
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

B.J. Lageweg, J.K. Lenstra, A.H.G. Rinnooy Kan, L. Stougie

Stochastic integer programming by dynamic programming

Department of Operations Re~earch and System Theory

Bibliotheek
CentrumvoorWiskundeen mf~

Amsterdam

Report OS-R8503 April

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum; which was founded on February 11 , 1946, as a nonprofit institution aim­
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.0.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

STOCHASTIC INTEGER PROGRAMMING BY DYNAMIC PROGRAMMING

B.J. LAGEWEG, J.K. LENSTRA

Centre for Mathematics and Computer Science, Amsterdam

A.H.G. RINNOOY KAN

Erasmus University, Rotterdam

L. STOUGIE

University of Groningen

Stochastic integer programming is a suitable tool for modeling hierarchical

decision situations with combinatorial features. In continuation of our work

on the design and analysis of heuristics for such problems, we now try to

find optimal solutions. Dynamic programming techniques can be used to exploit

the structure of two-stage scheduling, bin packing and multiknapsack problems.

Numerical results for small instances of these problems are presented.

1980 Mathematics Subject Classification: 90C10, 90C15, 90C39.

Key Words & Phrases: stochastic integer programming, distribution model,

two-stage decision model, scheduling, bin packing, multiknapsack, dynamic

programming.

Note: This paper will appear in Statistica Neerlandica.

Report OS-R8503

Centre f~r Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam

1

1. INTRODUCTION

Stochastic programming problems are mathematical programming problems of which

not all the parameters are known with certainty. It is usually assumed that

the unknown parameters have a known probability distribution. There are two

types of optimization models in stochastic programming.

The first one is the distribution model, in which one has to determine

an optimal decision for each realization of the stochastic parameters. As a

result, one obtains the complete probability distribution of the optimal solu­

tion value to the stochastic programming problem. This is the 'wait and see'

approach, in which the decision is made only when perfect information is

available. It is of largely theoretical interest.

The second model is the two-stage decision model, in which one has to

determine a decision that is optimal in expectation. In evaluating a decision,

one takes into account the costs of a recourse decision that may be taken

when, at a later stage, the realization of the stochastic parameters becomes

known. This is the 'here and now' approach, in which the decision is made

given imperfect information. The concept of a recourse decision should be

interpreted broadly. It includes not only emergency actions in case of parti­

cularly unfortunate realizations but any action that is appropriate under the

given circumstances.

Research in this area is so far almost exclusively concerned with sto­

chastic linear programming. In the distribution model, each realization of

the stochastic parameters leads in this case to an ordinary linear program.

In the two-stage decision model, the recourse problem at the second stage is

a linear program, the right-hand side of which is usually determined by the

decision at the first stage. This implies that the expected second stage cost

is a convex function of the first stage decision variables [Wets 1983].

Successful algorithms for the linear two-stage problem heavily exploit this

convexity property.

By imposing integrality constraints on some of the decision variables we

enter the area of stochastic integer programming. The complexity of the prob­

lems under consideration is thereby increased dramatically. One reason for

this is that linear programming is well solved while integer programming is

NP-hard, so that the solution of a deterministic subproblem may require much

2

more time. Another reason is that, in the two-stage decision model, integrality

of the second stage decision variables can cause nonconvexities and even dis­

continuities in the expected second stage cost function CBlair & Jeroslow 1982],

so that the algorithms for the linear case cannot be adapted.

Stochastic integer programming does not only present many theoretical

challenges, it is also a practical tool for modeling certain hierarchical

decision situations that arise in operations management planning and control.

Such situations require a series of decisions over time at an increasing level

of detail and with an increasing amount of information being available. At

least two decision levels can usually be recognized: an aggregate level, at

which one has to decide upon the acquisition of resources, given vague infor­

mation about what certain tasks will require of them, and a detailed level,

at which one has to decide upon the allocation of resources to tasks, given

precise information about the requirements. Integrality constraints may appear

at the first level, when the resources come in discrete units only, and at the

second level, when the allocation problem is of a combinatorial nature.

Given the formidable difficulty of stochastic integer programming, most

research in the area has so far concentrated on the design and analysis of

approximation algorithms. This approach is exemplified in [Dempster et al.

1981, 1983; Frenk et al. 1984; Marchetti-Spaccamela et al. 1984], where simple

heuristics are proposed for a variety of two-stage production and distribution

planning problems. Probabilistic analyses of the heuristics then provide exact

statements about the quality of the approximations, such as some form of

asymptotic optimality. A general framework for this approach is given in

[Lenstra et al. 1984].

In this paper, we are interested in optimization algorithms. We will

consider stochastic integer programs of a very special structure. The sto­

chastic parameters will have a discrete distribution with a finite number

of points with positive density. Moreover, each realization will lead to a

combinatorial optimization problem that is solvable by a dynamic programming

routine. The overall stochastic optimization problem will then be solved by a

single giant recursion that combines the separate dynamic programming computa­

tions for all the individual realizations. This can be done only for problem

instances of a relatively small size.

The following three sections illustrate our approach on two-stage sched-

3

uling, bin packing, and multiknapsack problems. In each section, we first for­

mulate the problem in question, then present the dynamic programming algorithm

and describe its implementation, and finally discuss our numerical results.

The discussion includes a comparison with results obtained by heuristics for

the scheduling and bin packing problems.

Our computational experience gives empirical insight into the shape of

the value functions of stochastic integer programming problems and shows that

the discontinuities and nonconvexities mentioned above do indeed occur. Further

investigations have shown that one has to distinguish between discrete and

continuous distributions of the stochastic parameters; in the latter case, no

discontinuities will occur under certain conditions [Stougie 1985]. The results

we have obtained so far should be regarded as no more than a first step towards

a theory for stochastic integer programming.

Boldface characters will denote random variables.

4

2. SCHEDULING

2.1. Problem formulation

The two-stage scheduling problem studied in this section was first formulated
in [Dempster et al. 1981]. At the aggregate level, one has to decide on the
number X of identical parallel machines that are to be acquired, while knowing
the cost c of a single machine, the number n of jobs that are to be processed,

and the probability distribution of the vector ~ = (.~ 1 , ••. '~n) of their pro­
cessing times. It is assumed that the w. are independent and identically dis-

~J

tributed random variables with expectation µ. At the detailed level, after X
has been determined, a realization w E Q of ~ becomes known, where Q denotes
the set of all realizations, and one has to decide on a schedule in which each
machine processes at most one job at a time, job j is processed during an
uninterrupted time period of length w. (j = 1, .•. ,n) and no job is processed

J * prior to time 0, so as to achieve a minimum value Y (X,w) of the maximum job

completion time. The total cost of the acquisition decision X and the optimal

* * scheduling decision is denoted by V (X,w) = cX+Y (X,w).

In the two-stage decision model, the objective is to determine a value
* X E JN such that the expected total cost is minimized:

* * EV (X 1 !:!!) * minXE JN {EV (X i!:!!) } •

0 In the distribution model, the objective is to determine a function X : Q ~ JN

such that for each w E Q the actual total cost is minimized:

* 0 v (X (w) ,w) * min , {V (X,w)}, Vw E Q.
XE.in

Previous work on this problem concerned the design and analysis of a two­
stage heuristic [Dempster et al. 1983]. This heuristic sets the number of ma­
chines equal to the value of X that minimizes the lower bound VLB(X) = cX+nµ/X

* on EV (X,~) and assigns the jobs to the machines by a list scheduling rule.
(In our computational experiments, we used the longest processing time rule,
which puts the jobs on a list in order of nonincreasing processing times and

successively assigns the next job on the list to the earliest available machine;
this rule has a better worst case performance than arbitrary list scheduling

[Graham et al. 1979].) The relative error of the heuristic tends to 0 as n

tends to infinity for various measures of stochastic convergence [Lenstra et

al. 1984].

2.2. Dynamic programming

* The second stage scheduling problem of determining Y (X,w) for given X and w

5

is NP-hard [Garey & Johnson 1979]. We will consider the situation in which the

processing times can assume only k distinct values a
1

, •.• ,~, for a fixed value

of k. Let us denote by w = [n
1

, .•• ,nk] the vector of processing times in which

the value a. occurs n. times, for j = 1, •.. ,k.
J J

One can obtain an optimal schedule on X machines by assigning a certain

subset of jobs optimally to X-1 machines and putting the remaining jobs on

another machine. This observation leads to the following recurrence relations:

* * * y (X,[n 1, •.. ,nk]) = min{max{Y (X-1,[n
1
-2

1
, ..• ,nk-2k]),Y (1,[2

1
, .•• ,2k])}

I 0 ::;; t j ::;; n j (j = 1 , ••• , k) } (X > 1) ,

y*c1,[n1,···1nk]) = r~=l njaj.

* Computation of Y (X,w) by a dynamic programming algorithm based on this recur-
k sion requires O(XTI.

1
n.) time, which is exponential ink but polynomial for

J= J
fixed k.

In the more general context of the two-stage scheduling problem, we assume

that the processing times have a discrete distribution with k integral values

a 1, .•• ,~ in its support. The independence of the processing times implies that

~ = [£
1

, .•• ,£k] has a multinomial distribution. The idea is now to go through

* the entire recursion once in order to compute Y (X,w) for all values X E

{1, ..• ,n} and for all realizations w E Q, where Q is given by

The distribution model is then solved by the selection, for each w E Q, of a

* value of X that minimizes V (X,w) * cX+Y (X,w). The two-stage decision model

* is solved by the determination of a value of X that minimizes EV (X,~)

ex+\ nPr{w=w}Y*(X,w).
lwEaG ~

6

A straightforward application of the above dynamic programming algorithm

requires O(nk) comparisons for each of the O(nk+i) pairs (X,w), and hence

O(n
2
k+i) time altogether. The multinomial probabilities are easily computed

within this time bound.

A more efficient implementation of the algorithm is obtained as follows.

Let a
1

= max{a1, ••. ,~}. It is not hard to see that, for any X and w

[n1' ..• ,nk]

The lower bound is trivial, and the upper bound follows from the observation

that any list scheduling algorithm will start every job strictly before the

lower bound. Further, we assume without loss of generality that in the above

recurrence relations the second maximand attains the maximum:

We can therefore restrict our attention to vectors [t
1

, .•• ,tk] that yield a

* value Y (1,[t
1

, ••• ,tk]) within a given range of a
1

integers. This implies that

only a single value of t
1

has to be considered for given t 2 , •.• ,tk and that

O(nk-l) comparisons suffice for each pair (X,w). The overall running time is
2k thereby reduced to O(n) .

Other, more intricate, refinements lead to a running time of
2k-1 2k-3 O(n a

1
log na

1
). Although that implementation is more efficient for small

values a
1

, .•• ,~, it is of little avail in view of the results that will be

presented in Section 3.2.

2.3. Computational results

The dynamic programming algorithm was coded in PASCAL and run on a CD Cyber

170-750 to solve several instances of the two-stage scheduling problem. The

solution of instances with 100 jobs and two possible processing time values or

wirh 50 jobs and three processing time values required about 30 seconds. The

values of k considered are admittedly small, but the values of n are realistic

and the running times are such that our brute force approach should not be

dismissed on grounds of manifest inefficiency.

7

We illustrate the numerical results on a set of representative instances

given by

c = 1,

n = 1, ••• ,100,

k = 2, a
1

= 18, a 2 = 14, Pr{w.=a } = Pr{w.=a } = 12 (j
~] 1 ~J 2 1, ... ,n).

Figure 1 shows four functions of the number of jobs:

the minimal lower bound minX{VLB(X)} mentioned in Section 2.1;

* * the minimal expected total cost EV (X ,~) (the optimum for the two-stage

decision model) ;
* 0 the expected minimal total cost EV (X (~) ,~) (the optimum for the distri-

bution model, averaged over all realizations);

the expected approximate total cost obtained by the heuristic mentioned

in Section 2.1.

Note that the last three functions are defined only for integral n; linear

interpolation has been applied to improve the presentation. The distribution

model yields slightly better results than the two-stage decision model on

average, as expected. A comparison between the optima and the lower and upper

bounds confirms that the absolute differences are significant while the rela­

tive differences disappear with increasing problem size.

For the case that n = 100, Figure 2 shows three functions of the first

stage decision variable, the number X of machines:
LB the lower bound V (X);

* the expected total cost EV (X,~) in case of an optimal second stage

decision;

the expected total cost in case of an approximate second stage decision.

Note that we have interpreted X as a continuous variable: acquisition of a

fractional machine costs a fraction of c but yields no benefit at the second

stage; the vertical line segments correspond to discontinuities. In spite of

the smoothing effect due to averaging over all realizations, both the optimal

and the approximate cost functions are highly nonconvex and multimodal. The

functions consist of a first stage component, which is linear and increasing,

and a second stage component, which is nonconvex and nonincreasing. Addition

of the two components can turn the nonconvexities into local minima, and small

values of c appear to be most effective in this respect.
"

....
VJ

t
1il

I<

1il

siil
c;!
;2

"
I'll- _____-

__ ... ----------

/
~L/

/

s

/
/

10 I5

.... _ r····

20 25 30 35 40 45 50
ll'JOBS

55 llO

.... ______ --------"'" ________

j\

----------· APPROXIMATE SOLUTION

- OPTIMAL SOLUTION TO TWO-STAGE DECISION MODEL

- - - - - · OPTIMAL SOLUTION TO DISTRIBUTION MODEL

LOWER BOUND

65 70 75 80 85 90 95 100

Figure 1. Scheduling: the total cost as a function of the number of jobs.

00

1:...-
1

............... ~APPROXIMATE SOLUTION

---OPTIMAL SOLU'tlOM

---LOWER BOUND

Figure 2. Scheduling: the total cost as a function of the number of machines.

i.o

10

3. BIN PACKING

3.1. Problem formulation

The two-stage bin packing problem is formulated as follows. At the aggregate

level, one has to decide on the capacity Y of bins, while knowing the cost d

of one unit of capacity, the number n of items that are to be packed into the

bins, and the probability distribution of the vector w = (w
1

, •.. ,w) of the
~ ~ "TI

item weights. It is again assumed that the ~j are independent and identically

distributed random variables with expectation µ. At the detailed level, after

Y has been determined, a realization w E Q of ~ becomes known, and one has to

decide on a packing in which each item is assigned to a bin and the total

weight of the items assigned to the same bin does not exceed its capacity Y,

* so as to achieve a minimum number X (Y,w) of bins needed. The total cost of

the first stage decision Y and the optimal second stage decision is denoted

* * by w (Y,w) = dY+X (Y,w).

In the two-stage decision model, the objective is to determine a va~ue

* Y E :IR+ such that

* * EW (Y ,~) * minYElR {EW (Y,~) }.
+

0

In the distribution model, the objective is to determine a function Y : Q + :IR+

nuch that

* 0 W (Y (w) ,w) * minYElR {W (Y ,w) } , Vw E Q.

+

This problem is the symmetric counterpart of the two-stage scheduling

problem from the previous section. One can view items as jobs, weights as pro­

cessing times, bins as machines and their capacity as a job completion dead­

line, but now the order of the decisions is reversed. In fact, the above cost

structure is quite natural in this context. First, a delivery date for the

jobs is negotiated, whereby the cost of extending this date by one unit is in­

dependent of the number of machines that will turn out to be needed later on.

In analogy to the two-stage scheduling heuristic given at the end of Sec­

tion 2.1, one can consider the following two-stage bin packing heuristic. The

bin capacity is set equal to the value of Y that minimizes the lower bound

11

WLB{Y) = dY+nµ/Y on EW*{Y,~), and the items are packed into bins by the first

fit decreasing rule, i.e., the items are taken in order of nonincreasing

weights and each next item is assigned to the first bin that has enough capa­

city to accommodate it. This heuristic can be shown to have several strong

properties of asymptotic optimality [Stougie 1985].

3.2. Dynamic programming

* The second stage bin packing problem of determining X (Y,w) for given X and

w is NP-hard [Garey & Johnson 1979]. We will again consider the situation in

which the stochastic parameters can assume only k values a
1

, ••• ,~, for a

fixed k, and write w [n
1

, •.• ,nk] to denote the vector in which the value aj

occurs n. times, for j = 1, ••• ,k.
J

The following dynamic programming algorithm is due to [Held, Karp & Sha-

reshian 1963]. Let C(Y,w) be the total amount of capacity needed to pack items

with weights specified by w into bins of capacity Y. It is assumed that C(Y,w)

includes the slack capacity of each bin (which is equal to Y minus the total

weight of the items assigned to that bin) except for the slack capacity of the

last bin. Thus, if c (Y ,w) = XY-r with X E :zi; + and 0 :;:;; r < Y, then an optimal

packing requires X bins and the last bin has a slack capacity of r. Let

~(Y,w,a) be the extra capacity needed when an item with weight a is added to

this packing:

if r ~ a,
~(Y,w,a)

if r < a.

It is not hard to see that

minl<"<k· 0{C(Y,[n1 , .•• ,n._ 1,n.-1,n.+l'"".,nk]) -J- .nj> J J J

+~(Y,[n 1 , ••• ,n. 1 ,n.-1,n.
1

, ••• ,nk],a.)}
J- J J+ J

(n 1 + .•• +nk > 0) ,

C(Y,[0, ••• ,0]) = 0.

We finally have that x* (Y ,w) = r C (Y ,w) /Y l ·
For the two-stage bin packing problem, we make the same assumptions con-

12

cerning the distribution of the stochastic parameters as in Section 2.2 and

apply the same strategy to obtain solutions to both stochastic optimization

models. Since the values a
1

, ..• ,~ are integral, there is no loss of generality

in considering only integral capacities Y. Let a = max{a
1

, ••• ,a.} and note
max .K:

that 1 s Y s n~ax· The

each of the O(nk+la)
max

algorithm requires a fixed number of comparisons for

pairs (Y,w), and hence O(nk+la) time altogether.
max

A more efficient implementation of the algorithm is obtained as follows.

to see that, for any Y and w = Cn1 , ••. ,nk] Let a = t~
1
n.a .. It is not hard

sum LJ= J J

The lower bound is trivial. The upper bound is a performance guarantee of the

following simple heuristic: deal with the items in a fixed order and fill each

of ra /Yl bins successively, thereby splitting an item if necessary; next,
sum

reassign each of the split items to a separate bin, of which no more than

ra /Yl-1 will be needed. Addition of the first stage cost yields
sum

dY + a /Y sum

These lower and upper bound functions are both convex and unimodal in Y. The

* function W (Y,w) therefore attains its minimum for a value of Y that is bounded

by the two values of the argument for which the lower bound is equal to the

minimum of the upper bound. A straightforward calculation shows that the latter

values are
k for all n

l l l
given by {~+(2a d) 2±(a d+(2a d) 2+!) 2)/d. This implies that

sum sum
1

sum
realizations w only O((na /d)2) values of Y have to be considered.

max k+l ~ _l
The overall running time is thereby reduced to O(n 2a d 2).

max
Due to the relation between the two-stage scheduling and bin packing prob-

* lems that was observed above, the Y (X,w) values from Section 2.2 could be used

* to derive the X (Y,w) values needed here and vice versa, as long as the set

{a
1

, .•. ,ak} is the same in both cases. The former recursion has the advantage

of requiring strictly polynomial time; the latter one is pseudopolynomial but

much faster for small values a
1

, .•• ,~.

13

3.3. Computational results

For the typical problem instance given by

d = 1,

n 100,

k = 2, a 1 = 18, a 2 = 14, Pr{~j=a 1 } = Pr{~j=a2 } = ~ (j = 1, ••. ,n),

Figure 3 shows three functions of the first stage decision variable, the ca­

pacity Y:
LB

the lower bound W (Y);

* the expected total cost EW (Y,~) in case of an optimal second stage

decision;

the expected total cost in case of an approximate second stage decision.

An investigation of these and other results leads to the same conclusions con­

cerning running time, quality of lower and upper bounds, and the occurrence

of multiple local minima as in Section 2.3.

l ;r
~~ ,,./'
,/

~i-

§i-

St-

~~

+
I •

\

'' .. ,,

··~

,,,

-··-·····-···•• APPRO>CIMATE SOLUTION

---- OPTIMAL SOLUTION

--- LOWER BOUND

" CAf'ACTTV

//.,///1

Figure 3. Bin packing: the total cost as a function of the bin capacity.

/_/ __ _,.../

.....

.i::.

15

4. MULTIKNAPSACK

4.1. Problem formulation

The two-stage multiknapsack problem that we will consider here can be viewed

as a capital budgeting problem. At the aggregate level, one has to decide on

the sizes x
1

, ..• ,Xm of m budgets that are to be reserved for financing a num­

ber of projects, while knowing the cost c. of reserving one unit of budget i
l.

(i = 1, ••• ,m), the requirement rij of project j out of budget i (i = 1, ..• ,m,

j = 1, •.• ,n), and the probability distribution of the vector~= (~1 , •.• ,~)

of revenues that the projects will yield. It is assumed that all c., r .. and
l. l.J

w. are nonnegative and that the r .. are integral. At the detailed level, after
~J l.J
X = (X

1
, ... ,Xm) has been determined, a realization w E Q of~ becomes known,

and one has to decide on a selection S of the projects that maximizes the

* total revenue Y (X,w) within the budget constraints:

y*(x,w) = max
8

{l }{}:.
8

w. I l·
8

r .. ~ x. (i = 1, .•• ,rn)}.
:=_ , ••• ,n JE J JE l.J l.

The total profit of the budgeting decision X and the optimal selection deci-

* Im * sion is denoted by Z (X,w) = - .
1
c.X.+Y (X,w).

i= l. l.
In the two-stage decision model, the objective is to determine a vector

X* E lRm
+

such that

* * *
EZ (X 'w) = max__Ill {EZ (X,w)}.

~ XE.J.t<.-~- ~

+

In the distribution model, the objective is to determine a function X
0

: Q + lRm
+

such that

* 0 * z (X (w) ,w) = maxXEIR! {Z (X,w) } ' Vw E n.

4.2. The distribution model

The knapsack problem, i.e., the second stage problem with m = 1, is already

NP-hard [Garey & Johnson 1979]. Surprisingly, the distribution model is easily

solved to optimality. For each w E Q, the selection S(w) of profitable projects

is given by S (w) = {j jw.-I~ 1
c.r .. >O}.• The minimum budgets needed to finance

J i= l. l.J
these projects are equal to X~ (w) = l· S()r .. (i = 1, ••• ,m), and the corre-

i JE W l.J

16

sponding total profit is

* o \ \ID z (X (w) ,w) = l jES (w) (wj - li=l ci rij), Vw E Q.

In the situation that each revenue w. can assume only k distinct values, the
o J n

determination of X requires O(mn) computations for each of k realizations w.

4.3. Dynamic programming

The second stage multiknapsack problem is solvable by a classical dynamic pro­

gramming algorithm from [Bellman 1957]. Let F.(X,w) be the maximum revenue if
J

only the first j projects can be selected, for given budgets X = (x
1

, ••• ,Xm)

and revenues w (w
1

, ••• ,wn). An optimal selection is either restricted to the

first j-1 projects or includes project j:

F.((X
1

, ..• ,x),w) = max{F.
1

C<x
1

, •.. ,x),w),
J m J- m

F.
1

((x
1
-r

1
., ... ,X -r .) ,w) + w.} (j = 1, •.• ,n),

J- J ID mJ J

if x
1

= •••

otherwise.

X = O,
m

Since the requirements r .. are integral, also the budgets X. can be assumed
lJ * l

to be integral. Computation of Y (X,w) = F (X,w) requires a single comparison
n

m for each of IT.
1
x. vectors X' ~ X at each of n successive stages, and hence

i= l

O(nIT~
1
x.) time altogether.

i= l

For the two-stage multiknapsack problem, we again consider the situation

in which each revenue w. can assume only k distinct values, for a fixed k. Let
J

H. = l~
1

r .. and note that 0 ~ X. ~ R. (i = 1, •.• ,m). At stage j, only the kj
l J= lJ l l

different realizations of (w
1

, •.. ,w.) need to be distinguished (j = 1, .•• ,n).
~ ~J .

The algorithm therefore has to consider O(kJIT~
1

R.) pairs (X,w) at stage j.
i= l

Summation over all j yields an O(knIT~
1

R.) time bound for the computation of
* i= l *

all Y (X,w) and also for the determination of a budget vector X that is opti-

mal in expectation.

17

4.4. Computational results

The dynamic programming algorithm was coded in PASCAL and run on a CD Cyber

170-750 to solve several instances of the two-stage knapsack problem. We set

m = 1 at the outset and did not attempt to solve proper multiknapsack problems,

for which m ~ 2. We assumed independence of the revenues w. and tried to make
~J

the second stage knapsack problem nontrivial by specifying a high correlation

between the expected revenue Ew. of project j and its budget requirement r
1

.•
~J J

The solution of instances with twelve projects and two possible revenue values

for each of them required about ten seconds.

For the problem instance given by

m 1, c = 1,

n

with the values of r
1

., a
1

., a 2 . (j = 1, .•. ,n) given in Table 1, Figure 4
J J J *

shows the expected total profit EZ ((X
1

) ,~) as a function of the budget size

x
1

. Note that the profit is shown only for integral x
1

; the line segments

that start from the points shown with a slope -c1 and that indicate the profit

for fractional x
1

have been deleted. Even if we restrict our attention to

integral values of x1, the profit function has many local maxima.

j 1 2 3 4 5 6 7 8 9 10 11 12

rlj 5 2 9 13 10 8 4 7 10 6 4 9

alj 7 4 12 17 15 12 5 9 14 9 6 11

a2j 3 1 6 11 8 7 1 4 7 7 2 8

Table 1. Knapsack: numerical data. -----

,....,
ex:>

:::-

!ii'-

~>-

~>-

.
. .

~

.. . .
2 ..

. .

~>-

N>.-

o+-

';'
....,,..~~~~~....,..~~-,±,~~__.,..,.~~~ro,.,.__~~~,.~~~~,.,.__~~~,.~~~~,,._~~,±o~~___, .. ,__~~,±e~~-,,~~~~~,.,._~~~oo~~~.~,~~-00,,.,._~~~12,,._~~,*•~~__.,,.oo,,._~~.~,~~__.,,.oo_

BUDGET SIZE

Figure 4. Knapsack: the total profit as a function of the budget size.

19

REFERENCES

R.E. BELLMAN (1957). Dynamic Programming, Princeton University Press, Prince­

ton, NJ.

C.E. BLAIR, R.G. JEROSLOW (1982). The value function of an integer program.

Math. Programming 23, 237-273.

M.A.H. DEMPSTER, M.L. FISHER, L. JANSEN, B.J. LAGEWEG, J.K. LENSTRA, A.H.G.

RINNOOY KAN (1981). Analytical evaluation of hierarchical planning sys­

tems. Oper. Res. 29, 707-716.

M.A.H. DEMPSTER, M.L. FISHER, L. JANSEN, B.J. LAGEWEG, J.K. LENSTRA, A.H.G.

RINNOOY KAN (1983). Analysis of heuristics for stochastic programming:

results for hierarchical scheduling problems. Math. Oper. Res. 8, 525-537.

J.B.G. FRENK, A.H.G. RINNOOY KAN, L. STOUGIE (1984). A hierarchical scheduling

problem with a well-solvable second stage. Ann. Oper. Res. 1, 43-58.

M.R. GAREY, D.S. JOHNSON (1979). Computers and Intractability: a Guide to the

Theory of NP-Completeness, Freeman, San Francisco.

R.L. GRAHAM, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN (1979). Optimiza­

tion and approximation in deterministic sequencing and scheduling: a

survey. Ann. Discrete Math. 5, 287-326.

M. HELD, R.M. KARP, R. SHARESHIAN (1963). Assembly-line balancing - dynamic

programming with precedence constraints. Oper. Res. 11, 442-459.

J.K. LENSTRA, A.H.G. RINNOOY KAN, L. STOUGIE (1984). A framework for the prob­

abilistic analysis of hierarchical planning systems. Ann. Oper. Res. 1,

23-42.

A. MARCHETTI-SPACCAMELA, A.H.G. RINNOOY KAN, L. STOUGIE (1984). Hierarchical

vehicle routing problems. Networks 14, 571-586.

L. STOUGIE (1985). Design and Analysis of Algorithms for Stochastic Integer

Programming, Ph.D. thesis, Centre for Mathematics and Computer Science,

Amsterdam.

R.J.-B. WETS (1983). Stochastic programming: solution techniques and approxi­

mation schemes. A. BACHEM, M. GROTSCHEL, B. KORTE (eds.). Mathematical

Programming: the State of the Art - Bonn 1982, Springer, Berlin, 566-603.

0 6 ME 11985

