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l. INTRODUCTION 
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In [ME.ANTI et al. 1988] the optimal value of the multiknapsack problem is studied as a function of the 
knapsack capacities. They consider the following model. Let aij be the amount of space in the i-th 
knapsack (i = 1, .. ,m) required by the j-th item (j = l, ... ,n). Item j yields a profit cj (j = l, ... ,n) upon 
inclusion. The i-th knapsack has capacity b; (i = 1, ... ,m). The multiknapsack problem is formulated as: 

n 

max ~ c· X· 
j==I J J 

n 
s.t. .~ aij xj E;;; b; (i = l, ... ,m) 

J ==I 

Xj E {0,1} (j=l, .. .,n). 

(MK) 

MEANTI et al. have shown that if the coefficients cj and aij (j = l, ... ,n, i = 1,. .. ,m) are generated by an 
appropriate random mechanism, then the sequence of optimal values of (MK), properly normalized, 
converges with probability one (wpl) to a function of the b;'s, as n goes to infinity and m remains 
fixed. A crucial step in their proof of this result is the derivation of a uniform strong law of large 
numbers, using theory of convergence of convex functions. 

We will show in this paper that results from empirical process theory can be applied to reprove this 
result. More interestingly, the application of empirical process theory allows for a rather straightfor­
ward derivation of a strong rate of convergence by establishing a law of the iterated logarithm. These 
results are presented in Section 3. Moreover, results from empirical process theory can be used to 
derive a central limit theorem as will be shown in Section 4. 

First, in Section 2 we give an outline of [MEANTI at al. 1988] and indicate where our results fit in. 
In Section 5 we discuss the interest of such results and the role that application of empirical pro­

cess theory may play in this field of research. 
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2. CONVERGENCE OF THE MULTIKNAPSACK VALUE FUNCTION. 
MEANTI et al. assume that the profit coefficients cj, j = I, ... ,n, are i.i.d. nonegative random variables 
with finite expectation, and that the vectors of requirement coefficients aj = (alj,···· ~jf, j = l, ... ,n, 
are i.i.d. non-negative random vectors with finite expectations. The profit coefficients an~ requirement 
coefficients are independent from each other. Let b; = n{J;, i = l, ... ,m, for fJ = (/31>···•f1mf E V: = 
{/3: 0 ~ /J; ~ Ea;I> i = l, ... ,m }. The asymptotic behaviour of the optimal value z~ of (MK} is esta­
blished as a function of /l 

For any nonnegative vector of multipliers A= (Ai. ... ,i\m)r the optimal value of the Lagrangean 
relaxation of the linear pro~amming (continuous) relaxation of (MK) is defined as 

m n m 
Wn(i\)= max {. ~ i\;bi + .l': (cj - _ l': i\;a;j)xjl 0 ~ Xj ~ 1, j = l, ... ,n} 

1=1 1=I 1=1 

where 
m 

l if C·-l::i\.a .. >0 
:J i =I 1 1) 

, j = l, ... ,n. 
0 otherwise 

Define 

1 ~ l n 
1.n(i\): = -wn(A) =AT fJ + - ~ (cj - i\T aj)xj(i\), 

n n j=I 

and let A: be a vector such that Ln(,;\.:)= min Ln(i\). Then, MEANTI et al. show that 
h;;>.0 

l.* m 1 I ,• 1.n(A11)- -(!!1ax cj)~-zn ~ l.11 (A11) wpl. 
n 1-l, ... ,n n 

Let the function L(i\) be defined as 

L(i\): = i\T fJ + E(c1 - i\T a1)xf(i\) 

and let i\* be a minimizer of L(A.). Theorem 3.1. in [MEANn et al. 1988] states that 

lim I Ln(A:) - L(i\.)I =O wpl. 
n-->OO 

This, together with (2.1), implies their main result: 

lim I _!_z~ - L(A.*)I = 0 wPL 
n-+oo n 

To prove result (2.2) they show that the strong law of large numbers, which implies that 

lim I 1.n(i\) - L(A.)I =O wpl, 
n-+oo 

(2.1) 

(2.2) 

holds uniformly over all A in a compact set S C Rm, using the convexity of the functions 1.n(i\) and 
L(A). From this (2.2) follows almost immediately, (cf. [MEANTI et al. 1988, Proof of Theorem 3.1]). 
In the following section we show that results from empirical process theory can be applied to reprove 
the uniform strong law of large numbers and, moreover, to establish a rate of convergence. For sim­
pli.city we will assume throughout the paper that c and a have bounded supports. Specifically, we will 
present a uniform law of the iterated logarithm that yields 

( l gln )~ I Ln(A:) - LP•">I = 0(1) wpl. o ogn 
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Furthermore, in Section 4, we use a general theorem from [POLI.ARD 1984] (see also [POLI.ARD 1985]) 
to derive asymptotic normality of the optimal Lagrangean multipliers A;, of the optimal value of the 
Langrangean relaxation L,,(A;), and of the normalized optimal value of (MK) z~. The asymptotic pro­
perties of A; are particularly interesting in view of its use in a heuristic procedure for solving the mul-
ti.knapsack problem (see [MEANTI ET AL.D. · 

3. RATE OF CONVERGENCE. 

Consider the functions /A : Rm+ 1 -+ R, for A;;;i.O, defined as 

_ {AT ,8 + (c -AT a)l{(c,a):c>Ara}(c,a) , c ;;;i. 0, a ;;;i. 0 
/A(c,a) - O , otherwise ' 

where l{(c,a):c>Ara}(c,a) is the indicator function of the set {(c,a):c>ATa}. Then Ln(A) is the mean 
value of fA(c,a) over n independent observations (ci.a1), ••• ,(c;., &,i): 

l n 
L,,(A) = - l: fA (c;,a'J-), 

n j=I J 

and L(A) is the expectation of /A(c,a): 

L(A) = EfA(c1>a1). 

Let ~be the class of functions fA made up by altpossible vectors A;:> 0: 

~:= ifA :/\;;;ioO}. 

The graph of a function g : Rd-+ R is formulated as 

graphg = {(t,x)eRa+i: O=e;;;t=e;;;g(x)V g(x)=e;;;t=e;;;O}. 

We will present some concepts and results from empirical process theory and show that the class of 
graphs of the functions in ~has properties that allow direct application of these results. 

DEFINITION 1. Let 6D be a class of subsets of a space X. For xi.x2, ••• , Xn eX define 

bA6D(x., •. .,xn):= card{Dn{x ..... ,xn}: De6D} 

and 

m6il(n):=sup {bA6il(x1,. .. ,xn): xi. ... ,XnEX}. 

Note that m6il(n)< 211 • The class 6D is called a Vapnik-Chervonenkis class if m6il(n) < 2n for some n;;;iol 
(cf. [VAPNIK & CHERVONENK.IS 1971D. 

For classes of functions we have a similar. definition based on their graphs. 

DEFINITION 2. A class ~ of real-valued functions is called a Vapnik-Chervonenkis graph class if the 
graphs of the functions in ~ form a Vapnik-Chervonenkis class. 

The following theorem from [ALEXANDER 1984] establishes a uniform law of the iterated logarithm for 
a Vapnik-Chervonenkis graph class of functions. 

THEOREM 3.1. Let xh···•Xn be sequence of i.i.d random variables taking values in a space (X,~ and let 
~ be a class of measurable real valued functions on X, such that 
(i) ~is a Vapnik-Chervonenkis graph class and 
(ii) the functions in ~ are uniformly bounded 
Then, modulo measurability, 

n 1 n 
sup ( 1 gl )11 1- _l: g(x1) - Eg(x1)1 = 0(1) wpl. 
gei o ogn n1=I 

D 
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For application of this theorem in our analysis we have to verify the two conditions (i) and (ii) for the 
class of functions {JA: A;;;sO}. To show that the first condition is satisfied is rather straightforward, 
given the theory on Vapnik-Chervonenkis classes. It is known that classes of open and closed 
halfspaces in R' say, i.e. 6D1 ={{x:IJTx>O}, IJeR'} and 6D2 ={{x:IJTx>O}, lleR'}, are Vapnik­
Chervonenkis classes (see e.g. [DUDLEY 1984]). Moreover, the Vapnik-Chervonenkis property is 
preserved under taking finite unions and intersections [POLLARD 1984, page 18]. Now, the graph of a 
function /A is 

{{Ore;;tre;;AT,8} n {cre;;ATa} n {c;;;so, a;;;sO}}U 

{{OEO;tEO; AT,8+c-ATa} n {c>ATa} n{c;;;so, a;;;sO}}U 

{{t=O} n {{c<O} u {a<O}}}, 

which is clearly a finite union of finite intersections of half-spaces in Rm +l. 
As for the second condition of Theorem 3.1, we notice that, under the assumption of bounded sup­

port of c and a, the functions /A are uniformly bounded only for A in a bounded set. In [MEANTI et 
al. 1988, Lemma 3.1], it is shown that the interesting values of A, i.e., those values that are candidates 
for minimizing L,.(A) and L(A), are in the set S: = {A: AT ,8re;;Ec1 +1, A;;;sO}. Therefore, we arrive at 
thefollowinglemina. 

LEMMA 3.2. If c and a have bounded S'UJ'port, the.,,--

sup ( 1 y).n )% I L,.(A) - L(A)I = 0(1) wpl. 
Ae~ o ogn 

D 

From this lemina the followjng theorem follows easily. 

THEOREM 3.3. If IC and a have bounded S'UJ'porl, then 

( 1 y).n )% I L,.(i\:) - L(A*) I= 0(1) wpl. 
o ogn 

PROOF. Let A0 be a minimum of L(A). If L(A*) re;; L,.(i\:), then ILn(i\:) - L(A")IEO; L,.(A*) - L(A*) 
since >.; minimizes L,.(A). Otherwise, if L(A°) > L,.(i\:), then ILn(A:) - L(A*)I re;; L(i\:) - Ln(A:). 
Hence, 

This inequality together with LemD1a 3.2 completes the proof. D 

Regarding (2.1 ), this theorem leads easily to the rate of convergence of the normalized optimal value 
z! of the multiknapsack problem. · 

THEOREM 3.4. If IC and a have bounded S'UJ'port, then 

( 1 y)n )%1.!_z!- L(A")l=O(l) wpl. 
o ogn n 

D 

In fact, this rate of convergence is sharp in most cases (see Remark l at the end of Section 4). 

4. ASYMPTOTIC NORMALITY 

For the derivation of the results in this section we need two extra assumptions on the function (A). 
The first one is that L(A) has a unique minimum A*. From [MEANTI ET AL. 1989, p4] we know that in 
this case A; converges to A* with probability l. Moreover, Lemma 3.6 from the same paper gives 
sufficient conditions on the distribution of c and a for this to hold. 

The second assumption that we need is that A* is an interior point of the feasible region of A, which 
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means that A.* >0. This is equal to assuming that none of the m knapsack constraints has positive 

expected slack. That this is not such a severe restriction comes from the fact that constraints with 

positive expected slack do not influence L(A.*). 
Under these conditions Theorem VH.5 from {POLLARD 1984, p. 141} is taylored for establishing 

asymptotic normality of A.:. Before we get to the application of this theorem we derive some prelim­

inary results. The purpose of this is to provide the reader with some insight in the matter and to use 

these results later on to establish asymptotic normality of Ln('A:) and ..!.. z!. 
n 

Let V be the second derivative matrix of L(A.) in A.*. Under the assumption that A.* is an interior 

point the Taylor expansion for A. close to A.* gives 

L(A.)-L('A*) = ; ('A-i\*fV(A.-'A*)+O(lll\-A.* II), (4.1) 

where llA.-A.*11 =((A.-1\"f(A.-A.*))l/2 • If V is non-singular, (4.1) implies that for small values of 

llA. -A.* II and some positive constant '11· 

(4.2) 

Let us compare this with the behaviour of 4(A.)-L(A.*). For this purpose we use another theorem 

from empirical process theory. Yn =Op( an) is used as shorthand notation to say that for every E:>O 

there exists an M <oo such that Pr{IYnl>Ma11 }<t:. 

THEOREM 4.1. Under the conditions of Theorem 3.1 we have that, modulo measurability 

l II _.)_ 

suol-~ g(xj)-Eg(x1)1 = Op(n 2 ). 

geil n j=l ~ 
D 

This theorem is a consequence of general results on so-called Donsker-classes of functions (see [DUD­

LEY 1984], [Goo & ZINN 1984] and [POLLARD 1984]). It provides us with the following Lemma. 

LEMMA 4.2. If a has a distribution with bounded support 

{Ln(i\)-L11(A.*))-(L('A)-L(A.*)) t 

~~~ ll'A-'A*ll = Op(n -2). 

PROOF. Define the class 1f1 as 

1f1 = {(f,,-j,;)/ll'A-A.*11: AER~}. 

ij1 is a Vapnik-Chervonenkis graph class, since lj={f>..: AERn} is a Vapnik-Chervonenkis graph class, 

f>.. is a fixed function and the property is. preserved under scaling. 

It remains to show that 1f1 is uniformly bounded. Consider the case that A_T a<A.*Ta. Then, 

Hence, 

/J..(c,a)-J.,,:(c,a) ('A-X*l a (c ->..Ta) 

llA.-A.* II llA.-A.* II l{(c,a): )\"ra<c}(c,a)+ llA.-;\* II l{(c,a): )\"ra>c,J\Ta<c}(c,a) 

= ('A-A.*f a 1 ·r c a + (c -/\*Ta) 
llX-A.*11 {(c,a):J\ a<c}( • ) llA.-'A*ll l{(c,a):J\·r0 ;;..cYa<c}(c,a) 

('/\.-'/\.*)Ta 
- 1 ·r r (c a) II'/\.-;\* II {(c,a): A a;;;>c, A a<c} ' • 

lfA(c,a)-/;dc,a)j 
...;;;__ __ ..;;.._ _ ___;_ ~ l(A.-A.*tal 

llA.-X*ll 11x-x·11 
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i is the m--dimensional vector consisting of all ones. The case >.Ta> A *Ta can be handled similarly and 
yields the same bound. Since a is assumed to have bounded support, we have that 1f1 is uniformly 
bounded. Now, application of Theorem 4.1 to the class 1f1 finishes the proof. D 

Since ..\; minimizes Ln(A) we have that 

(Ln(A;)-Ln{i\*))-(L(Ji;)-L(i\*)) :so;; -(L(>.;)-L(A*)). 

Combine this with ( 4.1) and ( 4.3) to see that 
I 

lllt;-i\"llOp(n - 2 ) :so;; -1111..\;-i\*11 2 

or 
l I I 

llA;-J\"11.s;;;-Op(n - 2 ) = Op(n - 2 ). (4.4) 
11 

Thus we arrive at a Vn-rate of convergence. Theorem VU.5 from [POLLARD 1984] can be used to give 
the limiting distribution. For a thorough explanation of the concepts playing a role in the theorem we 
refer the interested reader to Chapter VII of Pollard's book. Here we will restrict ourselves to a brief 
exposition on the crucial condition of the theorem, which concerns the remainder term r><(c,a) of the 
linear approximation off>< near A*: 

f><(c,a)-fA'(c,a) = (A-i\*fA(c,a)+lli\-i\*lh(c,a), (4.6) 

where .6.(c,a) is the first order derivative vector off>< in i\*, which is given by 

.6.(c,a) = al{(c,a): l<"ra<c}(c,a). 

Using (4.6) as a definition of r><(c,a), it is easy to verify that the class {r><: AER'-i} is a Vapnik­
Chervonenkis graph class. Since a has bounded support, uniform boundedness of this class follows 
easily from boundedness of the class '?f1 defined in the proof of Lemma 4.2, and boundedness of 
{(i\-i\*l.1.(c,a)/lli\-.A*ll: AER'-i}. Let the distribution of c and a be such that fh:(c,a)l2dF(c,a)~O 
wp 1, e.g. assume F to be continuous in c and a. From [POLLARD 1984, p. 151,152] we know that the 
above properties of r are sufficient to imply Condition (v) of Theorem VII.5, which is a so-called sto­
chastic equicontinuity condition on the remainder term. It roughly says that for i\~~.,\* the impact of 
the remainder term on the asymptotic behaviour of i\~ - i\ * becomes negligible. 

THEOREM 4.3. Suppose that L (i\) has a unique minimum i\ * and a non-singular second derivative matrix 
Vat i\*. Specificarty, assume that the distribution function of c and a is continuous. Then Vn(A:-i\*) 
converges in law to a multivariate normal distribution with mean 0 and covariance matrix v- 1;:z v- 1, 

where ;E is the covariance matrix of the random vector A(c,a). 

PROOF. The proof is a direct application of Pollard's Theorem VII.5 to our special case. We showed 
above that under the assumptions the stochastic equicontinuity condition is satisfied. The other condi­
tions of the theorem are satisfied trivially or by assumption. D 

As a byproduct of the results obtained sofar we will derive asymptotic normality of Ln(A *). 
Remember that L,,(i\ *) is just a normalized sum of i.i.d. random variables, so that Vn <Ln(i\ *)-L (i\ • )) 
converges to a normal law. The following lemma shows that Ln(A:) is close enough to Ln(i\ *) to exhi­
bit the same asymptotic behaviour. 

LEMMA 4.4. Under the conditions of Theorem 4.3. 

ILn(J..:)-Ln(i\*)I = Op(n- 1) 



PROOF. Combining (4.1) and (4.4) we have that 

IL(A:)-L(i\*)I = Op(n- 1). 

Using (4.3) and (4.4) we see that 

l(Ln(A:)-L,.(i\*))-(L(i\:)-L(i\"))I = lli\:-i\* 11 l(Ln(A:)-L,.~~~-=-~~l(i\:)..:.. L(i\*))I 

Together with (4.7) this implies that 
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(4.7) 

l(Ln(A:)-L,.(i\")I ~ l<LnCA:)-L,.(i\*))-(L(Ji:)-L(i\"))l+IL(A:)-L(i\*)I = Op(n- 1). D 

COROLLARY. Suppose that the conditions of Theorem 4.3 are satisfied Let a'- be the variance of f>..·(c,a). 
Then Vn(L,.(i\:)-L(i\*)). Vn(z!-L(i\*)) and Vn(Ln(i\*)-L(i\*)) are asymptotically equivalent and 
converge in law to a normal random variable with mean zero and variance a'-. D 

REMARK 1. In a similar way as above it can be shown that 

11.(A;)-L,,(A'll = o [ Ios:;i•] wpl. 

Using the ordinary law of the iterated logarithm on Ln(i\*) the above implies that the almost sure rate 
of convergence given in Theorem 3.4 is sharp: 

lim sup Vi: Vn IL,.(i\:)-L(i\*)I = a wpl. 
n->co log log n 

REMARK 2. It is also possible to show that n(L,.(A:)-Ln(i\*)) is asymptotically chi-square distributed. 

5. POSTLUDE 

We observe that there exist other examples of applications of empirical process theory in the research 
area of probabilistic value analysis of combinatorial problems. In a way analogous to the one in this 
paper an almost sure characterization of a covering problem has been established [PmnsMA 1987]. In 
[RHEE 1986] and [Rmm & T ALAGRAND 1988) empirical process theory has been used in probabilistic 
analyses of the optimal value of respectively a Euclidean matching problem and a median location 
problem. We also mention the probabilistic value analysis of a minimum fiowtlme scheduling problem 
[VAN DE GEER et al.]. 

Furthermore the approach of [POLLARD 1984] towards proving central limit theorems, turns out to 
be well-suited for value functions expressable as empirical process on Vapnik-Chervonenkis graph 
classes. 

In view of this, it seems worthwile to try for insights in the specific structures of combinatorial 
optimization problems that allow for such applications. That wider applicability is possible is intui­
tively supported by the fact that theorems from empirical process theory, like Theorem 3.1, heavily 
depend on combinatorial properties of classes of functions. 
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