEC(M,k).

Theorem 2.3. PBMEC is NP-hard.

Proof. We reduce from the NP-hard problem MIN-VERTEX-COVER. Let
G = (V,E) be an undirected graph. A subset V ′ ⊆ V is said to cover an
edge (u, v) ∈ E if u ∈ V ′ or v ∈ V ′. A vertex cover of an undirected graph
G = (V,E) is a subset U of the vertices such that every edge in E is covered by
U . Given a graph G, MIN-VERTEX-COVER is the problem of computing
the size of a minimum cardinality vertex cover U of G.

Let G = (V,E) be the input to MIN-VERTEX-COVER. We construct an
SNP matrix M as follows. M has |V | columns and 3|E||V |+|E| rows. We name
the first 3|E||V | rows M0 and the remaining |E| rows MG. M0 is the matrix
obtained by taking the |V | × |V | identity matrix (i.e. 1s on the diagonal, 0s
everywhere else) and making 3|E| copies of each row. Each row in MG encodes
an edge of G: the row has 1-entries at the endpoints of the edge, and the rest
of the row is 0. We argue shortly that, to compute the size of the smallest
vertex cover in G, we call PBMEC(M,k) for increasing values of k (starting
with k = 2) until we first encounter a k such that:

PBMEC(M,k) = 3|E|(|V | − (k − 1)) + |E|. (2.9)

26 CHAPTER 2. SINGLE INDIVIDUAL HAPLOTYPING

Once the smallest such k has been found, we can output that the size of the
smallest vertex cover in G is k − 1. Actually, if we haven’t yet found a value
k < |V | − 2 satisfying the above equation, we can check by brute force in
polynomial-time whether G has a vertex cover of size |V | − 3, |V | − 2, |V | − 1,
or |V |. The reason for wanting to ensure that PBMEC(M,k) is not called with
k ≥ |V | − 2 is explained later in the analysis. Note that, should we wish to
build a Karp reduction from the decision version of MIN-VERTEX-COVER
to the decision version of PBMEC, it is not a problem to make this brute force
checking fit into the framework of a Karp reduction. The Karp reduction can
do the brute force checking itself and use trivial inputs to the decision version
of PBMEC to communicate its “yes” or “no” answer.

It remains only to prove that (for k < |V | − 2) (2.9) holds if and only if G has
a vertex cover of size k − 1.

To prove this we need to first analyse OptTuples(M0, k). Recall that M0 was
obtained by duplicating the rows of the |V | × |V | identity matrix. Let I|V | be
shorthand for the |V |× |V | identity matrix. Given that M0 is simply a “scaled
up” version of I|V |, it follows that:

OptTuples(M0, k) = OptTuples(I|V |, k). (2.10)

Now, we argue that all the k-tuples in OptTuples(I|V |, k) (for k < |V | − 2)
have the following form: one haplotype from the tuple contains only 0s, and
the remaining k − 1 haplotypes from the tuple each have precisely one entry
set to 1. Let us name such a k-tuple a candidate tuple.

v1 v2

v3 v4

(a) Example input graph to
MIN-VERTEX-COVER.



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
1 0 1 0
1 0 0 1
0 0 1 1



 12 copies

 MG

(b) Constructed matrix M .

Figure 2.2: Example of the reduction in Theorem 2.3.

First, note that PBMEC(I|V |, k) ≤ |V | − (k − 1), because |V | − (k − 1) is
the value of the D measure - defined in (2.8) - under any candidate tuple.

2.2. MINIMUM ERROR CORRECTION (MEC) 27

Secondly, under an arbitrary k-tuple there can be at most k rows of I|V | which
contribute 0 to the D measure. However, if precisely k rows of I|V | contribute
0 to the D measure (i.e., every haplotype has precisely one entry set to 1,
and the haplotypes are all distinct) then there are |V | − k rows which each
contribute 2 to the D measure; such a k-tuple cannot be optimal because it
has a D measure of 2(|V | − k) > |V | − (k − 1). So we reason that at most
k − 1 rows contribute 0 to the D measure. In fact, precisely k − 1 rows must
contribute 0 to the D measure because, otherwise, there would be at least
|V | − (k − 2) rows contributing at least 1, and this is not possible because
PBMEC(I|V |, k) ≤ |V | − (k − 1). So k − 1 of the haplotypes correspond to
rows of I|V |, and the remaining |V |− (k− 1) rows of I|V | must each contribute
1 to the D measure. But the only way to do this (given that |V |− (k−1) > 2)
is to make the kth haplotype the haplotype where every entry is 0. Hence:

PBMEC(I|V |, k) = |V | − (k − 1) (2.11)

and:
PBMEC(M0, k) = 3|E|(|V | − (k − 1)). (2.12)

OptTuples(I|V |, k) (= OptTuples(M0, k)) is, by extension, precisely the set of
candidate k-tuples.

The next step is to observe that OptTuples(M,k) ⊆ OptTuples(M0, k). To
see this, suppose (by way of contradiction) that it is not true, and there exists
a k-tuple H∗ ∈ OptTuples(M,k) that is not in OptTuples(M0, k). But then
replacing H∗ by any k-tuple out of OptTuples(M0, k) would reduce the number
of flips needed in M0 by at least 3|E|, in contrast to an increase in the number
of flips needed in MG of at most 2|E|, thus leading to an overall reduction
in the number of flips; contradiction! (The 2|E| figure is the number of flips
required to make all rows in MG equal to the all-0 haplotype.)

Because OptTuples(M,k) ⊆ OptTuples(M0, k), we can restrict our attention
to the k-tuples in OptTuples(M0, k). Observe that there is a natural 1-1 corre-
spondence between the elements of OptTuples(M0, k) and all size k−1 subsets
of V : a vertex v ∈ V is in the subset corresponding to H∗ ∈ OptTuples(M0, k)
if and only if one of the haplotypes in H∗ has a 1 in the column corresponding
to vertex v.

Now, for a k-tuple H∗ ∈ OptTuples(M0, k) we let Cov(G, H∗) be the set of
edges in G which are covered by the subset of V corresponding to H∗. (Thus,
|Cov(G, H∗)| = |E| if and only if H∗ represents a vertex cover of G.) It is easy
to check that, for H∗ ∈ OptTuples(M0, k):

DM,k(H∗) = 3|E|(|V | − (k − 1))+ |Cov(G, H∗)|+ 2(|E| − |Cov(G, H∗|))
= 3|E|(|V | − (k − 1))+ 2|E| − |Cov(G, H∗)|.

Hence, for H∗ ∈ OptTuples(M0, k), DM,k(H∗) equals 3|E|(|V |− (k−1))+ |E|
if and only if H∗ represents a size k − 1 vertex cover of G.

28 CHAPTER 2. SINGLE INDIVIDUAL HAPLOTYPING

2.3 Longest Haplotype Reconstruction (LHR)

Recall that the rows of a feasible SNP matrix M can be partitioned into
two sets, Ml and Mr, such that the rows within each set are pairwise non-
conflicting. Note that this partition does not have to be unique. As explained
in Section 1.4.1, from Mi (i ∈ {l, r}) one can build a haplotype Hi by combining
the rows of Mi as follows: the jth column of Hi is set to 1 if at least one row
from Mi has a 1 in column j, is set to 0 if at least one row from Mi has a 0
in column j, and is set to a hole if all rows in Mi have a hole in column j.
Also recall that, in contrast to MEC, this leads to haplotypes that potentially
contain holes. Only in this section haplotypes are defined as strings over
{0, 1,−}, while in all other sections haplotypes are strings over {0, 1}.
Let |H| denote the length of haplotype H, defined as the number of positions
where it does not contain a hole; the haplotype 10-1 thus has length three, for
example. The objective with LHR is to remove rows from M to make it feasible
but also such that the sum of the lengths of the two resulting haplotypes is
maximised. We define the function LHR(M) (which gives a natural number
as output) as the largest value this sum-of-lengths value can take, ranging over
all feasibility-inducing row-removals and subsequent partitions.

In Section 2.3.1 we provide a polynomial-time dynamic programming algorithm
for the gapless variant of LHR, Gapless-LHR. In Section 2.3.2 we show that
LHR becomes APX-hard and NP-hard when at most one gap per input row is
allowed, automatically also proving the hardness of LHR in the general case.

2.3.1 Polynomial-time Algorithm for GAPLESS-LHR

Gapless-LHR

Input: A gapless SNP matrix M .
Output: The value LHR(M), as defined above.

The LHR problem for gapless matrices was proved to be polynomial-time solv-
able by Lancia et al. [Lan01], but only with the genuine restriction that no
fragments are included in other fragments. Our algorithm improves this in
the sense that it works for all gapless input matrices; our algorithm is similar
in style to the algorithm by Bafna et al. ([Baf05]) that solves MFR (mini-
mum fragment removal), where the objective is not to maximise the length of
the haplotypes, but to minimise the number of rows removed. Note that our
dynamic-programming algorithm computes Gapless-LHR(M) but it can eas-
ily be adapted to generate the rows that must be removed (and subsequently,
the partition that must be made) to achieve this value.

2.3. LONGEST HAPLOTYPE RECONSTRUCTION (LHR) 29

Theorem 2.4. Gapless-LHR can be solved in time O(n2m + n3).

Proof. Let M be the input to Gapless-LHR, and assume the matrix has size
n×m. For row i define l(i) as the leftmost column that is not a hole and define
r(i) as the rightmost column that is not a hole. The rows of M are ordered
such that l(i) ≤ l(j) if i < j. Define the matrix Mi as the matrix consisting of
the first i rows of M and two extra rows at the top: row 0 and row −1, both
consisting of all holes. Define W (i) as the set of rows j < i that are not in
conflict with row i.

For h, k ≤ i and h, k ≥ −1 and r(h) ≤ r(k) define D[h, k; i] as the maximum
sum of lengths of two haplotypes such that:

• each haplotype is built up as a combination of rows from Mi (in the sense
explained above);

• each row from Mi can be used to build at most one haplotype (i.e. it
cannot be used for both haplotypes);

• row k is one of the rows used to build a haplotype and among such rows
maximises r(·);

• row h is one of the rows used to build the haplotype for which k is not
used and among such rows maximises r(·).

The optimal solution of the problem, LHR(M), is given by:

max
h,k|r(h)≤r(k)

D[h, k;n]. (2.13)

This optimal solution can be calculated by starting with D[h, k, 0] = 0 for
h, k ∈ −1, 0 and using the following recursive formulas. We distinguish three
different cases, the first is that h, k < i. Under these circumstances:

D[h, k; i] = D[h, k; i− 1]. (2.14)

This equation results from the following. First of all, if r(i) > r(k), then
row i cannot be used for the haplotype that row k is used for, because row k
has maximal r(·) among all rows that are used for a haplotype. Secondly, if
r(i) ≤ r(k): row i cannot increase the length of the haplotype that row k is
used for (because also l(i) ≥ l(k)). Finally, the same arguments hold for h.

The second case is when h = i; D[i, k; i] is equal to:

max
j∈W (i), j 6=k

r(j)≤r(i)

D[j, k; i− 1] + f(i, j). (2.15)

30 CHAPTER 2. SINGLE INDIVIDUAL HAPLOTYPING

Where f(i, j) = r(i) − max{r(j), l(i) − 1} is the increase of the haplotype’s
length. Equation (2.15) results from the following. The definition of D[i, k; i]
says that row i has to be used for the haplotype for which k is not used
and amongst such rows maximises r(·). Therefore, the optimal solution is
achieved by adding row i to some solution that has a row j as the most-
right-ending row, for some j that agrees with i, is not equal to k and ends
before i. Adding row i to the haplotype leads to an increase of its length of
f(i, j) = r(i) − max{r(j), l(i) − 1}. This term is fixed, for fixed i and j and
therefore we only have to consider extensions of solutions that were already
optimal. Note that this reasoning does not hold for more general, “gapped”,
data.

The last case is when k = i; D[h, i; i] is equal to:

max
j∈W (i), j 6=h

r(j)≤r(i)

{
D[j, h; i− 1] + f(i, j) if r(h) ≥ r(j),
D[h, j; i− 1] + f(i, j) if r(h) < r(j).

The above algorithm can be sped up by using the fact that, as a direct conse-
quence of (2.14), D[h, k; i] = D[h, k;max(h, k)] for all h, k ≤ i ≤ n. It is thus
unnecessary to calculate the values D[h, k; i] for h, k < i.

The time for calculating all the W (i) is O(n2m). When all the W (i) are
known, it takes O(n3) time to calculate all the D[h, k;max(h, k)]. This is
because we need to calculate O(n2) values D[i, k; i] and also O(n2) values
D[h, i; i] that take O(n) time each. This leads to an overall time complexity
of O(n2m + n3).

2.3.2 Complexity and Approximability of 1-GAP-LHR

1-Gap-LHR

Input: An SNP matrix M with at most one gap per row.
Output: The value LHR(M), as defined earlier.

In this section we prove that 1-Gap-LHR is APX-hard (and thus also NP-
hard). We prove this by demonstrating (indirectly) an L-reduction from the
problem CUBIC-MAX-INDEPENDENT-SET - the problem of computing the
maximum cardinality of an independent set in a cubic graph - which is itself
proven APX-hard in [Ali97].

We reduce via the intermediate problem Single Haplotype LHR (SH-LHR). In
this version of the problem rows must be removed from the input matrix until
the remaining rows are mutually non-conflicting. The objective is to maximise
the number of columns that have at least one non-hole entry in the remaining
rows.

The reduction chain looks as follows. We first show an L-reduction from
SH-LHR to LHR, such that the number of gaps per row is unchanged. We

2.3. LONGEST HAPLOTYPE RECONSTRUCTION (LHR) 31

then show an L-reduction from CUBIC-MAX-INDEPENDENT-SET to 2-gap
SH-LHR. Next, using an observation pertaining to the structure of cubic
graphs, we show how this reduction can be adapted to give an L-reduction
from CUBIC-MAX-INDEPENDENT-SET to 1-Gap-SH-LHR. This proves
the APX-hardness of 1-Gap-SH-LHR and thus (by transitivity of L-reductions)
also 1-Gap-LHR.

Lemma 2.1. SH-LHR is L-reducible to LHR, such that the number of gaps
per row is unchanged.

Proof. Let M be the n×m input to SH-LHR. We may assume that M contains
no duplicate rows, because duplicate rows are redundant when working with
only one haplotype. We map the SH-LHR input, M , to the 2n × m LHR
input, M ′, by taking each row of M and making a copy of it. Informally,
the idea is that the influence of the second haplotype can be neutralised by
doubling the rows of the input matrix. Note that this construction clearly
preserves the maximum number of gaps per row.

Now, let SOL(M ′) be the set that contains all pairs of haplotypes (H1,H2)
that can be induced by removing some rows of M ′, partitioning the remaining
rows of M ′ into two mutually non-conflicting sets, and then reading off the
two induced haplotypes. Similarly, let SOL(M) be the set that contains all
haplotypes H that can be induced by removing some rows of M (such that the
remaining rows are mutually non-conflicting) and then reading off the single,
induced haplotype. Note the following pair of observations, which both follow
directly from the construction of M ′:

(H1,H2) ∈ SOL(M ′)⇒ H1,H2 ∈ SOL(M), (2.16)

H ∈ SOL(M)⇒ (H,H) ∈ SOL(M ′). (2.17)

To satisfy the L-reduction we need to show how elements from SOL(M ′) are
mapped back to elements of SOL(M) in polynomial time. So, let (H1,H2) be
any pair from SOL(M ′). If |H1| ≥ |H2|map the pair (H1,H2) to H1, otherwise
to H2. This completes the L-reduction, and we now prove its correctness.
Central to this is the proof of the following:

SH-LHR(M) =
1
2
LHR(M ′). (2.18)

The fact that SH-LHR(M) ≥ 1
2LHR(M ′) follows immediately from (2.16)

and the mapping described above. This lets us fulfil condition (2.2) of the L-
reduction definition, taking α = 2. The fact that SH-LHR(M) ≤ 1

2LHR(M ′)
follows because, by (2.17), every element in SOL(M) is guaranteed to have a
counterpart in SOL(M ′) which has a total length twice as large.

We can fulfil condition (2.3) of the L-reduction by taking β = 1
2 . To see this, let

(H1,H2) be any pair from SOL(M ′), and (without loss of generality) assume

32 CHAPTER 2. SINGLE INDIVIDUAL HAPLOTYPING

that |H1| ≥ |H2|. Let r = LHR(M ′), the distance of (H1,H2) from optimal is
then:

r − (|H1|+ |H2|) ≥ r − 2|H1|. (2.19)

Let l = LHR(M), then:

l − |H1| = r
2 − |H1|

= 1
2

(
r − 2|H1|

)
≤ 1

2

(
r − (|H1|+ |H2|)

)
.

(2.20)

Thus, taking β = 1
2 satisfies condition (2.3) of the L-reduction.

Lemma 2.2. 2-Gap-SH-LHR is APX-hard.

Proof. We reduce from CUBIC-MAX-INDEPENDENT-SET. Let G = (V,E)
be the undirected, cubic input to CUBIC-MAX-INDEPENDENT-SET. We
direct the edges of G in the manner described by Observation 2.2, to give−→
G = (V,

−→
E). Thus, every vertex of

−→
G is now out-out-in or in-in-out. A vertex

w is a child of a vertex v if there is an edge leaving v in the direction of w i.e.
(v, w) ∈

−→
E , and in this case v is said to be the parent of w.

Let vin be the number of vertices in
−→
G that are in-in-out, and vout be the

number of vertices that are out-out-in. We build a matrix M , to be used
as input to 2-Gap-SH-LHR, which has |V | rows and 2vin + vout columns.
The construction of M is as follows. (Each row of M will represent a vertex
from V , so we henceforth index the rows of M using vertices of V .) Now,
to each in-in-out vertex of

−→
G , we allocate two adjacent columns of M , and

for each out-out-in vertex, we allocate one column of M . (A column may not
be allocated to more than one vertex.) Note that, for this lemma, it is not
important how the columns are allocated; in the proof of Theorem 2.5, the
ordering is crucial. For simplicity, we also impose an arbitrary total order P
on the vertices of V .

Now, for each vertex v ∈ V , we build row v as follows. Firstly, we put 1(s)
in the column(s) representing v. Secondly, consider each child w of v. If w is
an out-out-in vertex, we put a 0 in the column representing w. Alternatively,
w is an in-in-out vertex, so w is represented by two columns; in this case we
put a 0 in the left such column (if v comes before the other parent of w in the
total order P) or, alternatively, in the right column (if v comes after the other
parent of w in the total order P). The rest of the row consists of holes.

This completes the construction of M . Note that rows encoding in-in-out
vertices contain two adjacent 1s and one 0, with at most one gap in the row,
and rows encoding out-out-in vertices contain one 1 and two 0s, with at most
two gaps in the row. In either case there are precisely 3 non-hole elements per

2.3. LONGEST HAPLOTYPE RECONSTRUCTION (LHR) 33

v1 v2

v3 v4 v5 v6

v7 v8

Figure 2.3: Example input graph to CUBIC-MAX-INDEPENDENT-SET (see Lemmas
2.2 and 2.3) after an appropriate edge orientation has been applied.

v3 v1 v2 v5 v5 v7 v8 v8 v4 v4 v6 v6

v1

v2

v3

v4

v5

v6

v7

v8



− 1 0 − − − − − 0 − − −
− − 1 0 − − − − − − 0 −
1 0 − − − − − − − 0 − −
− − − − − 0 − − 1 1 − −
− − − 1 1 − − 0 − − − −
− − − − 0 − − − − − 1 1
0 − − − − 1 0 − − − − −
− − − − − − 1 1 − − − 0


Figure 2.4: Construction of matrix M (from Lemma 2.2 and 2.3) for graph in Figure 2.3.

row. It is also crucial to note that, reading down any one column of M , one
sees exactly one 1 and exactly one 0.

Let K be any submatrix of M obtained by removing rows from M , and let
V [K] ⊆ V be the set of vertices whose rows appear in K. If the rows of K
are mutually non-conflicting, then the haplotype induced by K has length 3r
where r is the number of rows in K. This follows from the aforementioned
facts that every column of M contains exactly one 1 and one 0. and that every
row has exactly 3 non-hole elements.

We now prove that the rows of K are in conflict if and only if V [K] is not an
independent set. First, suppose V [K] is not an independent set. Then there
exist u, v ∈ V [K] such that (u, v) ∈

−→
E . In row v of K there are thus 1(s) in

the column(s) representing vertex v. However, there is also (in row u) a 0 in
the column (or one of the columns) representing vertex v, causing a conflict.
Hence, if V [K] is not an independent set, K is in conflict. Now consider the
other direction. Suppose K is in conflict. Then in some column of K there is
a 0 and a 1. Let u be the row where the 0 is seen, and v be the row where
the 1 is seen. So both u and v are in V [K]. Further, we know that there is
an out-edge (u, v) in

−→
E , and thus an edge between u and v in E, proving that

V [K] is not an independent set. This completes the proof of the equivalence
relationship.

34 CHAPTER 2. SINGLE INDIVIDUAL HAPLOTYPING

It follows that:

CUBIC-MAX-INDEPENDENT-SET(G) =
1
3
LHR(M). (2.21)

The conditions of the L-reduction definition are now easily satisfied, because
of the 1-1 correspondence between haplotypes induced (after row-removals)
and independent sets in G, and the fact that a size-r independent set of G
corresponds to a length-3r haplotype (or, equivalently, to r mutually non-
conflicting rows of M .) The L-reduction is formally satisfied by taking α =
3 and β = 1

3 . The two functions that comprise the L-reduction are both
polynomial time computable.

Lemma 2.3. 1-Gap-SH-LHR is APX-hard.

Proof. This proof is almost identical to the proof of Lemma 2.2; the difference is
the manner in which columns of M are assigned to vertices of G. The informal
motivation is follows. In the previous allocation of columns to vertices, it
was possible for a row corresponding to an out-out-in vertex to have 2 gaps.
Suppose, for each out-out-in vertex, we could ensure that one of the 0s in its
row was adjacent to the 1 in the row, with no holes in between. Then every
row of the matrix would have (at most) 1 gap, and we would be finished. We
now show that, by exploiting a rather subtle property of cubic graphs, it is
indeed possible to allocate columns to vertices such that this is possible.

Assume, that we have ordered the edges of G as before to obtain
−→
G . Let

Vout ⊆ V be those vertices in V that are out-out-in. Now, suppose we could
compute (in polynomial time) an injective function favourite : Vout → V with
the following properties:

• for every v ∈ Vout, (v, favourite(v)) ∈
−→
E ;

• the subgraph of
−→
G induced by edges of the form (v, favourite(v)), hence-

forth called the favourite-induced subgraph, is acyclic.

Given such a function it is easy to create a total enumeration of the vertices
of V such that every out-out-in vertex is immediately followed by its favourite
vertex. This enumeration can then be used to allocate the columns of M to
the vertices of V , such that every row of M has at most one gap. To ensure
this property, it is necessary to stipulate that, where favourite(v) is an in-in-
out vertex, the 0 encoding the edge (v, favourite(v)) is placed in the left of
the two columns encoding favourite(v). This is not a problem because every
vertex is the favourite of at most one other vertex.

It remains to prove that the function favourite exists and that it can be con-
structed in polynomial time. This is equivalent to finding vertex disjoint di-
rected paths in

−→
G such that every out-out-in vertex is on such a path and all

2.3. LONGEST HAPLOTYPE RECONSTRUCTION (LHR) 35

paths end in an in-in-out vertex. Lemma 2.4 tells us how to find such paths.
We thank Bert Gerards for invaluable help with this.

This completes the proof that 1-Gap-SH-LHR is APX-hard. (See Figures 2.3
and 2.4 for an example of the whole reduction in action.)

Lemma 2.4. Let
−→
G be a directed, cubic graph with a partition (Vout, Vin) of

the vertices such that the vertices in Vout are out-out-in and the vertices in Vin

are in-in-out. Then Vout can be covered, in polynomial time, by vertex-disjoint
directed paths ending in Vin.

Proof. Observe that any two directed circuits contained entirely within Vout

are pairwise vertex disjoint. Let V ′
out be obtained from Vout by shrinking each

directed circuit in Vout to a single vertex, and let
−→
G′ be the resulting new

graph. (Note that each vertex in V ′
out has outdegree at least 2 and indegree

at most 1 and that the indegree of each node in Vin is still 2, because we do
not delete multiple edges.) We now argue that it is possible to find a set of
edges F ′ in

−→
G′, with |F ′| = |V ′

out|, such that, for each v ∈ V ′
out, precisely one

edge from F ′ begins at v, and such that no two edges in F ′ have the same
endpoint. We prove this by construction. For each vertex u ∈ V ′

out that has
a child v in V ′

out, we can add the edge (u, v) to F ′, because v has indegree 1
and therefore no other edges can end at v. (In case u has two such children,
we can choose one of the edges to add to F ′). Thus we are left to deal with
a subset of vertices L ⊆ V ′

out where every vertex in L has all its children in
Vin. Now consider the bipartite graph B with bipartition (L, Vin) and an edge
for every directed edge of

−→
G′ going from L to Vin. If we can find a matching

in B of size |L|, we can complete the construction of F ′ by adding the edges
from the perfect matching. Hall’s Theorem states that a bipartite graph with
bipartition (X, Y) has a matching of size |X| if and only if, for all X ′ ⊆ X,
|N(X ′)| ≥ |X ′|, where N(X ′) is the set of all neighbours of X ′. Now, note that
each vertex in L sends at least two edges across the partition of B, and each
vertex in Vin can accept at most two such edges, so for each L′ ⊆ L it is clear
that |N(L′)| ≥ |L′|. Hence, the graph (L, Vin) does indeed have a matching of
size |L| and the construction of F ′ can be completed.

Now, given that the graph induced by V ′
out is acyclic, so is F ′. Let F be the

set of edges in
−→
G corresponding to those in F ′. F is acyclic and each directed

circuit C in Vout has exactly one vertex vC that is a tail of an edge of F and
no vertex that is a head of an edge in F . Let PC be the longest directed path
in C that ends in vC . Then the union of F and all PC over all directed circuits
C in Vout is a collection of paths ending in Vin and covering Vout.

Finding cycles in a graph and finding a maximum matching in a bipartite
graph are both polynomial-time computable, so the whole process described
above is polynomial-time computable.

36 CHAPTER 2. SINGLE INDIVIDUAL HAPLOTYPING

Theorem 2.5. 1-Gap-LHR is APX-hard.

Proof. Follows from Lemma 2.3 and Lemma 2.1.

2.4 Conclusion and Open Problems

This chapter has studied the complexity (under various different input restric-
tions) of the haplotyping problems Minimum Error Correction (MEC) and
Longest Haplotype Reconstruction (LHR). Two strongly related problems are
Minimum Fragment Removal (MFR) and Minimum SNP Removal (MSR).
MSR (MFR) is the problem of removing the minimum number of columns
(rows) from an SNP matrix in order to make it feasible. The state of knowl-
edge about MEC, LHR, MFR and MSR after this work is demonstrated in
Table 2.1.

Binary Open (Section 2.2.3)
PTAS known [Jia04]

MEC Gapless NP-hard (Section 2.2.1)
1-Gap APX-hard (Section 2.2.2),

Gapless P (Section 2.3.1)
LHR 1-Gap APX-hard (Section 2.3.2)

Gapless P [Baf05]
MFR 1-Gap APX-hard [Baf05]

Gapless P [Lan01]
MSR 1-Gap APX-hard [Baf05]

Table 2.1: The new state of knowledge following this work

Indeed, from a complexity perspective, the most intriguing open problem is to
ascertain the complexity of the “re-opened” problem Binary-MEC. It would
also be interesting to study the approximability of Gapless-MEC.

From a more practical perspective, the next logical step is to study the com-
plexity of these problems under more restricted classes of input, ideally under
classes of input that have direct biological relevance. It would also be of in-
terest to study some of these problems in a “weighted” context i.e. where the
cost of the operation in question (row removal, column removal, error correc-
tion) is some function of (for example) an a priori specified confidence in the
correctness of the data being changed.

37

Chapter 3

Population Haplotyping

3.1 Introduction

This chapter studies the computational problem of inferring biologically mean-
ingful haplotype data from the genotype data of a population (see Section 1.4.2).
A popular underlying abstraction for this model (in the context of diploid or-
ganisms) represents a genotype as a string over the {0, 1, 2} alphabet, and a
haplotype as a string over {0, 1}. The exact goal depends on the biological
model being applied but a common, minimal algorithmic requirement is that,
given a set of genotypes, a set of haplotypes must be produced which resolves
the genotypes.

To be precise, we are given an n × m genotype matrix G with elements in
{0, 1, 2}, the n rows of which correspond to genotypes, while its m columns
correspond to sites on the genome, called SNPs. Without loss of generality we
assume that any two rows of the input genotype matrix G are distinct. The
goal is to construct an n′ × m haplotype matrix H with elements in {0, 1};
the m columns of H also correspond to SNPs, but its n′ rows correspond to
haplotypes. Two rows h1 and h2 of H are said to resolve a row g of G if
g(j) = h1(j) for all j with h1(j) = h2(j) and g(j) = 2 otherwise. If this is the
case, then we write g = h1 + h2, and we call h1 the complement of h2 with
respect to g, and vice versa.

A haplotype matrix H resolves a genotype matrix G if for each row g of G,
containing at least one 2, there are two rows h1 and h2 of H resolving g and
each row g of G without 2s is also a row of H.

The first concrete mathematical problem studied in this chapter is Parsimony
Haplotyping (PH).

38 CHAPTER 3. POPULATION HAPLOTYPING

Parsimony Haplotyping (PH)

Input: A genotype matrix G.
Output: A haplotype matrix H with a minimum number of rows that re-

solves G.

There is a rich literature in this area, of which recent papers such as [Bro06]
give a good overview. The problem is APX-hard [Lan04; Sha06] and, in terms
of approximation algorithms with performance guarantees, existing methods
remain rather unsatisfactory, as will be shortly explained. This has led many
authors to consider methods based on Integer Linear Programming (ILP)
[Bro06; Gus03; Hal03; Lan04].

A different response to the hardness is to search for “islands of tractability”
amongst special, restricted cases of the problem, exploring the frontier be-
tween hardness and polynomial-time solvability. In the literature available in
this direction [Lan04; Lan06; Sha06], this investigation has specified classes of
(k, `)-bounded instances, in which the input genotype matrix G has at most k
2s per row and at most ` 2s per column (cf. [Sha06]). If k or ` is a “∗” we mean
instances that are bounded only by the number of 2s per column or per row,
respectively. In this chapter we supplement this “tractability” literature with
mainly positive results, and in doing so almost complete the bounded instance
complexity landscape.

Next to the PH problem we study the Minimum Perfect Phylogeny Haplotyping
(MPPH) model. Again a minimum-size set of resolving haplotypes is required
but this time under the additional, biologically-motivated restriction that the
produced haplotypes permit a perfect phylogeny , i.e., they can be placed at
the leaves of an evolutionary tree within which each site mutates at most once.
Haplotype matrices admitting a perfect phylogeny are completely characterised
[Gus91; Gus97] by the absence of the forbidden submatrix:

F =


1 1
0 0
1 0
0 1

 .

Minimum Perfect Phylogeny Haplotyping (MPPH)

Input: A genotype matrix G.
Output: A haplotype matrix H with a minimum number of rows that re-

solves G and admits a perfect phylogeny.

The feasibility question (PPH) - given a genotype matrix G, find any haplotype
matrix H that resolves G and admits a perfect phylogeny, or state that no such
H exists - is solvable in linear time [Din06; Vij06]. Researchers in this area
are now moving on to explore the PPH question on phylogenetic networks
[Son05b] (cf. Chapter 4).

3.1. INTRODUCTION 39

The MPPH problem, however, has so far hardly been studied beyond an NP-
hardness result [Baf04] and occasional comments within PH and PPH liter-
ature [Bon03; Vij06; Zha06]. In this chapter we thus provide what is one
of the first attempts to analyse the parsimony optimisation criteria within a
well-defined and widely applicable biological framework. We seek namely to
map the MPPH complexity landscape in the same way as the PH complexity
landscape: using the concept of (k, `)-boundedness. We write PH(k, `) and
MPPH(k, `) for these problems restricted to (k, `)-bounded instances.

Previous work and new results

Lancia et al. showed that PH(3, ∗) is APX-hard [Lan04]. Recently, it was
shown by Sharan et al. [Sha06] (amongst other results) that PH(4, 3) is APX-
hard. In this publication it was also proven that the restricted subcase of
PH(∗, 2) is polynomial-time solvable where the compatibility graph of the in-
put genotype matrix is a clique. (Informally, the compatibility graph shows
for every pair of genotypes whether those two genotypes can use common
haplotypes in their resolution.)

In this chapter, we bring the boundaries between hard and easy classes closer
by showing that PH(3, 3) is APX-hard and that PH(∗, 1) and PH(2, ∗) are
polynomial-time solvable.

As far as MPPH is concerned, there have been, prior to this work, no con-
crete results beyond the above mentioned NP-hardness result. We show that
MPPH(3, 3) is APX-hard and that, like their PH counterparts, MPPH(2, ∗)
and MPPH(∗, 1) are polynomial-time solvable (in both cases using a reduction
to the PH counterpart). We also show that the clique result from [Sha06] holds
in the case of MPPH(∗, 2) as well. As for its PH counterpart, the complexity
of MPPH(∗, 2) remains open, see Figure 1.2 on page 11.

The fact that both PH and MPPH already become APX-hard for (3, 3)-
bounded instances means that, in terms of deterministic approximation al-
gorithms, the best that we can in general hope for is constant approximation
ratios. Lancia et al. [Lan04; Lan06] have given two separate approximation al-
gorithms for PH with approximation ratios of

√
n and 2k−1 respectively, where

n is the number of genotypes in the input, and k is the maximum number of
2s appearing in a row of the genotype matrix1. An O(log n) approximation
algorithm has also been given [Hua05] but this only runs in polynomial time if
the set of all possible haplotypes that can participate in feasible solutions, can
be enumerated in polynomial time. The obvious problem with the 2k−1 and
the O(log n) approximation algorithms is thus that either the accuracy decays
exponentially (as in the former case) or the running time increases exponen-
tially (as in the latter case) with an increasing number of 2s per row. Here
we offer a simple, alternative approach which achieves (in polynomial time)
approximation ratios linear in ` for PH(∗, `) and MPPH(∗, `) instances, and

1It would be overly restrictive to write PH(k, ∗) here because their algorithm runs in
polynomial time even if k is not a constant.

40 CHAPTER 3. POPULATION HAPLOTYPING

actually also achieves these ratios in polynomial time when ` is not constant.
These ratios are shown in the Table 3.1; note how improved ratios can be
obtained if every genotype is guaranteed to have at least one 2.

Approximation ratio

PH(∗, `) 3
2` + 1

2

PH(∗, `) at least one 2 per genotype 3
4` + 7

4 −
3
2

1
`+1

MPPH(∗, `) 2`

MPPH(∗, `) at least one 2 per genotype ` + 2− 2
`+1

Table 3.1: Approximation ratios achieved in this thesis (for ` ≥ 2).

We have thus decoupled the approximation ratio from the maximum number
of 2s per row, and instead made the ratio conditional on the maximum number
of 2s per column. Our approximation scheme is hence an improvement to the
2k−1-approximation algorithm except in cases where the maximum number of
2s per row is exponentially small compared to the maximum number of 2s per
column. Our approximation scheme yields also the first approximation results
for MPPH.

As explained by Sharan et al. in their “islands of tractability” paper [Sha06],
identifying tractable special classes can be practically useful for constructing
high-speed subroutines within ILP solvers, but perhaps the most significant
aspect of this chapter is the analysis underpinning the results, which - by deep-
ening our understanding of how this problem behaves - assists the search for
better, faster approximation algorithms and for determining the exact shore-
lines of the islands of tractability.

Furthermore, the fact that - prior to this work - concrete and positive results
for MPPH had not been obtained (except for rather pessimistic modifications
to ILP models [Bro06]), means that the algorithms given here for the MPPH
cases, and the data structures used in their analysis (e.g. the restricted com-
patibility graph in Section 3.3.2), assume particular importance.

Finally, this chapter yields some interesting open problems, of which the out-
standing (∗, 2) case (for both PH and MPPH) is only one. Prominent amongst
these questions (which are discussed in Section 3.5) is the question of whether
MPPH and PH instances are inter-reducible, at least within the bounded-
instance framework.

3.2. COMPLEXITY OF POPULATION HAPLOTYPING
PROBLEMS 41

3.2 Complexity of Population Haplotyping Problems

Theorem 3.1. MPPH(3, 3) is APX-hard.

Proof. The proof in [Baf04] that MPPH is NP-hard uses a reduction from Ver-
tex Cover, which can be modified to yield NP-hardness and APX-hardness
for (3,3)-bounded instances. Given a graph T = (V,E) the reduction in [Baf04]
constructs a genotype matrix G(T) of MPPH with |V |+|E| rows and 2|V |+|E|
columns. For every vertex vi ∈ V there is a genotype (row) gi in G(T) with
gi(i) = 1, gi(i + |V |) = 1 and gi(j) = 0 for every other position j. In ad-
dition, for every edge ek = {vh, vl} there is a genotype gk with gk(h) = 2,
gk(l) = 2, gk(2|V |+ k) = 2 and gk(j) = 0 for every other position j. Bafna et
al. [Baf04] prove that an optimal solution for MPPH with input G(T) contains
|V |+ |E|+ V C(T) haplotypes, where V C(T) is the size of the smallest vertex
cover in T .

3-Vertex Cover is the vertex cover problem when every vertex in the input
graph has at most degree 3. It is known to be APX-hard [Pap91; Ali97]. Let T
be an instance of 3-Vertex Cover. We assume that T is connected. Observe
that for such a T the reduction described above yields an MPPH instance G(T)
that is (3, 3)-bounded. It is left to show that the described reduction is an L-
reduction (see Definition 2.1 on page 21) when reducing from 3-Vertex Cover.

Connectedness of T implies that |V | − 1 ≤ |E|. In 3-Vertex Cover, a single
vertex can cover at most three edges in T , implying that V C(T) ≥ 1

3 |E|. The
optimal value for MPPH on instance G(T) is (if |E| ≥ 1):

|V |+ |E|+ V C(T) ≤ 2|E|+ 1 + V C(T) ≤ 7|V C(T)|+ 1 ≤ 8|V C(T)|.

Therefore, the first property of an L-reduction holds with α = 8. Now consider
any feasible solution of MPPH containing t haplotypes. This can easily be
converted into a solution of 3-Vertex Cover containing d = t−|V |−|E| vertices,
as shown in [Baf04]. It follows that the second property of an L-reduction holds
with β = 1, since ||V C(T)| − d| is equal to ||V |+ |E|+ V C(T)− t|.

Theorem 3.2. PH(3, 3) is APX-hard.

Proof. The proof by Sharan et al. [Sha06] that PH(4, 3) is APX-hard can be
modified slightly to obtain APX-hardness of PH(3, 3). The reduction is from 3-
Dimensional Matching with each element occurring in at most three triples
(3DM3): given disjoint sets X, Y and Z containing ν elements each and a set
C = {c0, . . . , cµ−1} of µ triples in X ×Y ×Z such that each element occurs in
at most three triples in C, find a maximum cardinality set C ′ ⊆ C of disjoint
triples.

42 CHAPTER 3. POPULATION HAPLOTYPING

From an instance of 3DM3 we build a genotype matrix G with 3ν+3µ rows and
6ν+4µ columns. The first 3ν rows are called element-genotypes and the last 3µ
rows are called matching-genotypes. We specify only the non-zero entries of the
genotypes2. Let X = {x0, . . . , xν−1}, Y = {y0, . . . , yν−1}, Z = {z0, . . . , zν−1}.
For every element xi ∈ X define element-genotype gx

i with gx
i (3ν + i) = 1;

gx
i (6ν + 4k) = 2 for all k with xi ∈ ck. If xi occurs in at most two triples we

set gx
i (i) = 2. For every element yi ∈ Y there is an element-genotype gy

i with
gy

i (4ν + i) = 1; gy
i (6ν + 4k) = 2 for all k with yi ∈ ck and if yi occurs in at

most two triples then we set gy
i (ν + i) = 2. For every element zi ∈ Z there is

an element-genotype gz
i with gz

i (5ν + i) = 1; gz
i (6ν + 4k) = 2 for all k with

zi ∈ ck and if zi occurs in at most two triples then we set gz
i (2ν + i) = 2. For

each triple ck = {xi1 , yi2 , zi3} ∈ C there are three matching-genotypes cx
k, cy

k

and cz
k: cx

k has cx
k(3ν + i1) = 2, cx

k(6ν +4k) = 1 and cx
k(6ν +4k +1) = 2; cy

k has
cy
k(4ν+i2) = 2, cy

k(6ν+4k) = 1 and cy
k(6ν+4k+2) = 2; cz

k has cz
k(5ν+i3) = 2,

cz
k(6ν + 4k) = 1 and cz

k(6ν + 4k + 3) = 2.

Notice that the element-genotypes only have a 2 in the first 3ν columns if the
element occurs in at most two triples. This is the only difference with the
reduction from [Sha06], where every element-genotype has a 2 in the first 3ν
columns: i.e., for elements xi ∈ X, yi ∈ Y or zi ∈ Z a 2 in column i, ν + i
or 2ν + i, respectively. As a direct consequence our genotype matrix has only
three 2s per row in contrast to the four 2s per row in the original reduction.

We claim that for this (3,3)-bounded instance exactly the same arguments
can be used as for the (4,3)-bounded instance. In the original reduction the
left-most 2s ensured that, for each element-genotype, at most one of the two
resolving haplotypes was used in the resolution of other genotypes. Clearly this
remains true in our modified reduction for elements appearing in two or fewer
triples, because the corresponding left-most 2s have been retained. So consider
an element xi appearing in three triples and suppose, by way of contradiction,
that both haplotypes used to resolve gx

i are used in the resolution of other
genotypes. Now, the 1 in position 3ν + i prevents this element-genotype from
sharing haplotypes with other element-genotypes, so genotype gx

i must share
both its haplotypes with matching-genotypes. Note that, because gx

i (3ν + i) =
1, the genotype gx

i can only possibly share haplotypes with matching-genotypes
corresponding to triples that contain xi. Indeed, if xi is in triples ck1 , ck2 and
ck3 then the only genotypes with which gx

i can potentially share haplotypes
are cx

k1
, cx

k2
and cx

k3
. Genotype gx

i cannot share both its haplotypes with the
same matching-genotype (e.g. cx

k1
) because both haplotypes of gx

i will have a
1 in column 3ν + i whilst only one of the two haplotypes for cx

k1
will have a 1

in that column. So, without loss of generality, gx
i is resolved by a haplotype

that is shared with cx
k1

and a haplotype that is shared with cx
k2

. However,
this is not possible, because gx

i has a 2 in the column corresponding to ck3

(i.e. gx
i (6ν + 4k3) = 2), whilst both cx

k1
and cx

k2
have a 0 in that column

2Only in this proof we index haplotypes, genotypes and matrices starting with 0, which
makes notation consistent with [Sha06].

3.3. POLYNOMIAL-TIME ALGORITHMS 43

(cx
k1

(6ν + 4k3) = cx
k2

(6ν + 4k3) = 0), yielding a contradiction.

Note that, in the original reduction, it was not only true that each element-
genotype shared at most one of its haplotypes, but - more strongly - it was
also true that such a shared haplotype was used by exactly one other genotype
(i.e. the genotype corresponding to the triple the element gets assigned to).
To see that this property is also retained in the modified reduction observe
that if (say) gx

i shares one haplotype with two genotypes cx
k1

and cx
k2

then xi

must be in both triples ck1 and ck2 , but this is not possible because, in the two
columns corresponding to triples ck1 and ck2 , cx

k1
has 1 and 0 whilst cx

k2
has

0 and 1 (i.e. cx
k1

(6ν + 4k1) = 1, cx
k1

(6ν + 4k2) = 0 whilst cx
k2

(6ν + 4k1) = 0,
cx
k2

(6ν + 4k2) = 1).

3.3 Polynomial-time Algorithms

3.3.1 Parsimony Haplotyping

This section shows the polynomial-time solvability of PH on (∗, 1)- and (2, ∗)-
bounded instances. We start with PH(∗, 1).

We say that two genotypes g1 and g2 are compatible, denoted as g1 ∼ g2, if
g1(j) = g2(j) or g1(j) = 2 or g2(j) = 2 for all j. A genotype g and a haplotype
h are consistent if h can be used to resolve g, ie. if g(j) = h(j) or g(j) = 2 for
all j. The following observation follows directly from these definitions.

Observation 3.1. If g1 and g2 are distinct compatible rows of a genotype
matrix with at most one 2 per column, then there exists exactly one haplotype
that is consistent with both g1 and g2.

The compatibility graph associated with a given genotype matrix is the graph
with vertices for the genotypes and an edge between two genotypes if they
are compatible. Each edge {g1, g2} of the compatibility graph of a PH(∗, 1)-
instance is labelled by the unique haplotype that is consistent with both g1

and g2, namely h with h(j) = g1(j) for all j with g1(j) 6= 2 and h(j) = g2(j)
for all j with g2(j) 6= 2.

We use the notation g1 ∼h g2 if g1 and g2 are compatible and h is consistent
with both (i.e. h labels edge {g1, g2}). We prove that the compatibility graph
of a PH(∗, 1)-instance has a specific structure. A 1-sum of two graphs is the
graph obtained by identifying a vertex of one graph with a vertex of the other
graph. A 1-sum of n+1 graphs is inductively obtained by identifying a vertex
of a graph with a vertex of a 1-sum of n graphs. See Figure 3.1 for an example
of a 1-sum of three cliques (K3, K4 and K2).

It follows directly that a graph C is a 1-sum of cliques if and only if for each
cycle v1, . . . , vk in C all edges {vi, vj} (with 1 ≤ i, j ≤ k, i 6= j) are in C. If
1 < |i − j| < k − 1 then such an arc {vi, vj} is called a chord of the cycle. A

44 CHAPTER 3. POPULATION HAPLOTYPING

graph is called chordal if each cycle of at least four vertices has at least one
chord. A 1-sum of cliques is thus always chordal. However, the reverse is not
always the case.

Lemma 3.1. If G is a genotype matrix with at most one 2 per column, then
every connected component of the compatibility graph of G is a 1-sum of cliques,
where edges in the same clique are labelled with the same haplotype.

Proof. Let C be the compatibility graph of G and let g1, g2, . . . , gk be a cycle
in C. It suffices to show that there exists a haplotype hc such that gi ∼hc

gi′

for all i, i′ ∈ {1, ..., k}. Consider an arbitrary column j. If there is no genotype
with a 2 in this column then g1 ∼ g2 ∼ . . . ∼ gk implies that g1(j) = g2(j) =
. . . = gk(j). Otherwise, let gij

be the unique genotype with a 2 in column
j. Then g1 ∼ g2 ∼ . . . ∼ gij−1 together with g1 ∼ gk ∼ gk−1 ∼ . . . ∼ gij+1

implies that gi(j) = gi′(j) for all i, i′ ∈ {1, ..., k} \ {ij}. Set hc(j) = gi(j),
i 6= ij . Repeating this for each column j produces a haplotype hc such that
indeed gi ∼hc

gi′ for all i, i′ ∈ {1, ..., k}.

g1

g2

g3

g4

g5

g6

g7



0 0 1 0 2 0 1
2 0 2 0 0 0 1
0 0 1 2 0 0 1
0 0 1 0 0 0 2
0 0 1 1 0 2 1
1 2 0 0 0 0 1
0 0 1 1 0 0 1

 g5 g1

g7 g4

g6g3 g2
h1

h1

h1

h3

h2 h2

h2 h2

h2

h2

Figure 3.1: Example of of a genotype matrix with corresponding compatibility graph, with
h1 = (0, 0, 1, 1, 0, 0, 1), h2 = (0, 0, 1, 0, 0, 0, 1) and h3 = (1, 0, 0, 0, 0, 0, 1).

From this lemma, it follows directly that in PH(∗, 1) the compatibility graph is
chordal. Every chordal graph has a simplicial vertex, a vertex whose (closed)
neighbourhood is a clique. Deleting a vertex in a chordal graph gives again a
chordal graph (see for example [Bla93] for an introduction to chordal graphs).
The following lemma leads almost immediately to polynomial solvability of
PH(∗, 1). In this lemma, we use H ′ to denote the genotypes in the input that
do not contain 2s and can thus be seen as haplotypes that have to be contained
in the output matrix H. We use set-operations for the rows of matrices: thus,
e.g., h ∈ H means h is a row of matrix H, H ∪ h says h is added to H as a
row, and H ′ ⊂ H says H ′ is a submatrix consisting of rows of H.

Lemma 3.2. Given a haplotype matrix H ′ and a genotype matrix G with at
most one 2 per column it is possible to find, in polynomial time, a haplotype
matrix H that resolves G, has H ′ as a submatrix and has a minimum number
of rows.

3.3. POLYNOMIAL-TIME ALGORITHMS 45

Proof. The proof is constructive. Let problem (G, H ′) denote the above prob-
lem on input matrices G and H ′. Let C be the compatibility graph of G, which,
as implied by Lemma 3.1, is chordal. Suppose g corresponds to a simplicial
vertex of C. If g is not an isolated vertex then there exists a unique haplotype
consistent with any genotype in the closed neighbourhood clique of g. Denote
this haplotype by hc. We extend matrix H ′ to H ′′ and update graph C as
follows.

1. If g has no 2s it can be resolved by just the haplotype h = g. We set
H ′′ = H ′ ∪ h and delete g from C.

2. Else, if there exist rows h1 ∈ H ′ and h2 ∈ H ′ such that g = h1 + h2 we
set H ′′ = H ′ and delete g from C.

3. Else, if the complement of hc w.r.t. g is in H ′ we set H ′′ = H ′ ∪ hc and
delete g from C.

4. Else, if there exists h1 ∈ H ′ such that g = h1 + h2 for some h2 /∈ H ′ we
set H ′′ = H ′ ∪ h2 and delete g from C.

5. Else, if g is not an isolated vertex in C then we set H ′′ = H ′ ∪ {h1, hc},
with h1 the complement of hc w.r.t. g, and delete g from C.

6. Otherwise, g is an isolated vertex in C and we set H ′′ = H ′ ∪ {h1, h2}
for any h1 and h2 such that g = h1 + h2 and delete g from C.

The resulting graph is again chordal and we repeat the above procedure for
H ′ = H ′′ until all vertices are removed from C. Let H be the final haplotype
matrix H ′′. It is clear from the construction that H resolves G.

We prove that H has a minimum number of rows by induction on the number
of genotypes. Clearly, if G has only one genotype the algorithm constructs
an optimal solution. The induction hypothesis is that the algorithm finds an
optimal solution to the problem (G, H ′) for any haplotype matrix H ′ if G has
at most n− 1 rows. Now consider haplotype matrix H ′ and genotype matrix
G with n rows. The first step of the algorithm selects a simplicial vertex
g and proceeds with one of the cases 1 to 6. The algorithm then finds (by
the induction hypothesis) an optimal solution H to problem (G \ {g},H ′′).
It remains to prove that H is also an optimal solution to problem (G, H ′).
We do this by showing that an optimal solution H∗ to problem (G, H ′) can
be modified to include H ′′. We prove this for every case of the algorithm
separately.

1. In this case h ∈ H∗, since g can only be resolved by h.

2. In this case H ′′ = H ′ and hence H ′′ ⊆ H∗.

46 CHAPTER 3. POPULATION HAPLOTYPING

3. Suppose that hc /∈ H∗. Because we are not in case 2 we know that there
are two rows in H∗ that resolve g and at least one of the two, say h∗, is
not a row of H ′. Since hc is the unique haplotype consistent with (the
simplicial) g and any compatible genotype, h∗ can not be consistent with
any other genotype than g. Thus, replacing h∗ by hc gives a solution with
the same number of rows but containing H ′′.

4. Suppose that h2 /∈ H∗. Because we are not in case 2 or 3 we know that
there is a haplotype h∗ ∈ H∗ consistent with g, h∗ /∈ H ′ and h∗ 6= hc.
Hence, h∗ is not consistent with any other genotypes than g and we can
replace h∗ by h2 to obtain an optimal solution containing H ′′.

5. Suppose that h1 /∈ H∗ or hc /∈ H∗. Because we are not in case 2, 3 or
4, there are haplotypes h∗ ∈ H\H ′ and h∗∗ ∈ H\H ′ that resolve g. If
h∗ and h∗∗ are both not equal to hc then they are not consistent with
any other genotype than g. Replacing h∗ and h∗∗ by h1 and hc leads to
another optimal solution. If one of h∗ and h∗∗ is equal to hc then we can
replace the other one by h1.

6. Suppose that h1 /∈ H∗ or h2 /∈ H∗. There are haplotypes h∗, h∗∗ ∈
H∗\H ′ that resolve g and just g since g is an isolated vertex. Replacing
h∗ and h∗∗ by h1 and h2 gives an optimal solution containing H ′′.

Theorem 3.3. The problem PH(∗, 1) can be solved in polynomial time.

Proof. The proof follows from Lemma 3.2. Construction of the compatibility
graph, including labels hc, takes O(n2m) time, for an n times m input matrix.
Finding a simplicial ordering (i.e. an ordering of the vertices such that each
vertex is simplicial in the subgraph obtained by deleting the previous vertices
in the ordering) can be done in time O(n2) [Ros76] and resolving each vertex
takes O(n2m) time. The overall running time of the algorithm is therefore
O(n3m).

Now we will show polynomial-time solvability of PH(2, ∗). This has also been
discovered independently by Lancia et al. [Lan06]. Given a graph G, let PH(G)
denote the minimum number of haplotypes needed to resolve G.

Theorem 3.4. The problem PH(2, ∗) can be solved in polynomial time.

Proof. We let n = |G| denote the number of genotypes in G and let m denote
the length of each genotype in G. An independent set of a graph is a collec-
tion of mutually non-adjacent vertices. We will compute the solution of PH
on input G, by reduction to the polynomial-time solvable problem MaxBIS,

3.3. POLYNOMIAL-TIME ALGORITHMS 47

which is the problem of finding an independent set of maximum cardinality in
a bipartite graph.

First, some notation. A 2 in a genotype is called an ambiguous position and
a genotype is i-ambiguous if it contains i ambiguous positions. Each geno-
type in G is thus either 0-ambiguous, 1-ambiguous, or 2-ambiguous. For a
0-ambiguous genotype g, we define hg as the haplotype equal to g. For a
1-ambiguous genotype g we let hg:0 (respectively, hg:1) be the haplotype ob-
tained by replacing the ambiguous position in g with 0 (respectively, 1). For
a 2-ambiguous genotype g we let hg:i,j - where i, j ∈ {0, 1} - be the haplotype
obtained by replacing the first (i.e. leftmost) ambiguous position in g with i,
and the second ambiguous position with j. A haplotype is said to have even
(odd) parity if it contains an even (odd) number of 1s.

Now, observe that there are two ways to resolve a 2-ambiguous genotype g:
(1) with haplotypes hg:0,0 and hg:1,1 and (2) with hg:0,1 and hg:1,0. Note that
- depending on h - one of the ways uses two even parity haplotypes, and the
other uses two odd parity haplotypes.

We build a set H of haplotypes by stepping through the list of genotypes and,
for each genotype, adding the 1, 2 or 4 corresponding haplotypes to the set H.
(Note that, because H is a set, we discard duplicate haplotypes.) That is, for
a 0-ambiguous genotype g add hg, for a 1-ambiguous genotype g add hg:0 and
hg:1, and for a 2-ambiguous genotype g add hg:0,0, hg:0,1, hg:1,0 and hg:1,1.

We are now ready to build a bipartite graph B = (V,E) as follows, where V
has bipartition V + ∪ V −. For each h ∈ H we introduce a vertex, which we
also refer to as h; all h with even parity are put into V + and all h with odd
parity are put into V −. For each 0-ambiguous genotype g ∈ G we introduce
a set I0(g) of four vertices and we connect each vertex in I0(g) to hg. For
each 1-ambiguous genotype g ∈ G we introduce two sets of vertices I1(g, 0)
and I1(g, 1), both containing two vertices. Each vertex in I1(g, 0) is connected
to hg:0 and each vertex in I1(g, 1) is connected to hg:1. Finally, for each 2-
ambiguous g ∈ G we add (to V + and V − respectively) two sets of vertices
I2(g,+) and I2(g,−), each containing 4 vertices. We connect every vertex in
I2(g,+) to every vertex in I2(g,−), connect every vertex in I2(g,+) to the two
odd parity haplotypes resolving g, and connect every vertex in I2(g,−) to the
two even parity haplotypes resolving g. This completes the construction of B.

Let M be an independent set of B with maximum cardinality. Observe that all
the vertices of I0(g) must be in M , for all 0-ambiguous g. To see this, suppose
there exists a 0-ambiguous g such that at least one of the vertices in I0(g) is not
in M . This leads to a contradiction because then M \ {hg} ∪ I0(g) would be a
larger independent set. By a similar argument we see that, for all 1-ambiguous
g ∈ G, all of I1(g, 0) and I1(g, 1) must be in M . Now, consider I2(g,+) and
I2(g,−), for a 2-ambiguous g ∈ G. We argue that either I2(g,+) is contained
in M , or I2(g,−) is contained in M . Suppose, by way of argument, that there
exists a g such that both I2(g,+) and I2(g,−) are completely outside M . If

48 CHAPTER 3. POPULATION HAPLOTYPING

we are (without loss of generality) free to add all the vertices in I2(g,+) to the
independent set we have an immediate contradiction. So I2(g,+) is prevented
from being in M by the fact that one or two of the haplotypes to which it is
connected are already in M . But we could then build a bigger independent
set by removing those (at most) two haplotypes from M and adding the four
vertices I2(g,+); contradiction.

We can think of the presence of an I-set in the independent set as denoting
that the genotype it represents is resolved using the haplotypes to which it is
attached. Hence, every haplotype that is used for at least one resolution will
not be in the independent set. In addition, unused haplotypes will be in the
independent set. Hence, a maximum independent set will try and minimise
the number of haplotypes used to resolve the given genotypes. Thus:

MaxBIS(B) = 4n + (|H| − PH(G)). (3.1)

We can thus use a polynomial-time algorithm for MaxBIS to compute PH(G).

Running time

The above algorithm can be implemented in time O(mn log(n) + n
3
2).

First we build the graph B. We can without too much trouble build a graph
representation of B - that combines adjacency-matrix and adjacency-list fea-
tures - in O(mn log(n)) time. For each g ∈ G, add its corresponding I-set(s)
and add the (at most) four haplotypes corresponding to g, without eliminat-
ing duplicates, and at all times efficiently maintaining adjacency information.
Then sort, in O(mn log(n)) time, the list of haplotypes and eliminate duplicate
haplotypes (by merging their adjacency information into one single haplotype).

A maximum independent set in a bipartite graph can be constructed from a
maximum matching. A maximum matching in B can be found in time O(n

3
2)

by the algorithm in [Hop73] (this algorithm runs in time O(
√
|V ||E|) and in

our case |V | = O(n) and |E| = O(n)). Once the maximum matching is found,
one needs O(|E|+ |V |) time to find a maximum independent set [Gav77]. Thus
finding a maximum independent set takes O(n

3
2) time overall.

3.3.2 Minimum Perfect Phylogeny Haplotyping

This section shows that also MPPH(2, ∗) can be solved in polynomial time.

Minimum Perfect Phylogeny Haplotyping (MPPH)

Input: A genotype matrix G.
Output: A haplotype matrix H with a minimum number of rows that re-

solves G and admits a perfect phylogeny.

3.3. POLYNOMIAL-TIME ALGORITHMS 49

Recall that a haplotype matrices admits a perfect phylogeny if and only if it
does not contain the forbidden submatrix:

F =


1 1
0 0
1 0
0 1

 .

We start with a definition.

Definition 3.1. For two columns of a genotype matrix a reduced resolution
of these columns is the result of applying to the submatrix induced by these
columns the following operations until none is applicable: (1) delete one of two
identical rows and (2) apply one of the replacement rules[
2 a

]
→

[
1 a

0 a

]
,
[
2 2

]
→

[
1 1
0 0

]
and

[
2 2

]
→

[
1 0
0 1

]

for a ∈ {0, 1}.

Two reduced resolutions are regarded as identical if one of them can be ob-
tained from the other by permuting its rows. Two columns can have different
reduced resolutions if there is a genotype with a 2 in both these columns. The
reduced resolutions of a column pair of a genotype matrix G are submatrices
of (or equal to) the forbidden matrix F . They represent all possibilities for the
resolution of G w.r.t. that column pair. More precisely, if H resolves G and
H[i, j] denotes the submatrix of H containing its ith and jth column, then
collapsing identical rows in H[i, j] gives a reduced resolution of the ith and
jth column of G.

Theorem 3.5. The problem MPPH(2, ∗) can be solved in polynomial time.

Proof. We reduce MPPH(2, ∗) to PH(2,*), which can be solved in polyno-
mial time by the previous section (and by [Lan06]). Let G be an instance of
MPPH(2, ∗). We may assume that all rows of G are distinct.

Take the submatrix of any two columns of G. If it does not contain a [2 2]
row, then in terms of Definition 3.1 there is a unique reduced resolution. If G
contains two or more [2 2] rows then, since by assumption all genotypes are

distinct, G has

[
2 2 0
2 2 1

]
and therefore

[
2 0
2 1

]
as a submatrix, which can

only be resolved by a haplotype matrix containing the forbidden submatrix F .
It follows that in this case the instance is infeasible. If it contains exactly one
[2 2] row, then there are clearly exactly two reduced resolutions. Thus we may
assume that for each column pair there are at most two reduced solutions.

50 CHAPTER 3. POPULATION HAPLOTYPING

Observe that if for some column pair all reduced resolutions are equal to F
the instance is again infeasible. On the other hand, if no column pair has
F as a reduced resolution then MPPH(2, ∗) is equivalent to PH(2, ∗) because
any minimal haplotype matrix H that resolves G admits a perfect phylogeny.
Finally, consider a column pair with two reduced resolutions, one of them
containing F . Because there are two reduced resolutions there is a genotype
g with a 2 in both columns (and in no other columns). Let h1 and h2 be the
haplotypes that correspond to the resolution of g that does not lead to F in
these two columns. Then we replace g in G by h1 and h2, ensuring that a
minimal haplotype matrix H resolving G does not have F as a submatrix in
these two columns.

Repeating this procedure for every column pair either tells us that the instance
G is infeasible or creates a genotype matrix G′ such that any haplotype matrix
H resolves G′ if and only if H resolves G and H admits a perfect phylogeny
(assuming that H does not contains rows that are not used in the resolution
of G′).

The reduction takes O(nm2) time since all reduced resolutions have to be com-
puted for each column-pair. Using the algorithm from [Lan06] as a subroutine
to solve the resulting PH(2, ∗) problem instance, we get an overall running
time of O(m2n + n

3
2), for an n×m input matrix.

Theorem 3.6. The problem MPPH(∗, 1) can be solved in polynomial time.

Proof. Similar to the proof of Theorem 3.5 we reduce MPPH(∗, 1) to PH(∗, 1).
As there, consider for any pair of columns of the input genotype matrix G its
reduced resolutions, according to Definition 3.1. Since G has at most one 2
per column there is at most one genotype with 2s in both columns. Hence
there are at most two reduced resolutions. If all reduced resolutions are equal
to the forbidden submatrix F the instance is infeasible. If on the other hand
no column pair has F as a reduced resolution then in fact MPPH(∗, 1) is
equivalent to PH(∗, 1), because any haplotype matrix H resolving G admits a
perfect phylogeny (again assuming that H does not contain rows that are not
used in the resolution of G).

As in the proof of Theorem 3.5 we are left with considering column pairs for
which one of the two reduced resolutions is equal to F . For such a column
pair there must be a genotype g that has 2s in both these columns. The other
genotypes have only 0s and 1s in them. Suppose we get a forbidden submatrix
F in these columns of the solution if g is resolved by haplotypes h1 and h2,
where h1 has a and b and therefore h2 has 1 − a and 1 − b in these columns,
a, b ∈ {0, 1}. We will change the input matrix G such that if g gets resolved by
such a forbidden resolution the haplotypes involved in that resolution are not
consistent with any other genotypes. We do this by adding an extra column
to G as follows. The genotype g gets a 1 in this new column. Every genotype
with a and b or with 1− a and 1− b in the considered columns gets a 0 in the

3.3. POLYNOMIAL-TIME ALGORITHMS 51

new column. Every other genotype gets a 1 in the new column. For example,
the matrix

2 2
0 1
1 0
1 1

 gets one extra column and becomes


2 2 1
0 1 1
1 0 1
1 1 0

 .

Denote by Gmod the result of modifying G by adding such a column for every
pair of columns with exactly one ‘bad’ and one ‘good’ reduced resolution. It
is not hard to see that any optimal solution to PH(∗, 1) on Gmod can be trans-
formed into a solution to MPPH(∗, 1) on G of the same cardinality. Indeed,
any two haplotypes used in a forbidden resolution of a genotype g are not con-
sistent with any other genotype of Gmod, and hence may be replaced by two
other haplotypes resolving g in a non-forbidden way, not increasing the total
number of haplotypes. Now, let H be an optimal solution to MPPH(∗, 1) on
G. We can modify H to obtain a solution to PH(∗, 1) on Gmod of the same
cardinality as follows. We modify every haplotype in H in the same way as
the genotypes it resolves (if a genotype can be resolved in several ways then
we choose one resolution arbitrarily). From the construction of Gmod it follows
that two compatible genotypes are only modified distinctly if the haplotype
they are both consistent with is in a forbidden resolution. However, in H no
genotypes are resolved with a forbidden resolution since H is a solution to
MPPH(∗, 1). We conclude that optimal solutions to PH(∗, 1) on Gmod corre-
spond to optimal solutions to MPPH(∗, 1) on G and hence the latter problem
can be solved in polynomial time, by Theorem 3.3.

The reduction takes O(nm2) time and increases the number of columns (in the
worst case) quadratically. If we use the algorithm from the proof of Lemma 3.2
as a subroutine to solve the resulting PH(∗, 1) problem instance we thus get
an overall running time of O(n3m2), for an n×m input matrix.

The questions remain whether PH(∗, 2) and MPPH(∗, 2) are polynomial-time
solvable. Unfortunately, we have not found the answer to these complexity
questions. However, the borders have been pushed slightly further. In [Sha06]
PH(∗, 2) is shown to be polynomially solvable if the input genotypes have the
complete graph as compatibility graph, we call this problem PH(∗, 2)-C1. We
will give the counterpart result for MPPH(∗, 2)-C1.

Let G be an n×m MPPH(∗, 2)-C1 input matrix. Since the compatibility graph
is a clique, every column of G contains either only 1s and 2s (a 1-column) or
only 0s and 2s. If we replace in every 1-column of G the 1s by 0s and mark
the SNP corresponding to this column ‘flipped’, then we obtain a problem
on a {0, 2}-matrix G′. This problem is equivalent because of the following.
If we take any solution H to MPPH(∗, 2)-C1 on input G′ and change all 0s
in columns corresponding to flipped SNPs to 1s then we obtain a solution of

52 CHAPTER 3. POPULATION HAPLOTYPING

MPPH(∗, 2)-C1 on input G, and vice versa. From now on we assume that the
input matrix G contains only 0s and 2s.

If we assume moreover that n ≥ 3, which we do from here on, the trivial
haplotype ht defined as the all-0 haplotype of length m is the only haplotype
consistent with all genotypes in G.

We define the restricted compatibility graph CR(G) of G as follows. As in
the normal compatibility graph, the vertices of CR(G) are the genotypes of G.
However, there are fewer edges: an edge {g, g′} is only in CR(G) if g ∼h g′ for
some h 6= ht, or, equivalently, if there is a column where both g and g′ have a
2. The difference with the normal compatibility graph is thus that there is no
edge between two genotypes if they share only the trivial haplotype.

Lemma 3.3. If G is a feasible instance of MPPH(∗, 2)-C1 then every vertex
in CR(G) has degree at most 2.

Proof. Any vertex of degree higher than 2 in CR(G) implies the existence in
G of submatrix:

B =


2 2 2
2 0 0
0 2 0
0 0 2

 .

It is easy to verify that no resolution of this submatrix permits a perfect
phylogeny.

Suppose that instance G of any PH or MPPH problem has two identical
columns. It is easy to see that any haplotype matrix H resolving G can
be modified, without introducing a forbidden submatrix, to make the corre-
sponding columns in H equal as well (simply delete one column and duplicate
another). It follows that in solving any PH or MPPH problem we can start
with collapsing identical columns. In particular this is true for MPPH(∗, 2)-
C1, which leads to the first step of the algorithm A that we propose for solving
MPPH(∗, 2)-C1:

Step 1 of A: Collapse identical columns in G.

From now on, we assume that there are no identical columns. Denote by
G0, G1 and G2 the sets of genotypes in G with, respectively, degree 0,1, and
2 in CR(G). For any genotype g of degree 1 in CR(G) there is exactly one
genotype with a 2 in the same column as g. Because there are no identical
columns, it follows that any genotype g of degree 1 in CR(G) can have at most
two 2s. Similarly any genotype of degree 2 in CR(G) has at most three 2s.
Accordingly we define G1

1 and G2
1 as the genotypes in G1 that have one 2 and

two 2s, respectively, and similarly G2
2 and G3

2 as the genotypes in G2 with two
and three 2s, respectively.

3.3. POLYNOMIAL-TIME ALGORITHMS 53

The following lemma states how genotypes in these sets must be resolved if
no submatrix F is allowed in the solution. If genotype g has k 2s we denote
by g[a1, a2, . . . , ak] the haplotype with entry ai in the position where g has its
i-th 2 and 0 everywhere else.

Lemma 3.4. A haplotype matrix is a feasible solution to MPPH(∗, 2)-C1 if
and only if all genotypes are resolved in one of the following ways:

(i) A genotype g ∈ G0 ∪G1
1 is resolved by the haplotypes g[1] and g[0] = ht (or

just by ht if g = ht).
(ii) A genotype g ∈ G2

2 is resolved by g[0, 1] and g[1, 0].
(iii) A genotype g ∈ G2

1 is either resolved by g[0, 0] = ht and g[1, 1] or by g[0, 1]
and g[1, 0].
(iv) A genotype g ∈ G3

2 is either resolved by g[1, 0, 0] and g[0, 1, 1] or by g[0, 1, 0]
and g[1, 0, 1] (assuming that the two neighbours of g have a 2 in the first two
positions where g has a 2).

Proof. A genotype g ∈ G2
2 has degree 2 in CR(G), which implies the existence

in G of a submatrix:

D =
g

g′

g′′

2 2
2 0
0 2

 .

Resolving g with g[0, 0] and g[1, 1] clearly leads to the forbidden submatrix
F in the haplotype matrix because g′ needs a haplotype with 1 and 0 and
g′′ needs a haplotype with 0 and 1 in these columns. Similarly, resolving a
genotype g ∈ G3

2 with g[0, 0, 1] and g[1, 1, 0] or with g[0, 0, 0] and g[1, 1, 1]
leads to a forbidden submatrix in the first two columns where g has a 2. It
follows for the cases (ii) and (iv) that resolving the genotypes in a way other
than described in the lemma yields a haplotype matrix which does not admit
a perfect phylogeny. The cases (i) and (iii) just give the unique resolution.

Now suppose that all genotypes are resolved as described in the lemma and
assume that there is a forbidden submatrix F in the solution. Without loss of
generality, we assume F can be found in the first two columns of the solution
matrix. We may also assume that no haplotype can be deleted from the
solution. Then, since F contains [1 1], there is a genotype g ∈ G starting
with [2 2]. Since there are no identical columns there are only two possibilities.
The first possibility is that there is exactly one other genotype g′ with a 2 in
exactly one of the first two columns. Since all genotypes different from g and
g′ start with [0 0], none of the resolutions of g ∈ G creates the complete
submatrix F . Contradiction. The other possibility is that there is exactly one
genotype with a 2 in the first column and exactly one other genotype with a 2
in the second column, i.e. we have the submatrix D. Then g ∈ G3

2 or g ∈ G2
2

54 CHAPTER 3. POPULATION HAPLOTYPING

and, according to (ii) and (iv), g is resolved by a haplotype with 0 and 1 and
a haplotype with 1 and 0 in the first two columns. Because no other genotype
can be resolved by a haplotype with 1s in the first two columns, a resolution
does not contain the forbidden submatrix in the first two columns.

Lemma 3.5. Let G be an instance of MPPH(∗, 2) and G2
1, G3

2 as defined
above.
(i) Any nontrivial haplotype is consistent with at most two genotypes in G.
(ii) A genotype g ∈ G2

1 ∪G3
2 must be resolved using at least one haplotype that

is not consistent with any other genotype.

Proof. (i) Let h be a nontrivial haplotype. There is a column where h has a 1
and there are at most two genotypes with a 2 in that column.
(ii) A genotype g ∈ G2

1 ∪G3
2 has a 2 in a column that has no other 2s. For its

resolution it needs a haplotype with a 1 in this column and this haplotype is
not consistent with any other genotypes.

A haplotype that is only consistent with g is called a private haplotype of g.
Based on (i) and (ii) of Lemma 3.4 we propose the next step of A:

Step 2 of A: Resolve all g ∈ G1
1 ∪ G2

2 by the unique haplotypes allowed to
resolve them according to Lemma 3.4. Also resolve each g ∈ G0 with ht and
the complement of ht with respect to g. This leads to a partial haplotype
matrix Hp

2 .

The next step of A is based on Lemma 3.5 (ii).

Step 3 of A: For each g ∈ G2
1∪G3

2 with g ∼h′ g′ for some g′ and some h′ ∈ Hp
2

that is allowed to resolve g according to Lemma 3.4, resolve g by adding the
complement h′′ of h′ w.r.t. g to the set of haplotypes, i.e. set Hp

2 := Hp
2 ∪{h′′},

and repeat this step as long as new haplotypes get added. This leads to partial
haplotype matrix Hp

3 .

Notice that if after Step 3 there are any unresolved genotypes left, then they
can not be resolved by haplotypes from Hp

3 . Let us denote this set of leftover,
unresolved genotypes by GL, the degree 1 vertices among those by GL1 ⊆
G2

1, and the degree 2 vertices among those by GL2 ⊆ G3
2. The restricted

compatibility graph induced by GL, which we denote by CR(GL) consists of
paths and circuits. We first give the final steps of algorithm A and argue
optimality afterwards.

Step 4 of A: Resolve each cycle in CR(GL), necessarily consisting of GL2-
vertices, by starting with an arbitrary vertex and, following the cycle, resolving
each next pair g, g′ of vertices by haplotype h 6= ht such that g ∼h g′ and the
two complements of h w.r.t. g and g′ respectively. Note that h has a 1 in the
column where both g and g′ have a 2 and otherwise 0. It follows easily that
g and g′ are both allowed to use h (and its complement) according to (iv) of
Lemma 3.4. In case of an odd cycle the last vertex is resolved by any pair of
haplotypes that is allowed to resolve it.

3.3. POLYNOMIAL-TIME ALGORITHMS 55

Step 5 of A: Resolve each path in CR(GL) with both endpoints in GL1 by first
resolving the GL1 endpoints by the trivial haplotype ht and the complements
of ht w.r.t. the two endpoint genotypes, respectively. The remaining path
contains only GL2-vertices and is resolved according to Step 6.

Step 6 of A: Resolve each remaining path by starting in (one of) its GL2-
endpoint(s), and following the path, resolving each next pair g, g′ of vertices as
in Step 4 (i.e. by haplotype h 6= ht such that g ∼h g′ and the two complements
of h w.r.t. g and g′ respectively). In case of a path with an odd number of
vertices, resolve the last vertex by any pair of haplotypes that is allowed to
resolve it in case it is a GL2-vertex, and resolve it by the trivial haplotype and
its complement w.r.t. the vertex in case it is a GL1 vertex.

By construction the haplotype matrix H resulting from A resolves G. In
addition, from Lemma 3.4 it follows that H admits a perfect phylogeny.

To argue minimality of the solution, first observe that the haplotypes added in
Step 2 and Step 3 are unavoidable by Lemma 3.4 (i) and (ii) and by Lemma 3.5
(ii). Lemma 3.5 tells us moreover that the resolution of a cycle of k genotypes
in GL2 requires at least k+dk

2 e haplotypes that can not be used to resolve any
other genotypes in GL. This proves optimality of Step 4. To prove optimality
of the last two steps we need to take into account that genotypes in GL1 can
potentially share the trivial haplotype. Observe that to resolve a path with k
vertices one needs at least k + dk

2 e haplotypes. Indeed A does not use more
than that number of haplotypes in Steps 5 and 6. Moreover, since these paths
are disjoint, they cannot share haplotypes for resolving their genotypes except
for the endpoints if they are in GL1, which can share the trivial haplotype.
Indeed, A exploits the possibility of sharing the trivial haplotype in a maximal
way, except on a path with an even number of vertices and one endpoint in
GL1. Such a path, with k (even) vertices, is resolved in A by 3

2k haplotypes
that can not be used to resolve any other genotypes. The degree 1 endpoint
might alternatively be resolved by the trivial haplotype and its complement
w.r.t. the corresponding genotype, adding the latter private haplotype, but
then for resolving the remaining path with k− 1 (odd) vertices only from GL2

we still need k − 1 + dk−1
2 e, which together with the private haplotype of the

degree 1 vertex gives 3k
2 haplotypes as well (not even counting ht).

As a result we have polynomial-time solvability of MPPH(∗, 2)-C1.

Theorem 3.7. MPPH(∗, 2) is solvable in polynomial time if the compatibility
graph is a clique.

56 CHAPTER 3. POPULATION HAPLOTYPING

3.4 Approximation Algorithms

In this section we construct polynomial time approximation algorithms for PH
and MPPH, where the accuracy depends on the number of 2s per column of
the input matrix. We describe genotypes without 2s as trivial genotypes, since
they have to be resolved in a trivial way by one haplotype. Genotypes with
at least one 2 will be described as nontrivial genotypes. We write PHnt and
MPPHnt to denote the restricted versions of the problems where each genotype
is nontrivial. We make this distinction between the problems because we have
better lower bounds (and thus approximation ratios) for the restricted variants.

PH and MPPH where all Input Genotypes are Nontrivial

To prove approximation guarantees we need good lower bounds on the number
of haplotypes in the solution. We start with two bounds from [Sha06], whose
proof we give because the first one is short but based on a crucial observation,
and the second one was incomplete in [Sha06]. We use these bounds to obtain
a different lower bound that we need for our approximation algorithms.

Lemma 3.6. [Sha06] Let G be an n×m instance of PHnt (or MPPHnt). Then
at least

LBsqrt(n) =
⌈

1 +
√

1 + 8n

2

⌉
haplotypes are required to resolve G.

Proof. The proof follows directly from the observation that q haplotypes can
resolve at most

(
q
2

)
= q(q − 1)/2 nontrivial genotypes.

Lemma 3.7. [Sha06] Let G be an n × m instance of PHnt(∗, `), for some
` ≥ 1, such that the compatibility graph of G is a clique. Then at least

LBsha(n, `) =
⌈

2n

` + 1
+ 1

⌉
haplotypes are required to resolve G.

Proof. Recall from the previous section that, after relabelling if necessary (i.e.
flipping SNPs), the trivial haplotype ht is the all-0 haplotype and is consistent
with all genotypes. Suppose a solution of G has q non-trivial haplotypes.
Observe that ht can be used in the resolution of at most q genotypes. Also
observe that each non-trivial haplotype can be used in the resolution of at
most ` genotypes. Now distinguish two cases. First consider the case where
ht is in the solution. Then from the two observations above it follows that
n ≤ (q + `q)/2 and hence the solution consists of at least q +1 ≥ 2n/(`+1)+1
haplotypes and the result follows. Now consider the second case i.e. where

3.4. APPROXIMATION ALGORITHMS 57

ht is not in the solution. Then we have that n ≤ `q
2 and hence that the

solution consists of at least 2n
` haplotypes. If n ≥ 1

2`(` + 1) we have that
1 ≤ 2n

`(`+1) = 2n
` −

2n
`+1 . This implies that 2n

` ≥
2n
`+1 +1, and the claim follows. If

n < 1
2`(`+1) then this implies that ` >

√
1+8n−1

2 . Combining this with that by
Lemma 3.6 q ≥

√
1+8n+1

2 gives that (`+1)(q−1) > 1
4 (
√

1 + 8n+1)(
√

1 + 8n−1),
which is equal to 2n. It follows that q > 2n

`+1 + 1.

The LBsha bound has been proven only for PHnt (and MPPHnt) instances
where the compatibility graph is a clique. We now prove a different bound
which, in terms of cliques, is slightly weaker (for large n) than LBsha, but
which allows us to generalise the bound to more general inputs. (Indeed it
remains an open question whether LBsha applies as a lower bound not just for
cliques but also for general instances.)

Lemma 3.8. Let G be an n×m instance of PHnt(∗, `), for some ` ≥ 1. Then
at least

LBnt
mid(n, `) =

⌈
2(n + `)(` + 1)

`(` + 3)

⌉
haplotypes are required to resolve G.

Proof. Let C(G) be the compatibility graph of G. We may assume without
loss of generality that C(G) is connected. First consider the case where C(G) is
a clique. If n ≥ `(` + 1)/2, it suffices to notice that LBnt

mid(n, `) ≤ LBsha(n, `)
for each value of ` ≥ 1, since the function

f(n) =
2n

` + 1
+ 1− 2(n + `)(` + 1)

`(` + 3)

is equal to 0 if n = `(` + 1)/2 and has nonnegative derivative f ′(n) = 2
`+1 −

2 `+1
`(`+3) ≥ 0.

Secondly, if 1 ≤ n ≤ `(` + 1)/2, straightforward but tedious calculations show
that for all ` ≥ 1 the function

F (n) =
1 +
√

1 + 8n

2
− 2(n + `)(` + 1)

`(` + 3)

has value 0 for n = `(` + 1)/2 and for some n in the interval [0, 1], whereas
in between these values it has positive value. Hence, LBnt

mid(n, `) ≤ LBsqrt(n)
for 1 ≤ n ≤ `(` + 1)/2.

To prove that the bound also holds if C(G) is not a clique we use induction on
n. Suppose that for each n′ < n the lemma holds for all n′×m instances G′ of
PHnt(∗, `′) for every m and `′. Since C(G) is not a clique there exist two geno-
types g1 and g2 in G and a column j such that g1(j) = 0 and g2(j) = 1. Given
that G is a PHnt(∗, `) instance t ≤ ` genotypes have a 2 in column j. Deleting

58 CHAPTER 3. POPULATION HAPLOTYPING

these t genotypes yields an instance Gd with disconnected compatibility graph
C(Gd), since the absence of a 2 in column j prevents the existence of any path
from g1 to g2. Let C(Gd) have p ≥ 2 components C(G1), ..., C(Gp), and let
ni ≥ 1 denote the number of genotypes in Gi. Thus, n = n1 + ... + np + t.
We use the induction hypothesis on G1, . . . , Gp to conclude that the number
of haplotypes required to resolve G is at least

p∑
i=1

⌈
2(ni + `)(` + 1)

`(` + 3)

⌉
≥

⌈
2(

∑p
i=1 ni + p`)(` + 1)

`(` + 3)

⌉
≥

⌈
2(

∑p
i=1 ni + 2`)(` + 1)

`(` + 3)

⌉
≥

⌈
2(

∑p
i=1 ni + t + `)(` + 1)

`(` + 3)

⌉
=

⌈
2(n + `)(` + 1)

`(` + 3)

⌉
.

Corollary 3.1. Let G be an n ×m instance of PHnt(∗, `) or MPPHnt(∗, `),
for some ` ≥ 1. Any feasible solution for G is within a ratio ` + 2− 2

`+1 from
optimal.

Proof. Any solution for G has at most 2n haplotypes. By the previous lemma
such a solution achieves a ratio of 2n`(`+3)

2(n+`)(`+1) ≤
`(`+3)

`+1 = ` + 2 − 2
`+1 . In the

case of MPPH we can check whether feasible solutions exist, and if so obtain
such a solution, by using the algorithm in for example [Din06].

Not surprisingly, better approximation ratios can be achieved. The following
simple algorithm computes approximations of PHnt(∗, `). (The algorithm does
not work for MPPH, however.)

Algorithm: PHntM
Step 1: construct the compatibility graph C(G).
Step 2: find a maximal matching M in C(G) (i.e. a matching M such that
there are no edges between two vertices not covered by M).
Step 3: for every edge {g1, g2} ∈ M , resolve g1 and g2 by in total 3 hap-
lotypes: any haplotype consistent with both g1 and g2, and its complements
with respect to g1 and g2.
Step 4: resolve each remaining genotype by two haplotypes.

Theorem 3.8. PHntM computes a solution to PHnt(∗, `) in polynomial time
within an approximation ratio of c(`) = 3

4` + 7
4 −

3
2

1
`+1 , for every ` ≥ 1.

Proof. Since constructing C(G) given G takes O(n2m) time and finding a
maximal matching in any graph takes linear time, O(n2m) running time follows
directly.

3.4. APPROXIMATION ALGORITHMS 59

Let q be the size of the maximal matching. Then PHntM gives a solution with
3q + 2(n− 2q) = 2n− q haplotypes. Since the vertices not covered by M form
an independent set of size n− 2q, any solution must contain at least 2(n− 2q)
haplotypes to resolve the genotypes in this independent set. The theorem thus
holds if 2n−q

2n−4q ≤ c(`). If 2n−q
2n−4q > c(`), implying that q > 2−2c(`)

1−4c(`)n, we use the
lower bound of Lemma 3.8 to obtain

2n− q

LBnt
mid(n, `)

<
2n− 2−2c(`)

1−4c(`)n

LBnt
mid(n, `)

<
(2n− 2−2c(`)

1−4c(`)n)`(` + 3)

2n(` + 1)

=
3`c(`)

4c(`)− 1
` + 3
` + 1

= c(`).

The last equality follows directly from (4c(`)− 1)(` + 1) = 3`(` + 3).

PH and MPPH where not all Input Genotypes are Nontrivial

Given an instance G of PH or MPPH containing n genotypes, nnt denotes the
number of nontrivial genotypes in G and nt the number of trivial genotypes;
clearly n = nnt + nt.

Lemma 3.9. Let G be an n×m instance of PH(∗, `), for some ` ≥ 2, where
the compatibility graph of the nontrivial genotypes in G is a clique, G is not
equal to a single trivial genotype, and no nontrivial genotype in G is the sum
of two trivial genotypes in G. Then at least

LBmid(n, `) =
⌈

n

`
+ 1

⌉
haplotypes are needed to resolve G.

Proof. Note that the lemma holds if nt ≥ n
` + 1. So we assume from now on

that nt < n
` + 1.

We first prove that the bound holds for nnt ≤ `. Combining this with nt <
1
2n+1 (since ` ≥ 2) gives that n < 2`+2. Thus n

` +1 < 4. Hence if nt ≥ 4 then
we are done. Thus we only have to consider cases where both nt ∈ {0, 1, 2, 3}
and ` ≥ max{2, nnt}. We verify these cases in Table 3.2; note the importance
of the fact that no nontrivial genotype is the sum of two trivial genotypes in
verifying that these are correct lower bounds. (Also, there is no nt = 1, nnt = 0
case because of the lemma’s precondition.)

We now prove the lemma for nnt > `. Note that in this case there exists
a unique haplotype (the trivial haplotype ht) consistent with all nontrivial

60 CHAPTER 3. POPULATION HAPLOTYPING

Table 3.2: Case nt < 4, nnt ≤ ` in proof of Lemma 3.9

nt nnt dn/` + 1e
0 1 2
0 z ≥ 2 ≤ dz/z + 1e = 2
1 1 2
1 z ≥ 2 ≤ d(z + 1)/z + 1e = 3
2 0 2
2 1 ≤ 3
2 z ≥ 2 ≤ d(z + 2)/z + 1e = 3
3 0 ≤ 3
3 1 ≤ 3
3 2 ≤ 4
3 z ≥ 3 ≤ d(z + 3)/z + 1e = 3

genotypes. Suppose, by way of contradiction, that N = Nt + Nnt is the size
of the smallest instance G′ for which the bound does not hold. Let H be an
optimal solution for G′ and let h = |H|.
Observe firstly that N = 1 (mod `), because if this is not true we have that
LBmid(N − 1, `) = LBmid(N, `) and we can find a smaller instance for which
the bound does not hold, simply by removing an arbitrary genotype from G′,
contradicting the minimal choice of N .

Similarly we argue that h = LBmid(N, `) − 1, since if h ≤ LBmid(N, `) − 2
we could remove an arbitrary genotype to yield a size N − 1 instance and still
have that h < LBmid(N − 1, `).

We choose a specific resolution of G′ using H and represent it as a haplotype
graph. The vertices of this graph are the haplotypes in H. For each nontrivial
genotype g ∈ G′ there is an edge between the two haplotypes that resolve it.
For each trivial genotype g ∈ G′ there is a loop on the corresponding haplotype.
There are no edges between looped haplotypes because of the precondition that
no nontrivial genotype is the sum of two trivial genotypes.

From Lemma 5 of [Sha06] it follows that, with the exception of the possibly
present trivial haplotype and disregarding loops, each haplotype in the graph
has degree at most `. In addition, if an unlooped haplotype has degree less
than or equal to `, or a looped haplotype has degree (excluding its loop) strictly
smaller than `, then deleting this haplotype and all its at most ` incident edges
(genotypes) creates an instance G′′ containing at least N−` genotypes that can
be resolved using h− 1 haplotypes, yielding a contradiction to the minimality
of N . (Note that, because Nnt > `, it is not possible that the instance G′′ is
empty or equal to a single trivial genotype.)

The only case that remains is when, apart from the possibly present trivial

3.4. APPROXIMATION ALGORITHMS 61

haplotype, every haplotype in the haplotype graph is looped and has degree
` (excluding its loop). However, there are no edges between looped vertices
and they can therefore only be adjacent to the trivial haplotype, yielding a
contradiction.

Lemma 3.10. Let G be an n×m instance of PH(∗, `), for some ` ≥ 2, where
G is not equal to a single trivial genotype, and no nontrivial genotype in G is
the sum of two trivial genotypes in G. Then at least LBmid(n, `) haplotypes
are needed to resolve G.

Proof. Essentially the same inductive argument as used in Lemma 3.8 works:
it is always possible to disconnect the compatibility graph of G into at least two
components by removing at most ` nontrivial genotypes, and using cliques as
the base of the induction. The presence of trivial genotypes in the input (which
we can actually simply exclude from the compatibility graph) does not alter
the analysis. The fact that (in the inductive step) at least two components
are created, each of which contains at least one nontrivial genotype, ensures
that the inductive argument is not harmed by the presence of single trivial
genotypes (for which the bound does not hold).

Corollary 3.2. Let G be an n ×m instance of PH(∗, `) or MPPH(∗, `), for
some ` ≥ 2. Any feasible solution for G is within a ratio of 2` from optimal.

Proof. Immediate because 2n/(n/` + 1) < 2`. (As before the algorithm from
e.g. [Din06] can be used to generate feasible solutions for MPPH, or to deter-
mine that they do not exist.)

The algorithm PHntM can easily be adapted to solve PH(∗, `) approximately.

Algorithm: PHM
Step 1: remove from G all genotypes that are the sum of two trivial genotypes
Step 2: construct the compatibility graph C(G′) of the leftover instance G′.
Step 3: find a maximal matching M in C(G′).
Step 4: for every edge {g1, g2} ∈M , resolve g1 and g2 by three haplotypes if
g1 and g2 are both nontrivial and by two haplotypes if one of them is trivial.
Step 5: resolve each remaining nontrivial genotype by two haplotypes and
each remaining trivial genotype by its corresponding haplotype.

Theorem 3.9. PHM computes a solution to PH(∗, `) in polynomial time
within an approximation ratio of d(`) = 3

2` + 1
2 , for every ` ≥ 2.

Proof. Since constructing C(G) given G takes O(n2m) time and finding a
maximal matching in any graph takes linear time, O(n2m) running time follows
immediately.

Let q be the size of the maximal matching, n the number of genotypes after
Step 1 and nt the number of trivial genotypes in G′. Then PHM gives a solution

62 CHAPTER 3. POPULATION HAPLOTYPING

with 2n − q − nt haplotypes. Since the vertices not covered by the maximal
matching form an independent set of size n− 2q in C(G′), any solution must
contain at least n−2q haplotypes to resolve the genotypes in this independent
set. The theorem thus holds if 2n−q−nt

n−2q ≤ d(`). If 2n−q−nt

n−2q > d(`), implying

that q > (d(`)−2)n+nt

2d(`)−1 , we use the lower bound of Lemma 3.10 and obtain

2n− q − nt

LBmid(n, `)
<

2n− (d(`)−2)n+nt

2d(`)−1

dn
` + 1e

<
2n− (d(`)−2)n

2d(`)−1
n
`

=
3d(`)`

2d(`)− 1
= d(`).

The last equality follows from the observation that 2d(`)− 1 = 3`.

3.5 Conclusion and Open Problems

There remain a number of open problems to be solved. The complexity of
PH(∗, 2) and MPPH(∗, 2) is still unknown. An approach that might raise the
necessary insight is to study the PH(∗, 2)-Cq and MPPH(∗, 2)-Cq variants of
these problems (i.e. where the compatibility graph can be obtained from q
cliques, by identifying some of the vertices) for small q. If a complexity result
nevertheless continues to be elusive then it would be interesting to try and
improve approximation ratios for PH(∗, 2) and MPPH(∗, 2); might it even be
possible to find a PTAS (Polynomial-time Approximation Scheme) for each of
these problems? Note also that the complexity of PH(k, 2) and MPPH(k, 2)
remains open for constant k ≥ 3.

Another intriguing open question concerns the relative complexity of PH and
MPPH instances. Has PH(k, `) always the same complexity as MPPH(k, `) and
are both problems always equally hard to approximate? A related question
is whether it is possible to directly encode PH instances as MPPH instances,
and/or vice-versa, and if so whether/how this affects the bounds on the number
of 2s in columns and rows.

For hard PH(k, `) instances it would also be interesting to see if those ap-
proximation algorithms that yield approximation ratios as functions of k, can
be intelligently combined with the approximation algorithms in this chapter
(having approximation ratios determined by `), perhaps with superior approx-
imation ratios as a consequence. In terms of approximation algorithms for
MPPH there is a lot of work to be done because the approximation algorithms
presented in this chapter actually do little more than return an arbitrary fea-
sible solution. It is also not clear if the 2k−1-approximation algorithms for

3.5. CONCLUSION AND OPEN PROBLEMS 63

PH(k, ∗) can be attained (or improved) for MPPH. More generally, it seems
likely that big improvements in approximation ratios (for both PH and MPPH)
will require more sophisticated, input-sensitive lower bounds and algorithms.
What are the limits of approximability for these problems, and how far will
algorithms with formal performance-guarantees (such as in this chapter) have
to improve to make them competitive with dominant ILP-based methods?

Finally, with respect to MPPH, it could be good to explore how parsimonious
the solutions are that are produced by the various PPH feasibility algorithms,
and whether searching through the entire space of PPH solutions (as proposed
in [Vij06]) yields practical algorithms for solving MPPH.

64 CHAPTER 3. POPULATION HAPLOTYPING

65

Chapter 4

Phylogenetic Networks

4.1 Introduction

One of the ultimate goals in computational biology is to create methods that
can reconstruct evolutionary histories from biological data of currently living
organisms. The immense complexity of biological evolution makes this task
almost a hopeless one [Mor05], which has motivated researchers to focus first
on the simplest possible pattern of evolution. This least complicated shape of
an evolutionary history is the tree-shape. Now that treelike evolution has been
studied intensively, a logical next step is to consider slightly more complicated
evolutionary scenarios, gradually extending the complexity that our models can
describe. At the same time we also wish to take into account the parsimony
principle, which tells us that amongst all equally good explanations of our
data, one prefers the simplest one (see Section 1.3 and e.g. [Hei90]).

For a set of taxa (e.g. species or strains), a phylogenetic tree describes (a
hypothesis of) the evolution that these taxa have undergone. The taxa form
the leaves of the tree while the internal vertices represent events of genetic
divergence: one incoming branch splits into two (or more) outgoing branches.
These internal vertices can thus be seen as representing a common ancestor
of all taxa below it. This thesis focusses on binary trees, in which internal
vertices have two outgoing branches. More general trees can be used to describe
evolutionary histories in which the precise order of divergence is unclear, but
these will not be used in this thesis.

Phylogenetic networks extend the phylogenetic tree model with the extra pos-
sibility that two branches combine into one new branch. We call such an
event a reticulation, which can model any kind of non-treelike (also called
“reticulate”) evolutionary process such as recombination, hybridisation or lat-
eral gene transfer. In addition, phylogenetic networks can also be used to
describe evolutions that are believed to be tree-like when the precise shape

66 CHAPTER 4. PHYLOGENETIC NETWORKS

of this tree is not clear. In this case, reticulations can be used to display
different possible treelike evolutions in one figure. The recent years have
seen a rapidly growing interest in phylogenetic networks and their applica-
tion [Bar04; Mor04; Mor05; Hus06; Mak06; Gam08].

Level-k Networks
This model of a phylogenetic network allows for many different degrees of
complexity, ranging from networks that are equal, or almost equal, to a tree
to complex webs of frequently diverging and recombining lineages. We con-
sider two different measures for the complexity of a network. The first of these
measures is the total number of reticulations in the network. Secondly, we
consider the “level” of the network, which is (informally) an upper bound on
the number of reticulations per non-treelike part of the network. In graph the-
ory, a subgraph is called biconnected if it cannot be disconnected by deleting
a single vertex. A biconnected component is a maximal biconnected subgraph.
Formally, a network is a level-k network if it contains at most k reticulations
per biconnected component. Thus the level of networks restricts how inter-
woven the reticulations can be. In trees (i.e. level-0 networks) no reticulation
events occur; in level-1 networks all reticulation cycles must be disjoint. The
higher the level of the network, the more freedom in reticulation is allowed.
See for example Figure 4.1 for a level-2 network. Its nontrivial (i.e. contain-
ing at least three vertices) biconnected components are coloured grey. Level-1
networks have also been called galled trees [Gus04], gt-networks [Nak05] and
galled networks [Jan06a]. General level-k networks were first introduced by
Choy, Jansson, Sadakane and Sung [Cho05].

a b c d e f g h i j k l

Figure 4.1: An example of a level-2 network.

The focus on level is motivated by several factors. Firstly, level induces a hier-
archy on the space of networks with lower level networks being more “tree-like”
than higher-level networks. Identifying the position of candidate solutions (i.e.
networks) within this hierarchy, or finding the minimum level at which can-
didate solutions exist, communicates important structural information about
the solution space. Level minimisation, which derives its legitimacy from the
parsimony principle, can also be used in an implicit context e.g. to measure
the accuracy of input data. For example, if we expect the solution to be a tree,

4.1. INTRODUCTION 67

but only obtain higher level networks, this suggests that data errors lie in the
regions corresponding to the biconnected components. Secondly, from an algo-
rithmic perspective, focussing on lower-level networks can potentially lead to
polynomial-time solvability, better running-times and/or clearer mathematical
analysis. Finally, restricting level is useful for avoiding trivial (and unrealistic)
solutions. Indeed, several of the problems that are discussed in this chapter
can be trivially solved if we allow solutions with high enough level, but (as we
shall see) such solutions communicate no useful information.

Triplets
This chapter considers a triplet-based approach to construct directed phyloge-
netic networks. As input we take a collection of triplets: rooted phylogenetic
trees on size-3 subsets of the taxa, see Figure 4.2 for an example. These triplets
can be constructed by methods such as Maximum Parsimony [Swo98] or Max-
imum Likelihood [Gui03], that work accurately and fast for small numbers of
taxa. Another possibility is to infer the triplets from a set of phylogenetic
trees, possibly originating from different sources. However way the triplets are
obtained, the next step is to combine them into a single, large phylogenetic
network for all taxa. Designing algorithms for the latter task forms the subject
of this chapter. Triplet methods have become popular since they allow us to
solve certain problems in polynomial time, as will be elaborated on shortly.
Another advantage of these methods is that they provide the possibility to
combine different sorts of biological data.

x y z

Figure 4.2: One of three possible triplets on leaves x, y and z.

Triplet-based methods have been extensively studied in the literature. Aho
et al. [Aho81] gave a polynomial-time algorithm that constructs a tree from
triplets if there exists a tree that is consistent with all input triplets. This
positive result provided the stimulus for studying the applicability of triplet-
based methods to networks. Unfortunately, it has been shown that for level-1
networks the corresponding problem becomes NP-hard [Jan06a]. On the pos-
itive side, the same paper gives a polynomial-time algorithm for the problem
where the input is dense, i.e. there is at least one triplet in the input for every
size-3 subset of the taxa. A related problem that accommodates errors in the
triplets is finding a tree consistent with as many input triplets as possible. This
problem is NP-hard [Bry97; Jan01; Wu04], and approximation algorithms have
been explored both for the construction of trees [Ga̧s99] and level-1 networks
[Byr08; Jan06a]. For the construction of trees, also efficient heuristics (without

68 CHAPTER 4. PHYLOGENETIC NETWORKS

approximation guarantees) have been designed by Semple and Steel [Sem00],
Page [Pag02], Wu [Wu04] and Snir and Rao [Sni06]. The last algorithm (MAX
CUT triplets) is shown to outperform the (not triplet-based) method Matrix
Representation with Parsimony (MRP) [Rag92], which is popular in practice
[Bau92; Rag92; San98].

Complexity results
Section 4.3.1 of this thesis starts by giving a level-(n− 1) network that is con-
sistent with any triplet set on n leaves. This shows that, when there is no
bound on the level nor on the total number of reticulations, constructing net-
works from triplets is not an interesting problem (unless different restrictions
are imposed). The result is also used to explore an interesting uniqueness ques-
tion. Biologists are in general not only interested in finding a solution to their
problem, but are also eager to know whether this is the only possible solution
(and if not, how dissimilar different solutions are). It is therefore an important
open question to characterise which triplet sets uniquely define a phylogenetic
network. Section 4.3.2 gives some initial progress into answering this question
by giving, for each k, a level-k network that is uniquely defined by the set of
triplets it is consistent with. Section 4.3.3 shows how useful this result is in
the analysis of triplet methods. Firstly, it is used to generalise the result by
Jansson et al. that it is NP-hard to construct level-1 networks from general
triplet sets [Jan06a]. It is shown that this problem is in fact NP-hard for the
construction of level-k networks, for all k ≥ 1. Secondly, the unique networks
are used to prove that it is also NP-hard to construct level-k networks consis-
tent with a maximum number of input triplets from a dense triplet set, for all
k ≥ 0. This generalises the known result for level-0 [Bry97; Jan01; Wu04] to
all levels and in addition strengthens it by showing that the problem is even
NP-hard for dense triplet sets.

Algorithmic results
Sections 4.4 - 4.8 respond to the aforementioned intractability with a series of
positive results. These sections present various algorithms that can be used
to construct phylogenetic networks. Since it is NP-hard to construct networks
consistent with a maximum number of input triplets, it is interesting to develop
algorithms that run in exponential time. Wu described an exact algorithm
[Wu04] that finds a tree consistent with a maximum number of input triplets
in O(3n(n2 + m)) time, with m the number of triplets and n the number of
leaves. Section 4.4 extends this approach by giving an exact algorithm that
constructs level-1 networks and runs in time O(m4n).

Informally, simple networks are networks that consist of just one biconnected
component with leaves hanging from it. Jansson et al. showed how simple
level-1 networks can be constructed from dense triplet sets. In addition, they
showed how (in the dense case) general level-1 networks can be built by recur-
sively building simple level-1 networks [Jan06a]. It is still an important open
problem whether level-k networks can be built from dense triplet sets in poly-
nomial time for each fixed k. However, Section 4.5 shows that this problem

4.1. INTRODUCTION 69

is indeed polynomial-time solvable if we restrict to simple networks. In addi-
tion, Section 4.6 shows that even general level-2 networks can be built from
dense triplet sets in polynomial time. The latter algorithm has been applied
in practice to help identify the origin of an outbreak of the yeast Cryptococcus
gattii, which led to many infections and several fatalities on the Westcoast of
Canada.

Minimising reticulations has been well studied in the setting where the input
consists of (binary) sequences [Hei90; Son04; Son05a; Gus07]. For example,
Wang et al. considered the problem of finding a “perfect phylogeny” with a
minimum number of reticulations and showed that this problem is NP-hard
[Wan01]. Gusfield et al. showed that this problem can be solved in polynomial
time if restricted to level-1 networks [Gus04]. There are also several results
already about the version of the problem where the input consists of a set
of trees and the objective is to construct a network that is “consistent” with
each of the input trees. Baroni et al. give bounds on the minimum number
of reticulations needed to combine two trees [Bar05] and Bordewich and Sem-
ple showed that it is APX-hard to compute this minimum number [Bor07b].
However, there exists an exact algorithm [Bor07a] that runs reasonably fast
in many practical situations. If restricted to level-1 networks, the problem
becomes polynomial-time solvable even if there are more than two (but a fixed
number of) input trees [Huy05].

In relation to triplet-methods, minimising reticulations has been less well stud-
ied. In the reduction proving NP-hardness of constructing level-1 networks
from triplets [Jan06a, Theorem 7] only one reticulation is used. Thus, NP-
hardness of finding a network consistent with a non-dense triplet set that
contains a minimum number of reticulations follows immediately, if there are
no restrictions on the level of the constructed network. It is unknown whether
this problem becomes easier if the input triplet set is dense. However, in
Section 4.7 of this thesis the restriction of this problem to level-k networks
is considered and polynomial-time algorithms are given that construct level-1
and level-2 networks with a minimum number of reticulations from a dense
triplet set. The level-1 version MARLON (Minimum Amount of Reticulation
Level One Network) has been implemented, tested and applied to simulated
data, with promising results.

The last result of this thesis is presented in Section 4.8, where it is shown that
level-k networks can indeed be constructed in polynomial time for all fixed k in
the case that the input triplet set is exactly equal to the set of triplets consistent
with some level-k network. If that is the case then algorithm MINPITS can
find such a network that simultaneously minimises level and the total number
of reticulations used. The fact that in this case optimal solutions for both
measures coincide, is an interesting consequence of the extra assumption about
the input triplets.

The chapter is concluded in Section 4.9 with a list of interesting open problems

70 CHAPTER 4. PHYLOGENETIC NETWORKS

concerning the construction of level-k phylogenetic networks.

4.2 Preliminaries

A phylogenetic network (network for short) is defined as a directed acyclic
graph in which a single vertex has indegree 0 and outdegree 2 (the root) and all
other vertices have either indegree 1 and outdegree 2 (split vertices), indegree
2 and outdegree 1 (reticulations) or indegree 1 and outdegree 0 (leaves), where
the leaves are distinctly labelled.

A directed acyclic graph is connected (also called “weakly connected”) if there
is an undirected path (ignoring arc orientations) between any two vertices and
is biconnected if it contains no vertex whose removal disconnects the graph. A
biconnected subgraph H of a graph G is said to be a biconnected component if
there is no biconnected subgraph H ′ 6= H of G that contains H. A biconnected
component is called trivial if it is equal to two vertices connected by an arc.
An arc a = (u, v) of a network N is a cut-arc if its removal disconnects N and
it is trivial if v is a leaf. A vertex w is below an arc a = (u, v) (and below
vertex v) if there is a directed path from v to w.

Definition 4.1. A network is said to be a level-k network if each biconnected
component contains at most k reticulations.

To avoid “redundant” networks, we require every non-trivial biconnected com-
ponent of a network to have at least three outgoing arcs. The reason for this is
that a nontrivial biconnected component with two outgoing arcs can simply be
replaced by a single split-vertex (without loosing consistency with any triplet).

A level-k network is a strict level-k network if it is not a level-(k− 1) network.
Level-0 networks are called phylogenetic trees (trees for short); they have no
reticulations.

A triplet xy|z is a tree on leaves x, y and z such that the lowest common
ancestor of x and y is a proper descendant of the lowest common ancestor of
x and z, see Figure 4.2 on page 67.

For a network N , we use L(N) to denote the set of leaves of N . Thus, for
a triplet t, L(t) denotes the set of leaves of t. For a set of triplets T we use
(by extension) L(T) to denote the set of all leaves of all triplets in T , i.e.
L(T) =

⋃
t∈T L(t). Furthermore, we use n to denote the number of leaves in

T . For L′ ⊆ L(T) denote by T |L′ the set of triplets t ∈ T with L(t) ⊆ L′. A
set T of triplets is dense if it contains at least one triplet for each size-3 subset
of L(T). Whenever we refer to a path in a network we mean a directed path.

Definition 4.2. A triplet xy|z is consistent with a network N (interchange-
ably: N is consistent with xy|z) if N contains a subdivision of xy|z, i.e. if N
contains distinct vertices u and v and pairwise internally vertex-disjoint paths
u→ x, u→ y, v → u and v → z.

4.2. PRELIMINARIES 71

By extension, a set T of triplets is consistent with N (interchangeably: N is
consistent with T) if every triplet in T is consistent with N and L(T) = L(N).
For example, Figure 4.1 on page 66 is a level-2 network with two non-trivial
biconnected components, each of them containing two reticulations. This net-
work is consistent with (amongst others) the triplets bc|a, bd|h, hi|k and ki|h,
but is not consistent with dk|g, ac|b, gk|i or cg|e.
We introduce the class of simple level-k networks. Intuitively, these are the
basic building blocks of level-k networks in the sense that each non-trivial
biconnected component of a level-k network is in essence a simple level-` net-
work, for some ` ≤ k. These simple networks will be built by adding leaves to
“generators”, which we define formally as follows.

Definition 4.3. A simple level-k generator, for k ≥ 1, is a directed acyclic
biconnected multigraph, which has a single root (indegree 0 and outdegree 2),
precisely k reticulations (indegree 2 and outdegree at most 1) and apart from
that only split vertices (indegree 1 and outdegree 2).

The arcs of a generator and its vertices with indegree 2 and outdegree 0 are
labelled and called sides. Note that reticulations in generators are allowed
to have outdegree 0, while in networks reticulations always have outdegree 1.
The following lemma shows that the graphs in Figure 4.3 are the only simple
level-1 and simple level-2 generators. Here and in all subsequent figures, all
arcs are directed downwards. For ease of viewing, arrow heads will from now
on be omitted.

2a 2b 2c

A B

C

2d

D E

F

A
B

CD
E F

G H

A B

C D

E F

G

H

A

B C D

E
F

A B

C

1

Figure 4.3: The unique simple level-1 generator and the four simple level-2 generators.

Lemma 4.1. There is one simple level-1 generator and there are four simple
level-2 generators and these are depicted in Figure 4.3.

Proof. To see that graph 1 in Figure 4.3 is the only simple level-1 generator,
note firstly that a generator does (by definition) not contain leaves. Hence, the
head of each arc is either a split vertex or a reticulation vertex. A reticulation
can be the head of at most two arcs and a split vertex increases the number

72 CHAPTER 4. PHYLOGENETIC NETWORKS

of arcs that still need a head by one. The root vertex is the tail of two arcs
and there is precisely one reticulation, so the simple level-1 generator does
not contain any split vertices. The uniqueness of the simple level-1 generator
follows.

There remains the case of the simple level-2 generators. By the above reasoning
a simple level-2 generator has at most two split vertices; three or more split
vertices would mean that at least five arcs would need a reticulation vertex as
head, and two reticulations can be the head of at most four arcs. Similarly, a
level-2 generator must have at least one split vertex.

Case 1: one split vertex. Consider the two arcs leaving the root. It is
not possible that they both have the same reticulation r as head because then
the removal of r would disconnect the graph. So precisely one of these arcs
has a split vertex s as head and the other a reticulation. There are no other
split vertices so both arcs leaving s must have reticulations as head. The two
possibilities for this lead to 2a and 2d from Figure 4.3.

Case 2: two split vertices. Let (r, x) and (r, y) be the two arcs leaving
the root. It is again not possible that x and y are both equal to the same
reticulation. Consider the case where x and y are both equal to split vertices.
This creates four arcs that need a head, so all the arcs leaving x and y need
a reticulation as head. There is only one way to do this such that the graph
is biconnected; this creates 2c. There remains only the case when (without
loss of generality) x is a split vertex and y is a reticulation. Consider the two
arcs leaving x: (x, p) and (x, q) say. Then p and q are not both equal to the
same reticulation, because then the two arcs leaving the second split vertex
still need a head, and y can be the head of only one other arc. So (without loss
of generality) p is also a split vertex. Vertex q is not equal to y because then
the resulting graph would not be biconnected. So q and y are the children of
p. This gives 2b.

Computer calculations revealed the 65 simple level-3 generators [Kel08]. For
high k, the number of different simple level-k generators is huge. In Figure 4.4
are two examples; one with a maximum and one with a minimum number of
vertices and arcs.

Lemma 4.2. If G = (V,A) is a simple level-k generator then 2k ≤ |V | ≤ 3k−1
and 3k − 1 ≤ |A| ≤ 4k − 2.

Proof. Suppose G contains r0 vertices with indegree 2 and outdegree 0, r1

vertices with indegree 2 and outdegree 1 and s vertices with indegree 1 and
outdegree 2. The sum of the indegrees of all vertices is s+2r1 +2r0, while the
sum of their outdegrees is 2+2s+r1. Clearly, the sum of all outdegrees equals
the sum of all indegrees. It follows that s = r1 + 2r0− 2. Because r0 + r1 = k,
it follows that that the total number of vertices equals:

|V | = 1 + s + r1 + r0 = 2k − 1 + r0 .

4.2. PRELIMINARIES 73

Figure 4.4: Two examples of simple level-k generators; the left one has a maximum number
of vertices and arcs and the right one a minimum number. Remember that all arcs are
directed downwards.

The total indegree, hence the total number of arcs of G is:

|A| = s + 2r1 + 2r0 = 3k − 2 + r0 .

The number of vertices and arcs in a simple level-k generator thus only depends
on k and r0. Since 1 ≤ r0 ≤ k the lemma follows.

Definition 4.4. A simple level-k network, for k ≥ 1, is a network obtained by
applying the following transformation (called “leaf hanging”) to some simple
level-k generator G:

1. first, for each pair u, v of vertices in G connected by a single arc (u, v),
replace (u, v) by a path with ` ≥ 0 internal vertices and for each such
internal vertex w add a new leaf x and an arc (w, x);

2. second, for each pair u, v of vertices in G connected by two arcs replace
one such arc by a path with ` ≥ 1 internal vertices and for each such
internal vertex w add a new leaf x and an arc (w, x); and treat the other
arc between u and v as in step 1;

3. third, for each vertex v of G with indegree 2 and outdegree 0 add a new
leaf y and an arc (v, y).

Note that it is not necessary to hang leaves on all sides since in step 1 it is
allowed to replace an arc by a path with no internal vertices, which does not
change the network. The reason that step 2 is slightly different from step 1 is
that the generator might contain multiple arcs while networks are not allowed
to contain multiple arcs. Therefore, for each pair of multiple arcs, at least

74 CHAPTER 4. PHYLOGENETIC NETWORKS

Figure 4.5: Examples of a simple level-1 network and four simple level-2 networks. From
left to right, these networks are of type 1, 2a, 2b, 2c and 2d.

one of them needs to be replaced by a path with at least one internal vertex.
Moreover, we notice that at least three leaves have to be added to G, to avoid
redundancy of the constructed network. A network is simple if it is a simple
level-k network for some k. A simple level-k network built by hanging leaves
from generator G is called a network of type G. See Figure 4.5 for an example
of a simple level-1 network and simple level-2 networks of type 2a, 2b, 2c and
2d.

We do not attempt to define simple level-0 networks; instead we introduce the
basic tree which we define as the directed graph on three vertices {v1, v2, v3}
with arc set {(v1, v2), (v1, v3)}.
There is a nice and simple characterisation of simple level-k networks (k ≥ 1):

Lemma 4.3. A strict level-k network is a simple level-k network if and only
if it contains no nontrivial cut-arcs.

Proof. A simple level-k network contains no nontrivial cut-arcs because simple
level-k generators are biconnected. Now take a strict level-k network N with
no nontrivial cut-arcs. It remains to show that N is a simple level-k network.
Delete all leaves from N and subsequently suppress all vertices with indegree
and outdegree equal to one. The resulting graph still contains exactly k retic-
ulations and contains no cut-arcs. It follows that this graph is biconnected,
because any graph with degree at most three containing a cut-vertex also con-
tains a cut-arc. Therefore, this graph is a simple level-k generator and hence
N is a simple level-k network.

Lemma 4.4. Any simple level-k network on n leaves contains 2n + 2k − 1
vertices and 2n + 3k − 2 arcs.

Proof. Let N = (V,A) be a simple level-k network with n leaves and s split
vertices. The sum of the indegrees of all vertices is s + 2k + n, while the sum
of their outdegrees is 2 + 2s + k. Since the sum of all outdegrees equals the
sum of all indegrees, s = n + k − 2. Hence, we obtain that the total number
of vertices equals

|V | = s + k + n + 1 = (n + k − 2) + k + n + 1 = 2n + 2k − 1 . (4.1)

4.2. PRELIMINARIES 75

The total indegree, hence the total number of arcs in N is

|A| = n + 2k + s = 2n + 3k − 2 .

This lemma enables us to bound the number of vertices and arcs in general
level-k networks as O(n), for fixed k.

Lemma 4.5. Any level-k network on n leaves contains at most 2n−1+k(n−1)
vertices and at most 2n− 2 + 3

2k(n− 1) arcs.

Proof. Consider a level-k network N = (V,A) with q nontrivial biconnected
components. Let B(N) be the result of replacing each nontrivial biconnected
component C by a single vertex (i.e. contracting all arcs in C). Thus B(N)
is a tree, q of the internal vertices of B(N) represent biconnected components
of N and the other internal vertices of B(N) represent split-vertices of N and
its root. Let B(N) contain b internal vertices with n1, . . . , nb outgoing arcs
respectively. Then B(N) contains b + n vertices in total and b + n − 1 arcs.
Denote by ki the number of reticulations in the biconnected component of N
represented by the i-th internal vertex of B(N) and let ki = 0 if this internal
vertex represents a split-vertex or the root of N .

Assume the i-th internal vertex of B(N) represents a biconnected component
Ci of N . Consider Ci, the cut-arcs leaving Ci and the ni vertices that have a
parent on Ci. This forms a simple level-ki network with ni leaves. By (4.1)
it has 2ni + 2ki − 1 vertices. Replacing Ci by a single vertex thus reduces the
number of vertices by ni + 2ki − 2.

The number of vertices of N is equal to the number of vertices in B(N) plus
the number of vertices that have been deleted while replacing each Ci by a
single vertex:

|V | = b + n +
b∑

i=1

(ni + 2ki − 2)

≤ b + n + (b + n− 1) + 2q · k − 2b

≤ 2n− 1 + k(n− 1) .

For the first inequality we use that n1 + . . .+nb is equal to the number of arcs
of B(N), which is b + n − 1, that ki ≤ k for all i and that ki = 0 for b − q
values of i. For the second inequality we use that each nontrivial biconnected
component of N has at least three outgoing arcs. This implies that the sum
of all outdegrees is at least 3q + 2(b− q). The sum of all outdegree is equal to
the sum of all indegrees, which is b + n− 1. It follows that q + b ≤ n− 1 and

76 CHAPTER 4. PHYLOGENETIC NETWORKS

hence that 2q ≤ n− 1. Similarly, the number of arcs of N is at most:

|A| = b + n− 1 +
b∑

i=1

(ni + 3ki − 2)

≤ b + n− 1 + (b + n− 1) + 3q · k − 2b

≤ 2n− 2 +
3
2
k(n− 1) .

Note that if we allow networks where nontrivial biconnected components have
two (or more) outgoing arcs, then the above proof can be adapted to show
that there are at most 2n − 1 + 2k(n − 1) vertices and 2n − 2 + 3k(n − 1)
arcs. If there is no restriction on the number of outgoing arcs per biconnected
component then the size of the graph is unbounded. However, this thesis
only considers networks with at least three arcs going out of any nontrivial
biconnected component.

In the proofs in this chapter, frequently leaves will be deleted from a network.
This might result in a graph that is not a valid network. Therefore, we define
tidying up a directed acyclic graph as repeatedly applying the following five
steps until none is applicable: (1) delete unlabelled vertices with outdegree
0; (2) suppress vertices with indegree and outdegree 1 (i.e. contract one arc
incident to the vertex); (3) replace multiple arcs by single arcs; (4) remove the
root if it has outdegree 1 and (5) replace nontrivial biconnected components
with at most two outgoing arcs by a single vertex (i.e. contract all arcs in the
biconnected component). Observe that if N ′ is the result of removing leaves
L′ from network N and tidying up the resulting graph, then N ′ is a valid
network. In addition, observe that in this case N ′ is consistent with exactly
the same triplets as N , except for triplets containing leaves from L′.

We will now define SN-sets (short for “Side Network” sets), introduced in
[Jan06b], which will play a crucial role in Sections 4.5 - 4.8. For a triplet
set T , a subset X of L(T) is an SN-set if there is no triplet xy|z ∈ T with
x, z ∈ X and y /∈ X. An SN-set is called nontrivial if it is not equal to L(T).
Furthermore, we say that an SN-set X is maximal (under a restriction R) if
there is no nontrivial SN-set (satisfying restriction R) that is a strict superset
of X. An SN-set of size one is called a singleton SN-set.

For any two SN-sets of a dense triplet set holds that either they are disjoint or
one is included in the other [Jan06b, Lemma 8]. Such a set is called laminar.
This leads to the following definition. The SN-tree is the directed tree in which
vertices have outdegree either zero or at least two, such that the SN-sets of T
correspond exactly to the sets of leaves reachable from a vertex of the SN-tree.
It follows that there are at most 2(n− 1) nontrivial SN-sets of a dense triplet
set T . All these SN-sets can be found by constructing the SN-tree in O(n3)
time [Jan06a]. If a network is consistent with a dense triplet set T , then the

4.3. COMPLEXITY OF CONSTRUCTING NETWORKS FROM
TRIPLETS 77

set of leaves S below any cut-arc is always an SN-set, since triplets of the form
xy|z with x, z ∈ S, y /∈ S, are not consistent with such a network.

A cut-arc (u, v) is highest if there does not exist a cut-arc (u′, v′) such that
u is reachable from v′. A little thought should make it clear that the sets of
leaves below highest cut-arcs partition L(N). The following lemma reveals a
crucial characteristic that we exploit in our algorithms.

Lemma 4.6. Let N be a network consistent with a dense triplet set T . Then
each maximal SN-set S of T is the union of sets of leaves below highest cut-arcs
in N .

Proof. Suppose that S is a maximal SN-set. Since the set of leaves below
a cut-arc is always an SN-set, maximality of S implies that S is not a strict
subset of the leaves below some single highest cut-arc a. If S is equal to the set
of leaves below a single cut-arc, we are done. Now suppose that S intersects
with the leaves below at least two highest cut-arcs. Let leaves x, z ∈ S be
below highest cut-arcs a1, a2 respectively. For any leaf y below a1 now follows
that y ∈ S, since the only triplet on x, y, z consistent with N is xy|z. Similarly,
each leaf y below a2 is also in S. The lemma follows.

4.3 Complexity of Constructing Networks from Triplets

This section considers the complexity of constructing level-k phylogenetic net-
works from triplets. To do so, Sections 4.3.1 and 4.3.2 first give several auxil-
iary results that enable us to prove the intractability results in Section 4.3.3.
However, these auxiliary results are indeed also interesting in their own right.
In Section 4.3.1 a network is given that is consistent with any triplet set. Fur-
thermore, it is shown that among all networks with this property the given
network has the smallest possible level and the smallest possible number of ver-
tices and arcs. This is then used in Section 4.3.2 to give, for each k, a level-k
network that is uniquely defined by the set of triplets consistent with it. Fi-
nally, this uniqueness result is used in Section 4.3.3 to give two intractability
results with respect to constructing level-k phylogenetic networks from triplets.

4.3.1 Sufficiency and Necessity of Network Level

In this section we prove that any triplet set on n leaves is consistent with a
level-(n−1) network. Subsequently, we show that this bound is tight by giving
a triplet set on n leaves that is not consistent with any network of level smaller
than n− 1.

Let TF (n) be the set of all 3
(
n
3

)
triplets possible on n leaves. Call TF (n) the

full triplet set on n leaves.

78 CHAPTER 4. PHYLOGENETIC NETWORKS

x2

xn-2

xn-1

xn

x1

Figure 4.6: The level-(n−1) network NF (n) is consistent with every triplet set on n leaves,
and has the minimum number of arcs and vertices among all such networks.

Theorem 4.1. For any triplet set T on n leaves there exists a level-(n − 1)
network consistent with T .

Proof. Let n ≥ 3 and let NF (n) be the network in Figure 4.6. We will show
that NF (n) is consistent with TF (n). Given that T ⊆ TF (n), the result follows.

First, consider triplets xhxi|xj ∈ TF (n) with h, i 6= n. There exists a unique
split vertex v below the left child of the root, from which there are two paths
to xh and xi that have only v in common. On the other hand, there is a
path from the root to xj , via the right child of the root, making the network
consistent with xhxi|xj .

Secondly, consider triplets xixn|xj ∈ TF (n). There exists a unique split vertex
v below the right child of the root, from which there are two paths to xi and
xn that have only v in common. As there is also a path from the root to xj

via the left child of the root, the network is consistent with xixn|xj .

Lemma 4.7. Any network consistent with the full triplet set must be simple.

Proof. Let n ≥ 3 and let N be consistent with TF (n). If N is not simple then,
by Lemma 4.3, it contains a non-trivial cut-arc a = (u, v). If there is only one
leaf below a, then N is not a valid network because it contains either a vertex
with indegree and outdegree one or a biconnected component with only one
outgoing arc, which we excluded by assumption. If all leaves are below a, then
again N is not a valid network for the same reason. Hence there are leaves x
and y below a and a leaf z not below a. This implies that the triplet xz|y is
not consistent with N , a contradiction.

4.3. COMPLEXITY OF CONSTRUCTING NETWORKS FROM
TRIPLETS 79

Let a reticulation leaf be defined as a leaf whose parent is a reticulation. Simple
level-k networks have, as a consequence of their definition, at least one and at
most k reticulation leaves (k ≥ 1).

It was already shown by Jansson and Sung that there exists a network consis-
tent with the full triplet set [Jan06b]. However, the network NF (n) is much
simpler than the complicated sorting network proposed by Jansson and Sung.
In fact, below it will be shown that NF (n) has minimum level and a minimum
number of vertices and arcs over all networks consistent with the full triplet
set.

Theorem 4.2. The full triplet set on n ≥ 3 leaves is not consistent with any
level-k network with k < n− 1.

Proof. The theorem holds for n = 3: any network consistent with TF (3) must
be simple by Lemma 4.7, and any simple level-1 network on three leaves is
consistent with only two triplets. Since there are three possible triplets on a
set of three leaves, there is no level-1 network consistent with TF (3). Now
assume that the theorem is not true in general and let N be a smallest counter
example, i.e. N is a level-k network consistent with TF (n), k < n−1 and n > 3
is as small as possible. By Lemma 4.7, N must be a simple level-k network and
thus contains a reticulation leaf x. Delete x and tidy up the resulting graph.
This decreases the level of the network since the parent of x is a reticulation
and gets removed when tidying up the graph. Thus, this yields a level-(n− 3)
network consistent with TF (n− 1), yielding a smaller counter example.

Lemma 4.8. For n ≥ 3, the network NF (n) has the minimum number of arcs
and vertices over all networks consistent with the full triplet set TF (n).

Proof. Let Nn be a network consistent with TF (n). By Lemma 4.7 and Theo-
rem 4.2, Nn is simple and has level at least n−1. Then Lemma 4.4 yields that
Nn has at least 2n+2(n−1)−1 = 4n−3 vertices and 2n+3(n−1)−2 = 5(n−1)
arcs. The proof is complete by noting that NF (n) has exactly 4n− 3 vertices
and 5(n− 1) arcs.

4.3.2 A Unique Level-k Network

In the construction and analysis of triplet methods, it is often important to
know that a certain network is uniquely defined by a set of triplets. Character-
ising such networks is an important open problem. In this section we present a
partial solution to this question by giving, for each k, a level-k network Nk that
is unique in the sense that it is the only level-k network that is consistent with
all triplets that are consistent with Nk. How useful this unique network is will
be demonstrated in the next section, where we use it to show the intractability
of constructing level-k networks from triplets.

80 CHAPTER 4. PHYLOGENETIC NETWORKS

s1 s2

s5i-7
s5i-5

s5i-4

s5i

s5i-3
s5i-6

s5k-4

s5k-2

s5k-3

s5i-2 s5i-1

s3 s4
s5

s6 s7

N
k

s5i+2s5i+1

N’’ N’’’

s8 s9
s10

s11 s12

s1 s2

s3 s4
s5

s6 s7

s8 s9s11 s12

s1 s2

s3 s4
s5

s6 s7

s8 s9s11 s12

s1 s2

s3 s4
s5

s6 s7

s8 s9s11 s12s10 s10 s10

s5i-5

s5k-4

s5k-2

s5k-3

s5i-7 s5i-6

s5i+2s5i+1

N’

s5i-7
s5i-5

s5i-4 s5i-3
s5i-6

s5k-4

s5k-2

s5k-3

s5i+2s5i+1

s5i-7
s5i-5

s5i-4

s5i

s5i-3
s5i-6

s5k-4

s5k-2

s5k-3

s5i+2s5i+1

Figure 4.7: Removing leaves s5i−4, . . . , s5i from Nk and tidying up the graph gives N ′.
Adding s5i−4 and s5i−3 to N ′ gives N ′′; adding s5i to N ′′ gives N ′′′; subsequently
adding s5i−2 and s5i−1 gives the original network Nk to the left again.

Let Nk be the network to the left in Figure 4.7 and let T k be the set of triplets
that are consistent with Nk. By hanging leaves x1, . . . , xp on an arc (u, v) (for
some p ≥ 1) we mean replacing (u, v) by a path u, w1, . . . , wp, v and adding
arcs (wi, xi) for all i = 1, . . . , p. Recall that a side of a simple level-k generator
is either an arc or a vertex with indegree 2 and outdegree 0. Hanging a leaf x
on a side S of a simple level-k generator either means that it is hung on arc S
(if S is an arc) or that an arc (S, x) is added (if S is a vertex with indegree 2
and outdegree 0).

Theorem 4.3. For each k ≥ 2, the network Nk is the unique level-k network
consistent with T k.

Proof. Let R be the set of reticulation leaves of Nk, that is
R = {s5, s10, . . . , s5k−5, s5k−2}. We start by proving the following claims.

Claim 4.1. Any level-k network consistent with T k is a simple level-k network.

Proof of Claim 4.1. First observe that all triplets over the leaves R ∪ {s5k−4}
are in T k. Let N be a level-k network consistent with T k. From Theorem 4.2
it follows that N is a strict level-k network. Now suppose for contradiction
that N is not simple. Then by Lemma 4.3, N contains a non-trivial cut-arc
a. Let B ⊆ L(N) be the set of leaves below a and let A = L(N) \B. Because

4.3. COMPLEXITY OF CONSTRUCTING NETWORKS FROM
TRIPLETS 81

a is non-trivial, B contains at least two leaves. For every two leaves x, y in B
and every leaf z in A, there is only one triplet in T k on leaves x, y, z that is
consistent with N . However, for s5k−2 there are no two leaves x′, y′ such that
there is only one triplet in T k with leaves s5k−2, x

′, y′. It follows that s5k−2

belongs to neither A nor B, a contradiction.

Claim 4.2. In any level-k network consistent with T k, at least one of the
leaves in R is a reticulation leaf.

Proof of Claim 4.2. Let N be a network consistent with T k. Recall that T k

contains all possible triplets over leaves R ∪ {s5k−4}. Theorem 4.2 says that
any network consistent with all triplets over R ∪ {s5k−4} cannot have level
smaller than k, so N is a strict level-k network. By Claim 1, N is a simple
level-k network and hence contains a reticulation leaf x. First suppose x does
not belong to R∪{s5k−4}. Then removing x and tidying up the resulting graph
yields a level-(k − 1) network consistent with all triplets over R ∪ {s5k−4}. A
contradiction, thus N contains no leaves outside R ∪ {s5k−4} as reticulation
leaf. Symmetrically, no leaf outside R ∪ {s5k−3} is a reticulation leaf of N . It
follows that only leaves from R can be reticulation leaves of N , so x belongs
to R.

The proof is by induction on k. The induction basis for k = 2 is proven in the
following claim. Network N2, which is shown to be the only network consistent
with T 2, is displayed in Figure 4.8 on the right.

Claim 4.3. Network N2 is the unique level-2 network consistent with T 2.

Proof of Claim 4.3. Let N be a network consistent with T 2. From Claim 4.1
we know that N is a simple level-2 network. Recall the four simple level-2
generators, which have been repeated in Figure 4.8 on the left. We will show
that N is of type 2c (i.e. that N can be obtained by hanging leaves from
generator 2c) and that s5 and s8 are the reticulation leaves.

We first argue that if N is of type 2b or 2c then s5 and s8 are reticulation
leaves. Observe that whenever a leaf x is not reachable from any reticulation,
there exists a unique path from the root to x. Hence, if three leaves x, y and
z are all not reachable from any reticulation, then there is only one triplet on
{x, y, z} consistent with the network. It follows that if for any three leaves
there are two triplets in the triplet set (a double triplet) then at least one of
these leaves must be reachable from a reticulation. In networks of type 2b
and 2c there are precisely two leaves that are reachable from a reticulation.
Therefore, if N is of type 2b or 2c then it is clear that s5 and s8 have to be
reticulation leaves, since they are the only two leaves that together appear in
all double triplets in T 2.

The next step is to exclude that N is of type 2a, 2b or 2d. First consider
networks of type 2b and observe that if for any three leaves there are three

82 CHAPTER 4. PHYLOGENETIC NETWORKS

2a 2b 2c

A B

C

2d

D E

F

A
B

CD
E F

G H

A B

C D

E F

G

H

A

B C D

E
F

s1

s8

s3 s4
s5

s6

s2

s7

N2

Figure 4.8: The four simple level-2 generators 2a, 2b, 2c and 2d and the network N2 which
is the unique network consistent with T 2.

triplets in the triplet set (a triple triplet), then these triplets can only be
consistent with a network of type 2b if these leaves are on sides G, H and C.
Because {s5, s8, x} is a triple triplet in T 2 for every x 6= s5, s8, all leaves but
s5 and s8 have to be on side C. But in this case it is not possible for both
triplets s6s8|s7 and s7s8|s6 to be simultaneously consistent with the network,
since s5 is on side G or H and s6 and s7 are both on side C.

Now consider networks of type 2a and observe that such networks can only
be consistent with triple triplets if its leaves are on sides C, E and F or on
sides C, D and F . T 2 contains a triple triplet {s5, s8, x} for all x 6= s5, s8

and thus there are only two possibilities for the network to look like. The first
possibility is that s5 and s8 are on the sides F and D or the sides F and E
and all other leaves are on side C. But in this case the triplets s6s8|s7 and
s7s8|s6 cannot simultaneously be consistent with the network, since s6 and s7

are both on side C. The other possibility is that s5 and s8 are on the sides F
and C and all other leaves are on the sides D and E. From the triplet s6s3|s8

it follows that s6 and s3 are on the same side. But in that case s8s6|s3 and
s5s3|s6 cannot simultaneously be consistent with the network. This excludes
that N is of type 2a.

Finally, consider networks of type 2d. The only way for a triple triplet to be
consistent with this type of network is to put the leaves in the triple triplet
on the sides B, C and F . Since s5 and s8 are in a triple triplet in T 2 with
every other leaf we know that s5 and s8 are on the sides F and (without loss
of generality) B and all other leaves are on side C. But in this case it is not
possible that triplets s6s8|s7 and s7s8|s6 are simultaneously consistent with
the network, since s6 and s7 are both on side C.

We are now ready to prove the claim. From the above we know that N is of
type 2c and that s5 and s8 are the two reticulation leaves. Since there is no
triplet s1s2|s8 we know that s1 and s2 are on different sides of the root (one
on the left and one on the right side). Assume without loss of generality that

4.3. COMPLEXITY OF CONSTRUCTING NETWORKS FROM
TRIPLETS 83

s1 is on side A, C or E, s2 is on side B, D or F , s5 is on side G and s8 on side
H.

From the triplets s1s3|s8 and s1s6|s8 it follows that s3 and s6 are both on one
of the sides A, C or E. And from the triplets s2s4|s8 and s2s7|s8 it follows
that s4 and s7 are both on one of the sides B, D or F .

From the triplets s3s5|s6 and s6s8|s3 it now follows that s3 is on side C and
s6 on side E. And from the triplet s3s6|s1 then follows that s1 is on side A.
Similarly, from the triplets s4s5|s7 and s7s8|s4 it follows that s4 is on side D
and s7 on side F . And from the triplet s4s7|s2 then follows that s2 is on side
B. Therefore, N = N2.

We will now show the induction step. Let k > 2 and assume the theorem
holds for all k′ = 2, . . . , k − 1. In the induction step, we will show that any
level-k network consistent with T k and with reticulation leaf s5i (for any i ∈
{1, . . . , k − 1}), equals the network Nk. The case that s5k−2 is a reticulation
leaf is symmetric to the case that s5k−5 is a reticulation leaf. Since by Claim 4.2
at least one leaf from R must be a reticulation leaf, the theorem will follow.

Let N be a simple level-k network consistent with T k and let i ∈ {1, . . . , k−1}
be such that s5i is a reticulation leaf in N . Let T ′ be the triplet set obtained
from T k by removing all triplets containing some leaf from {s5i−4, . . . , s5i},
i.e. T ′ = T k|(L\{s5i−4,...,s5i}). Then T ′ is consistent with network N ′, the
second network from the left in Figure 4.7. Because T ′ equals the set of all
triplets that are consistent with N ′ (which is a relabelling of Nk−1), by the
induction hypothesis N ′ is the unique level-(k−1) network consistent with T ′.

Consider the network obtained from N by removing the leaves s5i−1, s5i−2, s5i,
s5i−3 and s5i−4 (in this order) from N and tidying up the resulting graph. This
decreases the level of the network, since the parent of s5i was a reticulation
and gets removed when tidying up the graph. Hence this gives a level-(k − 1)
network consistent with T ′, which by the induction hypothesis equals N ′.

To show that N equals Nk, consider the network N ′ and apply the reverse
of the operation that removed the leaves s5i−1, s5i−2, s5i, s5i−3 and s5i−4 from
N . This process is illustrated in Figure 4.7, and we will show that the such
obtained network will equal Nk. Process the leaves in reverse order, so add
s5i−4 to N ′ first. Since N ′ has k− 1 reticulation leaves and s5i also has to be-
come a reticulation leaf, s5i−4 must be a leaf below a split vertex. Hence s5i−4

is added to the network by hanging s5i−4 on some arc of N ′. The same holds
for s5i−3. Since s5i was a reticulation leaf in N , it is added to the network
choosing two arcs (u1, v1), (u2, v2), subdividing them into (u1, w1), (w1, v1)
and (u2, w2), (w2, v2), respectively, and adding a new reticulation x and arcs
(w1, x), (w2, x), (x, s5i). Subsequently, s5i−2 and s5i−1 are added to the net-
work by hanging them on arcs to be specified. It remains to determine which
arcs to subdivide, as to add the leaves s5i−1, s5i−2, s5i, s5i−3 and s5i−4.

84 CHAPTER 4. PHYLOGENETIC NETWORKS

s1 s2

s3

s1

s3

s2

s2

s3

s1

N1 N1' N1''

(a)

s1 s3
s2

s4

N1*

(b)

Figure 4.9: (a) The three networks N1, N1′ and N1′′ that are consistent with T 1 =
{s1s3|s2, s2s3|s1} and (b) network N1∗, which is the unique network that is consistent with
the set of triplets consistent with N1∗.

First consider the case i > 1. Because s5k−4s5i+1|s5i−4 and s5i−4s5i+1|s5i−7

are triplets in T k, it follows that s5i−4 is added to N ′ by hanging it on
the arc entering the parent of s5i+1. Symmetrically, s5i−3 is hung on the
arc entering the parent of s5i+2. This leads to network N ′′ in Figure 4.7.
Next we discuss how to add s5i to network N ′′. Triplets s5is5i+1|s5i−4 and
s5k−4s5i+1|s5i force a subdivision of the arc between the parents of s5i−4 and
s5i+1. For symmetric reasons, also the arc between the parents of s5i+2 and
s5i−3 has to be subdivided. So subdivide these arcs and make s5i a reticula-
tion leaf below them (as described in detail in the previous paragraph). This
leads to the network N ′′′ in Figure 4.7. Now s5i−2 and s5i−1 can only be
added to the network by hanging them on the arcs entering the parent of s5i,
since s5i+1s5i−2|s5i, s5is5i−2|s5i+1 ∈ T k and s5i+2s5i−1|s5i, s5is5i−1|s5i+2 ∈
T k. This leads to the leftmost network in Figure 4.7, which is the network Nk.

The case i = 1 is slightly different, since a leaf s5i−7 does not exist in this
case. However, the triplets s5k−4s6|s1 and s6s1|s7 enforce that s1 = s5i−4 is
added to N ′ by hanging it on the arc entering the parent of s6. Symmetrically,
s2 = s5i−3 must be hung on the arc entering the parent of s7. The same
arguments as in the case i > 1 show how to add the leaves s5i, s5i−1, s5i−2.
Also in this case we obtain the network Nk.

It follows that N equals Nk, completing the proof of Theorem 4.3.

For level-1 the situation is slightly different since the network N1 is not the
only network consistent with T 1. Figure 4.9(a) shows the three networks that
are consistent with T 1. However, there does exist a level-1 network that is
unique in this sense. It is not too difficult to argue that the network N1∗ in
Figure 4.9(b) is the only level-1 network that is consistent with all triplets that
are consistent with N1∗. For level-0, each tree is uniquely defined by the set
of triplets consistent with it [Jan06b].

4.3. COMPLEXITY OF CONSTRUCTING NETWORKS FROM
TRIPLETS 85

4.3.3 From Uniqueness to the Intractability of Constructing Level-k Net-
works from Triplets

In this section we show how to use the unique networks from the previous
section in the complexity analysis of network reconstruction methods, based on
triplets. We demonstrate this in two NP-hardness proofs. First, we show that
it is NP-hard, for each k ≥ 1, to decide whether a given triplet set is consistent
with some level-k network. Secondly, we show that the maximisation version
of this problem is NP-hard for each k ≥ 0 even for dense triplet sets.

We start with the proof that it is NP-hard to construct a level-k network
consistent with all input triplets. Hardness was already known for k = 1
[Jan06a]. Note that the NP-hardness for general k is not a consequence of the
hardness for level one.

In the following proofs, we will often say we “hang” a leaf or “caterpillar” from
a “side” of a simple level-k generator. A network is a caterpillar if deleting
all leaves gives a directed path. Recall that in simple level-k generators, a
side is either an arc or a vertex with indegree 2 and outdegree 0. Hanging a
caterpillar from arc Si means subdividing Si and connecting the new vertex
to the root of the caterpillar. Similarly defined is hanging a caterpillar from a
vertex with outdegree zero, which gets connected to the root of the caterpillar.
In addition, a leaf x is on side Si if there exists a cut-arc (u, v) such that
u is on a subdivision of Si (if Si is an arc) or u is a reticulation (if Si is a
reticulation), and there is a directed path from v to x (possibly v = x). A leaf
x is said to hang between vertices w and q if there is a cut-arc (u, v) such that
u is on a directed path from w to q and there is a directed path from v to x.

Theorem 4.4. For each k ≥ 2, it is NP-hard to decide whether for a triplet
set T there exists some level-k network N consistent with T .

Proof. Reduce from the following NP-hard problem [Gar79]:

Set Splitting

Instance: A set U = {u1, . . . , un} and a collection C = {C1, . . . , Cm} of
size-3 subsets of U .

Question: Can U be partitioned into sets U1 and U2 (a set splitting) such
that Cj 6⊆ U1 and Cj 6⊆ U2, for all 1 ≤ j ≤ m?

From an instance (U, C) of Set Splitting construct a set T of triplets as
follows. Start with triplet set T k (see previous Section), and for each set
Cj = {ua, ub, uc} ∈ C (with 1 ≤ a < b < c ≤ n) add triplets uj

as5|uj
b, uj

bs5|uj
c

and uj
cs5|uj

a. In addition, for every ui ∈ U and 1 ≤ j ≤ m add triplets
s5u

j
i |s1, s5u

j
i |s2, s5s6|uj

i , s5s7|uj
i and (if j 6= m) uj

iu
j+1
i |s5. This completes

the construction of T . We will prove that T is consistent with some level-k
network if and only if there exists a set splitting {U1, U2} of (U, C).

86 CHAPTER 4. PHYLOGENETIC NETWORKS

S10

S5k-2

S5

S1

S6

S2

S3 S4
S7

S8 S9

S5k-7

S5k-4 S5k-3

S5k-6

S5k-5

(a) The simple level-k generator Gk.

s1 s2
u4

3

u2
3

u2
2

u4
2

u4
1

u2
1

u3
3

u1
3

u3
2

u1
2

u3
1

u1
1

s5k-4

s5k-2

s5k-3

s3 s4
s5s6 s7

(b) The network N .

Figure 4.10: Auxiliary networks in the proof of Theorems 4.4 and 4.5.

First suppose that there exists a set splitting {U1, U2} of (U, C). Construct
the network N by starting with the network Nk, which is obtained from the
simple level-k generator Gk in Figure 4.10 by hanging a leaf si on each side
Si. For each element ui ∈ U1, hang all leaves u1

i , . . . , u
m
i on side S1 below the

parent of s1; for each element ui ∈ U2 hang all leaves u1
i , . . . , u

m
i on side S2

below the parent of s2. To determine the order in which to put these leaves
consider a set Cj = {ua, ub, uc} ∈ C. If ua and ub are in the same class of
the partition, then put leaf uj

a below uj
b; if ub and uc are in the same class of

the partition put uj
b below uj

c; and if ua and uc are in the same class put uj
c

below uj
a. The rest of the ordering is arbitrary. It is easy to check that N is

consistent with all triplets in T . For an example of this construction see the
network to the right in Figure 4.10.

Conversely, suppose that T is consistent with some level-k network N . Since
T k ⊂ T , Theorem 4.3 says that N must be equal to Nk with the leaves not
in L(Nk) added. Triplets s5u

j
i |s1 and s5u

j
i |s2 imply that none of the leaves

uj
i can hang between the root and s1, or between the root and s2. Further,

triplets s5s6|uj
i and s5s7|uj

i imply that uj
i must be on either side S1 or S2.

Triplets uj
iu

j+1
i |s5 yield that for each 1 ≤ i ≤ n, all leaves u1

i , . . . , u
m
i have

to hang on the same side. For h ∈ {1, 2}, let Uh be the set of elements
ui ∈ U for which all leaves u1

i , . . . , u
m
i hang on side Sh. It remains to prove

that (U1, U2) is a set splitting of (U, C). Consider a set Cj = {ua, ub, uc} and
suppose for contradiction that ua, ub, uc ∈ Uh for some h ∈ {1, 2}, meaning

4.3. COMPLEXITY OF CONSTRUCTING NETWORKS FROM
TRIPLETS 87

that all leaves uj
a, uj

b, u
j
c hang on side Sh. This is impossible, as T contains

triplets uj
as5|uj

b, u
j
bs5|uj

c, u
j
cs5|uj

a.

For dense triplet sets, it can be decided in polynomial time whether there
exists a level-1 [Jan06a] or level-2 (Section 4.6) network consistent with all
input triplets. Using the uniqueness result from the previous section, we will
prove that the maximisation versions of these problems are NP-hard, even for
dense triplet sets and for all k ≥ 0.

MaxCL-k-Dense

Input: A dense triplet set T .
Output: A level-k network consistent with the maximum number of

triplets in T that any level-k network is consistent with.

Theorem 4.5. The problem MaxCL-k-Dense is NP-hard, for all k ≥ 0.

Proof. Reduce from the following NP-hard problem [Alo06; Cha07]. A tour-
nament is a directed graph in which for each pair of vertices u and v there is
either an arc (u, v) or an arc (v, u).

Feedback Arc Set in Tournaments (FAST)

Instance: A tournament G = (V,A) and an integer q ∈ N.
Question: Is there a set A′ ⊆ A of q arcs (a feedback arc set) such

that G′ = (V,A \A′) is acyclic?

For k = 0, we imitate the reduction of the non-dense case [Bry97; Jan01;
Wu04]. The difference is that the constructed instance of MaxCL-0-Dense
contains more triplets, to become dense. Given an instance G = (V,A) and q ∈
N of FAST, construct an instance T of MaxCL-0-Dense as follows. Introduce
a leaf x 6∈ V and for each arc (z, y) ∈ A, add a triplet xy|z to T . In addition,
for each combination of three leaves v1, v2, v3 ∈ V (thus v1, v2, v3 6= x), add
all three triplets v1v2|v3, v1v3|v2 and v2v3|v1 to T . Instead of providing a full
proof we will now only describe the differences to the proof for the non-dense
case [Bry97; Wu04] and give the intuition behind that proof. The differences
with the reduction of Wu [Wu04] are that (1) we reduce from FAST instead
of FAS and that (2) we add all triplets containing three leaves from V . The
combination of these two modifications makes the instances dense. The extra
triplets do not change the reduction since any level-0 network is consistent with
exactly one triplet for every combination of three leaves. The intuition of the
reduction is as follows: the vertices of an acyclic graph can be uniquely labelled
such that arcs point only from vertices with higher label to vertices with lower
label. In a phylogenetic tree, this ordering of the vertices corresponds to an
ordering of the leaves on the unique path from the tree root to leaf x. Along
the lines of the proof for the non-dense case [Wu04], it can be argued that G
contains a feedback arc set of size q if and only if there exists a tree consistent

88 CHAPTER 4. PHYLOGENETIC NETWORKS

with |T |− q−2
(|V |

3

)
triplets from T . This completes the proof that MaxCL-0

is NP-hard for dense triplet sets.

For k ≥ 2, use a similar reduction but start from the simple level-k generator
Gk in Figure 4.10(a). Theorem 4.3 tells us that a network Nk obtained by
hanging a leaf from each side of Gk is the unique level-k network consistent
with T k; the set of triplets consistent with Nk.

Given a tournament G = (V,A) and integer q ∈ N, construct a corresponding
instance T of MaxCL-k-Dense as follows. First construct a network N ′ from
Gk. From each side Si of Gk hang a caterpillar with leaves S1

i , . . . , Sp
i , with

p = 2(q +2
(|V |

3

)
)+ 1. The intuition is that p is large enough to force a specific

structure of the networks consistent with many triplets in T . For simplicity
denote S1

5k−2 by x. Hang |V | leaves on side S5k−4, distinctly labelled by the
vertices of V , below the root of the caterpillar, in arbitrary order. This gives the
network N ′. For an example, see the network on the right in Figure 4.11. Let
T ′ be the set of triplets consistent with N ′, except for triplets ab|c with a, c ∈ V
and b /∈ V . For each arc (z, y) ∈ A, add a triplet xy|z to T ′, informally encoding
the arc (z, y) as a constraint “z hangs between the root of the caterpillar and
y”. Finally, for each 3-set of vertices from V add all three triplets over the three
leaves labelled by the vertices, that are not yet present. Denote the resulting
(dense) triplet set by T , which forms an instance of MaxCL-k-Dense. We
will show that there exists a level-k network N consistent with |T |− q− 2

(|V |
3

)
triplets from T if and only there exists a feedback arc set A′ of size q.

First suppose G has a feedback arc set A′ of size q. Thus the graph G′ =
(V,A \A′) is acyclic, and each vertex v ∈ V can receive a label f(v) such that
there are no arcs (z, y) ∈ A \ A′ with f(y) ≥ f(z). Construct the network
N from N ′ by rearranging the leaves from V by sorting them with respect
to their labels such that the highest leaf has the largest label. For any arc
(z, y) ∈ A\A′ it holds that f(y) < f(z) and hence the triplet xy|z is consistent
with N . For every vertex pair {z, y}, the triplet yz|x is consistent with N .
For each combination of three leaves from V there is exactly one triplet over
these leaves consistent with N . It follows that the only triplets in T that are
not consistent with N are (1) the triplets corresponding to the arcs in A′, and
(2) exactly two-thirds of the triplets that have only leaves in V . That means
that in total |T | − q − 2

(|V |
3

)
triplets from T are consistent with N .

For the converse, suppose there exists some level-k network N consistent with
|T | − q − 2

(|V |
3

)
triplets from T . For each 1 ≤ j ≤ p, there exists a unique

network with leaf set Lj = {Sj
i | 1 ≤ i ≤ 5k − 2} that is consistent with all

triplets from Tj = T |Lj . There are at most q + 2
(|V |

3

)
triplets not consistent

with N , and the sets Tj are pairwise disjoint, so at least one of the sets Lj

is placed on a simple level-k network of type Gk. Take any i and observe
that for each j such that sj

i is not on side Si of N , there exists a triplet
t ∈ T , with leaves L(t) = {sj

i , `1, `2}, that is not consistent with N and with
`1, `2 6∈ {s1

i , . . . , s
p
i }. If there would be more than q + 2

(|V |
3

)
such j then there

4.3. COMPLEXITY OF CONSTRUCTING NETWORKS FROM
TRIPLETS 89

u

v
w

q
v

q

u

w

s1
1

s5
1

s2
1

s1
2

s1
p-1s1

p s2
2

s2
p-1 s2

p

s3
1

s3
2

s3
p-1 s3

p

s5
2

s5
p-1 s5

p

s4
1

s4
2

s4
p-1 s4

p

s6
1

s6
2

s6
p-1s6

p
s7

1

s7
2

s7
p-1 s7

p

s8
2

s8
p-1 s8

p

x

G=(V,A)

Figure 4.11: An example input G = (V, A) of FAST on the left and the network N
constructed in the proof of Theorem 4.5, for k = 2, to the right.

would be more than q + 2
(|V |

3

)
distinct triplets from T not consistent with N .

Hence for each i there are at least p′ = q + 2
(|V |

3

)
+ 1 indices j such that Sj

i

is on side Si. Let L∗
1, . . . , L

∗
p′ be pairwise disjoint sets each containing exactly

one leaf Sj
i that is on side Si, for each 1 ≤ i ≤ 5k − 2.

The next claim is that all leaves labelled by vertices from V have to be on side
S5k−4, below the root of the caterpillar. Suppose for contradiction this were not
the case for some leaf v ∈ V . Then for each of the leaf sets L∗

1∪{v}, . . . , L∗
p′∪{v}

there exists a triplet in T not consistent with N . Since the sets L∗
1, . . . , L

∗
p′ are

pairwise disjoint and p′ > q + 2
(|V |

3

)
, we obtain a contradiction.

Since the leaves corresponding to vertices from V all hang on the same side
S5k−4, they can be uniquely labelled by their order on side S5k−4, such that
the highest leaf has the largest label. If some leaves are below the same cut-arc,
they receive the same label. Let A′ be the set of arcs (z, y) corresponding to
the triplets xy|z that are not consistent with N , and for every v ∈ V let f(v)
be the label of the leaf corresponding to v. Then the graph G′ = (V,A \A′) is
acyclic, because all arcs (z, y) ∈ A \A′ satisfy the relation f(y) < f(z).

An example for k = 2 is displayed in Figure 4.11. The graph on the left is an
example instance G = (V,A) of FAST. The arcs of G are encoded as triplets
xw|u, xw|q, xu|v, xv|w, xu|q and xq|v. The network N to the right is consis-

90 CHAPTER 4. PHYLOGENETIC NETWORKS

tent with all these triplets except xv|w. The arc (w, v) is indeed a feedback
arc set of the graph G. Other triplets in T enforce this specific level-2 network
N and make T dense.

For k = 1 the same reduction as for k ≥ 2 works, when hanging two caterpillars
from side S1.

4.4 Constructing Level-1 Networks in Exponential Time

Given the intractability results from the previous section for constructing net-
works consistent with a maximum number of input triplets, there is no hope
(unless P = NP) for algorithms solving these problems exactly and in polyno-
mial time. In this section we consider superpolynomial-time exact algorithms.

Wu described an exact algorithm [Wu04] that finds a tree consistent with
a maximum number of input triplets in O(3n(n2 + m)) time, with m the
number of triplets and n the number of leaves. We extend this approach for
reconstructing evolutions that are not tree-like, but where reticulation cycles
are disjoint. We do this by describing an exact algorithm that runs in O(m4n)
time and solves the MaxCL-1 problem, which is NP-hard by Theorem 4.5.

Note that the problem MaxCL-1 does not just ask if there exists a level-1
network consistent with all input triplets; it asks us to find a level-1 network
that is consistent with a maximum number of them. Hence an algorithm
for MaxCL-1 always outputs a solution, no matter how bad the data is the
algorithm is confronted with. This contrasts with algorithms that only find a
solution if a network exists that is consistent with all triplets of a (dense) input
(Sections 4.6-4.8 and [Aho81; Jan06a; Jan06b]). The algorithm described in
this section is also more powerful in that it also works for non-dense triplet
sets. It can thus be used even if for some combinations of three taxa it is
difficult to find the right triplet, which is likely to be the case in practice.
The algorithm can also be used for the weighted version of the problem. In
addition, it can also be used to choose, among all level-1 networks consistent
with a maximum number of input triplets, one with a minimum number of
reticulations. However, its exponential running time means that it can only
be used for a relatively small number of leaves at a time.

The intuition behind our algorithm is the following. There are three different
shapes possible for an optimal network. Either the arcs leaving the root are
cut-arcs, like in Figure 4.14(b), or the root is part of a cycle, which can be
“skew” like the cycle in Figure 4.15(a) or “non-skew” like in Figure 4.15(b).
We construct a candidate network of each type separately. Given the tripar-
tition (X ′, Y ′, Z ′) (with possibly Z = ∅) of the leaves indicated in the figures,
it turns out to be possible to reconstruct the optimal network by merging op-
timal smaller networks for X ′, Y ′, X ′ ∪ Z ′ and Y ′ ∪ Z ′. The three candidate

4.4. CONSTRUCTING LEVEL-1 NETWORKS IN
EXPONENTIAL TIME 91

networks for a partition π are denoted N1
π , N2

π , N3
π . For partitions with Z = ∅,

only one candidate network N2
π is created.

Critical is that the smaller networks for X ′∪Z ′ and Y ′∪Z ′ must be such that
merging two networks does not create a biconnected component with more
than one reticulation. To achieve this, we introduce the notion of “non-cycle-
reachable”-arc, or ncr-arc for short. An arc a = (u, v) is an ncr-arc if u is not
in a cycle and no ancestor of u is in a cycle. Note that this implies that also u
is not in a cycle. In addition, for any arc a = (u, v) write R[a] to denote the set
of leaves below v. Use f(N) to denote the number of triplets in T consistent
with N and g(N,Z) to denote the number of triplets in T that are consistent
with N and that are not of the form xy|z with z ∈ Z and x, y /∈ Z. It will
become clear later that the definition of g ensures that merging networks that
are optimal with respect to g leads to networks optimal with respect to f .

A description of the algorithm, called ELONA (Exact Level One Network Al-
gorithm) is displayed in Algorithm 1. As will be shown below, for L′ ⊆ L,
the computed network N(L′) is a network maximising f(N) over all net-
works with L(N) = L′. In addition, for Z ⊂ L′ ⊆ L, the computed net-
work N2(L′, Z) will be shown to maximise g(N,Z) over all level-1 networks N
with L(N) = L′ that contain an ncr-arc a with Z = R[a]. If there are various
such networks then the algorithm picks one arbitrarily.

Because the arcs a = (u, v) and a′ = (u′, v′) in lines 9 and 11 are ncr-arcs, we
know that (in N2(X ∪ Z,Z) and N2(Y ∪ Z,Z)) neither u, nor u′, nor any of
their ancestors is contained in a cycle. It follows that the newly created cycles
do not overlap with any of the original cycles and hence that the constructed
networks are indeed level-1 networks. It now also becomes intuitively clear
why networks N2(X ∪Z,Z) and N2(Y ∪Z,Z) are used that are optimal with
respect to g(·, Z) (rather than f(·)). Consider for example the construction
of N1

π from N2(X ∪ Z,Z) and N2(Y ∪ Z,Z) in Figure 4.12. It does not
matter whether a triplet x1x2|z with x1, x2 ∈ X and z ∈ Z is consistent
with N2(X ∪ Z,Z) or not, since such a triplet will be consistent with N1

π

anyhow. Similarly, it does not matter whether triplets of the form y1y2|z
with y1, y2 ∈ Y and z ∈ Z are consistent with N2(Y ∪Z,Z), since the creation
of a new cycle as in Figures 4.12 and 4.13 makes all triplets of this form
consistent with the network.

92 CHAPTER 4. PHYLOGENETIC NETWORKS

Algorithm 1 ELONA (Exact Level One Network Algorithm)
1: for each ` ∈ L do
2: Let N(`) be a single leaf labelled `.
3: for i = 2 . . . n do
4: for each L′ ⊆ L of cardinality i do
5: for each tripartition π = (X, Y, Z) of L′ with X, Y 6= ∅ do
6: if Z = ∅ then
7: Combine N(X) and N(Y) into a new network N2

π by adding a
new root and connecting it to the roots of N(X) and N(Y).

8: else
9: Construct first candidate. Combine networks N2(X ∪ Z,Z)

and N2(Y ∪ Z,Z) into a new network N1
π by creating a “non-

skew” cycle as follows. Add a new root and connect it to the roots
of N2(X∪Z,Z) and N2(Y ∪Z,Z). Let a = (u, v) and a′ = (u′, v′)
be the (unique) ncr-arcs such that Z = R[a] in N2(X ∪ Z,Z)
and Z = R[a′] in N2(Y ∪Z,Z). Subdivide a into (u, w) and (w, v),
delete v′ and all arcs and vertices reachable from v′, and add an
arc (u′, w) (see Figure 4.12).

10: Construct second candidate. Combine networks N(X)
and N2(Y ∪ Z,Z) into a new network N2

π by adding a new root
and connecting it to the roots of N(X) and N2(Y ∪ Z,Z).

11: Construct third candidate. Create N3
π from N2

π by creating
a “skew” cycle as follows: let a = (u, v) be the (unique) ncr-arc
with Z = R[a]. Subdivide a into (u, w) and (w, v), add a new
root and connect it to the old root and to w (see Figure 4.13).

12: Let N(L′) be a network that maximises f(·) over all computed net-
works N1

π , N2
π and N3

π over all tripartitions π of L′.
13: for each Z̄ ⊂ L′ do
14: Let N2(L′, Z̄) be a network that maximises g(N2

π , Z̄) over all tri-
partitions π = (X, Y, Z) of L′ with Z = Z̄.

15: output N(L)

a
X Y

Z

a’
X

Z Z

Yu u’ u u’
w

N2(X U Z,Z) N1
πN2(Y U Z,Z)

Figure 4.12: Construction of N1
π from N2(X ∪ Z, Z) and N2(Y ∪ Z, Z).

4.4. CONSTRUCTING LEVEL-1 NETWORKS IN
EXPONENTIAL TIME 93

X
Y

a

Z

N2
π

u
X

Y
Z

wu

πN3

Figure 4.13: Construction of N3
π from N2

π .

Correctness of the algorithm is shown by induction on i. The induction basis
for i = 1 is trivial. For the induction step, consider a leaf set L′ with |L′| > 1
and assume that the algorithm works correctly for all leaf sets of smaller
size. Thus, for each tripartition (X, Y, Z) of L′ with X, Y 6= ∅ the algo-
rithm has correctly computed networks N(X) and N(Y) that are optimal
with respect to f(·) and networks N2(X ∪ Z,Z) and N2(Y ∪ Z,Z) that are
optimal with respect to g(·, Z) (over all level-1 networks containing an ncr-
arc a with Z = R[a]). The following lemma shows that the computed net-
work N2(L′, Z̄) is then also optimal with respect to g(·, Z̄) (over all level-1
networks containing an ncr-arc a with Z̄ = R[a]), for each Z̄ ⊂ L′. Subse-
quently, Lemma 4.10 shows that the computed network N(L′) is optimal with
respect to f(·).

Lemma 4.9. For every Z̄ 6= ∅, the network N2(L′, Z̄) computed by the al-
gorithm maximises g(N, Z̄) over all level-1 networks N with L(N) = L′ that
contain an ncr-arc a with Z̄ = R[a].

Proof. Let N ′ be any network with L(N ′) = L′ and containing an ncr-arc a′

such that Z̄ = R[a′]. We show that g(N ′, Z̄) ≤ g(N2(L′, Z̄), Z̄). The root of N ′

is not in a cycle since it is an ancestor of the ncr-arc a′. Let a1 and a2 be the
two cut-arcs leaving the root such that the leaves in Z̄ are reachable from a2.
Let X ′ = R[a1] and Y ′ = R[a2] \ Z̄, see Figure 4.14(a). Because N2(L′, Z̄)
maximises g(N2

π , Z̄) over all tripartitions π = (X, Y, Z) of L′ with Z = Z̄, we
have g(N2(L′, Z̄), Z̄) ≥ g(N2

(X′,Y ′,Z̄)
, Z̄). Write N2′ as short for N2

(X′,Y ′,Z̄)
.

Compare triplets consistent with N ′, with those consistent with N2′.

• There are at least as many triplets in T |X′ consistent with N2′ as with N ′,
because N(X ′) is a subgraph of N2′ and by induction N(X ′) max-
imises f(N) over all networks N with L(N) = X ′.

• There are at least as many triplets in T |(Y ′∪Z̄) that are not of the
form y1y2|z for y1, y2 ∈ Y ′ and z ∈ Z̄ that are consistent with N2′

94 CHAPTER 4. PHYLOGENETIC NETWORKS

a1

X’
Y’ _

Z

a2

a

(a) In the proof of Lemma 4.9.

a1 a2

X’ Y’

(b) The first case in the proof of
Lemma 4.10.

Figure 4.14: Networks N ′ in the proofs of Lemmas 4.9 and 4.10.

as with N ′, because N2(Y ′ ∪ Z̄, Z̄) is a subgraph of N2′ and by induc-
tion N2(Y ′ ∪ Z̄, Z̄) maximises g(N, Z̄) over all networks N with L(N) =
Y ′ ∪ Z̄ that contain an ncr-arc a with Z̄ = R[a].

• All triplets of the form bc|d with b, c ∈ X ′, d ∈ Y ′∪Z̄ or b, c ∈ Y ′∪Z̄, d ∈
X ′ are consistent with both N2′ and N ′.

• All triplets of the form bc|d with b, d ∈ X ′, c ∈ Y ′∪Z̄ or b, d ∈ Y ′∪Z̄, c ∈
X ′ are consistent with neither N2′ nor N ′.

Thus g(N ′, Z̄) ≤ g(N2′, Z̄) ≤ g(N2(L′, Z̄), Z̄).

Lemma 4.10. The computed network N(L′) maximises f(N) over all level-1
networks N with L(N) = L′.

Proof. For contradiction, suppose that some network N ′ 6= N(L′) with L(N ′) =
L′ is consistent with more triplets in T than N(L′). Distinguish three cases,
depending on the shape of N ′.

The first case is that the two arcs leaving the root of N ′ are cut-arcs a1 and a2.
Let X ′ = R[a1], Y ′ = R[a2] and Z ′ = ∅, see Figure 4.14(b), and compare N ′

to N2
(X′,Y ′,Z′).

The latter network is consistent with at least as many triplets from T |X′

because it contains N(X ′) as a subnetwork, and by induction N(X ′) max-
imises f(N) over all networks N with L(N) = X ′. Similarly, N2

(X′,Y ′,Z′) is
consistent with as least as many triplets from T |Y ′ as N ′. All other triplets are
either consistent with both or with none of these networks. Hence, N2

(X′,Y ′,Z′)

is consistent with at least as many triplets as N ′. Because N(L′) is consis-
tent with at least as many triplets as N2

(X′,Y ′,Z′), it follows that N(L′) is also
consistent with at least as many triplets as N ′; a contradiction.

The second case is that one child of the root of N ′ is a reticulation. Let a1 =
(r, v1) and a2 = (r, v2) be the two arcs leaving the root of N ′ and suppose
that v2 is a reticulation. Let a3 and a4 be the two arcs leaving v1. Because N ′

4.4. CONSTRUCTING LEVEL-1 NETWORKS IN
EXPONENTIAL TIME 95

a1

X’

Y’
Z’

v2

a2
a3

v1

a4

(a) Skew cycle; the second case in
Lemma 4.10.

a1

X’ Y’

Z’

a2

u
a

a’

(b) Non-skew cycle; the third case in
Lemma 4.10.

Figure 4.15: Networks N ′ in the proof of Lemma 4.10.

is a level-1 network, one of a3 and a4 is a cut-arc, say a3. Let X ′ = R[a3], Y ′ =
R[a4] \ R[a2] and Z ′ = R[a2], see Figure 4.15(a). Compare the networks N ′

and N3
(X′,Y ′,Z′) with respect to the number of triplets in T these networks

are consistent with. First, consider triplets in T |X′ : Network N3
(X′,Y ′,Z′) is

consistent with at least as many of these as N ′, because it contains N(X ′)
as a subgraph. Secondly, consider triplets in T |(Y ′∪Z′) that are not of the
form y1y2|z for y1, y2 ∈ Y ′ and z ∈ Z ′. We will show that N3

(X′,Y ′,Z′) is
consistent with at least as many of these triplets as N ′. Recall that N3

(X′,Y ′,Z′)

contains a subdivision of N2(Y ′ ∪ Z ′, Z ′), which maximises g(N,Z ′) over all
networks with L(N) = Y ′ ∪ Z ′ containing an ncr-arc a with Z ′ = R[a]. The
network N ′ does not contain such an ncr-arc, but we will modify it to a network
that does contain such an ncr-arc and is consistent with the same number of the
considered triplets. Let N ′′ be the result of removing the arc a2 from N ′ (and
tidying up the resulting graph). Observe that all triplets in T |(Y ′∪Z′) that are
consistent with N ′ and are not of the form y1y2|z with y1, y2 ∈ Y ′ and z ∈ Z ′

are also consistent with N ′′. So it follows that N3
(X′,Y ′,Z′) is consistent with

at least as many of these triplets as N ′. All other triplets are either consistent
with both N3

(X′,Y ′,Z′) and N ′ or with none, since both networks have the
structure from Figure 4.15(a): only the internal structure inside X ′, Y ′ and Z ′

might be different in the two networks. Hence N3
(X′,Y ′,Z′) is consistent with

at least as many triplets as N ′. Because N(L′) is consistent with at least as
many triplets as N3

(X′,Y ′,Z′) it follows that N(L′) is also consistent with at
least as many triplets as N ′; a contradiction.

The last case is that the two arcs a1 and a2 leaving the root of N ′ are not
cut-arcs and are also not leading to reticulations. Let X ′ = R[a1]\R[a2], Y ′ =
R[a2] \ R[a1] and Z ′ = R[a1] ∩ R[a2], see Figure 4.15(b). Compare the net-
works N ′ and N1

(X′,Y ′,Z′), with respect to the number of triplets in T these
networks are consistent with. First, consider triplets in T |(X′∪Z′) that are not

96 CHAPTER 4. PHYLOGENETIC NETWORKS

of the form x1x2|z for x1, x2 ∈ X ′ and z ∈ Z ′. We will show that N1
(X′,Y ′,Z′) is

consistent with at least as many of these triplets as N ′. Recall that N1
(X′,Y ′,Z′)

contains a subdivision of N2(X ′ ∪ Z ′, Z ′), which maximises g(N,Z ′) over all
networks with L(N) = X ′ ∪ Z ′ containing an ncr-arc a with Z ′ = R[a]. The
network N ′ does not contain such an ncr-arc, but we will modify it to a net-
work that does contain such an ncr-arc and is consistent with the same number
of the considered triplets. Let a = (u, v) be the cut-arc in N ′ with Z ′ = R[a],
and let a′ be the arc that leads to u and is reachable from a2. Let N ′′ be
the result of removing arc a′ from N ′ (and tidying up the resulting graph).
Now N ′′ is consistent with the same number of the considered triplets as N ′,
and so it follows that N1

(X′,Y ′,Z′) is consistent with at least as many of the
considered triplets as N ′. In a similar way, it follows that N1

(X′,Y ′,Z′) is consis-
tent with as least as many triplets in T |(Y ′∪Z′) that are not of the form y1y2|z
for y1, y2 ∈ Y ′ and z ∈ Z ′). All other triplets are either consistent with both
networks or with none. Hence N1

(X′,Y ′,Z′) is consistent with at least as many
triplets as N ′. Because N(L′) is consistent with at least as many triplets
as N1

(X′,Y ′,Z′) it follows that N(L′) is also consistent with at least as many
triplets as N ′; a contradiction.

Theorem 4.6. Given a set T of m triplets over n leaves, a level-1 network con-
sistent with a maximum number of triplets in T can be constructed in O(m4n)
time and O(n3n) space.

Proof. Correctness of the algorithm follows from the above. To achieve a
small polynomial factor in the complexity, we use dynamic programming to
compute the optimal value of the solution as well as the partitions we have
to choose in each step. Then a traceback algorithm constructs a network
consistent with the maximum number of triplets. To be precise, the dynamic
programming algorithm finds, for all L′ ⊆ L, the maximum number f̂(L′) of
triplets in T consistent with a level-1 network with leaves L′ ⊆ L. It also
computes, for all Z̄ ⊂ L′, the maximum value ĝ(L′, Z̄) of g(N, Z̄) over all
level-1 networks N with leaves L′ that contain an ncr-arc a with Z̄ = R[a].
The algorithm loops through all the subsets L′ ⊆ L from small to large and
considers all tripartitions π = (X, Y, Z) of L′. For each such partition, the
values f̂(X), f̂(Y), f̂(Z), ĝ(X ∪ Z,Z) and ĝ(Y ∪ Z,Z) are readily available
from previous iterations. To compute the values f̂(L′) and ĝ(L′, Z) it only
remains to count certain triplets in T , whose consistency with a network only
depends on the tripartition (X, Y, Z) and the network type (N1

π , N2
π or N3

π).
This can be done by first checking membership of X, Y and Z for each leaf
in L′ (in O(n) time) and then looping through all triplets only once. Hence
this counting can be done in O(n + m) = O(m) time. The algorithm’s overall
running time is thus bounded by O(m)

∑n
`=1

(
n
`

)
O

(
3`

)
= O(m4n).

For each leaf set L′ ⊆ L, store the optimal tripartition and the optimal type
of network (N1

π , N2
π or N3

π). In addition, store an optimal bipartition for

4.5. CONSTRUCTING SIMPLE LEVEL-K NETWORKS 97

all L′ ⊆ L and Z̄ ⊂ L′. This yields a total space complexity of O(n3n).

Once the values f̂(L′) and ĝ(L′, Z̄) have been computed and all optimal tri-
partitions and bipartitions have been stored, a level-1 network N consistent
with f̂(L) many triplets can be constructed by traceback, in polynomial time.

4.5 Constructing Simple Level-k Networks

This section shows how simple level-k networks can be build from dense triplet
sets in polynomial time, for each fixed k. This is done by Algorithm SL-k,
which runs in time O(|T |k+1). Subsequently it is shown that for level-2 the
running time can be optimised to O(|T | 83), which will be used in the algorithm
to construct general level-2 networks in the next section.

Let N be a network with at least one reticulation, and let v be the child of
a reticulation in N . If v has no reticulation as a descendant, then we call
the subnetwork rooted at v a Tree hanging Below a Reticulation (TBR). We
additionally introduce the notion of the empty TBR, which corresponds to the
situation when a reticulation has no outgoing arcs. This cannot happen in a
normal network but as explained shortly it will prove a useful abstraction.

Observation 4.1. Every network N containing a reticulation contains at least
one TBR.

Proof. Suppose this is not true. Let v be the child of a reticulation in N
maximising the longest path from the root to v. If v is not the root of a TBR
then there must exist some vertex v′ 6= v which is a child of a reticulation and
which is a descendent of v. But then the longest path from the root to v′ is
greater than to v, contradiction.

Note that, because a TBR is (as a consequence of its definition) below a cut-arc,
there exists an SN-set S of T such that T |S is consistent with (only) the TBR.
An SN-set S such that T |S is consistent with a tree, we call a CandidateTBR
SN-Set. Every TBR of N corresponds to some CandidateTBR SN-Set of T ,
but the opposite is not necessarily true. For example, a singleton SN-set is a
CandidateTBR SN-Set, but it might not be the child of a reticulation in N .

We abuse definitions slightly by defining the empty CandidateTBR SN-Set,
which will correspond to the empty TBR. (This is abusive because the empty
set is not an SN-set.) Furthermore we define that every triplet set T has an
empty CandidateTBR SN-Set.

Observation 4.2. Let T be a dense set of triplets on n leaves. There are at
most O(n) CandidateTBR SN-sets. All such sets, and the tree that each such
set represents, can be found in total time O(n3).

98 CHAPTER 4. PHYLOGENETIC NETWORKS

Proof. First we construct the SN-tree (see Section 4.2) in O(n3) time [Jan06a].
There is a bijection between the SN-sets of T and the vertices of the SN-
tree. (In the SN-tree, the children of an SN-set S are the maximal SN-sets
of T |S.) Observe that a vertex of the SN-tree is a CandidateTBR SN-set if
and only if it is a singleton SN-set or it has in total two children and both are
CandidateTBR SN-sets. We can thus use depth first search to construct all
the CandidateTBR SN-sets; note that this is also sufficient to obtain the trees
that the CandidateTBR SN-sets represent, because (for trees) the structure of
the tree is identical to the nested structure of its SN-sets. Given that there
are only O(n) SN-sets, the running time is dominated by construction of the
SN-tree.

Algorithm 2 SL-k (Construct all Simple Level-k networks)

1: Net := ∅
2: TBR1 := L(T)
3: for each leaf b1 ∈ TBR1 do
4: L′

1 := L(T) \ {b1}
5: T ′

1 := T |L′
1

6: TBR2 := FindCandidateTBRs(T ′
1)

7: for each b2 ∈ TBR2 do
8: ...

{Continue nesting for loops to a depth of k.}
9: ...

10: TBRk := FindCandidateTBRs(T ′
k−1)

11: for each bk ∈ TBRk do
12: L′

k := L′
k−1 \ bk

13: T ′
k := T ′

k−1|L′
k

{At this point we have finished “guessing” what the TBRs are, and
({b1}, b2, ..., bk) is a vector of (possibly empty) subsets of L(T). We
now try all possible ways of hanging the TBRs back in.}

14: if L′
k contains two or more leaves then

15: build the unique tree N ′
k = (V,A) consistent with T ′

k if it exists
(see [Hen99])

16: else
17: If L′

k contains one leaf {x}, let N ′
k be the network comprising the

single leaf {x}
18: If L′

k contains zero leaves, let N ′
k be the network comprising a

single, new dummy leaf
19: V := V ∪ {r′};A := A ∪ {(r′, r)} { with r the root of N ′

k and r′ a
new dummy root }

20: Let H(bk) be the unique tree consistent with bk

{ Note: H(bk) is a single vertex if |bk| = 1 and empty if |bk| = 0. }
21: for every two arcs a1

k, a2
k in N ′

k (not necessarily distinct) do

4.5. CONSTRUCTING SIMPLE LEVEL-K NETWORKS 99

22: Let p (respectively q) be a new vertex obtained by subdividing
a1

k (respectively a2
k)

23: Connect p and q to a new reticulation retk
24: Hang H(bk) (or a new dummy leaf if H(bk) is empty) from retk
25: if a1

k (or a2
k) was the arc above a dummy leaf d then

26: Remove d and if its former parent has indegree and outdegree
1, suppress that

27: Let N ′
k−1 be the resulting network

28: Let H(bk−1) be the unique tree consistent with bk−1

29: for every two arcs a1
k−1, a2

k−1 in N ′
k−1 (not necessarily distinct)

do
30: ...

{ Continue nesting for loops to a depth of k. }
31: ...
32: Let N ′

1 be the resulting network
33: Let H(b1) be the tree consisting of only the single vertex b1

34: for every two arcs a1
1, a2

1 in N ′
1 (not necessarily distinct) do

35: Let p (respectively q) be a new vertex obtained by subdivid-
ing a1

1 (respectively a2
1)

36: Connect p and q to a new reticulation ret1
37: Hang H(b1) from ret1
38: if a1

1 (or a2
1) was the arc above a dummy leaf d then

39: Remove d and if its former parent has indegree and out-
degree 1, suppress that
{This is the innermost loop of the algorithm}

40: Let N ′ be the resulting network
41: Remove the dummy root r′ from N ′

42: Remove (and if needed suppress former parents of) any re-
maining dummy leaves in N ′

43: if N ′ is a simple level-k network consistent with T then
44: Net := Net ∪ {N ′}
45: return Net

Theorem 4.7. Given a dense set of triplets T , it is possible to construct all
simple level-k networks consistent with T in time O(|T |k+1).

Proof. We claim that algorithm SL-k does this for us. First we prove correct-
ness. The high-level idea is as follows. Consider a simple level-k network N .
From Observation 4.1 we know that N contains at least one TBR. (Given that
N is simple we know that all TBRs are equal to single leaves. That is why the
outermost loop of the algorithm can restrict itself to considering only single-
leaf TBRs.) By looping through all CandidateTBR SN-sets we will eventually
find one that corresponds to a real TBR. If we remove this TBR and the reticu-
lation from which it hangs, and then suppress any resulting vertices with both
indegree and outdegree equal to one, we obtain a new graph with one fewer

100 CHAPTER 4. PHYLOGENETIC NETWORKS

reticulation than N . Note that this new graph might not be a valid network
in the sense that it might have reticulations with no outgoing arcs. Repeating
this k times in total we eventually reach a tree which we can construct using
the algorithm of Aho et al. (and is unique, as shown in [Jan06b]). From this
tree we can reconstruct the network N by reintroducing the TBRs back into
the network (each TBR below a reticulation) in the reverse order in which we
found them. We don’t, however, know exactly where the reticulations were
in N , so every time we reintroduce a TBR back into the network we exhaus-
tively try every pair of arcs (as the arcs which will be subdivided to hang the
reticulation, and thus the TBR, from.) Because we try every possible way of
removing TBRs from the network N , and every possible way of adding them
back, we will eventually reconstruct N .

The role of the dummy leaves in SL-k is linked to the empty TBRs (and their
corresponding empty CandidateTBR SN-Sets). When a TBR is removed, it
can happen (as mentioned above) that a graph is created containing reticu-
lations with no outgoing arcs. (For example: when one of the parents of a
reticulation from which the TBR hangs, is also a reticulation.) Conceptually
we say that there is a TBR hanging below such a reticulation, but that it is
empty. Hence the need in the algorithm to also consider removing the empty
TBR. If this happens, we will also encounter the phenomenon in the second
phase of the algorithm, when we are re-introducing TBRs into the graph. What
do we insert into the graph when we reintroduce an empty TBR? We use a
dummy leaf as a place-holder, ensuring that every reticulation always has an
outgoing arc. The dummy leaves can be removed once that outgoing arc is
subdivided later in the algorithm, or at the end of the algorithm, whichever
happens sooner. The dummy root, finally, is needed for when there are no
leaves on a side connected to the root.

It remains to analyse the running time. From Observation 4.2 we know that
each execution of FindCandidateTBRs (which computes all TBRs in a dense
triplet set plus the empty TBR) takes O(n3) time and returns at most O(n)
TBRs. Operations such as computing T ′

i , and the construction of the tree N ′
k,

all require time bounded above by O(n3). The for-loops when we loop though
the CandidateTBR SN-sets are nested to a depth of k. The for-loops when we
loop through pairs of arcs from which to hang TBRs, are also nested to a depth
of k. (There will only be O(n) arcs to choose from by Lemma 4.5.) Checking
whether N ′ is consistent with T , which we do inside the innermost loop of the
entire algorithm, takes time O(n3) [Byr08, Lemma 2]. So the running time
is O(n(n3 + n(n3 + . . . + n(n3 + n2k+3)))) which is O(n3k+3).

Lemma 4.11. Given a dense triplet set T , all simple level-2 networks consis-
tent with T can be constructed in O(n8) time.

Proof. We say that z is a low leaf of a network N if its parent has outdegree
zero in N \L. A low leaf is thus either a reticulation leaf or the child of a split

4.6. CONSTRUCTING LEVEL-2 NETWORKS FROM DENSE
TRIPLET SETS 101

vertex where both children of the split vertex are leaves. If arc a enters a low
leaf z we say that a is a low arc of N . An arc leaving the root or a child of
the root is called a high arc.

Using Algorithm SL-k all simple level-2 networks consistent with T can be
constructed in time O(n9). However, we will show below that when we subdi-
vide two arcs for the first time we can always choose one of these arcs to be a
high or a low arc. This improves the running time to O(n8).

It remains to be shown that all simple level-2 networks are still considered by
the Algorithm. First consider a network of type 2a. We can first remove the
leaf on side F and then the TBR consisting of all leaves (possibly none) on
side E. If there are at least two leaves on side B then one of the arcs we choose
to subdivide is a low arc (we subdivide the arc leading to the lowest leaf on
side B). If on the other hand there is at most one leaf on side B then one of
the arcs we subdivide is a high arc (we subdivide the arc leaving the dummy
root if there are no leaves on side B and we subdivide an arc leaving the child
of the dummy root if there is exactly one leaf on side B).

Now consider a network of type 2b. We first remove the leaf on side G and
the TBR consisting of the leaf on side H. Then we can argue just like with
2a that if there are at least two leaves on side B we subdivide a low arc and
otherwise a high arc. In a network of type 2c we remove the leaf on side G
and the TBR consisting of the leaf on side H. If on one of the sides C, D,
E or F there are at least two leaves we can subdivide a low arc on this side.
Otherwise there is at most one leaf on each of the sides C, D, E and F and
therefore all arcs we want to subdivide are low. Finally, consider a network of
type 2d. We remove the leaf on side F and the TBR consisting of the leaves
on side E. Then we can always subdivide a low arc unless there are no leaves
on sides B and C, which is not allowed. This concludes the proof.

4.6 Constructing Level-2 Networks from Dense Triplet Sets
in Polynomial Time

This section describes a polynomial time algorithm that constructs a level-2
network from a dense triplet set T if such a network exists. The algorithm is
recursive. The main idea is visualised in Figure 4.16. Suppose that we know
the correct partition L = S1∪. . .∪S7 of the leaves. Then the algorithm replaces
each set Si by a single (meta-)leaf and constructs a simple level-2 network (in
black) on these meta-leaves. How simple networks can be constructed was
shown in the previous section. The complete level-2 network can subsequently
be obtained by replacing each meta-leaf Si by a recursively created level-2
network. In spirit, this procedure resembles that for level-1 networks [Jan06b].
However, besides the fact that the simple level-2 networks are more complex,
it also turns out that finding the right partition, and proving the correctness

102 CHAPTER 4. PHYLOGENETIC NETWORKS

of the overall algorithm, is far more involved than in the level-1 version of the
problem. Unlike in the level-1 case there does not, for example, always exist a
level-2 network where the sets of leaves below highest cut-arcs correspond to
the maximal SN-sets.

h
i k l

b

c d

a

e

f

g
j

S1

S2

S3

S4

S5

S6

S7

Figure 4.16: Constructing a level-2 network by recursively constructing simple networks,
given the partition L = S1 ∪ . . . ∪ S7.

4.6.1 Algorithm and Proof

For any network N , denote by Collapse(N) the network obtained from N by
collapsing the sets of leaves below highest cut-arcs. More precisely, for each
highest cut-arc a = (u, v) in N , replace v and everything reachable from it
by a single new leaf V , which we identify with the set of leaves below a in
N . Thus if N has q highest cut-arcs a1, . . . , aq then Collapse(N) has leaf set
C = {C1, ..., Cq}, where Ci is the set of leaves below ai in N (and hence C is a
partition of L(N)).

For the sake of convenience we say that the basic tree, simple level-1 networks
and simple level-2 networks are all simple level-≤2 networks. Note that if
N is a level-2 network, then Collapse(N) is a simple level-≤ 2 network, by
Lemma 4.3.

For a dense triplet set T on leaf set L, a partition C of L is a correct partition
for T if there exists a level-2 network N consistent with T , such that the leaf
sets below highest cut arcs in N are given by C, or in other words if there
exists a level-2 network N such that Collapse(N) has leaf set C.
For any triplet set T and any partition C = {C1, . . . , Cq} of L, define the
induced triplet set T∇C as the set of triplets CiCj |Ck such that there exist
x ∈ Ci, y ∈ Cj , z ∈ Ck with xy|z ∈ T and i, j and k all distinct. Note that
T∇C is a triplet set on C, and that it is dense if T is dense. Note that if N is

4.6. CONSTRUCTING LEVEL-2 NETWORKS FROM DENSE
TRIPLET SETS 103

a network consistent with T such that the leaf sets below highest cut arcs in
N are given by a partition C of L, then Collapse(N) is consistent with T∇C.
The rough idea of our algorithm is to first determine, if it exists, a correct
partition C = {C1, . . . , Cq} for the given dense triplet set T , then construct
a simple level-≤ 2 network NC consistent with T∇C using Algorithm SL-2,
and then replace every leaf Ci of NC by a recursively created level-2 network
consistent with T |Ci. The resulting network N is consistent with T by the
following lemma. Note that in the lemma we do not require NC to be simple.

Lemma 4.12. Let C = {C1, . . . , Cq} be a correct partition for a dense triplet
set T and NC a level-2 network consistent with T∇C. Let N be a network
obtained from NC by replacing each leaf Ci of NC by a level-2 network Ni

consistent with T |Ci. Then N is a level-2 network consistent with T .

Proof. Consider a triplet xy|z ∈ T . First suppose that x, y, z ∈ Ci for some i.
Then xy|z ∈ T |Ci and hence N is consistent with xy|z because its subnetwork
Ni is.

Since C is a correct partition for T , there exists some level-2 network N ′ con-
sistent with T such that the Ci are the sets of leaves below highest cut arcs of
N ′. This means that for no i 6= j it holds that x, z ∈ Ci while y ∈ Cj , as N ′

is consistent with xy|z.

If x, y ∈ Ci and z ∈ Cj for some i 6= j, then xy|z is consistent with N since
Ci and Cj are below cut-arcs of N that are not reachable from each other (as
they are both expanded leaves of NC).

Finally, suppose that x ∈ Ci, y ∈ Cj and z ∈ Ck with i, j, k distinct. From
xy|z ∈ T it follows that CiCj |Ck ∈ T∇C and hence that NC is consistent with
CiCj |Ck. But then N is consistent with xy|z.

It remains to describe how to find a correct partition of the leaf set. This is
the main subject of the remainder of this section. If the given triplet set is
consistent with a level-1 network, the collection of maximal SN-sets forms a
correct partition S, as follows from the algorithm in [Jan06a]. For level-2 the
situation is more complicated, but maximal SN-sets can still be used to obtain
correct partitions.

Suppose that a dense triplet set T is consistent with a level-2 network N . We
will show in Theorem 4.8 that we have to split at most one maximal SN-set
of T to obtain a correct partition of the leaves. To prove this we first show
in Lemma 4.13 that, if N is a simple level-≤ 2 network, we can “push” any
single maximal SN-set, apart from one exception, below a highest cut-arc,
while maintaining consistency with T . In Lemma 4.15 this is extended to all
maximal SN-sets and in Theorem 4.8 to general level-2 networks. For the
latter two results we need Lemma 4.14, which describes the relation between
the maximal SN-sets of T and the maximal SN-sets of T∇C, for a correct
partition C.

104 CHAPTER 4. PHYLOGENETIC NETWORKS

Lemma 4.13. Let N be a simple level-≤ 2 network consistent with a dense
triplet set T and S a maximal SN-set of T . Then, unless N is of type 2c and
S consists of the two reticulation leaves in N , the partition C′ := {S} ∪ {{l} |
l ∈ L \ S} of L is a correct partition for T . In fact, in this case there exists
a level-2 network N ′ consistent with T and with the same set of reticulation
leaves as N such that Collapse(N ′) has leaf set C′ and is not of type 2c if N
is not.

Proof. We explicitly construct a level-2 network N ′ consistent with T such
that S equals the set of leaves below a highest cut-arc of N ′, and all other sets
of leaves below highest cut-arcs are the same as in N , i.e. they are singletons
(as N is simple). Moreover, the reticulation leaves in N ′ are the same as in
N , and if N is not of type 2c then neither is Collapse(N ′).

The case that S is a singleton is trivial and hence we assume from now on that
S contains at least two leaves. By assumption, if N is of type 2c then S is
not equal to the leaves on sides G and H. We say that u is a lowest common
ancestor (LCA) of x and y if u is an ancestor of both x and y and no proper
descendant of u has this property. We start with three critical observations.

Observation 4.3. No two leaves in S have the root as lowest common ances-
tor.

Viz., if two leaves in S have the root as LCA then all leaves are in S, since S
is an SN-set.

Observation 4.4. If x ∈ S and there is a path not containing any reticulations
from the parent of x to another leaf l, then l is also in S.

Viz., if y 6= x is any other leaf in S, then since N is not consistent with xy|l,
it follows that l is in S.

Observation 4.5. If two leaves x, y ∈ S have exactly one LCA u, then all
leaves z that have a parent on a path from u to x are in S, unless N is of type
2a, x is on side F , y is on side C and z on side E. In this case no leaves of
S are on sides E or B.

Proof. Assume that x and y have a unique LCA u, as in Figure 4.17.

If z /∈ S then neither xz|y nor yz|x is in T and therefore xy|z ∈ T because T is
dense. This means that there are vertices v and v′ in N and internally vertex
disjoint paths v′ → x, v′ → y, v → v′ and v → z denoted by Pv′x, Pv′y, Pvv′

and Pvz, respectively. Because u is the only LCA of x and y it follows that v′

is an ancestor of u. Since Pv′x is vertex disjoint from Pvz, it does not contain
the parent of z. But by assumption there is a path Quzx from u to x which
does contain the parent of z and hence Quzx joins with Pv′x at a reticulation
r1 that is between the parent of z and x.

4.6. CONSTRUCTING LEVEL-2 NETWORKS FROM DENSE
TRIPLET SETS 105

Suppose that u is contained in Pvz. Because u = LCA(x, y), u is a split vertex
(not a reticulation) and there is a u–y path Quy internally vertex disjoint from
Pvz. The fact that u is below v′ /∈ Pvz implies the existence of a reticulation
on Pvz above u, so different from r1. Since Pv′y is vertex disjoint from Pvz 3 u,
it joins the path Quy at a third reticulation between u and y, which is clearly
different from the second one (above u) and also different from r1 because
there are no common ancestors of x and y below u. Thus, the simple level-≤ 2
network N contains three distinct reticulations. A contradiction. So Pvz does
not contain u.

But then Pvz joins with Quzx at a reticulation r2 which is between u and z.
Since u is an LCA of x and y, there is a path Quy which is internally vertex
disjoint from Quzx. Because there are at most two reticulations in N , both
located on Quzx, the path Pv′y simply contains the entire path Quy. Now the
unique picture emerges of a type 2a network, with x the reticulation leaf (on
side F), y on side C and z on side E, see Figure 4.17. It follows immediately
that no leaf l of S is on side B or E, because N is not consistent with yl|z for
such l.

yx

z

u

v

v’

Figure 4.17: Illustration of the proof of Observation 4.5.

As a warming-up for the reader, we first prove the lemma for the case that N
is a simple level-1 network. The proof is constructive. The construction in the
proof for simple level-2 networks is essentially the same but more involved. In
case N is a simple level-1 network, Observations 4.3 and 4.4 imply that the
parents of S form a path P starting below the root and ending in either the
reticulation or in a parent of the reticulation. We construct the network N ′ as
follows. Let Nc denote the result of contracting in N the path P to a single
vertex vc. Let N∗

c denote the result of removing all leaves in S from Nc and
let N∗ denote the result of removing all leaves not in S from N . We combine
N∗

c and N∗ by adding an arc from vc to the root of N∗. In order to obtain a
valid network N ′ with only labelled leaves we remove any unlabelled vertices
with outdegree zero and suppress any vertices with indegree and outdegree
one. Clearly, N ′ has the same reticulation leaf as N and Collapse(N ′) is of

106 CHAPTER 4. PHYLOGENETIC NETWORKS

type 1 so not of type 2c. Furthermore, it is not too difficult to check that N ′

is consistent with all triplets that are consistent with N , except for triplets of
the form xy|z with x, z ∈ S and y /∈ S. Since the latter type of triplets are not
in T , this concludes the level-1 case.

From now on we assume that N is a simple level-2 network. The main differ-
ences with the level-1 case are that in the level-2 case the parents of S form a
connected subgraph which is not necessarily a path, and that there are some
exceptional cases, which complicate the analysis.

Claim 4.4. There are at most two (directed) paths in N such that each leaf
in S has a parent on one of these paths, unless N is of type 2b and there is a
leaf on side D, a leaf on side E and a leaf on side F or H in S.

Proof. First consider a simple level-2 network of type 2a and suppose that a
leaf on side B is in S. Then by Observation 4.3 no leaves on sides A, C and
D are in S and the claim follows. If no leaf on side B is in S then the claim is
also clearly true. For 2b we can argue similarly that if a leaf of side B is in S
only leaves on side B and H can be in S. If B is not in S then the claim also
holds, since we excluded the case that there are leaves on sides D, E and F in
S. Now consider 2c and suppose that a leaf on one of the sides A, C or E is
in S. Then no leaves on sides B, D and F can be in S by Observation 4.3 and
the claim follows. The case that there is a leaf on one of the sides B, D and F
is symmetric. This covers all cases in a network of type 2c since we assumed
that for networks of this type, S does not consist of leaves on sides G and H.
In 2d, if a leaf on side D is in S there can only be leaves from sides D and F
in S. If there is no leaf on side D in S the claim is also clearly true.

Claim 4.5. There exists a connected subgraph of N containing the parents of
leaves in S and no parents of other leaves, unless N is of type 2a and (some)
leaves on sides C and F are in S and no leaves on side B or E are in S. Let
2P denote such a connected subgraph of minimum size. Let δ−(2P) denote the
number of arcs entering 2P and let δ+(2P) denote the number of arcs going
out of 2P not leading to leaves in S. Then either δ−(2P) ≤ 3 and δ+(2P) ≤ 1,
or δ−(2P) = 1 and δ+(2P) = 2.

Proof. If N is of type 2b and (some) leaves on sides D, E and F are in S, then
all leaves on sides D, E and F and C are in S by Observations 4.4 and 4.5 and
all leaves on side G are in S because N is not consistent with de|g for d ∈ S on
side D, e ∈ S on side E and g on side G. Thus, a minimal connected subgraph
2P covering the parents of S in this case consists of sides C,D,E, F, G and
possibly H and possibly (the lower part of) side A. It has δ−(2P) = 2 and
δ+(2P) ≤ 1.

If we are not in the above situation, the previous claim says that N contains at
most two paths covering all parents of S. Suppose that these paths necessarily
also cover parents of leaves not in S. Then there are leaves x, z ∈ S and y /∈ S

4.6. CONSTRUCTING LEVEL-2 NETWORKS FROM DENSE
TRIPLET SETS 107

such that there is a path from the parent of x, passing the parent of y and going
to the parent of z. In this case the parent of x is a LCA of x and z. In simple
level-2 networks there is only one possible situation where two leaves have two
distinct different LCAs and this is if these leaves are on sides G and H in a
network of type 2c. Since x is not a reticulation leaf we can thus conclude that
the parent of x is the unique LCA of x and z. This leads to a contradiction
by Observation 4.5.

Thus, there are at most two paths in N such that S consists of exactly those
leaves that have a parent on one of these paths. The union of the (at most)
two paths and their unique LCA is, by Observation 4.5, always a connected
subgraph.

Thus we can define 2P to be a connected subgraph of N of minimum size
covering the parents of S and no parents of other leaves. The claim about
the possible indegrees and outdegrees of this connected subgraph 2P follows
from examining the structure of the four simple level-2 generators and Obser-
vations 4.3, 4.4 and 4.5. Note that, by minimality of 2P and by Observations
4.3 and 4.5, 2P does not contain the root. Also note that if N is of type 2b
and leaves on D and C (and possibly F and H) are in S, then also all leaves
on side E are in S (because cd|e is not consistent with N for c on side C, d on
D, e on E). and the leaf on side G is in S (because cd|g is not consistent with
N for c on side C, d on D, g on G). So here δ−(2P) ≤ 3 and δ+(2P) ≤ 1.

If N is of type 2a and leaves on sides C and F are in S and no leaves on side E
or B are in S we construct a network N ′ as indicated in Figure 4.18, where all
the leaves in S (including possibly leaves on side A and/or D) are put below
the non-trivial cut-arc and all other leaves above it. Note that if there are
leaves on side A or D in S then all leaves on side D must be in S. It is not
too difficult to check that in this case Collapse(N ′) is not of type 2c, N ′ has
the same reticulation leaves as N and is consistent with all triplets that are
consistent with N and not of the form xy|z with x, z ∈ S and y /∈ S.

In all other cases, let Nc denote the result of contracting in N the connected
subgraph 2P to a single vertex vc. Let N∗

c denote the result of removing all
leaves in S from Nc. Let N∗ denote the result of removing all leaves not in S
from N . We construct N ′ by combining N∗

c and N∗. How this is done depends
on the indegree and outdegree of vc in N∗

c . The idea is, as in the level-1 case, to
create a new outgoing arc from vc to the root of N∗. But in order to obtain a
valid network, we only add such an arc if vc has outdegree zero or indegree and
outdegree one. If vc has indegree at least two and outdegree one we subdivide
the arc leaving vc by a new vertex vn and create an arc from vn to the root of
N∗. If vc has indegree one and outdegree two we subdivide the arc entering vc

by a new vertex vn and create an arc from vn to the root of N∗, unless N is
of type 2a with all leaves on sides C and D and some on side A in S. In the
latter excluded case we apply the construction from Figure 4.19.

108 CHAPTER 4. PHYLOGENETIC NETWORKS

A
B

C’’

D

F

E

S={C’,C’’,F}

C

A
B

D
E

C’

F

E’

E’
C

C’

C’’

Figure 4.18: Construction of N ′ (the network on the right) in case N (on the left) is of
type 2a and leaves on sides C and F are in S and no leaves on side E or B are in S.

To obtain a valid network we remove again all unlabelled vertices with outde-
gree zero and suppress vertices with indegree and outdegree one. Moreover if
vc has indegree three, we replace it by two vertices v1

c and v2
c and connect two

former parents of vc to v1
c , one former parent of vc to v2

c and v1
c to v2

c .

This whole procedure is illustrated in Figure 4.20. An example network N is
displayed on the left with 2P in grey. After contracting 2P to a vertex vc (in
grey) and removing the leaves from S = {H,D,G, F} we get the network N∗

c in
the middle. Since vc has indegree three and outdegree zero we replace it by two
vertices of indegree two and create an outgoing arc to N∗. After suppressing
all vertices with indegree and outdegree both one we get the network N ′ on
the right. Note that N is of type 2c, but Collapse(N ′) is of type 2d in this
example. If G would not have been included in S, then Collapse(N ′) would
have been of type 2a, and if H would not have been included either, then
Collapse(N ′) would have been of type 2c. So in general, a change of type is
possible in this construction, but the reader may verify that Collapse(N ′) is
only of type 2c if N is of that type already.

To check that N ′ is consistent with T , consider three leaves x, y, z. If x, y, z ∈ S
or x, y, z /∈ S then any triplet on these leaves that is consistent with N is clearly
also consistent with N ′. If x, y ∈ S and z /∈ S then, by the definition of SN-set,
xy|z is the only triplet in T on these three leaves and this triplet is consistent
with N ′, as x and y appear below one cut-arc in N ′ together, whereas z is not
below that arc.

Now consider the case that x ∈ S and y, z /∈ S and suppose that a triplet
t over {x, y, z} is consistent with N but not with N ′. Notice that since t is
not consistent with N ′ it is also not consistent with Nc. First suppose that
t = yz|x. Because t is consistent with N , there are vertices u and v of N
such that there exist internally vertex disjoint paths u → v, v → y, v → z

4.6. CONSTRUCTING LEVEL-2 NETWORKS FROM DENSE
TRIPLET SETS 109

A’

B

D’

z

y

S={A,C,x,D,D’}

x

A
A’

B

D

z

y
x

AD
C

D’C

vc

Figure 4.19: Construction of N ′ (on the right) if N (on the left) is of type 2a with all
leaves on sides C and D and some on side A in S.

A B

C
H

E

G

F

D

S={H,D,G,F}

A B

C

E

vc

A B

C

E

F
H

G

D

vc
2vc

1

Figure 4.20: Networks N (on the left), N∗
c (in the middle) and N ′ (on the right) as an

example of the construction in the proof of Lemma 4.13.

and u → x. Because t is not consistent with Nc, one of these paths has been
contracted and is thus contained in 2P . This must be the path u → v since
2P does not contain any leaves. Hence in Nc there are three internally disjoint
paths from vc to x, y and z. It follows that vc has outdegree two and thus
indegree one in N∗

c . This means that network N ′ is either constructed as in
Figure 4.19, or the arc leading to vc is subdivided by vn and there is an arc
from vn to the root of N∗. In both cases inconsistency of N ′ with yz|x is
contradicted.

Now consider the case that t = xy|z (the case = xz|y is symmetric). In the
same way as above we argue that, because t is consistent with N but not with
Nc, there exist vertices u and v of N , internally vertex disjoint paths u → v,
v → x, v → y and u → z, denoted by Puv, Pvx, Pvy and Puz respectively,
and that 2P contains the path Puv. The fact that 2P is a minimal subgraph

110 CHAPTER 4. PHYLOGENETIC NETWORKS

covering all parents of leaves in S implies that u is either a LCA of two leaves
in S or a descendant of such a LCA. As argued before 2P does not contain
the root, hence u is not the root. Observe that u is also not the parent of a
leaf since z /∈ S would be the only candidate for such a leaf and 2P contains
no parents of leaves that are not in S. Hence u is a split vertex which is not
equal to the root and does not have a leaf as child.

Below we prove a claim stating that there exists a path Qrz from the root of
N to z that does not intersect 2P . This path also exists in Nc. If it does not
intersect the path from v to y in N , and hence the path from vc to y in N ′,
then this implies immediately that xy|z is consistent with N ′, a contradiction.
Otherwise Qrz joins Pvy at a reticulation, r1 say. Qrz must join Puz at a
reticulation r2, which is a descendant of r1. The facts that u is a split vertex
without a leaf child and that there exist internally vertex disjoint paths u→ r1

(consisting of Puv and part of Pvy) and u→ r2 (consisting of the first part of
Puz) imply that N is of type 2a with z on side F and y on side E. Moreover,
u is its unique split vertex without leaf child and v is on side C (and hence
the upper part of C is in S, and by Observation 4.4 all of C is in S). Because
2P contains the parent of x ∈ S, and because Qrz is completely disjoint from
2P , it follows that x is on C and no leaf of E is in S. Since 2P is a minimal
subgraph covering S, and since u is contained in 2P , also the lower part of A
or the upper part of D is in S. In any case, this implies that all of D is in
S (by Observation 4.4 or by the fact that ac|d is not consistent with N for a
on A, c on C and d on D). In this case N ′ is constructed like in Figure 4.19,
again contradicting inconsistency with xy|z.

Remains to prove the claim

Claim 4.6. There exists a path from the root of N to z that does not intersect
2P .

Proof. Observation 4.4 immediately implies that the claim is true if z is not
below any reticulation. In case z /∈ S is on side E or F of 2a, side H of 2b,
side G or H of 2c or on side F of 2d, the claim follows basically from the
fact that no two leaves in S have the root as LCA (Observation 4.3). For
2a we need the additional argument that if 2P contains part of E (above
z) and part of either A or D, then it also contains the whole lower part of
E (by Observation 4.4), and it contains F (as ae|f , de|f are not consistent)
contradicting the assumption that z /∈ S.

Now suppose that z is on side G of 2b. Then 2P cannot contain part of side A
since through Observation 4.4 this would imply that all of D,C and E would
be in S and therefore also all of G, contradicting z /∈ S. If both D and C or
E contain vertices in S then for a ∈ D, b ∈ C or E the triplet ab|z cannot be
consistent with N , implying that z ∈ S, a contradiction.

4.6. CONSTRUCTING LEVEL-2 NETWORKS FROM DENSE
TRIPLET SETS 111

Finally suppose that z is on side E of 2d. If there is no path from the root to
z with is disjoint from 2P then 2P contains part of A or part of C and part
of B or both. In any case, no triplet ab|z with a, b ∈ S is consistent with N , a
contradiction.

The above lemma essentially shows that any single maximal SN-set (with one
well-specified exception) can be “pushed” below a highest cut-arc in a simple
level-≤ 2 network without losing consistency with the given triplet set. We
would like to argue by induction that all maximal SN-sets (with the same
exception) can be “pushed” below highest cut-arcs. For this we first need the
following lemma.

Lemma 4.14. Let C be a correct partition for dense triplet set T . There
is a bijection between the maximal SN-sets of T and the maximal SN-sets of
T∇C mapping a maximal SN-set {C1, . . . , C`} of T∇C to the maximal SN-set
C1 ∪ . . . ∪ C` of T .

Proof. Let N be a level-2 network consistent with T whose sets of leaves below
highest cut arcs are given by C. Firstly, consider an SN-set of T that is a union
S = C1∪. . .∪C` of sets from C. Define S′ as {C1, . . . , C`} and suppose that S′ is
not an SN-set of T∇C. Then there exist distinct Ci, Ck ∈ S′ and Cj /∈ S′ such
that CiCj |Ck ∈ T∇C. This implies existence of leaves x ∈ Ci, y ∈ Cj , z ∈ Ck

and a triplet xy|z ∈ T such that x, z ∈ S and y /∈ S, contradicting the fact
that S is an SN-set. Thus, S′ is an SN-set of T∇C.
Secondly, consider an SN-set S′ = {C1, . . . , C`} of T∇C. If S := C1 ∪ . . . ∪ C`

is not an SN-set of T then there exists a triplet xy|z ∈ T with x, z ∈ S and
y /∈ S. Because y /∈ S, y is not in the same partition element Cj as x or
z, or in other words y is not below the same highest cut-arc as x or z in N .
If x and z were both in the same partition element Ci, then they were both
below the same highest cut arc in the network N . But this contradicts the
fact that N is consistent with xy|z ∈ T . So x ∈ Ci, y ∈ Cj and z ∈ Ck, where
Ci, Ck ∈ S′ distinct and Cj /∈ S′. But then xy|z ∈ T implies CiCj |Ck ∈ T∇C,
contradicting the fact that S′ is an SN-set.

Finally, the 1-1 correspondence we have just established between SN-sets of
T∇C and SN-sets of T of the form S = C1 ∪ . . . ∪ C` together with the fact
that, by Lemma 4.6, any maximal SN-set of T is of that form, proves the
lemma.

We are ready to extend Lemma 4.13 to the collection of all SN-sets.

Lemma 4.15. Let N be a simple level-≤ 2 network consistent with a dense
triplet set T and C the collection of maximal SN-sets of T . Then C is a correct
partition for T , unless N is of type 2c and T has a maximal SN-set S = {G, H}

112 CHAPTER 4. PHYLOGENETIC NETWORKS

consisting of the two reticulation leaves of N : in the latter case C′ := C \{S}∪
{{G}, {H}} is a correct partition for T .

Proof. Order the (disjoint) maximal SN-sets S1, . . . Sk, in such a way that if N
is of type 2c and {G, H} is a maximal SN-set, then {G, H} = Sk. Now we prove
by induction on i that Ci := {S1, . . . , Si}∪{{l} | l ∈ L\(S1∪· · ·∪Si)} is a correct
partition for T . In fact, we prove that a level-2 network Ni consistent with
T exists with the same set of reticulation leaves as N such that Collapse(Ni)
has leaf set Ci and is not of type 2c if N is not. Note that C = Ck and if N
is of type 2c and Sk = {G, H} then C′ = Ck−1. Lemma 4.13 deals with the
induction basis i = 1.

To prove the induction step, let Ni be a level-2 network consistent with T
with the same set of reticulation leaves as N , such that Collapse(Ni) has leaf
set Ci and is not of type 2c if N is not. If Sj (for j ≤ i) is the set of leaves
below highest cut-arc aj , then denote by Ni(Sj) the subnetwork of Ni below
aj . Clearly Ni(Sj) is consistent with T |Sj . Note that Collapse(Ni) is a simple
level-≤ 2 network consistent with T∇Ci. Moreover, Si+1 is a maximal SN-set
of T∇Ci by Lemma 4.14. Therefore, Lemma 4.13 applied to T∇Ci and Si+1

and Collapse(Ni) yields the existence of a network NC
i+1 (on the same leaf set

as Collapse(Ni), i.e. on Ci) that is consistent with T∇Ci but has Si+1 below
a highest cut-arc whereas the other leaf sets below highest cut arcs are sin-
gletons. Moreover, Lemma 4.13 claims that Collapse(NC

i+1) is not of type 2c
if Collapse(Ni) is not, and it gives a 1-1 correspondence between reticulation
leaves in Collapse(Ni) and reticulation leaves in NC

i+1. Replacing the singleton
leaves S1, . . . , Si in NC

i+1 by the networks Ni(S1), . . . , Ni(Si) respectively, re-
sults in a level-2 network Ni+1 consistent with T , by Lemma 4.12. This network
Ni+1 has the same set of reticulation leaves as Ni. The sets of leaves below
highest cut arcs in Ni+1 are given by Ci+1. Moreover Collapse(Ni+1) = NC

i+1

is not of type 2c if Collapse(Ni) is not. This completes the description of the
induction step.

The induction step may be applied for a certain i if Lemma 4.13 is indeed
applicable with triplet set T∇Ci, SN-set Si+1 and network Collapse(Ni). This
is the case if Collapse(Ni) is not of type 2c or if Si+1 does not consist of its
two reticulation leaves.

If N is not of type 2c then neither is Collapse(Ni), so in this case the induction
step applies to every i with i + 1 ≤ k and we conclude that Ck is a correct
partition for T .

If N is of type 2c but Si+1 does not consist of its two reticulation leaves, then
we use the extra argument that, by the induction hypothesis, Ni has the same
set of reticulation leaves as N . This means that the maximal SN-set Si+1 of
T∇Ci is not equal to the set of reticulation leaves of Collapse(Ni) and hence
we may apply the induction step. Thus, if N is of type 2c and Sk 6= {G, H},
then we apply the induction step for i + 1 ≤ k and conclude that Ck is a

4.6. CONSTRUCTING LEVEL-2 NETWORKS FROM DENSE
TRIPLET SETS 113

correct partition for T . If N is of type 2c and Sk = {G, H} then we apply the
induction step for i + 1 ≤ k − 1 and conclude that Ck−1 is a correct partition
for T .

The next step is to extend the above result to general (not necessarily simple)
level-2 networks. The following theorem essentially describes how a correct
partition can be constructed from the collection of maximal SN-sets of a given
triplet set.

Theorem 4.8. Let T be a dense triplet set consistent with some level-2 net-
work N . Then there exists a level-2 network N ′ consistent with T such that
at most one maximal SN-set of T equals the union of the sets of leaves below
two highest cut-arcs of N ′ and each other maximal SN-set is equal to the set
of leaves below just one highest cut-arc.

Proof. Let N be a level-2 network consistent with T . Suppose that a1, . . . , aq

are the highest cut arcs of N , and Ci is the set of leaves below ai. Then
C := {C1, . . . , Cq} is a correct partition for T . Denote the subnetwork of N
below ai by N(Ci). First note that Collapse(N) is a simple level-≤2 network on
leaf set C consistent with T∇C. By Lemma 4.15, there exists a level-2 network
NC on leaf set C, consistent with T∇C, and having all maximal SN-sets of T∇C,
with at most one exception, below highest cut arcs. The exception occurs if
Collapse(N) is of type 2c and one of the maximal SN-sets of T∇C consists of
its two reticulation leaves: in that case one maximal SN-set of T∇C is equal
to the union of two (singleton) sets of leaves below highest cut-arcs in NC . Let
N ′ be the result of replacing each leaf Ci in NC by the subnetwork N(Ci) of
N . Then N ′ is consistent with T by Lemma 4.12.

Lemma 4.14 describes a bijection between the maximal SN-sets of T∇C and
the maximal SN-sets of T . Since the maximal SN-sets of T∇C, with one
possible exception, occur below highest cut arcs of NC , the corresponding
maximal SN-sets of T occur below highest cut-arcs of N ′, also with one possible
exception. An exceptional SN-set of T∇C consists of two (reticulation) leaves
below highest cut-arcs in NC , and hence the corresponding exceptional SN-set
of T is the union of two sets of leaves below highest cut-arcs in N ′.

Now suppose that an input triplet set T is consistent with some level-2 network.
The above theorem implies that, after possibly splitting one maximal SN-
set, we obtain a correct partition and the problem then essentially reduces to
constructing a simple level-≤ 2 network for the induced triplet set. Given that
there is at most one maximal SN-set that needs to be split into two subsets, we
can simply try splitting each maximal SN-set of T in turn, and also consider
the case where no maximal SN-set of T is split. There are only O(n) maximal
SN-sets. The following lemma tells us how to split the chosen maximal SN-set
into two subsets.

114 CHAPTER 4. PHYLOGENETIC NETWORKS

Lemma 4.16. Let T be a dense set of triplets and N ′ a network with the
properties described in Theorem 4.8. Suppose T contains a maximal SN-set X
which occurs as the union of the sets S1 and S2 of leaves below two highest
cut-arcs. Then the collection of maximal SN-sets of T |X is {S1, S2}.

Proof. Create a network N∗ by taking the two subnetworks on the leaf sets S1

and S2 in N ′, and make their roots children of a new root. It is easy to see that
N∗ is consistent with all the triplets in T |X. Both S1 and S2 appear below
highest cut-arcs in N∗ so the result now follows immediately from Lemma
4.6.

This lemma shows that only maximal SN-sets that internally decompose into
two maximal SN-sets need to be considered as possible candidates to be split,
and furthermore that this split is completely determined by the internal de-
composition of the SN-set. From the proof of Theorem 4.8 it also follows that
if it is necessary to split a maximal SN-set X to obtain a correct partition,
then the simple level-2 network we are looking for on this partition must be
of type 2c and X must correspond to its two reticulation leaves. This fact has
a positive consequence for the running time of our algorithm. It means that
whenever we have to split an SN-set, we can find a simple level-2 network by
Algorithm SL-2 much faster, since we already know the two reticulation leaves.

The general outline of our algorithm LEVEL2, which constructs level-2 net-
works from dense triplet sets, is as follows. First we compute the maximal
SN-sets. If there are precisely two maximal SN-sets then we recursively create
two level-2 networks for the two maximal SN-sets and connect their roots to a
new root. Otherwise, we try splitting each maximal SN-set in turn and we try
the case where no maximal SN-set is split. If S is the obtained set of SN-sets
then we compute the induced set of triplets T∇S and try to construct a sim-
ple level-1 or -2 network N consistent with T∇S using algorithm SL-2. We
recursively create level-2 networks for each SN-set in S and replace each leaf
of N by the corresponding, recursively created, level-2 network. The whole
algorithm is presented in pseudo code in Algorithm 3.

Theorem 4.9. Algorithm LEVEL2 constructs, in O(|T | 83) time, a level-2 net-
work consistent with a dense set of triplets T if and only if such a network
exists.

Proof. Correctness of the algorithm follows from the above. To analyse the
running time, recall that the algorithm works by recursively constructing sim-
ple level-1 and -2 networks based on maximal SN-sets. If there are s maximal
SN-sets the simple level-1 algorithm takes O(s3) time [Jan06a] and the simple
level-2 algorithm takes O(s8) time by Lemma 4.11. If no solution is found,
the algorithm loops over the s maximal SN-sets (line 11) and replaces one, say
X, that has two children in the SN-tree, say S1 and S2, by these two chil-
dren. This results in a collection of s + 1 SN-sets, and finding a simple level-2

4.6. CONSTRUCTING LEVEL-2 NETWORKS FROM DENSE
TRIPLET SETS 115

Algorithm 3 LEVEL2
1: N := ∅
2: compute the set SN of maximal SN-sets of T
3: if |SN | = 2 then
4: N consists of a root connected to two leaves: the elements of SN
5: else
6: if T∇SN is consistent with a simple level-1 network then
7: let N be such a network
8: else if T∇SN is consistent with a simple level-2 network then
9: let N be such a network

10: else
11: for X ∈ SN do
12: compute the set SN ′ of maximal SN-sets of T |X
13: if |SN ′| = 2 then
14: S := SN \ {X} ∪ SN ′

15: if T∇S is consistent with a simple level-2 network of type 2c
where the elements of SN ′ are the two reticulation leaves then

16: let N be such a network
17: for each leaf V of N do
18: recursively create a level-2 network NV consistent with T |V
19: if N 6= ∅ and all NX 6= ∅ then
20: replace each leaf V of N by the recursively created NV .
21: return N
22: else
23: return ∅

network with leaves corresponding to those SN-sets (line 15) now takes only
O(s6), since we can adapt Algorithm SL-2 in such a way that it does not loop
over all leaves and TBRs to remove, but simply chooses to remove S1 and S2.
Indeed, the network we are looking for now is of type 2c and has reticulation
leaves S1 and S2. Hence, constructing a single biconnected component with s
outgoing arcs takes the algorithm at most O(s8) time.

Suppose N is the level-2 network we are constructing. Let s1, . . . , sm denote
the numbers of arcs leaving its m nontrivial biconnected components. The
network N contains O(n) arcs by Lemma 4.5, implying that s1 + . . . + sm is
O(n). Because s8

1 + . . . + s8
m ≤ (s1 + . . . + sm)8 the total time needed for

constructing biconnected components in lines 6 - 16 is O((s1 + . . .+ sm)8) and
hence O(n8). The computation of maximal SN-sets in line 2 takes O(n3) time
[Jan06a] and is executed O(n) times. All other computations can also be done
in O(n3) time and are executed at most O(n2) times. We conclude that the
total running time of Algorithm 3 is O(n8) which is equal to O(|T | 83) because
T is dense.

116 CHAPTER 4. PHYLOGENETIC NETWORKS

4.6.2 Practical Experiments

The algorithm from the previous section has been implemented in Java and
applied to experimental data. The implementation was made publicly avail-
able [LEV07]. The data of this application consists of sequences from different
isolates of the yeast Cryptococcus gattii . This yeast is potentially dangerous
and an ongoing outbreak on the Westcoast of Canada [Kid04], which started
in 1999, has caused many infections and even some fatalities. We have con-
structed a phylogenetic network for these isolates as a tool to find the origin of
this C. gattii outbreak. We have blinded the names of the isolates here since
the biological part of the research has not yet reached a conclusion.

1

6

7

18

13

17

219

8

9 10

512

11

20

4 15

21

16

3 14

Figure 4.21: The network constructed by the algorithm LEVEL2 for the triplets based on
the yeast data set.

Given the C. gattii sequences we have constructed a set of triplets as follows.

4.7. MINIMISING RETICULATIONS 117

Firstly, all identical sequences are combined into a single sequence type (ST).
One of the sequence types (that is only distantly related to the others) is used as
an outgroup and we have applied the Maximum Likelihood method of PHYML
[Gui03] to each subset of four sequence types that includes the outgroup. Each
output tree of PHYML gives us one input triplet for our algorithm LEVEL2.
Running our algorithm for all STs tells us that there exists no level-2 network
consistent with all triplets. Therefore, we have applied our algorithm to a set
containing as many STs as possible (where certain important STs get priority
over others) without destroying level-2-realisability. This set has been found by
searching through all subsets. Given this subset and all triplets the execution
of the algorithm LEVEL2 took 0.8 seconds on a Pentium IV, 3 GHz PC with
1GB memory. The resulting level-2 network is displayed in Figure 4.21. This
network is consistent with all 1330 triplets that were generated over this set
of taxa. The figure displays both a reticulate pattern and a dichotomous and
tree-like structure. Our method is able to differentiate and visualise these.

The algorithm appears to work fast in practice. However, for data for which not
all triplets can be found accurately or for which there are many reticulations
that do not fit into a level-2 network, it might only be possible to find a
phylogenetic network for a subset of the taxa. However, even in such cases,
the constructed level-2 networks could give a better representation of reality
than a tree or a level-1 network.

4.7 Minimising Reticulations

4.7.1 Constructing Level-1 Networks with a Minimum Number of Retic-
ulations

This section proposes a dynamic programming algorithm for solving MinRL-1
on dense triplet sets:

Minimum Reticulation Level-1 Network on Dense Triplet Sets

(MinRL-1D)
Input: A dense triplet set T .
Output: A level-1 network consistent with all triplets in T (if such a network

exists) and containing a minimum number of reticulations over all
such networks.

To describe the algorithm some more definitions are needed. We call a cycle
containing the root a highest cycle and a reticulation in such a cycle a highest
reticulation. The set BHR(N) is used to denote the set of leaves in network
N that is below a highest reticulation. If the root of N is not in a cycle
then BHR(N) = ∅. Recall that an SN-set is nontrivial if it does not contain
all leaves and that an SN-set S is maximal under restriction R if there is no
nontrivial SN-set satisfying restriction R that is a strict superset of S.

118 CHAPTER 4. PHYLOGENETIC NETWORKS

Recall the following definition from Section 4.6.1. For a triplet set T and a
partition C = {C1, . . . , Cq} of L(T), define the induced triplet set T∇C as the
set of triplets CiCj |Ck such that there exist x ∈ Ci, y ∈ Cj , z ∈ Ck with
xy|z ∈ T and i, j and k all distinct.

The intuition behind the algorithm is as follows. Given a dense triplet set
T , the algorithm considers all SN-sets of T from small to large and computes
an optimal solution NS for each SN-set S, based on optimal solutions for
included SN-sets. The algorithm considers both the possibility that the root
of an optimal network is contained in a cycle and the possibility that there are
two cut-arcs leaving the root. In the latter case, there are two SN-sets S1 and
S2 that are maximal under the restriction that they are a subset of S. Hence,
if there are two such SN-sets, then the algorithm constructs a candidate for
NS by creating a new root connected to the roots of two optimal networks for
S1 and S2.

The other possibility is that the root of an optimal network NS is contained in
some cycle. For this possibility the algorithm tries each SN-set as BHR(NS):
the set of leaves below the highest reticulation in NS . The sets of leaves
below other highest cut-arcs can then be found using the property outlined in
Lemma 4.17 below. Subsequently, an induced set of triplets is computed, where
each set of leaves below a highest cut-arc is replaced by a single meta-leaf. A
candidate network is constructed by computing a simple level-1 network (as
in [Jan06a]) and replacing each meta-leaf Si by an optimal network NSi

for
the corresponding subset of the leaves. An optimal network NS can then be
found by selecting a network with a minimum number of reticulations over all
computed networks.

Our algorithm, called MARLON (Minimum Amount of Reticulation Level One
Network), is described in Algorithm 4. For an SN-set S, we use f(S) to denote
the minimum number of reticulations in any level-1 network consistent with
T |S. In addition, g(S, S′) denotes the minimum number of reticulations in any
level-1 network N consistent with T |S with BHR(N) = S′. The algorithm
first computes the optimal number of reticulations. Then a network with this
number of reticulations is constructed using backtracking.

To show that the algorithm indeed computes an optimal solution we need the
following crucial property of optimal level-1 networks.

Lemma 4.17. If there exists a solution N to MinRL-1D, then there also
exists an optimal solution N ′, where the sets of leaves below highest cut-arcs
equal either (i) BHR(N ′) and the SN-sets that are maximal under the re-
striction that they do not contain BHR(N ′), or (ii) the maximal SN-sets
(if BHR(N ′) = ∅).

Proof. If BHR(N) = ∅ then there are two highest cut-arcs and the sets below
them are the maximal SN-sets. Otherwise, the root of N is part of a cycle.
We prove the following.

4.7. MINIMISING RETICULATIONS 119

Algorithm 4 MARLON (Minimum Amount of Reticulation Level One Net-
work)
1: compute the set SN of SN-sets of T
2: for i = 1 . . . n do
3: for each S in SN of cardinality i do
4: for each S′ ∈ SN with S′ ⊂ S do
5: let C contain S′ and all SN-sets that are maximal under the restric-

tion that they are a subset of S and do not contain S′

6: if T∇C is consistent with a simple level-1 network then
7: g(S, S′) := 1 +

∑
X∈C f(X)

8: if there are exactly two SN-sets S1, S2 ∈ SN that are maximal under
the restriction that they are a strict subset of S then

9: g(S, ∅) := f(S1) + f(S2) (C := {S1, S2})
10: f(S) := min g(S, S′) over all computed values of g(S, ·)
11: store the optimal C and the corresponding simple level-1 network
12: construct an optimal network by backtracking.

Claim 4.7. Let S be an SN-set. Either S equals a (sub)set of the leaves
below a highest cut-arc or there exists a directed path P ending in the highest
reticulation or in one of its parents, such that S equals the set of leaves that
are below a highest cut-arc with its tail on P .

Proof. Assume that an SN-set S does not equal a (sub)set of the leaves below
a highest cut-arc. It follows that S equals the union of sets of leaves below
several highest cut-arcs. Indeed, if there are leaves x, z ∈ S below distinct
highest cut-arcs then for any leaf y below any of these cut-arcs holds that
xy|z ∈ T and hence that y ∈ S. Now observe that no two leaves in S have the
root as their lowest common ancestor, since this would imply that all leaves
are in S. It now follows that there exists a directed path P on the highest
cycle such that all leaves in S are below a highest cut-arc with its tail on P .
Let P be a minimal such path. We now argue that all leaves below a highest
cut-arc with tail on P are in S. If this would not be the case, then there would
be leaves x, z, y below highest cut-arcs with tails respectively p1, p2, p3 that
are on P (in this order) with x, y ∈ S and z /∈ S. However, this would lead to
a contradiction because then the triplet xy|z is not consistent with N , whilst
yz|x and xz|y are not in T since S is an SN-set. It remains to prove that P
ends in either the highest reticulation or in one of its parents. Assume that
this is not true, then there exists a vertex v on the interior of a path from the
last vertex of P to the highest reticulation. Consider some leaf z /∈ S below the
highest cut-arc with v as tail and some leaves x, y ∈ S below distinct highest
cut-arcs with tails on P . Then this again leads to a contradiction because xy|z
is not consistent with N .

To prove the lemma, consider a maximal SN-set S that is not equal to the set

120 CHAPTER 4. PHYLOGENETIC NETWORKS

of leaves below a single highest cut-arc. By the maximality of S, it cannot
equal a strict subset of the leaves below a highest cut-arc. Thus, from the
above claim it follows that there exists a path P such that S equals the set of
leaves that are below a highest cut-arc with its tail on P . First suppose that
P ends in a parent of the highest reticulation. In this case we can modify the
network by putting S below a single cut-arc, without increasing the number
of reticulations. To be precise, if p and p′ are the first and last vertex of
P respectively and r is the highest reticulation, then we subdivide the arc
entering p by a new vertex v, add a new arc (v, r), remove the arc (p′, r) and
suppress p′, since it now has indegree and outdegree both equal to one. It is
not too difficult to see that the resulting network is still consistent with T .

BHR(N) BHR(N’)

S’ S’

p
p’

r

Figure 4.22: Visualisation of the proof of Lemma 4.17. From the maximal SN-sets (encir-
cled in the network on the left) to the sets of leaves below highest cut-arcs (encircled in the
network on the right). Remember that all arcs are directed downwards.

Now suppose that P ends in the highest reticulation. The sets of leaves below
highest cut-arcs are all SN-sets (as is always the case, see page 77). One
of these sets is equal to BHR(N). Suppose that another such set X is not
maximal under the restriction that it does not contain BHR(N). Then X is
a strict subset of a nontrivial SN-set S′ that is maximal under the restriction
that it does not contain BHR(N). We apply Claim 4.7 to S′. Observe that
S′ cannot be equal to a (sub)set of the leaves below a highest cut-arc, since
it is a strict superset of X. Thus, S′ equals the set of leaves that are below a
highest cut-arc with a tail on a path P ′ on the highest cycle. Moreover, since
S′ does not contain BHR(N), P ′ does not end in the highest reticulation, but
in one of its parents. Thus, the procedure from the previous paragraph can be
used to put S′ below a highest cut-arc.

The lemma now follows from the following. If there exists a solution to
MinRL-1D, then there exists an optimal solution to MinRL-1D. After ap-
plying the modifications described above to this optimal solution, for each
maximal SN-set S, the sets of leaves below highest cut-arcs in the resulting
network N ′ are indeed equal to BHR(N ′) and the SN-sets that are maximal
under the restriction that they do not contain BHR(N ′).

An example is given in Figure 4.22. In the network N on the left one maximal

4.7. MINIMISING RETICULATIONS 121

SN-set equals the set of leaves below the grey path. In the middle is the same
network, but now we encircled BHR(N) and the SN-sets that are maximal
under the restriction that they do not contain BHR(N). There is still an SN-
set (S′) below several highest cut-arcs (with tails on the grey path). However,
in this case the network can be modified by putting S′ below a single cut-arc,
without increasing the number of reticulations. This gives the network N ′ on
the right, where the sets of leaves below highest cut-arcs are indeed equal to
BHR(N ′) and the SN-sets that are maximal under the restriction that they
do not contain BHR(N ′).

Theorem 4.10. Given a dense set of triplets T , algorithm MARLON con-
structs a level-1 network that is consistent with T (if such a network exists)
and has a minimum number of reticulations in O(n5) time.

Proof. The proof is by induction on the size i of S. Suppose that N is an
optimal level-1 network consistent with T |S, with the property described by
Lemma 4.17. If BHR(N) = ∅ then the sets of leaves below highest cut-arcs
are the two maximal SN-sets S1 and S2. In this case f(S) can be computed
by adding up the f(S1) and f(S2). Otherwise, it follows from Lemma 4.17
and the observation that BHR(N) has to be an SN-set, that at some iteration
the algorithm will consider the collection C of sets of leaves below the highest
cut-arcs of N . In this case the number of reticulations can be computed by
adding one to the sum of the values f(X) over all X ∈ C. This is because
the network N consists of a (highest) cycle, connected to optimal networks for
the different X ∈ C. By induction, all values of f(X) for |X| < i have been
computed correctly and correctness of the algorithm follows. The number of
SN-sets is O(n) because any two SN-sets are either disjoint or one is included
in the other [Jan06b, Lemma 8]. The SN-sets can be found in O(n3) time by
computing the SN-tree [Jan06a]. From this SN-tree it is possible to construct
the SN-sets that are maximal under the restriction that they are contained in
a specific SN-set and/or do not contain another specific SN-set, in O(n) time.
The triplet set T∇C can be computed and simple level-1 networks can be found
in O(n3) time [Jan06a]. These computations are repeated O(n2) times: for all
S ∈ SN and all S′ ∈ SN with S′ ⊂ S. Therefore, the total running time is
O(n5).

MARLON has been implemented, tested and made publicly available [MAR08].
For example the network in Figure 4.23 with 80 leaves and 13 reticulations
could be constructed by MARLON (from a computer generated triplet set) in
less than six minutes on a Pentium IV 3 GHz PC with 1 GB of RAM.

122 CHAPTER 4. PHYLOGENETIC NETWORKS

1

7

6

5

16

17

61

64

6263

65

66

68

69 70

67

19

1820

8

22

51

52

53

54

57

55

56

58

59

23 60

24

25

9

10

11

12

13

71

72

73

74 77

75 76

80

7879

14

1521

2

26

29

30

35

33 34

3132

28

27

36

37

40

38

39

41

42

43

4445

3

46

47

48

4

4950

Figure 4.23: Example of a network constructed by MARLON.

4.7.2 Constructing a Level-2 Network with a Minimum Number of Retic-
ulations

This section extends the approach from Section 4.7.1 to level-2 networks. We
describe how one can find a level-2 network consistent with a dense input
triplet set containing a minimum number of reticulations, or decide that such

4.7. MINIMISING RETICULATIONS 123

a network does not exist, in polynomial time.

The general structure of the algorithm is the same as in the level-1 case. We
loop through all SN-sets S from small to large and compute an optimal solu-
tion NS for that SN-set, based on previously computed optimal solutions for
included SN-sets. For each SN-set we still consider, like in the level-1 case, the
possibility that there are two cut-arcs leaving the root of NS and the possibility
that this root is in a biconnected component with one reticulation. However,
now we also consider a third possibility, that the root of NS is in a biconnected
component containing two reticulations.

In the construction of biconnected components with two reticulations, we use
the notion of “non-cycle-reachable”-arc, or ncr-arc for short, introduced in
Section 4.4. An arc a = (u, v) is an ncr-arc if u is not in a cycle and no ancestor
of u is in a cycle. These ncr-arcs will be used to combine networks without
increasing the network level. In addition, we use the notion highest biconnected
component to denote the nontrivial biconnected component containing the root
(if it exists).

Figure 4.24: The four possible structures of a biconnected component containing two
reticulations.

Our complete algorithm, called MARELET (Minimum Amount of REticula-
tion LEvel Two network), is described in detail in Algorithm 5. To get an
intuition of why the algorithm works, consider the four possible structures of a
biconnected component containing two reticulations displayed in Figure 4.24.
Let X, Y , Z and Q be the sets of leaves indicated in Figure 4.24 in the graph
that displays the form of the highest biconnected component of NS . Observe
that after removing Z in each case X, Y and Q become sets of leaves below
cut-arcs and hence SN-sets (w.r.t T |(S\Z)). In cases 2a, 2b and 2c the highest
biconnected component becomes a cycle, Q the set of leaves below the highest
reticulation and X and Y sets of leaves below highest cut-arcs. We will first
describe the approach for these cases and show later how a similar technique
is possible for case 2d.

Our algorithm loops through all SN-sets that are a subset of S and will hence
at some iteration consider the SN-set Z. The algorithm removes the set Z

124 CHAPTER 4. PHYLOGENETIC NETWORKS

N1

Y

Z

X

Z

N2 N3

C

Q

F

Y

Z

X

N*

X

B

A

Y

E

D

C

A

B

D

E

F

Q

Figure 4.25: Example of the construction of network N∗ from N1, N2 and N3.

and computes the SN-sets of T |(S \ Z). The sets of leaves below highest cut-
arcs (in some optimal solution, if one exists) are now equal to X, Y,Q and the
SN-sets that are maximal under the restriction that they do not contain X,
Y or Q (by the same arguments as in the proof of Lemma 4.17). Therefore,
the algorithm tries each possible SN-set for X, Y and Q and in one of these
iterations it will correctly determine the sets of leaves below highest cut-arcs.
Then the algorithm computes the induced set of triplets, where each set of
leaves below a highest cut-arc is replaced by a single meta-leaf. All simple
level-1 networks consistent with this induced set of triplets are obtained by
the algorithm in [Jan06a]. Our algorithm loops through all these networks
and does the following for each simple level-1 network N1. Each meta-leaf
V , not equal to X or Y , is replaced by an optimal network NV , which has
been computed in a previous iteration. To include leaves in Z, X and Y , we
compute an optimal network N2 consistent with T |(X ∪ Z) and an optimal
network N3 consistent with T |(Y ∪ Z) where in both networks Z is the set of
leaves below an ncr-arc. Then we combine these three networks into a single
network like in Figure 4.25. A new reticulation is created and Z becomes the
set of leaves below this reticulation. Finally, we check for each constructed
network whether it is consistent with T |S. As we will show, a network with
the minimum number of reticulations over all constructed networks that are
consistent with T |S is an optimal solution NS for this SN-set.

Now consider case 2d. Suppose we remove Z and replace X, Y (=Q) and
each SN-set of T |(S \Z) that is maximal under the restriction that it does not
contain X or Y by a single leaf. Then the resulting network consists of a path

4.7. MINIMISING RETICULATIONS 125

N1

A

B

X

X

Z

Y

Z

N3 N2

C

Q = Y

E

D F

A

X

Z

Y

N*

B

C

D

E

F

Figure 4.26: Example of the construction of network N∗ from N1, N2 and N3 in case 2d.

and a simple level-1 network below this path, in which X is a child of the root
and Q the child of the reticulation and each vertex of the path has a leaf as
child. Such a network can easily be constructed and subsequently one can use
the same approach as in cases 2a, 2b and 2c. See Figure 4.26 for an example
of the construction in case 2d.

Theorem 4.11. Given a dense triplet set T , Algorithm MARELET constructs
a level-2 network consistent with T (if such a network exists) that has a mini-
mum number of reticulations in O(n9) time.

Proof. Consider some SN-set S and assume that there exists an optimal solu-
tion NS consistent with T |S. The proof is by induction on the size of S. The
induction hypothesis is that the network NU constructed by the algorithm is
optimal for all SN-sets U with |U | < |S|. If the root of NS is not in a cycle or in
a biconnected component with one reticulation then the algorithm constructs
an optimal solution by the proof of Theorem 4.10 and the induction hypoth-
esis. Hence we assume from now on that the highest biconnected component
of NS contains two reticulations.

Consider the four graphs in Figure 4.24. These are the simple level-2 gen-
erators, defined in Section 4.2. Any biconnected component containing two
reticulations is a subdivision of one of these graphs by Lemma 4.1. Recall that
a side of a generator is either an arc or a vertex with indegree 2 and outde-
gree 0. Suppose that the highest biconnected component of a network N is a
subdivision of a generator G. We say that a leaf x is on side S of G if there
exists a cut-arc (u, v) in N such that u is on the subdivision of S (if S is an

126 CHAPTER 4. PHYLOGENETIC NETWORKS

arc) or u is a reticulation (if S is a reticulation), and there is a directed path
from v to x (possibly v = x). Furthermore, we identify the side S with the set
of leaves that are on side S.

In each generator in Figure 4.24, X, Y , Z and Q are sides of the generator.
Thus, if the highest biconnected component of NS is a subdivision of a genera-
tor G ∈ {2a, 2b, 2c, 2d} then we identify X (Y , Z, Q respectively) with the set
of leaves in NS on side X (Y , Z, Q respectively) of G. We assume for now that
the highest biconnected component of NS is not a subdivision of generator 2d.

To find an optimal network consistent with T |(X∪Z) (or T |(Y ∪Z)) such that
Z is below an ncr-arc we can use the following approach. In such a network
there are two cut-arcs leaving the root. The sets of leaves below these cut-arcs
are (as always) SN-sets and Z is fully contained in one of them. Thus, if it is
possible to construct a network of the desired type then there are two maximal
SN-sets. If one of them contains Z as a strict subset then we create a network
for this set recursively. For maximal SN-sets that are equal to or disjoint from
Z, we use the optimal networks computed in earlier iterations. Finally, we
create a new root and connect it to the roots of the two networks for the two
maximal SN-sets.

Given a network N ′ and a set of leaves L′ below a cut-arc (u, v), we denote by
N ′ \ L′ the network obtained by removing v and all vertices reachable from v
from N ′ and tidying up the resulting graph.

Claim 4.8. There exists an optimal solution N ′
S to MinRL-2D, such that the

sets of leaves below highest cut-arcs of N ′
S \Z are X, Y , Q and the SN-sets of

T |(S \ Z) that are maximal under the restriction that they do not contain X,
Y or Q.

Proof. The highest biconnected component of NS \ Z contains just one retic-
ulation and the same arguments can be used as in the proof of Lemma 4.17 to
transform NS into N ′

S .

Let N ′
S be a network with the property described in the claim above and C the

collection of sets of leaves below highest cut-arcs of N ′
S \Z. At some iteration

the algorithm will consider this set C. Let T ′ equal T |(S \Z). If we replace in
N ′

S \Z each set of leaves below a highest cut-arc by a single leaf, then we obtain
a simple level-1 network consistent with T ′∇C (under the assumption that the
highest biconnected component of N ′

S is not a subdivision of generator 2d).
The algorithm considers all networks of these types, so in some iteration it will
consider the right one. Let N∗ be the network constructed by the algorithm
in this iteration. It remains to prove that N∗ (i) is consistent with T |S, (ii)
contains a minimum number of reticulations and (iii) is a level-2 network.

4.7. MINIMISING RETICULATIONS 127

Algorithm 5 MARELET (Minimum Amount of REticulation LEvel Two
network)
1: - compute the set SN of SN-sets of T
2: for i = 1 . . . n do
3: for each S in SN of cardinality i do
4: for each S′ ∈ SN with S′ ⊂ S do
5: - let C contain S′ and all SN-sets that are maximal under the re-

striction that they are a subset of S and do not contain S′

6: if T∇C is consistent with a simple level-1 network N1 then
7: - construct N∗ from N1 by replacing each leaf V by an optimal

network NV constructed in a previous iteration
8: - g(S, S′) is the number of reticulations in N∗

9: if there are exactly two SN-sets S1, S2 ∈ SN that are maximal under
the restriction that they are a strict subset of S then

10: - N∗ consists of a root connected to the roots of optimal networks
NS1 and NS2 that have been constructed in previous iterations

11: - g(S, ∅) is the number of reticulations in N∗

12: for each Z ∈ SN with Z ⊂ S do
13: - T ′ := T |(S \ Z)
14: - compute the set SN ′ of SN-sets of T ′

15: for each X, Y,Q ∈ SN ′ do
16: - C is the collection consisting of X, Y,Q and all SN-sets in SN ′

that are maximal under the restriction that they do not include
X, Y or Q

17: - construct an optimal network N2 consistent with T |(X∪Z) such
that Z is the set of leaves below an ncr-arc (u, v)

18: - construct an optimal network N3 consistent with T |(Y ∪Z) such
that Z is the set of leaves below an ncr-arc (u′, v′)

19: - construct the set N of all simple level-1 networks consistent
with T ′∇C

20: - add to N all networks consistent with T ′∇C that consist of a
path ending in a simple level-1 network, with X a child of the
root, Q the child of the reticulation; and with a leaf below each
internal vertex of the path

21: for each network N1 ∈ N do
22: - construct N∗ from N1 by doing the following: replace X by

N2, Y by N3 and each other leaf V by an optimal network NV

constructed in a previous iteration, then subdivide (u, v) into
(u, w) and (w, v), delete everything below u′ and add an arc
(u′, w)

23: if N∗ is consistent with T |S then
24: - h(S, X, Y, Z,Q) is the number of reticulations in N∗

25: - f(S) is the minimum of all computed values of g(S, S′) and
h(S, X, Y, Z,Q)

26: - store network NS , which is a network N∗ attaining the minimum
number f(S) of reticulations

128 CHAPTER 4. PHYLOGENETIC NETWORKS

To prove that N∗ is consistent with T |S, consider any triplet xy|z ∈ T |S. First
suppose x, y and z are all in Z or all in the same set of C \ {X, Y }. Then x, y
and z are elements of some SN-set S′ with |S′| < |S|. Triplet xy|z is consistent
with the subnetwork NS′ by the induction hypothesis and hence with N∗.

Now suppose that x, y and z are all in X ∪ Z (or all in Y ∪ Z). Consider the
construction of the network N2 consistent with X ∪Z such that Z is below an
ncr-arc. First suppose that at some level of the recursive construction of N2

there are two maximal SN-sets, each containing leaves from {x, y, z}. Then it
follows that x and y are in one maximal SN-set and z in the other one, by
the definition of SN-set, and hence that xy|z is consistent with N2 (as x and
y are on one side of the root of some subnetwork of N2 and z is on the other
side). Otherwise, x, y and z are all in some subnetwork NU with |U | < |S|
and xy|z is consistent with this subnetwork (by the induction hypothesis) and
hence with N∗.

Now consider any other triplet xy|z ∈ T |S, which thus contains leaves that are
below at least two different highest cut-arcs. Observe that the highest bicon-
nected components of N∗ and N ′ are identical; the only differences between
these networks occur in the subnetworks below highest cut-arcs. Therefore
xy|z is consistent with N∗ since it is consistent with N ′.

To show that N∗ contains a minimum number of reticulations consider any
set S′ of leaves below a highest cut-arc a = (u, v) of N∗. The subnetwork
NS′ rooted at v contains a minimum number of reticulations by the induction
hypothesis. Hence N∗ contains at most as many reticulations as N ′, which is
an optimal solution.

To see that N∗ is a level-2 network, note that in the networks N2 and N3

constructed by the algorithm, Z is the set of leaves below an ncr-arc. This
implies that none of the potential reticulations in these networks end up in the
highest biconnected component of N∗. Therefore, this biconnected component
contains exactly two reticulations. All other biconnected components of N∗

also contain at most two reticulations by the induction hypothesis. We thus
conclude that N∗ is a level-2 network.

For the proof of correctness it remains to consider the case that the highest
biconnected component of NS is a subdivision of generator 2d. Let C be the
collection containing X, Y (= Q) and the SN-sets of T |(S\Z) that are maximal
under the restriction that they do not contain X or Y . Similar to Claim 4.8,
there exists an optimal solution N ′

S such that the elements of C are all sets
below (not necessarily highest) cut-arcs in N ′

S \ Z. If we replace in N ′
S \ Z

each element of C by a single leaf then we obtain a path and a simple level-1
network below this path, in which X is a child of the root and Q the child of the
reticulation and each vertex of the path has a leaf as child. All such networks
can easily be constructed by deleting Q, constructing a tree and trying to
connect Q to it in all possible ways. These networks are constructed in line 20
of the algorithm. The same arguments as before can be used to show that the

4.7. MINIMISING RETICULATIONS 129

constructed network is also in this case an optimal solution to MinRL-2D.

To conclude the proof we analyse the running time of the algorithm. The num-
ber of SN-sets is O(n) and hence there are O(n) choices for each of S, X, Y, Z
and Q. For each combination of S, X, Y, Z and Q there will be O(n) networks
N1 constructed and for each of them it takes O(n3) time to check if the re-
sulting network N∗ is consistent with T |S (in line 23). Hence the overall time
complexity is O(n9).

4.7.3 Simulations

To test the relevance of the constructed networks we applied MARLON to
simulated data. The main advantage of using simulated data is that it enables
us to compare output networks with the “real” network. We repeated the
following experiment for various level-1 networks, which we in turn assumed
to be the “real” network. Given such an input level-1 network, we used the
program Seq-Gen [Ram97] to simulate sequences that could have evolved ac-
cording to that network, if we see the network as a recombinant phylogeny. We
assumed that the first block (e.g. a gene) of each sequence evolved according
to a certain phylogenetic tree, the second block evolved according to a different
tree and that the level-1 network contains a subdivision of each of these trees.

The sequences have been generated as follows. For each simulation, our input
to Seq-Gen consisted of two trees T1 and T2. For each reticulation of the level-
1 network, T1 uses just one of the incoming arcs and T2 uses the other one.
This makes sure that each arc of the network is used by at least one of the
two trees. Seq-Gen was used with the F81 model of nucleotide substitution to
generate sequences of 4000 base pairs each of which the first 2000 base pairs
evolved according to T1 and the last 2000 base pairs evolved according to T2.

From these simulated sequences we computed a set of triplets as follows. We
assume that for one sequence it is known that it is only distantly related to
the others. This is called the outgroup sequence. In each level-1 network that
we used as input network, the root has a leaf as child. This leaf corresponds
to the outgroup sequence. For each combination of three sequences, plus the
outgroup sequence, we computed a phylogenetic tree using the maximum like-
lihood method PHYML [Gui03]. Each output tree of PHYML can be rooted
by using that the outgroup must be a child of the root. This leads to a dense
triplet set, which we used as input to MARLON.

All simulations gave similar results. Here we describe the results for one specific
“real” level-1 network, displayed in Figure 4.27. We obtained the simulated
triplet set T ∗ based on this network by the procedure described above. For
this triplet set MARLON constructed the output network in Figure 4.28. The
constructed network is very similar to the input network (which we assumed
to be the “real” network). Both networks have four reticulations and also
the branching structure is almost identical. The only differences are all of the

130 CHAPTER 4. PHYLOGENETIC NETWORKS

following type. The output network contains some subnetworks rooted below a
parent of a reticulation, where the input network has the corresponding leaves
scattered along a path ending in the parent of the reticulation. For example
in Figure 4.27 the leaves 37, 38, 39, 40 are below a path on a cycle consisting
of three vertices. However, in the output network in Figure 4.28 these leaves
are below a single vertex on the cycle.

For comparison, T-REX has been applied to directly construct a phylogenetic
network from the same simulated sequences. It was used with the command
“construct a reticulogram” with the Jukes-Cantor model of evolution. Also
the number of reticulations in the input network was given to T-REX; it was
specifically asked to construct a network with that number of reticulations
(otherwise it would create far more reticulations than MARLON). For the in-
put network from Figure 4.27 the output of T-REX is displayed in Figure 4.29.
This test has been repeated three times and the networks have been compared
to the input network by calculating the µ-distance [Car07]. This distance
can be used because all level-1 networks as well as all networks generated by
T-REX in these simulations were “tree-child” phylogenetic networks [Car07].
Our algorithm performs significantly better than T-REX, with an average µ-
distance of 14.0 to the input network, whilst T-REX has an average distance of
39.7 to the input network. This comparison might not be completely fair since
the input network is a level-1 network, the kind of network that MARLON is
specifically designed for. On the other hand, T-REX was supplied with prior
information about the number of reticulations it had to create. In any case, it
is encouraging that all networks constructed by MARLON were almost iden-
tical to the input networks, except for some small differences of a well-defined
type.

We conclude that MARLON correctly constructs level-1 networks and works
very fast. For simulated data the produced networks are very close to the “real”
networks used to generate the simulated sequences. When using real data we
expect the amount of incorrect triplets to be larger and hence the results
possibly less impressive. In addition, real data sets will not always originate
from a level-1 network, in which case MARLON might not be able to compute
a solution. This problem can partly be solved by implementing the method
presented in Section 4.7.2, which constructs level-2 networks. However, the
main conclusion to be drawn from the experiments is that, if the data is good
enough (and originates from a level-1 network), our method is indeed able to
produce good estimates of evolutionary histories. This for example shows that,
when a set of triplets is computed from sequence data, sufficient information
is retained to be able to reconstruct the phylogenetic network accurately. In
addition, MARLON provides a very fast method to combine these triplets into
a phylogenetic network.

4.7. MINIMISING RETICULATIONS 131

1

2

6 7

1011

3

5

4

16179

8 2627

12

303113

14 15 28 29

32 33

18

19

242520

21

22

2334

35

36

394037

38

Figure 4.27: The level-1 network on which the simulated triplet set T ∗ is based.

132 CHAPTER 4. PHYLOGENETIC NETWORKS

1

2

3

5

26 27

19

18

20

21

22 23

2425

9

30 31

1617

4

1415 2829

8

12

13

32 33

35

36

34

37 38 39 40

6 7 10 11

Figure 4.28: The network constructed by MARLON for the simulated triplet set T ∗.

4.7. MINIMISING RETICULATIONS 133

1

2

3

4 5

6 7

8

9

10 11

12

13

14 15 16 17

18

19

20

21

22

23

24 25

26 27

28 29

30 31

3233

34

35

36

37 3839 40

Figure 4.29: The network constructed by TREX for the simulated sequences.

134 CHAPTER 4. PHYLOGENETIC NETWORKS

4.8 Constructing Networks Consistent with Precisely the
Input Triplet Set

In this section the problem is considered which, given a triplet set T , asks for
a level-k network N that is consistent with precisely those triplets in T (if
such a network exists). Such a network is said to reflect T . It will be shown
that this problem is polynomial-time solvable for each fixed k. In addition,
the described algorithm even finds a solution that minimises both the level
and number of reticulations used. This algorithm thus solves the following
problem.

Minimum Reflective Level-k Network (RefL-k)

Input: A triplet set T .
Output: A level-k network N that reflects T (if such a network exists) and,

ranging over all such networks, minimises both the level and the
number of reticulations used.

Recall that we use T (N) to denote the set of all triplets consistent with a
network N . Thus, a network N reflects a triplet set T if and only if T (N) = T .
A triplet set T is called reflective if there exists a network N that reflects T .
Note that, T (N) = T (N ′) is possible for distinct networks N 6= N ′. There are,
for example, several distinct simple level-2 networks that reflect the triplet set
{xy|z, xz|y, zy|x}. As a corollary of Theorem 4.7 we obtain the following.

Corollary 4.1. For fixed k it is possible to generate, given a triplet set T , all
simple level-k networks N that reflect T in time O(n3k+3).

Proof. The algorithm SL-k on page 98 (or, for that matter, the simple level-1
algorithm from [Jan06a]) can easily be adapted for this purpose: we change in
line 43 “network consistent with T” to “network that reflects T”. The running
time is unchanged because, whether we are checking consistency or reflection,
the implementation of [Byr08, Lemma 2] implicitly generates T (N ′).

The remainder of this section shows how general reflective networks can be
built by recursively constructing simple reflective networks. This will be
based on a crucial property of the SN-sets of simple networks, outlined in
Lemma 4.18.

For a triplet xy|z and a network N , we define an embedding of xy|z in N as
any set of four internally vertex disjoint paths (q → x, q → y, p → q, p → z)
with p 6= q. We say that the vertex p is the summit of the embedding. Clearly,
xy|z is consistent with N if and only if there is at least one embedding of xy|z
in N .

Lemma 4.18. Let N be any simple network. Then all the nontrivial SN-sets
of T (N) are singletons.

4.8. NETWORKS CONSISTENT WITH PRECISELY THE
INPUT TRIPLET SET 135

Proof. We prove the lemma by contradiction. Assume thus that there is some
SN-set S of T (N) such that 1 < |S| < |L(N)|.
Let r be the root of N . An in-out root embedding of a triplet xz|y with x, z ∈ S
and y /∈ S is an embedding of xz|y that has r as its summit. We begin by
proving that there exist x, z ∈ S and y /∈ S such that xz|y has an in-out root
embedding in N . Suppose that this is not true. For all x, z ∈ S and y /∈ S, the
triplet xz|y is in T (N) because T (N) is dense and S is an SN-set. Consider a
triplet embedding (q → x, q → z, p→ q, p→ y) with p 6= r that minimises the
length of a shortest directed path in N from r to p, amongst all embeddings
of triplets xz|y with x, z ∈ S and y /∈ S. Let P be any shortest directed path
from r to p. Now, consider any maximal directed path Q that leaves the path
P (at least one such a path exists since the root has outdegree 2). First observe
that Q does not intersect with the path p → y or p → q, because this would
contradict the minimality of the length of P . In addition, Q does not intersect
the path q → x (q → z) because this would mean y ∈ S. We conclude that
such a path Q either terminates at a leaf l, or re-intersects with the path P .
It does not terminate at a leaf l /∈ S because then we obtain an embedding of
xz|l that has a summit closer to the root than p, contradicting the minimality
of P . It does also not end at a leaf l ∈ S, because then we have that y ∈ S.
We conclude that all paths outgoing from P rejoin with P in a strict ancestor
of p. It follows that the last arc on the path P is a cut-arc. But this is a
contradiction since N does not contain any nontrivial cut-arcs. We conclude
that there exists at least one in-out root embedding in N .

Let (q → x, q → z, r → q, r → y) be any in-out root embedding of a triplet
xy|z with x, z ∈ S and y /∈ S. We observe that the path r → y must contain
at least one internal vertex, by the absence of nontrivial cut-arcs (Lemma 4.3).
Also, at least one of q → x and q → y must contain an internal vertex, because
otherwise the arc entering q would be a nontrivial cut-arc.

We now argue that there exists a twist cover of the path r → q. This is defined
as a non-empty collection C of undirected paths (undirected in the sense that
not all arcs need to have the same orientation) where (i) all paths in C are
arc-disjoint from the in-out root embedding, (ii) exactly one path starts at an
internal vertex s of q → z or q → x, (iii) exactly one path ends at an internal
vertex t of r → y, (iv) all other start and endpoints of the paths in C lie on
r → q and (v) for every vertex v of the path r → q (including r and q), there is
at least one path in C whose start- and endpoint are respectively a descendant
and an ancestor of v. Property (v) is crucial because it says (informally) that
every vertex on r → q is “covered” by some path that begins and ends on
either side of it and is arc-disjoint from the embedding. We define a partial
twist cover as a collection of undirected paths that satisfies all properties of a
twist cover except property (v). Formally, we say that a vertex v is covered by
a (partial) twist cover C if C contains a path X such that v lies on a directed
path on the embedding from the endpoint of X to the startpoint of X. Thus,
partial twist covers leave at least one vertex on r → q uncovered. The length

136 CHAPTER 4. PHYLOGENETIC NETWORKS

Figure 4.30: Several examples of twist covers (the grey, undirected paths) from the proof of
Lemma 4.18. Note that these examples exhibit the regular, interleaved structure associated
with minimum-length twist covers.

of a (partial) twist cover C is defined to be the sum over all paths X ∈ C of
the number of arcs in X.

Suppose for contradiction that a twist cover does not exist. From the fact that
neither the removal of q nor the removal of r is allowed to disconnect N , it
follows that at least one partial twist cover exists. Let C be a partial twist
cover with a minimum number of uncovered vertices. Let d be the uncovered
vertex that is closest to q. If we removed d we would, by definition, disconnect
the union of the paths in C with the in-out root embedding into a left part G
and a right part H. Deletion of the vertex d does not, however, disconnect
N , so there must be some path P not in C that begins somewhere in G and
ends somewhere in H. If P has its startpoint on a path X ∈ C (where X is in
G) and/or an endpoint on a path Y ∈ C (where Y is in H), then these paths
can be “merged” into a new path that strictly increases the number of vertices
covered. The merging occurs as follows. We take the union of the arcs in P
with those in X and/or Y and discard superfluous arcs until we obtain a path
that covers a strict superset of the union of the vertices covered by X and/or
Y . (In particular, the fact that P begins in G and ends in H means that the
vertex d becomes covered.) In this way we obtain a new partial twist-cover
with fewer uncovered vertices, contradiction. If P has both its startpoint and
endpoint on vertices of r → q that are not on paths in C, then P can be added
to the set C and this extends the number of covered vertices, contradiction. If
P begins and/or ends elsewhere on the embedding, then P can be added to
C which again increases the number of vertices covered, contradiction. (If P
begins on q → z or q → x, then it becomes the new property-(ii) path and
the old property-(ii) path should be discarded. Symmetrically, if P ends on
r → y, then it becomes the new property-(iii) path and the old property-(iii)
path should be discarded.)

We conclude that for every in-out root embedding there exists a twist cover,

4.8. NETWORKS CONSISTENT WITH PRECISELY THE
INPUT TRIPLET SET 137

Figure 4.31: The case in the proof of Lemma 4.18 where the arc incident to s is incoming.

and in particular a minimum length twist cover.

We observe that a minimum-length twist cover C has a highly regular, inter-
leaved structure. To be precise, each path X ∈ C not containing s nor t covers
exactly one startpoint of a path Y ∈ C and one endpoint of a path Z ∈ C with
Y 6= Z. Indeed, if X would cover startpoints of two paths Y ∈ C and Y ′ ∈ C,
then one of Y and Y ′ could be deleted to obtain a smaller twist cover. Simi-
larly, if X would cover endpoints of two paths Z ∈ C and Z ′ ∈ C or if X would
cover both the start- and endpoint of a single path, then one path could be
deleted from the twist cover. Finally, if X covers no startpoint (no endpoint),
then X can be removed from C since the startpoint (endpoint) of X is covered
by some path in C and this path thus covers all vertices that X covers. For
similar reasons, any two paths in a minimum-length twist cover are vertex- and
arc-disjoint. In Figure 4.30 we show several examples of twist covers exhibiting
this regular structure (although it should be noted that minimum-length twist
covers can contain arbitrarily many paths).

Let C be a twist cover of minimum length ranging over all in-out root embed-
dings of triplets xz|y with x, z ∈ S and y 6∈ S. Let E denote the corresponding
in-out root embedding. The high-level idea is to show that we can always find,
by “walking” along the paths in C, a new in-out root embedding and twist
cover that is shorter than C, yielding a contradiction. Let X be the path in C
that begins at s, and consider the arc a on this path incident to s.

The first case is that this arc a is directed away from s. If X would be a
directed path to r → q, it would be part of a directed cycle, contradicting the
acyclicity of the network. If X would be a directed path to t, this would imply
that yz|x ∈ T (N), contradicting y /∈ S. We conclude that X is not a directed
path. Continuing along X we will thus eventually traverse an arc backwards.
Let a′ be the first such arc. Let v be the head of this arc a′. Since v (which
is a reticulation) has outdegree 1, there exists a directed path Q leaving v
which eventually reaches a leaf m. If Q intersects with r → y, then we have

138 CHAPTER 4. PHYLOGENETIC NETWORKS

that yz|x ∈ T (N), contradicting y /∈ S. If Q intersects with q → x, then we
obtain a new in-out root embedding of xz|y (with s the “q” vertex of the new
embedding and the part of X up to v together with a part of Q as the new
q → x path). Moreover, we obtain a new twist cover for that embedding (using
only a part of X) that is shorter than C because at least arc a is removed from
the twist cover, contradiction. If Q intersects with q → z, then we obtain
a new in-out root embedding of xz|y (using the part of X up to v and part
of Q as an alternative route to z) and a new twist cover for that embedding
(using only a part of X) that is shorter than C, contradiction. If Q does not
intersect with the embedding at all, then m ∈ S (because the triplet mz|x
is consistent with the network). But then we have an in-out root embedding
(s → m,s → z,r → s,r → y) of the triplet zm|y with twist cover (again using
only a part of X) shorter than C, contradiction.

The second case (see Figure 4.31) is when the first arc a of X is entering s.
There exists some directed path R from r to s that uses a (since any vertex
in any network is reachable from the root). The fact that r is part of the
embedding E but a is not means that at some point R departs from E . Let w be
the last vertex that R has in common with E . If w is on the path r → y, then it
follows that yz|x ∈ T (N), contradicting y /∈ S. If w is on the path q → x, then
this leads to a new in-out root embedding (w → x,w → z,r → w,r → y) with
shorter twist cover (by removing from X the part of R after w that overlaps
with X), a contradiction. If w is on the path q → z, then this also leads to
a new in-out root embedding (using the part of R after w, as an alternative
route to z) with a shorter twist cover (again by removing from X the part of R
after w that overlaps with X), a contradiction. If w lies on the path r → q, we
create a new in-out root embedding in which w becomes the “q” vertex of the
new embedding (denoted q′ in the figure) and the part of R after w becomes,
together with arc a and the path from s to z over the embedding, the new
q → z path. To see that we also obtain a new twist cover, note principally
that paths in C that covered w become legitimate candidates for property-(ii)
paths in the new twist cover; in the figure s′ denotes the beginning of the
property-(ii) path in the new cover. (Such a path can however partly overlap
with R. In this case we only use the part after the last point of intersection
with R.) It might be possible to discard some paths from the twist cover (in
Figure 4.31, path X is discarded from the twist cover). Even if no paths from
C are discarded, we still get a twist cover at least one arc smaller than C,
because (in particular) the first arc of X is no longer needed in C. In any case,
contradiction.

Corollary 4.2. Let N be a simple network. Then any network N ′ reflecting
T (N) is simple.

Proof. If N ′ is not simple, then it contains a cut-arc below which at least
two leaves can be found, by Lemma 4.3. Consider the set A of leaves below
this cut-arc. This is an SN-set since triplets of the form xy|z with x, z ∈ A

4.8. NETWORKS CONSISTENT WITH PRECISELY THE
INPUT TRIPLET SET 139

and y /∈ A are not in T (N ′) = T (N). This is a contradiction because all the
nontrivial SN-sets of T are singletons.

Let T be a reflective set of triplets and N a network that reflects T . Observe
that this implies that T is dense and thus that for any two SN-sets of T holds
that either they are disjoint or one is contained in the other. Let a1, . . . , aq be
the highest cut-arcs of N , let S1, . . . , Sq be the sets of leaves below these highest
cut-arcs and let CN denote {S1, . . . , Sq}. As in Section 4.6.1, Collapse(N)
denotes the result of replacing everything reachable from ai by a single leaf
Si, for i = 1, . . . , q. The following observation will be critical in the proof of
Lemma 4.19, which shows correctness of our algorithm MINPITS, displayed
in Algorithm 6.

Observation 4.6. (1) Collapse(N) is a simple network reflecting T∇CN and
(2) S1, . . . , Sq are the maximal SN-sets of T .

Proof. First consider triplets XY |Z ∈ T∇CN . For each such triplet there
exists at least one triplet xy|z ∈ T with x ∈ X, y ∈ Y and z ∈ Z. Since N is
consistent with xy|z it follows that Collapse(N) is consistent with XY |Z. To
show that only triplets in T∇CN are consistent wit Collapse(N), consider a
triplet XY |Z consistent with Collapse(N). In this case all triplets xy|z with
x ∈ X, y ∈ Y and z ∈ Z are consistent with N . Since N reflects T this implies
that xy|z ∈ T and hence that XY |Z ∈ T∇CN . By construction, Collapse(N)
contains no nontrivial cut-arcs and is thus a simple network reflecting T∇CN .
For (2), first observe that each set Si is an SN-set of T since the set of leaves
below a cut-arc is always an SN-set. Assume (for contradiction) that Si is not
maximal. Then there exists a maximal SN-set S of T that is a strict superset
of Si. Any maximal SN-set can be written as the union of sets of leaves below
highest cut-arcs, by Lemma 4.6. Suppose (without loss of generality) that
S = S1 ∪ . . . ∪ Sr with 1 < r < q and 1 ≤ i ≤ r. It follows that {S1, . . . , Sr}
is an SN-set of T∇CN , since the existence of a triplet XY |Z ∈ T∇CN with
X, Z ⊂ S, Y 6⊂ S would imply the existence of a triplet xy|z ∈ T with x, z ∈ S
and y /∈ S, while S is an SN-set. This is a contradiction since by Lemma 4.18
all SN-sets of T∇CN are singletons.

The following lemma shows the correctness of Algorithm 6. Recall that, given
a set of triplets T , each leaf V of a network N ′ reflecting T∇SN is a subset
V ⊂ L(T).

Lemma 4.19. Let T be a reflective set of triplets and let SN be the set of
maximal SN-sets of T . Let N ′ be a simple network of minimum level that
reflects T∇SN . Then, for each leaf V of N ′, T |V is reflective. Furthermore,
replacing each leaf V of N ′ by a network that reflects T |V and which (ranging
over all networks that reflect T |V) simultaneously minimises both level and

140 CHAPTER 4. PHYLOGENETIC NETWORKS

number of reticulations, yields a network N that reflects T and which simul-
taneously minimises both level and number of reticulations (ranging over all
networks that reflect T).

Proof. Let N0 be any network that reflects T . The sets of leaves below highest
cut-arcs of N0 are the maximal SN-sets of T by Observation 4.6. It follows
that N and N0 have the same sets of leaves below highest cut-arcs: namely
CN = CN0 = SN . Thus T∇SN = T∇CN0 = T∇CN . Note also that for any
maximal SN-set V the set of triplets T |V is reflective because the subnetwork
of N0 below the highest cut-arc corresponding to V reflects T |V .

To show that N reflects T , consider a triplet xy|z. First assume that x, y and
z are all in the same maximal SN-set V , i.e. below the same highest cut-arc
a of N . Then is xy|z consistent with N if and only if xy|z ∈ T , since the
subnetwork of N below the cut-arc a reflects T |V .

Now consider a triplet xy|z with two leaves in the same maximal SN-set and
the third leaf in a different maximal SN-set. Note that, by the construction
of N , the maximal SN-sets of T correspond to the sets of leaves below highest
cut-arcs in N . Thus, xy|z is consistent with N if and only if x and y are below
the same highest cut-arc and z is below a different one. On the other hand, by
the definition of SN-set (and using that T is dense), xy|z is in T if and only if x
and y are in the same maximal SN-set and z in a different one. Consequently,
xy|z is consistent with N if and only if xy|z ∈ T .

Finally, consider triplets xy|z where x, y and z are all in different maximal
SN-sets X, Y and Z respectively. First suppose xy|z ∈ T . Then it follows
that XY |Z ∈ T∇SN and hence that XY |Z is consistent with N ′. From this
it follows that xy|z is consistent with N , since an embedding of XY |Z in N ′

can easily be extended to an embedding of xy|z in N . To show the other
direction, assume that xy|z is consistent with N . Then XY |Z is consistent
with N ′ and hence XY |Z ∈ T∇SN = T∇CN0 . From the fact that N0 reflects
T it follows by Observation 4.6(1) that Collapse(N0) reflects T∇CN0 . It fol-
lows that XY |Z is consistent with Collapse(N0). An embedding of XY |Z in
Collapse(N0) can be extended to one of xy|z in N0, so xy|z ∈ T .

It follows that for any x′ ∈ X, y′ ∈ Y and z′ ∈ Z the triplet x′y′|z′ is consistent
with N0, implying that x′y′|z′ ∈ T . This thus means that also xy|z ∈ T .

It is left to show that N is optimal, i.e. that it has a minimum number of
reticulations and a minimum level over all networks that reflect T . Recall that
any network reflecting T has the maximal SN-sets of T as its sets of leaves
below highest cut-arcs. Given that the subnetworks of N below its highest
cut-arcs are optimal it follows that N is optimal if and only if N ′ is optimal.
Finally, N ′ is optimal since it has minimum level and simple networks with
minimum level also contain a minimum number of reticulations.

4.8. NETWORKS CONSISTENT WITH PRECISELY THE
INPUT TRIPLET SET 141

Algorithm 6 MINPITS (MINimum network consistent with Precisely the
Input Triplet Set)
1: N := ∅
2: compute the set SN of maximal SN-sets of T
3: if |SN | = 2 then
4: N consists of a root connected to two leaves: the elements of SN
5: else
6: if there exists a simple level-` network for some ` ≤ k that reflects

T∇SN then
7: let N be such a network of minimum level
8: else
9: N := ∅

10: for each leaf V of N do
11: recursively create a level-k network NV of minimal level (and which uses

a minimum number of reticulations) that reflects T |V
12: if N 6= ∅ and all NV 6= ∅ then
13: replace each leaf V of N by the recursively created NV .
14: return N
15: else
16: return ∅

Theorem 4.12. Given a set of triplets T , Algorithm MINPITS solves
RefL-k in time O(|T |k+1), for any fixed k.

Proof. For k = 0 we can simply use the algorithm of Aho et al., which (with an
advanced implementation [Hen99]) can be implemented to run in time O(n3)
(with n = |L(T)|), which is O(|T |). For k ≥ 1 we use algorithm MINPITS.
Correctness of the algorithm follows from Lemma 4.19. It remains to analyse
the running time. A simple level-k network (that reflects the input) can be
found (if it exists) in time O(n3k+3) using algorithm SL-k. (To find the simple
network of minimum level we execute in order SL-1, SL-2, ..., SL-k until we find
such a network. This adds a multiplicative factor of k to the running time but
this is absorbed by the O(.) notation for fixed k.) Therefore, lines 6 and 7 of
MINPITS take O(|SN |3k+3) time. At every level of the recursion, the compu-
tation of the maximal SN-sets takes O(n3) time [Jan06b], and computation of
T∇SN can also clearly be done in time O(n3). The critical observation is that
(by Observation 4.6) every SN-set in T appears exactly once as a leaf inside an
execution of SL-k. Let si denote the number of leaves in execution i of SL-k.
The overall running time is thus of the form O(

∑
i(n

3 + s3k+3
i)) where

∑
si is

equal to the total number of SN-sets in T . Noting that
∑

i s3k+3
i ≤ (

∑
i si)3k+3,

and that there are at most O(n) SN-sets in T , we obtain for k ≥ 1 an overall
running time of O(n3k+3), which is O(|T |k+1) because T is dense. Note that
for k ∈ {1, 2} we can actually do slightly better by using the faster simple

142 CHAPTER 4. PHYLOGENETIC NETWORKS

level-1 [Jan06a] and simple level-2 algorithms (see Lemma 4.11). This yields
for k = 1, 2 overall running times of O(|T |) and O(|T | 83) respectively.

4.9 Open Problems

The most important question arising from this chapter is whether construct-
ing level-k phylogenetic networks from dense triplet sets (i.e. CL-k) is still
polynomial-time solvable for k ≥ 3. Section 4.5 already showed how simple
level-k networks can be constructed for all k. However, constructing general
level-k networks seems more difficult since it is not clear whether Lemma 4.13
(and hence Theorem 4.8) can be generalised to levels higher than two. The
fact that there are already 65 simple level-3 generators [Kel08] suggests that
even for level-3 one would either need a computer proof, or a proof that does
not explicitly use the structures of the different generators. Our conjecture
is that the problem is polynomial-time solvable for each fixed k, but becomes
NP-hard if k is part of the input (or, equivalently, if one aims to minimise k).

Another interesting problem is the complexity of constructing level-k networks
with a minimum number of reticulations. Also this problem is still open in the
dense case for k ≥ 3. It would be fascinating to find out if the complexity of
this problem remains equal to the complexity of CL-k, for all k. It is also not
yet known whether it is NP-hard to construct any network with a minimum
number of reticulations consistent with a dense triplet set, without restrictions
on the level.

If, as conjectured above, it is not possible to construct level-k networks in time
polynomial in both the number of leaves n and the level k, then an FPT (fixed
parameter tractable) algorithm would be interesting, i.e. an exact algorithm
with running time O(f(k) · p(n)) for some function f and a polynomial p. For
the more restricted version of the problem, RefL-k (see Section 4.8), we know
that it can be solved in time polynomial in n, for fixed k. However, also for
this problem it is open whether an algorithm with running time O(f(k) · p(n))
exists. Even the complexity of a fundamental question regarding reflectivity
“Given a triplet set T , does there exist a level-k network reflecting T for
any k?” is still open. Another interesting question is whether it is possible to
define level-k closure-operations that extend a triplet set T to a triplet set T ′,
such that each level-k network consistent with T is also consistent with T ′.

From a theoretical point of view it is interesting to characterise the triplet sets
that uniquely define a phylogenetic network. This could also be of practical
interest since showing uniqueness might strengthen the confidence that a given
solution indeed corresponds to the “real” network. A small step into this
direction is taken in Section 4.3.2, where a unique level-k network is given for
each k. This network can be built from a certain simple level-k generator by
hanging a leaf from each side. It would be tempting to conjecture that hanging

4.9. OPEN PROBLEMS 143

a leaf from each side of a different generator also leads to a network that is
uniquely defined by the triplets consistent with it (for k ≥ 2). However,
computer calculations have shown that there exist simple level-3 generators
for which the network obtained in such a way is not uniquely defined by the
set of consistent triplets. These uniqueness questions turn out to be fairly
complicated.

For all the algorithms presented in this chapter, it would be interesting to find
out whether the running times can be improved. The level-1 algorithm by
Jansson et al. [Jan06a] has an optimal running time in the sense that it runs
in time O(n3), while the size of the input is also O(n3). This is not true for
the O(n8) algorithm for level-2 in Section 4.6, nor for the O(n5) and O(n9)
algorithms presented in Section 4.7. It might in principle be possible to improve
the running times of these algorithms, which would improve their applicability.
A structural improvement of the running time of the simple level-k algorithm
(Section 4.5) would also directly help to improve the running times of both
the LEVEL2 (Section 4.6) and the MINPITS (Section 4.8) algorithm.

The main drawback of algorithms that require full consistency with a dense
triplet set (Sections 4.5 - 4.8, [Jan06a; Jan06b]) is that they are unreliable
when not all triplets can be derived correctly. The logical response to this
difficulty is to look at the non-dense case and/or the variant where the num-
ber (or total weight) of consistent triplets is maximised. However, both these
variants are NP-hard (Section 4.3). To deal with this NP-hardness, we have
suggested an exponential-time exact algorithm for the general MaxCL-1 prob-
lem (Section 4.4), but its running time needs to be improved before this al-
gorithm becomes practical. In this light, it would also be interesting to find
out whether improvement is possible of the O(3n(n2 + m)) algorithm [Wu04]
for constructing trees consistent with a maximum number of input triplets.
Extending the exact approach to level two and higher is also still open.

Regarding approximability, there are lots of (potential) opportunities to either
construct better approximation algorithms, or to provide evidence that such
algorithms do not exist. For the problem MaxCL-k, approximation algorithms
exist with ratios 1

3 for level-0 [Ga̧s99], 0.48 for level-1 and 0.61 for level-2
[Byr08]. It is not clear whether these ratios can be improved since the strongest
negative result shows only APX-hardness for level-0 [Byr08]. This rules out a
Polynomial Time Approximation Scheme for MaxCL-0 unless P = NP, but
ratios better than 1

3 , 0.48 and 0.61 respectively could still be possible. Other
interesting open problems include extending the APX-hardness to level-1 and
higher and constructing approximation algorithms (with any ratio) for level
greater than two.

Finally, it is important to use the ideas and insights developed in this chapter
to design efficient practical heuristics for constructing phylogenetic networks
with high confidence. Such heuristics need to be tested thoroughly on both
simulated and practical data to show how well they are able to construct the

144 CHAPTER 4. PHYLOGENETIC NETWORKS

real evolutionary history. One practical heuristic has already been designed
under the name SIMPLISTIC (SIMPle network heurISTIC) [SIM08]. This al-
gorithm is a heuristic in the sense that it is not guaranteed to find a minimum
level network. However, the program can be shown to possess the following
desirable properties: (1) the program runs in polynomial time if the maximum
level k is fixed; (2) if the triplets are consistent with a tree, a level-1 or a
level-2 network then the program can find such a tree, level-1 or level-2 net-
work respectively; (3) if there is a network consistent with precisely the input
triplets, then the program can find such a network, which minimises both the
level and the total number of reticulations; (4) if there exists a simple level-k
network consistent with the input triplets, then the program can find all such
networks and (5) the program always finds some network consistent with all
input triplets. Evaluating and optimising this program based on simulated
and practical data is still work in progress. However, preliminary results are
promising and further research in this direction would be very useful.

145

Summary

Computational biology is the thriving research area where computer science
and mathematics are applied to computational problems arising from biology.
Since the discovery of DNA and the ability to “read” these DNA-sequences,
an enormous demand has arisen for analysing and utilising this genetic data.
The mathematical nature of many of the emerging problems has triggered
mathematicians to formulate biological problems in a mathematical way and
to use mathematics to tackle these problems. This development has been of
great importance for mathematics as it introduced a whole new and interest-
ing application area. This thesis considers problems from different areas of
computational biology and describes new mathematical approaches leading to
algorithms that solve these problems.

The first part of the thesis considers various problems arising from deriving
accurate genetic information (haplotypes) from ambiguous, fragmented and/or
incomplete data. We explore the borderline between hardness and tractability.
In essence, a problem is called tractable if an efficient algorithm is possible,
in contrast to hard problems for which the existence of such algorithms is
considered (extremely) unlikely. This tractability border is essential in the
construction of efficient algorithms that are guaranteed to return an optimal
solution. This thesis explores various topics and tries to identify where hard-
ness stops and tractability begins. It is shown for many problems that they
remain hard even in very restricted cases. In addition, it is shown how im-
posing other restrictions can make these problems tractable. Efficient optimal
algorithms are given that solve these restricted versions. Finally, the approx-
imability of the hard problems is explored. For various problems it is shown
that it is even hard to find solutions that are arbitrarily close to the optimum.
However, efficient algorithms are proposed that compute solutions that are
guaranteed to be within a bounded ratio from the optimum.

The second part of this thesis studies how evolutionary histories can be recon-
structed from biological data of currently living organisms. Traditionally, such
a history is described by a tree-shape and many accurate and efficient meth-
ods have been designed to construct such trees. However, it is well known
that evolution is not always tree-like and that more general models are nec-

146 CHAPTER 4. PHYLOGENETIC NETWORKS

essary. Recent years have seen more and more attention devoted to phyloge-
netic networks, which can describe much more complicated evolutionary sce-
narios. From a mathematical point of view however, phylogenetic networks
pose formidable challenges. This thesis first shows that various phylogenetic
network problems are indeed computationally intractable in their most gen-
eral form. To deal with this intractability, restrictions are identified that make
these problems easier. Efficient algorithms are proposed that can reconstruct
phylogenetic networks in several such restricted cases. These algorithms have
been applied to both simulated and practical data. Finally, it is also shown
how one of the more general, hard problems can be solved. An algorithm is
given that is not as efficient as is usually hoped for, but does always return an
optimal solution.

In summary, this thesis presents numerous new algorithms for problems from
different areas of computational biology, using different mathematical approach-
es. Theoretical algorithms are given, showing insights that could be essential
for dealing with these problems. Moreover, practical algorithms are presented,
which have been tested and applied to biological data. In addition, boundaries
are identified that show in which cases it is useful to search for which types
of algorithms. Finally, many interesting mathematical questions are described
that originate from biology.

147

Samenvatting

Computational biology is het snel groeiende onderzoeksgebied waarin wiskunde
en informatica worden toegepast op problemen die voortkomen uit de biologie.
Sinds de ontdekking van DNA en de mogelijkheid om het DNA van indivi-
duen experimenteel te bepalen, is er een gigantische interesse ontstaan in het
analyseren en gebruiken van deze genetische data. De wiskundige aard van de
hieruit voortvloeiende problemen heeft wiskundigen aangezet om biologische
problemen op een wiskundige manier te formuleren en wiskunde te gebrui-
ken om deze problemen aan te pakken. Deze ontwikkeling is heel belangrijk
voor de wiskunde omdat deze heeft gezorgd voor een geheel nieuw en interes-
sant toepassingsgebied. Dit proefschrift beschouwt problemen uit verschillende
gebieden binnen de computational biology en onderzoekt hoe met nieuwe wis-
kundige technieken algoritmes ontwikkeld kunnen worden die deze problemen
oplossen.

Het eerste deel van dit proefschrift beschouwt problemen voortkomend uit het
afleiden van nauwkeurige genetische informatie (haplotypes) uit gefragmenteer-
de, onvolledige en/of dubbelzinnige data. Er worden verschillende problemen
uit dit gebied beschouwd er wordt in kaart gebracht onder welke restricties deze
problemen efficient oplosbaar zijn. In essentie wordt een probleem makkelijk
genoemd als er een efficient algoritme bestaat dat dit probleem op kan los-
sen. Dit staat in tegenstelling tot moeilijke problemen, waarvoor het bestaan
van efficiente algoritmes extreem onwaarschijnlijk wordt geacht. Deze grenzen
van de moeilijkheid van problemen zijn essentieel in onderzoek naar efficiente
algoritmes die gegarandeerd een optimale oplossing vinden. Dit proefschrift
bestudeert verschillende onderwerpen en probeert te bepalen waar de moei-
lijkheid van deze problemen ophoudt en ze makkelijk worden. Voor een groot
aantal problemen wordt aangetoond dat ze zelfs in hele specifieke gevallen
nog steeds moeilijk blijven. Daarnaast worden ook restricties aangegeven die
deze problemen makkelijk maken. Efficiente, optimale algoritmes worden ge-
geven die deze speciale gevallen van de problemen oplossen. Voor de moeilijke
versies van de problemen wordt ook onderzocht of ze wel te benaderen zijn.
Voor verscheidene problemen wordt bewezen dat het zelfs moeilijk is om een
benadering te vinden die willekeurig dicht bij het optimum ligt. Anderzijds
worden ook efficiente benaderingsalgoritmes gegeven die oplossingen vinden

148 CHAPTER 4. PHYLOGENETIC NETWORKS

die gegarandeerd binnen een beperkte afstand van het optimum liggen.

Het tweede deel van dit proefschrift bestudeert hoe de evolutionaire geschie-
denis van een groep organismen kan worden afgeleid uit hun genetische data.
Traditioneel wordt een dergelijke geschiedenis weergegeven in een boomvor-
mige figuur en tal van nauwkeurige en efficiente methoden zijn ontwikkeld
die een dergelijke boom kunnen reconstrueren. Desalniettemin is het al lan-
ge tijd bekend dat evolutie niet altijd de vorm van een boom volgt en dat
dus algemenere modellen nodig zijn. In recente jaren wordt er daarom steeds
meer aandacht besteed aan fylogenetische netwerken, die veel ingewikkelde-
re evolutionaire geschiedenissen kunnen beschrijven. Voor wiskundigen zor-
gen deze fylogenetische netwerken echter voor een gigantische uitdaging. Dit
proefschrift laat eerst zien dat verscheidene problemen met betrekking tot fy-
logenetische netwerken inderdaad moeilijk zijn in hun meest algemene vorm.
Om deze problemen desalniettemin op te kunnen lossen worden verschillende
restricties voorgesteld die deze problemen makkelijker maken. Efficiente algo-
ritmes worden beschreven die fylogenetische netwerken kunnen reconstrueren
in verschillende van deze speciale gevallen. Deze algoritmes zijn bovendien
toegepast op zowel gesimuleerde als experimentele data. Tenslotte wordt ook
aangegeven hoe één van de algemene, moeilijke problemen alsnog kan worden
aangepakt. Voor dit probleem wordt een algoritme gegeven dat minder effi-
cient is dan normaal gesproken gewenst is, maar dat in ieder geval altijd een
optimale oplossing vindt.

Kortom, dit proefschrift presenteert een groot aantal nieuwe algoritmes die
problemen oplossen uit verschillende gebieden binnen de computational biolo-
gy en die een groot aantal verschillende wiskundige methoden gebruiken. Er
worden theoretische algoritmes gegeven die nieuw inzicht verschaffen dat es-
sentieel zou kunnen zijn in verder onderzoek naar deze problemen. Bovendien
worden praktische algoritmes gepresenteerd die getest zijn en toegepast op bi-
ologische data. Daarnaast worden grenzen beschreven die aangeven in welke
gevallen het nuttig is om naar welk type algoritme te zoeken. Tenslotte zijn
ook talloze interessante wiskundige problemen geformuleerd die uit de biologie
naar voren komen.

149

Curriculum Vitae

Leo van Iersel was born in Hellevoetsluis, The Netherlands, on the 29th of
August 1981. He moved to Enschede in 1999 to study Applied Mathematics
at the Universiteit Twente and obtained his ingenieursdiploma, equivalent to a
Master’s degree, in 2004. After that, he moved to Eindhoven to pursue his PhD
degree in computational biology at the Technische Universiteit Eindhoven. He
will defend his PhD thesis on the 29th of January 2009. After that, he will work
as a postdoctoral researcher at the University of Canterbury in Christchurch,
New Zealand, where he will study mathematical approaches to phylogenetics.

150 CHAPTER 4. PHYLOGENETIC NETWORKS

151

References

[Aho81] A. V. Aho, Y. Sagiv, T. G. Szymanski and J. D. Ullman. Inferring
a tree from lowest common ancestors with an application to the
optimization of relational expressions. SIAM Journal on Computing,
vol. 10(3):pp. 405–421, 1981. 4, 16, 67, 90

[Ali97] P. Alimonti and V. Kann. Hardness of approximating problems on
cubic graphs. In Italian Conference on Algorithms and Complexity
(CIAC), pp. 288–298. 1997. 21, 30, 41

[Alo99] N. Alon and B. Sudakov. On two segmentation problems. Journal
of Algorithms, vol. 33:pp. 173–184, 1999. 24

[Alo06] N. Alon. Ranking tournaments. SIAM Journal on Discrete Mathe-
matics, vol. 20(1):pp. 137–142, 2006. 87

[Aus99] G. Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gambosi,
P. Crescenzi and V. Kann. Complexity and Approximation: Combi-
natorial Optimization Problems and Their Approximability Proper-
ties. Springer-Verlag, 1999. 2, 3

[Ave44] O. T. Avery, C. M. MacLeod and M. McCarty. Studies on the
chemical nature of the substance inducing transformation of pneu-
mococcal types. Journal of Experimental Medicine, vol. 79(2):pp.
137–158, 1944. 1

[Baf96] V. Bafna and P. Pevzner. Genome Rearrangements and Sorting by
Reversals. SIAM Journal on Computing, vol. 25(2):pp. 272–289,
1996. 5

[Baf04] V. Bafna, D. Gusfield, S. Hannenhalli and S. Yooseph. A note on
efficient computation of haplotypes via perfect phylogeny. Journal
of Computational Biology, vol. 11(5):pp. 858–866, 2004. 10, 39, 41

[Baf05] V. Bafna, S. Istrail, G. Lancia and R. Rizzi. Polynomial and APX-
hard cases of the individual haplotyping problem. Theoretical Com-
puter Science, vol. 335(1):pp. 109–125, 2005. 28, 36

152 REFERENCES

[Bar04] M. Baroni, C. Semple and M. Steel. A framework for representing
reticulate evolution. Annals of Combinatorics, vol. 8:pp. 391–408,
2004. 66

[Bar05] M. Baroni, S. Grünewald, V. Moulton and C. Semple. Bounding the
number of hybridisation events for a consistent evolutionary history.
Mathematical Biology, vol. 51:pp. 171–182, 2005. 15, 69

[Bau92] B. R. Baum. Combining trees as a way of combining data sets for
phylogenetic inference. Taxon, vol. 41:pp. 3–10, 1992. 68

[Ber99] P. Berman and M. Karpinski. On some tighter inapproximability
results (extended abstract). In International Colloquium on Au-
tomata, Languages and Programming (ICALP), vol. 1644 of Lecture
Notes in Computer Science, pp. 200–209. 1999. 21

[Ber04] A. Bergeron, J. Mixtacki and J. Stoye. Reversal distance without
hurdles and fortresses. In Combinatorial Pattern Matching (CPM),
vol. 3109 of Lecture Notes in Computer Science, pp. 388–399. 2004.
5

[Bla93] J. R. S. Blair and B. Peyton. An introduction to chordal graphs and
clique trees. In Graph theory and sparse matrix computation, pp.
1–29. Springer, 1993. 44

[Bon03] P. Bonizzoni, G. D. Vedova, R. Dondi and J. Li. The haplotyp-
ing problem: An overview of computational models and solutions.
Journal of Computer Science and Technology, vol. 18(6):pp. 675–
688, 2003. 2, 17, 39

[Bor07a] M. Bordewich, S. Linz, K. S. John and C. Semple. A reduction al-
gorithm for computing the hybridization number of two trees. Evo-
lutionary Bioinformatics, vol. 3:pp. 86–98, 2007. 69

[Bor07b] M. Bordewich and C. Semple. Computing the minimum number of
hybridization events for a consistent evolutionary history. Discrete
Applied Mathematics, vol. 155(8):pp. 914–928, 2007. 15, 69

[Bro06] D. G. Brown and I. M. Harrower. Integer programming approaches
to haplotype inference by pure parsimony. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, vol. 3(2):pp. 141–
154, 2006. 38, 40

[Bry97] D. Bryant. Building Trees, Hunting for Trees, and Comparing Trees:
Theory and Methods in Phylogenetic Analysis. Ph.D. thesis, Univer-
sity of Canterbury, Christchurch, New Zealand, 1997. 15, 16, 67, 68,
87

REFERENCES 153

[Byr08] J. Byrka, P. Gawrychowski, K. T. Huber and S. M. Kelk. Worst-
case optimal approximation algorithms for maximizing triplet con-
sistency within phylogenetic networks, 2008. ArXiv:0710.3258v3 [q-
bio.PE]. 67, 100, 134, 143

[Car07] G. Cardona, F. Rossello and G. Valiente. Comparison of tree-child
phylogenetic networks, 2007. ArXiv:0708.3499v1 [q-bio.PE]. 130

[Cha07] P. Charbit, S. Thomassé and A. Yeo. The minimum feedback arc
set problem is NP-hard for tournaments. Combinatorics, Probability
and Computing, vol. 16(1):pp. 1–4, 2007. 87

[Cho05] C. Choy, J. Jansson, K. Sadakane and W.-K. Sung. Computing the
maximum agreement of phylogenetic networks. Theoretical Com-
puter Science, vol. 335(1):pp. 93–107, 2005. 66

[Cil05] R. Cilibrasi, L. J. J. van Iersel, S. M. Kelk and J. Tromp. On
the complexity of several haplotyping problems. In Algorithms in
Bioinformatics (WABI), vol. 3692 of Lecture Notes in Computer
Science, pp. 128–139. 2005. 9, 11

[Cil07] R. Cilibrasi, L. J. J. van Iersel, S. M. Kelk and J. Tromp. The
complexity of the single individual SNP haplotyping problem. Al-
gorithmica, vol. 49(1):pp. 13–36, 2007. 9

[Clo01] P. Clote and R. Backofen. Computational Molecular Biology: An
Introduction. John Wiley & Sons, 2001. 1

[Din06] Z. Ding, V. Filkov and D. Gusfield. A linear-time algorithm for the
perfect phylogeny haplotyping (PPH) problem. Journal of Compu-
tational Biology, vol. 13(2):pp. 522–533, 2006. 38, 58, 61

[Dri04] P. Drineas, A. Frieze, R. Kannan, S. Vempala and V. Vinay. Clus-
tering large graphs via the singular value decomposition. Machine
Learning, vol. 56(1):pp. 9–33, 2004. 24

[Gam08] P. Gambette. Who’s who in phylogenetic networks, 2008. http:
//www.lirmm.fr/˜gambette/PhylogeneticNetworks/. 66

[Gar79] M. R. Garey and D. S. Johnson. Computers and intractability. W. H.
Freeman and Co., 1979. A guide to the theory of NP-completeness,
A Series of Books in the Mathematical Sciences. 2, 3, 85

[Ga̧s99] L. Ga̧sieniec, J. Jansson, A. Lingas and A. Östlin. On the com-
plexity of constructing evolutionary trees. Journal of Combinatorial
Optimization, vol. 3(2-3):pp. 183–197, 1999. 67, 143

[Gat79] W. Gates and C. Papadimitriou. Bounds for sorting by prefix rever-
sal. Discrete Mathematics, vol. 27:pp. 47–57, 1979. 5

http://www.lirmm.fr/~gambette/PhylogeneticNetworks/
http://www.lirmm.fr/~gambette/PhylogeneticNetworks/

154 REFERENCES

[Gav77] F. Gavril. Testing for equality between maximum matching and
minimum node covering. Information Processing Letters, vol. 6:pp.
199–202, 1977. 48

[Gre04] H. J. Greenberg, W. E. Hart and G. Lancia. Opportunities for
combinatorial optimisation in computational biology. INFORMS
Journal on Computing, vol. 16(3):pp. 211–231, 2004. 7, 17

[Gui03] S. Guindon and O. Gascuel. A simple, fast, and accurate algorithm
to estimate large phylogenies by maximum likelihood. Systematic
Biology, vol. 52(5):pp. 696–704, 2003. 67, 117, 129

[Gus91] D. Gusfield. Efficient algorithms for inferring evolutionary history.
Networks, vol. 21:pp. 19–28, 1991. 38

[Gus97] D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. Cambridge University Press,
1997. 38

[Gus03] D. Gusfield. Haplotype inference by pure parsimony. In Combi-
natorial Pattern Matching (CPM), vol. 2676 of Lecture Notes in
Computer Science, pp. 144–155. 2003. 9, 10, 38

[Gus04] D. Gusfield, S. Eddhu and C. Langley. Optimal, efficient recon-
struction of phylogenetic networks with constrained recombination.
Journal of Bioinformatics and Computational Biology, vol. 2:pp.
173–213, 2004. 66, 69

[Gus07] D. Gusfield, D. Hickerson and S. Eddhu. An efficiently computed
lower bound on the number of recombinations in phylognetic net-
works: Theory and empirical study. Discrete Applied Mathematics,
vol. 155(6-7):pp. 806–830, 2007. 69

[Hal03] B. V. Halldorsson, V. Bafna, N. Edwards, R. Lippert, S. Yooseph
and S. Istrail. A survey of computational methods for determining
haplotypes. In RECOMB Satellite on Computational Methods for
SNPs and Haplotype Inference, vol. 2983 of Lecture Notes in Bioin-
formatics, pp. 26–47. 2003. 17, 38

[Hei90] J. Hein. Reconstructing evolution of sequences subject to recombi-
nation using parsimony. Mathematical Biosciences, vol. 98:pp. 185–
200, 1990. 65, 69

[Hen99] M. Henzinger, V. King and T. Warnow. Constructing a tree from
homeomorphic subtrees, with applications to computational evolu-
tionary biology. Algorithmica, vol. 24(1):p. 113, 1999. 98, 141

REFERENCES 155

[Hoo01] H. Hoogeveen, P. Schuurman and G. J. Woeginger. Non-
approximability results for scheduling problems with minsum cri-
teria. INFORMS Journal on Computing, vol. 13(2):pp. 157–168,
2001. 21

[Hop73] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maxi-
mum matching in bipartite graphs. SIAM Journal on Computing,
vol. 2:pp. 225–231, 1973. 48

[Hua05] Y.-T. Huang, K.-M. Chao and T. Chen. An approximation algo-
rithm for haplotype inference by maximum parsimony. Journal of
Computational Biology, vol. 12(10):pp. 1261–1274, 2005. 39

[Hur07a] C. A. J. Hurkens, L. J. J. van Iersel, J. C. M. Keijsper, S. M. Kelk,
L. Stougie and J. Tromp. Prefix reversals on binary and ternary
strings. In Algebraic Biology (AB), vol. 4545 of Lecture Notes in
Computer Science, pp. 292–306. 2007. iii, 5

[Hur07b] C. A. J. Hurkens, L. J. J. van Iersel, J. C. M. Keijsper, S. M. Kelk,
L. Stougie and J. Tromp. Prefix reversals on binary and ternary
strings. SIAM Journal on Discrete Mathematics, vol. 21(3):pp. 592–
611, 2007. iii, 5

[Hus06] D. H. Huson and D. Bryant. Application of phylogenetic networks in
evolutionary studies. Molecular Biology and Evolution, vol. 23(2):pp.
254–267, 2006. 66

[Huy05] T. Huynh, J. Jansson, N. Nguyen and W.-K. Sung. Constructing a
smallest refining galled phylogenetic network. In Research in Com-
putational Molecular Biology (RECOMB), vol. 3500 of Lecture Notes
in Bioinformatics, pp. 265–280. 2005. 69

[Ier06] L. J. J. van Iersel, J. C. M. Keijsper, S. M. Kelk and L. Stougie.
Beaches of islands of tractability: Algorithms for parsimony and
minimum perfect phylogeny haplotyping problems. In Algorithms
in Bioinformatics (WABI), vol. 4175 of Lecture Notes in Computer
Science, pp. 80–91. 2006. 11

[Ier08a] L. J. J. van Iersel, J. C. M. Keijsper, S. M. Kelk and
L. Stougie. Shorelines of islands of tractability: Algorithms for
parsimony and minimum perfect phylogeny haplotyping problems.
IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics, vol. 5(2):pp. 301–312, 2008. 11

[Ier08b] L. J. J. van Iersel, J. C. M. Keijsper, S. M. Kelk, L. Stougie, F. Ha-
gen and T. Boekhout. Constructing level-2 phylogenetic networks
from triplets. In Research in Computational Molecular Biology (RE-
COMB), vol. 4955 of Lecture Notes in Bioinformatics, pp. 464–476.
2008. 16

156 REFERENCES

[Ier08c] L. J. J. van Iersel and S. M. Kelk. Constructing the simplest possible
phylogenetic network from triplets. In International Symposium on
Algorithms and Computation (ISAAC), vol. 5369 of Lecture Notes
in Computer Science, pp. 472–483. 2008. 16

[Ier08d] L. J. J. van Iersel, S. M. Kelk and M. Mnich. Uniqueness, intractabil-
ity and exact algorithms: Reflections on level-k phylogenetic net-
works, 2008. ArXiv:0712.2932v3 [q-bio.PE]. 16

[Int01] International Human Genome Sequencing Consortium. Initial se-
quencing and analysis of the human genome. Nature, vol. 409:pp.
860–921, 2001. 1

[Jan01] J. Jansson. On the complexity of inferring rooted evolutionary trees.
In Brazilian Symposium on Graphs, Algorithms and Combinatorics,
vol. 7 of Electronic Notes in Discrete Mathematics, p. 4. 2001. 15,
16, 67, 68, 87

[Jan06a] J. Jansson, N. B. Nguyen and W.-K. Sung. Algorithms for combining
rooted triplets into a galled hylogenetic network. SIAM Journal on
Computing, vol. 35(5):pp. 1098–1121, 2006. 15, 16, 66, 67, 68, 69,
76, 85, 87, 90, 98, 103, 114, 115, 118, 121, 124, 134, 142, 143

[Jan06b] J. Jansson and W.-K. Sung. Inferring a level-1 phylogenetic network
from a dense set of rooted triplets. Theoretical Computer Science,
vol. 363(1):pp. 60–68, 2006. 15, 16, 76, 79, 84, 90, 100, 101, 121,
141, 143

[Jia04] Y. Jiao, J. Xu and M. Li. On the k-closest substring and k-consensus
pattern problems. In Combinatorial Pattern Matching (CPM), vol.
3109 of Lecture Notes in Computer Science, pp. 130–144. 2004. 24,
36

[Kel08] S. M. Kelk. http://homepages.cwi.nl/˜kelk/lev3gen/,
2008. 72, 142

[Kid04] S. Kidd, F. Hagen, R. Tscharke, M. Huynh, K. Bartlett, M. Fyfe,
L. MacDougall, T. Boekhout, K. Kwon-Chung and W. Meyer. A rare
genotype of Cryptococcus gattii caused the Cryptococcosis outbreak
on Vancouver Island (British Columbia, Canada). Proceedings of
the National Academy of Sciences of the United States of America,
vol. 101:pp. 17258–17263, 2004. 15, 116

[Kle98a] J. M. Kleinberg, C. H. Papadimitriou and P. Raghavan. A microeco-
nomic view of data mining. Data Mining and Knowledge Discovery,
vol. 2(4):pp. 311–324, 1998. 24

http://homepages.cwi.nl/~kelk/lev3gen/

REFERENCES 157

[Kle98b] J. M. Kleinberg, C. H. Papadimitriou and P. Raghavan. Segmen-
tation problems. In Symposium on Theory of Computing (STOC),
pp. 473–482. 1998. 18, 24

[Kle04] J. M. Kleinberg, C. H. Papadimitriou and P. Raghavan. Segmenta-
tion problems. Journal of the ACM (JACM), vol. 51(2):pp. 263–280,
2004. 24

[Lan01] G. Lancia, V. Bafna, S. Istrail, R. Lippert and R. Schwartz. SNPs
problems, complexity and algorithms. In European Symposium on
Algorithms (ESA), vol. 2161 of Lecture Notes in Computer Science,
pp. 182–193. 2001. 8, 17, 18, 28, 36

[Lan04] G. Lancia, M. Pinotti and R. Rizzi. Haplotyping populations by
pure parsimony: Complexity of exact and approximation algorithms.
INFORMS Journal on Computing, vol. 16(4):pp. 348–359, 2004. 10,
38, 39

[Lan06] G. Lancia and R. Rizzi. A polynomial case of the parsimony haplo-
typing problem. Operations Research Letters, vol. 34(3):pp. 289–295,
2006. 38, 39, 46, 49, 50

[LEV07] LEVEL2: A fast method for constructing level-2 phylogenetic
networks from dense sets of rooted triplets, 2007. http://
homepages.cwi.nl/˜kelk/level2triplets.html. 116

[Lew00] B. Lewin. Genes VII. Oxford University Press, 2000. 1

[Mak06] V. Makarenkov, D. Kevorkov and P. Legendre. Phylogenetic Network
Reconstruction Approaches, vol. 6 of International Elsevier Series:
Bioinformatics, pp. 61–97. 2006. 66

[MAR08] MARLON: Constructing level one phylogenetic networks with a
minimum amount of reticulation, 2008. http://homepages.
cwi.nl/˜kelk/marlon.html. 121

[Mor04] B. Moret, L. Nakhleh, T. Warnow, C. Linder, A. Tholse,
A. Padolina, J. Sun and R. Timme. Phylogenetic networks: Mod-
eling, reconstructibility, and accuracy. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, vol. 1(1):pp. 13–23,
2004. 66

[Mor05] D. Morrison. Networks in phylogenetic analysis: New tools for popu-
lation biology. International Journal for Parasitology, vol. 35(5):pp.
567–582, 2005. 65, 66

[Nak05] L. Nakhleh, T. Warnow, C. R. Linder and K. S. John. Reconstruct-
ing Reticulate Evolution in Species-Theory and Practice. Journal of
Computational Biology, vol. 12(6):pp. 796–811, 2005. 66

http://homepages.cwi.nl/~kelk/level2triplets.html
http://homepages.cwi.nl/~kelk/level2triplets.html
http://homepages.cwi.nl/~kelk/marlon.html
http://homepages.cwi.nl/~kelk/marlon.html

158 REFERENCES

[Nei00] M. Nei and S. Kumar. Molecular Evolution and Phylogenetics. Ox-
ford University Press, 2000. 2

[Ost02] R. Ostrovsky and Y. Rabani. Polynomial-time approximation
schemes for geometric min-sum median clustering. Journal of the
ACM, vol. 49(2):pp. 139–156, 2002. 24

[Pag02] R. D. M. Page. Modified mincut supertrees. In Algorithms in Bioin-
formatics (WABI 2002), vol. 2452 of Lecture Notes in Computer
Science, pp. 537–551. 2002. 68

[Pan04] A. Panconesi and M. Sozio. Fast hare: A fast heuristic for single
individual SNP haplotype reconstruction. In Algorithms in Bioin-
formatics (WABI), vol. 3240 of Lecture Notes in Computer Science,
pp. 266–277. 2004. 17, 24

[Pap91] C. H. Papadimitriou and M. Yannakakis. Optimization, approxi-
mation, and complexity classes. Journal of Computer and System
Sciences, vol. 43:pp. 425–440, 1991. 20, 21, 41

[Pap94] C. H. Papadimitriou. Computational complexity. 1994. 3

[Pap05] Personal communication with Christos H. Papadimitriou, 2005. 24

[Pev00] P. Pevzner. Computational Molecular Biology: An Algorithmic Ap-
proach. MIT Press, 2000. 1

[Rag92] M. A. Ragan. Matrix representation in reconstructing phylogenetic
relationships among the eukaryotes. Biosystems, vol. 28:pp. 47–55,
1992. 68

[Ram97] A. Rambaut and N. Grassly. Seq-gen: An application for the monte
carlo simulation of DNA sequence evolution along phylogenetic
trees. Computer Applications in the Biosciences, vol. 13:pp. 235–
238, 1997. 129

[Ros76] D. J. Rose, R. E. Tarjan and G. S. Lueker. Algorithmic aspects
of vertex elimination on graphs. SIAM Journal on Computing,
vol. 5:pp. 266–283, 1976. 46

[San98] M. J. Sanderson, A. Purvis and C. Henze. Phylogenetic supertrees:
Assembling the trees of life. Trends in Ecology and Evolution,
vol. 13:pp. 105–109, 1998. 68

[Sem00] C. Semple and M. Steel. A supertree method for rooted trees. Dis-
crete Applied Mathematics, vol. 105(1-3):pp. 147–158, 2000. 68

[Sha06] R. Sharan, B. V. Halldórsson and S. Istrail. Islands of tractability
for parsimony haplotyping. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics, vol. 3(3):pp. 303–311, 2006. 10,
11, 38, 39, 40, 41, 42, 51, 56, 60

REFERENCES 159

[SIM08] SIMPLISTIC: Simple network heuristic, 2008. http://
homepages.cwi.nl/˜kelk/simplistic.html. 144

[Sni06] S. Snir and S. Rao. Using max cut to enhance rooted trees con-
sistency. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, vol. 3(4):pp. 323–333, 2006. 68

[Son04] Y. Song and J. Hein. On the minimum number of recombination
events in the evolutionary history of DNA sequences. Journal of
Mathematical Biology, vol. 48:p. 160186, 2004. 15, 69

[Son05a] Y. Song, Y. Wu and D. Gusfield. Efficient computation of close
lower and upper bounds on the minimum number of recombinations
in biological sequence evolution. Bioinformatics, vol. 21 (Suppl.
1):pp. i413 – i422, 2005. 69

[Son05b] Y. S. Song, Y. Wu and D. Gusfield. Algorithms for imperfect phy-
logeny haplotyping (IPPH) with single haploplasy or recombination
event. In Algorithms in Bioinformatics (WABI), vol. 3692 of Lec-
tures Notes in Bioinformatics, pp. 152–164. 2005. 38

[Ste92] M. Steel. The complexity of reconstructing trees from qualitative
characters and subtrees. Journal of Classification, vol. 9(1):pp. 91–
116, 1992. 5

[Swo98] D. L. Swofford. Paup*: phylogenetic analysis using parsimony (and
other methods), 1998. 67

[Ven01] J. C. Venter et al. The sequence of the human genome. Science, vol.
291:pp. 1304–1351, 2001. 1

[Vij06] R. Vijayasatya and A. Mukherjee. An optimal algorithm for per-
fect phylogeny haplotyping. Journal of Computational Biology,
vol. 13(4):pp. 897–928, 2006. 38, 39, 63

[Wan01] L. Wang, K. Zhang and L. Zhang. Perfect phylogenetic networks
with recombination. Journal of Computational Biology, vol. 8(1):pp.
69–78, 2001. 69

[Wat53] J. D. Watson and F. H. C. Crick. Molecular structure of nucleic
acids. Nature, vol. 171:p. 737738, 1953. 1

[Wat95] M. S. Waterman. Introduction to Computational Biology: Maps,
Sequences and Genomes. Chapman & Hall/CRC, 1995. 1

[Wu04] B. Y. Wu. Constructing the maximum consensus tree from rooted
triples. Journal of Combinatorial Optimization, vol. 8(1):pp. 29–39,
2004. 15, 16, 67, 68, 87, 90, 143

http://homepages.cwi.nl/~kelk/simplistic.html
http://homepages.cwi.nl/~kelk/simplistic.html

160 REFERENCES

[Zha06] X.-S. Zhang, R.-S. Wang, L.-Y. Wu and L. Chen. Models and algo-
rithms for haplotyping problem. Current Bioinformatics, vol. 1:pp.
105–114, 2006. 39

161

Index

∇, 102, 118

algorithm, 2
approximation, 3
exact, 3
polynomial-time, 3

i-ambiguous, 47
ambiguous position, 47
approximation ratio, 3
APX-hard, 3

basic tree, 74
below, 70
biconnected, 70
biconnected component, 70

highest, 123
trivial, 70

(k, `)-bounded instance, 10, 38

CandidateTBR SN-set, 97
caterpillar, 85
child, 32
CL-k, 14
Collapse(N), 102
compatibility graph, 43

restricted, 52
compatible (genotypes), 43
complement, 37
complexity, 3
computational biology, 1
conflict, 7
connected, 70
consistent, 12, 43, 70
correct partition, 102
Cryptococcus gattii, 15, 116
cut-arc, 70

highest, 77
trivial, 70

dense, 15, 67, 70

ELONA, 91
embedding, 134

in-out root, 135
explain, 8

favourite (vertex), 34
feasible (SNP matrix), 18

under k haplotypes, 25
flip, 7, 18
full triplet set, 77

galled tree, 66
gap, 6
genotype, 9

trivial, 56
genotype matrix, 9, 37

hanging
caterpillar, 85
leaves, 80

haplotype, 6
even parity, 47
private, 54
trivial, 52

haplotype graph, 60
haplotype matrix, 9, 37
heuristic, 4
high arc, 101
highest biconnected component, 123
highest cut-arc, 77
highest cycle, 117
highest reticulation, 117

162 INDEX

hole, 6

induced triplet set, 102, 118

L-reduction, 20
LCA, 104
leaf, 70
level-k network, 14, 66, 70

simple, 68, 71, 73
strict, 70

LEVEL2, 115
LHR, 8

SH-LHR, 30
low arc, 101
low leaf, 100

MARELET, 123
MARLON, 119
MaxCL-k, 15
MEC, 7

1-Gap-MEC, 20
Binary-MEC, 24
Gapless-MEC, 19
PBMEC, 25

MINPITS, 141
MinRL-k, 15
mismatch, 18
MPPH, 10, 38, 48

ncr-arc, 123
network of type, 74
non-cycle-reachable arc, 123
NP-hard, 3

outgroup, 129

parent, 32
parsimony principle, 4
perfect phylogeny, 10, 38

admit, 10
PH, 10, 38
phylogenetic network, 12, 70
phylogenetic tree, 11, 70
PPH, 38
PTAS, 3

reduced resolution, 49
RefL-k, 16, 134
reflect, 16, 134
reflective, 134
resolve, 9, 37
reticulation, 12, 65, 70

highest, 117
reticulation leaf, 79
root, 70

side, 71, 80, 85
simple level-≤2 network, 102
simple level-k generator, 71
simple level-k network, 68, 71, 73
simple network, 74
simplicial vertex, 44
SIMPLISTIC, 144
SL-k, 98
SN-set, 76

maximal, 76
maximal under restriction, 117
singleton, 76
trivial, 76

SN-tree, 76
SNP, 6
SNP matrix, 6

feasible, 7
gapless, 6

split vertex, 70
ST, 117
1-sum, 43
summit, 134

taxa, 11
TBR, 97
tidying up, 76
tournament, 87
tractable, 3
triplet, 12, 67, 70

double, 81
triple, 82

twist cover, 135
partial, 135

vertex cover, 25

	Preamble
	Preface
	Contents
	1 Introduction
	1.1 Computational Biology
	1.2 Algorithms and Computational Complexity
	1.3 Algorithms for Computational Biology
	1.4 Problems from Haplotyping
	1.4.1 Single Individual Haplotyping
	1.4.2 Population Haplotyping

	1.5 Problems from Phylogenetics

	2 Single Individual Haplotyping
	2.1 Introduction
	2.2 Minimum Error Correction (MEC)
	2.2.1 Complexity of Gapless-MEC
	2.2.2 Approximability of 1-Gap-MEC
	2.2.3 Binary-MEC
	2.2.4 MEC with more than two Haplotypes

	2.3 Longest Haplotype Reconstruction (LHR)
	2.3.1 Polynomial-time Algorithm for Gapless-LHR
	2.3.2 Complexity and Approximability of 1-Gap-LHR

	2.4 Conclusion and Open Problems

	3 Population Haplotyping
	3.1 Introduction
	3.2 Complexity of Population Haplotyping Problems
	3.3 Polynomial-time Algorithms
	3.3.1 Parsimony Haplotyping
	3.3.2 Minimum Perfect Phylogeny Haplotyping

	3.4 Approximation Algorithms
	3.5 Conclusion and Open Problems

	4 Phylogenetic Networks
	4.1 Introduction
	4.2 Preliminaries
	4.3 Complexity of Constructing Networks from Triplets
	4.3.1 Sufficiency and Necessity of Network Level
	4.3.2 A Unique Level-k Network
	4.3.3 From Uniqueness to Intractability

	4.4 Constructing Level-1 Networks in Exponential Time
	4.5 Constructing Simple Level-k Networks
	4.6 Constructing Level-2 Networks from Dense Triplet Sets
	4.6.1 Algorithm and Proof
	4.6.2 Practical Experiments

	4.7 Minimising Reticulations
	4.7.1 Minimum Reticulation Level-1 Networks
	4.7.2 Minimum Reticulation Level-2 Networks
	4.7.3 Simulations

	4.8 Networks Consistent with Precisely the Input Triplet Set
	4.9 Open Problems

	Summary
	Samenvatting
	Curriculum Vitae
	References
	Index

