
Some Mathematical Refinements Concerning
Error Minimization in the Genetic Code

Harry Buhrman, Peter T.S. van der Gulik, Steven M. Kelk, Wouter M. Koolen, and Leen Stougie

Abstract—The genetic code is known to have a high level of error robustness and has been shown to be very error robust compared

to randomly selected codes, but to be significantly less error robust than a certain code found by a heuristic algorithm. We formulate

this optimization problem as a Quadratic Assignment Problem and use this to formally verify that the code found by the heuristic

algorithm is the global optimum. We also argue that it is strongly misleading to compare the genetic code only with codes sampled from

the fixed block model, because the real code space is orders of magnitude larger. We thus enlarge the space from which random

codes can be sampled from approximately 2:433� 1018 codes to approximately 5:908� 1045 codes. We do this by leaving the fixed

block model, and using the wobble rules to formulate the characteristics acceptable for a genetic code. By relaxing more constraints,

three larger spaces are also constructed. Using a modified error function, the genetic code is found to be more error robust compared

to a background of randomly generated codes with increasing space size. We point out that these results do not necessarily imply that

the code was optimized during evolution for error minimization, but that other mechanisms could be the reason for this error

robustness.

Index Terms—Genetic code, error robustness, origin of life.

Ç

1 BACKGROUND

THE genetic code is the set of rules according to which
nucleic acid sequences are translated into amino acid

sequences. Although a few small variations on the standard
genetic code are known (especially in mitochondrial
systems), this set of rules is essentially the same for all
organisms. The genetic code is therefore one of the most
fundamental aspects of biochemistry. The pattern of codon
assignments in the genetic code appears to be organized in
some way (Table 1). First, there is codon similarity for codons
encoding the same amino acid. The underlying biochemical
reason [1] is (partly) that tRNA molecules often recognize
more than one codon. A second phenomenon is that similar
amino acids are often specified by similar codons. One way to
quantify amino acid similarity is to use the values of polar
requirement introduced by Woese et al. [2]. According to this
measure, amino acids with a polar side chain like glutamate
and aspartate have a high value (12.5 and 13.0, respectively),
while hydrophobic amino acids like leucine and valine have
a low value (4.9 and 5.6, respectively). An example of similar
codons coding for similar amino acids is asparagine,
specified by codons AAU and AAC with a polar requirement
of 10.0 and lysine, specified by AAA and AAG, with a polar

requirement of 10.1. Although one may suspect that similar
codons code for similar amino acids may also be present in a
random grouping [3], Haig and Hurst [4], [5] showed that
this is not the case. Random codes do not have this property
to the same extent as the standard genetic code.

Haig and Hurst [4] generated by computer a large
number of alternative genetic codes, in which the blocks
coding for amino acids in the standard genetic code, e.g., the
UCU, UCC, UCA, UCG, AGU, AGC block encoding serine,
were kept the same, but their assignment to an amino acid
was randomly redistributed (a procedure generally called
“swapping”). We will refer to this as the fixed block model [6].
Note that the use of the word “block” is different from the
use in studies such as [7], [8]. We use the word “block” as in
[6], [9], and [11]: in the sense of the collection of all codons
specifying the same amino acid or chain termination
(“STOP” in Table 1). We will call the collection of all codons
sharing the same first and second nucleotide “box.” The
space of codes which is created as a result of random code
generation under the fixed block model, denoted as Space 0,
contains exactly 20! (� 2:433� 1018) codes.

As a measure for the quality of a code, the change in polar
requirement caused by one step point mutations in the
codons was proposed. Each codon has nine codons to which
it can mutate in one step: e.g., for the UCU serine codon, these
are UCC, UCA, and UCG (these three remain coding for
serine in the actual code), UUU (coding for phenylalanine, a
2.5 difference in polar requirement), UAU (coding for
tyrosine, a 2.1 difference), UGU (coding for cysteine, a
2.7 difference), CCU (coding for proline, a 0.9 difference),
ACU (coding for threonine, also a 0.9 difference), and GCU
(coding for alanine, a 0.5 difference). The quality of the code is
then measured by averaging over all squared differences:
MS0. In this calculation, Haig and Hurst [4] ignored the three
“stop codons” which are coding for chain termination. In this

1358 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2011

. H. Buhrman, P.T.S. van der Gulik, S.M. Kelk, and W.M. Koolen are with
the Centrum voor Wiskunde en Informatica (CWI), PO Box 94079, NL-
1090 GB Amsterdam, The Netherlands.
E-mail: {harry.buhrman, Peter.van.der.Gulik, wmkoolen, s.m.kelk}@cwi.nl.

. L. Stougie is with the Centrum voor Wiskunde en Informatica (CWI), PO
Box 94079, NL-1090 GB Amsterdam, The Netherlands, and the Division of
Econometrics and Operations Research, Department of Economics and
Business Administration, Vrije Universiteit, De Boelelaan 1105, HV 1081,
Amsterdam, The Netherlands.
E-mail: leen.stougie@cwi.nl, lstougie@feweb.vu.nl.

Manuscript received 10 Sept. 2009; revised 2 July 2010; accepted 27 Sept.
2010; published online 24 Feb. 2011.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBB-2009-09-0154.
Digital Object Identifier no. 10.1109/TCBB.2011.40.

1545-5963/11/$26.00 � 2011 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301632678?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

way, 263 connections between adjacent codons contribute
equally to MS0.

To facilitate the mathematical formulation of MS0, we
introduce an undirected graph G ¼ ðV ;EÞ that has the
61 codons as its vertices and an edge between any two
codons if they differ in only one position, yielding 263 edges.
Let GS ¼ ðV S; ESÞ be the graph obtained by adding the
three stop codons to V , yielding 288 edges. A code F maps
each codon c to exactly one amino acid F ðcÞ. We denote by
rðF ðcÞÞ the polar requirement of the amino acid that codon c
encodes for w.r.t. code F . The error function of code F is
then given by

MS0ðF Þ ¼
1

263

X
fc;c0g2E

rðF ðcÞÞ � rðF ðc0ÞÞð Þ2:

Using MS0 as a quality measure of a genetic code, Haig
and Hurst found that only one out of 10,000 random codes
performs better, i.e., has a lower MS0, than the standard
genetic code [5]. This shows that in the standard genetic
code, not only identical amino acids are encoded by similar
codons, but also similar amino acids are encoded by similar
codons. Originally, Haig and Hurst [4], [5] investigated
three other characteristics beside polar requirement (like,
e.g., the isoelectric point), but the correspondence between
codon assignments and error robustness with respect to
polar requirement was most striking. It may be interesting
to find other measures which perform equally well, or
better. However, the measure has to be independent from
the genetic code (this point has been made in connection
with the use of values derived from replacement mutations
known from sequence data). We have to be careful not to
artificially create a measure that is based on the genetic code
itself. To keep results comparable to the work of Haig and
Hurst, use of polar requirement is preferable.

The work of Haig and Hurst was soon followed by the
work of Goldman [6], who found a code using a heuristic

method that has a lower MS0 value than any of the codes
generated before. In Section 2.1, we verify that Goldman’s
code is in fact the global optimum in the fixed block model.

Freeland and Hurst [9] presented four histograms to
visualize the particular error robustness, in the sense of Haig
and Hurst [4], of the standard genetic code. They reported
that with respect to the MS0 value, 114 codes out of the
1,000,000 random codes had a lower value than the standard
genetic code. They also reported similar results with respect
to the MS measure restricted to point mutations in the first,
second, and third codon, respectively, denoted by MS1,
MS2, and MS3. To define them, we partition the edge set E
in the graph representation G ¼ ðV ;EÞ of the adjacency
structure of codons, depending on the position in which two
adjacent codons differ: E1 is the set of edges between two
codons that differ only in the first position, E2 the set of
edges between two codons that differ only in the second
position, and E3 the set of edges between two codons that
differ only in the third position. Clearly, these sets are
disjoint and E ¼ E1 [E2 [E3. Then, for p ¼ 1; 2; 3,

MSpðF Þ ¼
1

jEpj
X

fc;c0g2Ep
rðF ðcÞÞ � rðF ðc0ÞÞð Þ2;

where jXj denotes the cardinality of X, i.e., the number of
elements in X. In fact, jE1j ¼ 87, jE2j ¼ 88, and jE3j ¼ 88.
The results of Freeland and Hurst show that there is not
much error robustness for mutations in the middle position
of the codon; the third position, however, is extremely
robust against changes in polar requirement.

Subsequent research following this approach has con-
centrated on nuancing the error function [9], [10], [11], [12],
[13], or taking a parameter different from polar requirement
as an amino acid characteristic [10], [11], [12], [13]. The
common theme in most of these approaches is the code
space from which random alternative codes are generated;
in [11], this space is referred to as “possible code space” and
we denote this space as Space 0. Remarkably, known
genetic code variations lie outside Space 0. In code
variations, certain individual codons are reallocated from
one block to another. The fixed block structure of the
standard genetic code is thereby replaced by an alternative,
slightly different, fixed block structure. In Section 2.3, we
construct four progressively larger code spaces (denoted
Space 1, Space 2, Space 3, and Space 4), which encompass
successively more known genetic code variations next to the
standard genetic code. To be able to compare the genetic
code with respect to alternative codes sampled randomly
from Spaces 1 and 2, we nuance the MS measure such as to
accommodate values of polar requirement for stop codons.
In this paper, we aim at refining several points in the
seminal work by Haig and Hurst [4], [5], Goldman [6], and
Freeland and Hurst [9]. Apart from determining the global
minimum, the refinements concern the code space structure
and the kind of conclusions assumed to be possible to draw
based on the research. We do not intend to change the
characteristic taken to represent the amino acid (which is
polar requirement in the work of Haig and Hurst [4], [5]
and Goldman [6]) or to weigh the three positions of the
codons differently in the error function (as is done in the
second part of [9] and most subsequent work). We only

BUHRMAN ET AL.: SOME MATHEMATICAL REFINEMENTS CONCERNING ERROR MINIMIZATION IN THE GENETIC CODE 1359

TABLE 1
The Standard Genetic Code

Assignment of the 64 possible codons to amino acids or stop signals,
with polar requirement of the amino acids indicated in brackets.

intend to enlarge the space from which random codes are
sampled, and find out how they relate to [9].

2 RESULTS

2.1 Goldman’s Best Solution Is the Global Minimum

Goldman [6] applied a heuristic algorithm for finding the
best code under the fixed block model. The best solution
he found had an MS0 value of 3.489, which was well below
the value of 5.194 reported by Haig and Hurst [4], [5] for the
standard genetic code. A heuristic does not guarantee that
the code found is optimal. We designed an exact method for
finding the optimal code by formulating the minimization
problem as a Quadratic Assignment Problem (QAP) [14]
and solved it using the exact QAP-solver QAPBB [15]. An
intuitive formulation of QAP is as follows: we are given two
sets of objects V1 and V2 of equal size. We are to match each
object from V1 to exactly one object from V2 such that all
objects of V2 are matched as well; as a result, we get a
perfect matching (pairing) of the objects of V1 and V2. In the
ordinary (linear) assignment problem, there is a cost for
assigning object i from V1 to object k from V2 and we wish to
find the assignment that minimizes total cost. In QAP, the
cost is dependent on pairs of assignments: there is a cost for
assigning object i from V1 to object k from V2 and object j
from V1 to object ‘ from V2. Again, we wish to minimize the
total assignment cost.

If we consider the set of objects V1 to be the 20 blocks in
Table 1, and the set of objects V2 to be the 20 amino acids,
then we can model the minimization of MS0 by letting the
cost of assigning one amino acid to one block and another
amino acid to another block be given by the difference of
their polar requirements times the number of point
mutations between the two blocks. In Section 5.1, we define
this problem formally as a 0-1 integer program with
quadratic objective and linear constraints.

QAP is an NP-hard problem, meaning that it is probably
hard to solve [16]. However, small instances of QAP can be
solved effectively using an exhaustive enumeration techni-
que known as branch and bound [17]. This searches
(implicitly) through the entire space of solutions, keeping
note of the best solution found so far, and ignoring parts of
the solution space that could not possibly lead to a better
solution. Even with branch and bound, it is in general not
feasible to use the QAP model for finding a code with
minimum MS0 value in any reasonable time when we leave
the fixed block model. However, we could find the global
minimum MS0 value in Space 0. We found the same
solution as Goldman, certifying that his solution was in fact
the optimal one.

2.2 Incorporating Stop Codons

Leaving the fixed block model required us to nuance the MS
measure and attach a value of polar requirement to the stop
signal. Chain termination is produced by Release Factors
(RFs), which are proteins, and therefore most probably later
elements of the coding system than tRNAs. This is an
argument which can also be found in, e.g., [13] (“. . . I do not
want to assume that there were stop codons in the current
positions from the beginning, because it is more likely that
stop codons were a late addition to the code, after the main

layout of most of the codons was already established”).
Genetic codes lacking stop codons are not impossible. During
the evolutionary development of the genetic code, mRNAs
could have been short, and the last sense codon of a message
could have been the end of the mRNA. After attaching the
last amino acid of the polypeptide, the primordial ribosome
could move further along the mRNA, and both the polypep-
tide and the mRNA could lose the association with the
ribosome, as the tape leaving the tape recorder in the classical
analogy. The more sophisticated mechanism with Release
Factors could have evolved later, to make things run more
smoothly. When this is the scenario of evolution of chain
termination we follow, we want the stop codons to have the
smallest influence on our calculations possible.

How to assign values to stop codons? There are at least four
possible ways to deal with the stop codons. In the work
described in Section 1, the stop codons were ignored and no
value was assigned to them. A second way to deal with stop
codons is to assign a fixed value to a stop codon. A third
way would be to assign a fixed value to the mutation to a
stop codon, which would be the same for all amino acids.
The last way to deal with the problem would be to mimic
the natural process of suppression.

2.2.1 Assigning No Value to Stop Codons

Ignoring stop codons in the calculation as has been done
until now [4], [6], [9] is not the way in which their influence
is the smallest possible. This is because they eliminate a lot
of the edges from GS . For the UCA serine codon, in the
previous treatment, only the edges to UCU, UCC, UCG,
UUA, CCA, ACA, and GCA take part in the calculation. The
edges to UAA and UGA are ignored, which means in fact
that they behave toward serine as if those codons were
encoding serine. Due to this effect, the four alanine codons
have a stronger influence on the calculation than the four
glycine codons. Thus, ignoring stop codons artificially
favors certain amino acids. This effect will even become
more pronounced when we enlarge the space of possible
codes. For example, if we allow codes to have as many as
four stop codons (like our mitochondrial code), or to have
stop codons in unusual places (like the UUA and UUG stop
codons of the mitochondria of Pycnococcus provasolii [18]).

2.2.2 Assigning a Fixed Value to a Node (i.e., Give the

Stop Codon a Fixed Value)

If we were to reason that a mutation to a stop codon would
lead to truncation of messages, we might be inclined to
attach a very large value to a stop codon (because truncated
proteins would be nonfunctional and the mutation therefore
lethal). To model “lethal,” we could use the value “infinity.”
This makes our calculation useless. We could also attach a
polar requirement of 1,000,000 to a stop codon. In this case,
the stop codons are going to dominate the calculation and
this is exactly what we didn’t want to begin with.

2.2.3 Assigning a Fixed Value to an Edge (i.e., Give the

Mutation to a Stop Codon a Fixed Value)

There is another way to model the concept that a mutation
to a stop codon is worse than a mutation to a sense codon.
One could assign a fixed penalty to a mutation to “stop,” no
matter which amino acid is mutated to stop. One relatively
large value which could be given as a penalty is the
difference in polar requirement between the two most

1360 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2011

dissimilar amino acids. The disadvantage of this approach
is again the domination of the calculation by the stop
mutations. Although less dominating than the very high
fixed values suggested for the stop nodes, this approach still
has the stop codons dominating the calculation, and
possibly obscuring the phenomenon we want to see.

2.2.4 The Suppression Approach

What would happen if there is an mRNA with a codon
which does not have a tRNA? In such a case, one possibility
is that decoding is performed by the tRNA which, among
the tRNA repertoire present in the system in consideration,
is the most similar to the one which would be needed to
decode the codon regularly. This phenomenon is called
“suppression” in molecular biology [19]. In the living cell,
the cognate tRNA or RF competes with several different
potential suppressor tRNAs for decoding a codon [20]. By
using in the calculation the value which would be there in
case of the most probable suppression, a value is attached to
a stop codon which results in a relatively small influence of
the stop codons in the calculation. The most probable
suppression for a stop codon ending on A, is by the tRNA
which recognizes the sense codon ending on G from the
same box. This is reflected by genetic code variants:
apparently suppressing tRNAs often evolve toward full
recognition. We can illustrate this with the UGA codon,
which can be found in the top right-hand corner of Table 1.
Because the most probable suppression for UGA is by the
tRNA which normally reads UGG as tryptophan, genetic
code variants in which both UGA and UGG encode
tryptophan evolved multiple times. Although there exists
an organism in which UGA is encoding cysteine, the more
frequent reassignment for UGA is to tryptophan. The same
phenomenon is found for AUA, which can be found toward
the bottom left-hand side of Table 1. AUA has been
reassigned several times to methionine. Suppression of
AUA codons in protein-coding sequences by the tRNA
which is normally reading the AUG codons has apparently
been followed by the evolution of full recognition of the
AUA codon by this tRNA. Assigning to a stop codon
ending on a purine (A or G) the value of polar requirement
of the amino acid specified by the other purine-ending
codon in the box is therefore a possible way to deal with
stop codons. This obviously cannot be done when both
purine-ending codons in a box are stop codons. Genetic
code variants suggest an approach also in this case. In
bilaterian mitochondria, the tRNA which decodes AGA and
AGG (recall Table 1, the AGA and AGG codons can be
found toward the bottom right-hand side) as arginine in the
standard code is not present. The tRNA which decodes
AGU and AGC as serine usually takes over the function of
decoding AGA and AGG by reading them as serine [8]. This
suggests the approach: if in one box both purine-ending
codons are stop codons, the value of polar requirement of
the amino acid specified by the codons ending on a
pyrimidine (U or C) in that box can be assigned to them.
This is always a single amino acid because the two
pyrimidine-ending codons in the same box always code
for the same amino acid. Until now, no genetic code
variants are discovered with pyrimidine-ending stop
codons, so our approach is to develop only a way to deal
with stop codons ending on purines.

How to modify the MS measure? By treating the stop
codons as sense codons according to the suppression
approach, we simplified the MS measure. In the notation
introduced before,

MSS0 ðF Þ ¼
1

jESj
X

fc;c0g2ES

rðF ðcÞÞ � rðF ðc0ÞÞð Þ2;

and similarly w.r.t. the three positions p ¼ 1; 2; 3 of the
codons

MSSp ðF Þ ¼
1

jES
p j

X
fc;c0g2ES

p

rðF ðcÞÞ � rðF ðc0ÞÞð Þ2:

In this way, all 64 codons contribute equally to the error
measure. Note that jESj ¼ 288 and that jES

1 j ¼ jES
2 j ¼

jES
3 j ¼ 96. It should be realized that by using MSS0 or

MSSp , we do not necessarily start working in a space larger
than Space 0. We can use MSS0 and MSSp when we generate
random codes from Space 1 or Space 2 (see Section 2.3) but
we can also use MSS0 and MSSp when we generate random
codes from Space 0.

We investigate how the new measure reflects the nature
of Space 0 when used as a background to study the standard
genetic code (Table 1). We produce four plots as in [9]. The
plots (Fig. 1) have the same general shape as the four plots in
[9]. In particular, the prominent shoulder at the left side is
present in both the MSS3 (Fig. 1d) and the MS3 [9] frequency
distributions. The spikes present in the plots in [9] are not
present. They are an artifact of rounding errors in both the
data and the bin borders of the histograms. The combination
of MS values rounded to two digits after the decimal point
and bin border values which are repetitive binary fractions
rounded by the histogram software, are probably the source
of the spikes in [9].

The global minimum code in Space 0 for the MSS0
measure was also found using the quadratic assignment
approach described in Section 2.1. We calculated the
average of both MS0 and MSS0 of 1,000,000 randomly
generated codes as well as the global minimum in Space 0
with respect to both measures (Table 2). Clearly, both
measures give similar results. We also studied the propor-
tions of random codes better than the standard genetic code
with the MSS0 measure. Out of 1,000,000 random codes,
156 codes had a lower MSS0 -value than the standard genetic
code, resulting in a proportion PS

0 of 0.000156. This was also
investigated for p ¼ 1; 2, and 3 (Table 3). Again, the MS and
MSS measures give similar results (as can be detected also
from the plots of Fig. 1).

We conclude that it is acceptable to replaceMS byMSS to
study the character of the standard genetic code compared to
randomly generated ones. MSS gives the same results in all
essential aspects, and can be used to investigate larger spaces
and spaces with different codons used as chain termination
signal.

2.3 Enlarging the “Possible Code Space”

Space 0 has a fixed block structure. It is possible to leave this
fixed block structure and generate randomly genetic codes,
without relaxing all biochemical constraints. In this section,
we develop a method to enlarge the space from which

BUHRMAN ET AL.: SOME MATHEMATICAL REFINEMENTS CONCERNING ERROR MINIMIZATION IN THE GENETIC CODE 1361

codes are sampled randomly, by specification of allowed
subdivision of boxes.

Space 0 (“possible code space”) does not even cover all
existing genetic codes: the only existing genetic code
present in Space 0 is the standard genetic code. By studying
code variants, general rules with respect to the possible
ways to construct a genetic code can be found. Using these
rules, we enlarge the code space progressively. Genetic code
variants are derived from the standard genetic code, as can

be concluded by studying the codon assignments of close

relatives. For mitochondrial code variants, this is recently

described in [8]. The number of code variants apart from

mitochondria is very small and it is nowadays believed that

they all are derived from the standard code (although this

was less clear when the very first variants were discovered).

Although these variants probably emerged after the

standard genetic code, we use the larger spaces because

1362 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2011

Fig. 1. Histograms for the MS values obtained from codes randomly sampled from Space 0. MS value of the standard genetic code indicated by the

blue bar. 106 samples. The MS measure was slightly modified in comparison to earlier work. The modification does not change the basic

characteristics found there. (a) MSS0 . (b) MSS1 . (c) MSS2 . (d) MSS3 .

TABLE 2
Comparison of MS0 and MSS0

Values were calculated for 106 randomly sampled codes from Space 0.
The averages and variance are shown; MS0 is taken from [9].

TABLE 3
Comparison of Proportions of “Better Codes” for MS and MSS

they contain possible ways for constructing genetic codes
with the system found in living organisms on Earth.

In the standard genetic code, the box in the top left-hand
corner (see Table 1) shows one of several ways in which a
box can be subdivided according to the codon-anticodon
pairing patterns allowed by the simple wobble rules [1],
[21]. The codons UUU and UUC are assigned to one amino
acid, and the codons UUA and UUG to another. Recogni-
tion of both pyrimidine-ending codons by one tRNA
molecule is the wobbling behavior of G in the first position
of the anticodon as proposed by Crick [1]. Modification of U
(in the first position of the anticodon) to thio-U restricts the
wobbling behavior of the tRNA molecule to recognition of
both purine-ending codons [22], [23]. A second pattern of
subdivision is presented by a box toward the bottom left-
hand side of Table 1. In this box AUU, AUC, and AUA are
assigned to one amino acid and AUG is assigned to another.
The existence is known of tRNA molecules which recognize
all three codons in the top of a box [24]. Recognition of the
G-ending codon only, is the wobbling behavior of C in the
first position of the anticodon as proposed by Crick [1].
Therefore, this pattern of subdivision of a box can be
understood by the pairing characteristics of tRNA mole-
cules. In eight boxes of Table 1, all four codons are assigned
to one amino acid, as in the box in the bottom right-hand
corner: GGU, GGC, GGA, and GGG are assigned to the
same amino acid. Recognition of all four codons of a box
seems to be the wobbling behavior of a tRNA molecule with
unmodified U in the first anticodon position: “An unusual
situation exists in (at least) mammalian mitochondria,
however, in which there are only 22 different tRNAs.
How does this limited set of tRNAs accomodate all codons?
The critical feature lies in a simplification of codon-
anticodon pairing, in which one tRNA recognizes all four
members of a codon family. [. . .] In all eight codon families,
the sequence of the tRNA contains an unmodified U at the
first position of the anticodon.” [25]. Takai [22] provides
more information on these tRNAs which recognize all four
members of a box: “. . . many tRNAs with U(34) from
mitochondria and mycoplasmas recognize all of the four
different codons with the first two bases in common
without discriminating the third bases [26], [27], [28], [29],
[30]. This type of codon reading was first considered to be
dependent on the “two-out-of-three mechanism,” by which
the N(III) bases were ignored when the interaction of the
first two positions of the codon with the last two positions
of the anticodon is strong enough to support codon
recognition by itself [31], [32]. However, significant level
of discrimination was later observed even in such ambig-
uous codon reading [33].” In summary, the wobbling
behavior of tRNA molecules with unmodified anticodons
allows subdivision of boxes with only sense codons in three
ways: no subdivision, division in a pyrimidine-ending pair
and a purine-ending pair, and division in a set of three
codons in the top of a box, and a single codon at the bottom.
Although extensive modifications of anticodons in con-
temporary organisms can lead to much more complex
patterns of wobbling behavior [34], [35], [22], [24], for the
purpose of enlarging Space 0, we do not take these aspects
of the wobble phenomenon in account. These modifications
are produced by proteins, and therefore were probably not
present during the development of the coding system. To
allow the modifications of U to thio-U (enabling the

exclusive recognition of purine-ending codons) and A to I
(enabling the recognition of three codons by one tRNA
molecule) is already pushing the limit concerning capacities
credibly attributable to a very early living system.

Further subdivisions of boxes are possible when stop
codons are added to the possibilities in a box. Because stop
codons ending on pyrimidines are not discovered yet, we
restrict the possibilities to purine-ending stop codons only.
This adds four further ways to subdivide a box. The upper
two codons assigned to an amino acid, and the lower two
codons being stop codons is the first. The upper three
codons assigned to one amino acid, and the bottom codon
being a stop codon is the second. The upper two codons
assigned to one amino acid, the third codon being a stop
codon, and the last codon assigned to an amino acid, but
different from the amino acid assigned to the upper two
codons, is the third possibility. The last possibility again has
the third codon being a stop codon, but the three remaining
codons are assigned to the same amino acid in this case.
Taken together with the three possibilities for subdivision
with only sense codons presented in the previous para-
graph, we arrive at seven possible ways to subdivide a box
according to the simple wobbling behavior without
extensive anticodon modification. This is summarized in
Table 4. We generate block structures uniformly at random
according to the rules described in Table 4, the block
structures consist of 21 blocks.

In our first extension, the “stop block” consists of three
stop codons, as in the standard genetic code. However, their
location is free, under the condition that they do not end in
U or C. The number of codons allocated to any amino acid
is free, as long as each amino acid is encoded by at least one
codon. In this way, we obtain a first enlarged space, Space 1,
that is more realistic than Space 0. Space 1 is, with
approximately 5:908� 1045 possible codes, much larger
than Space 0 (with approximately 2:433� 1018 codes).

To include most existing genetic code variations, which
differ in the number of stop codons, we enlarged Space 1 to
Space 2, by allowing the codes to have 0�4 stop codons.

For completeness, we also define two more spaces but
we will not use them in our calculations. In some bacteria,
some codons are not used: neither tRNAs nor release factors
to recognize them (without suppression) are present. To
include these code variations too, we in addition add a new
block “unassigned” to our block structure, allowing the
number of unassigned codons to range between 0 and 40
(Space 3). Every codon is allowed to be unassigned, with the
restriction that codons ending on U or C are either both
assigned or both unassigned. Space 3 contains all existing
natural genetic code variations.

Finally (Space 4), we also include codes with fewer or
more than 20 amino acids. In many speculations on the origin
of the genetic code, codes with less than 20 amino acids play a
role; Jukes suggested such an evolutionary pathway already
in 1966 [36]. With the extreme of just one codon in use, the
number of unassigned codons ranges from 0 to 63. The size of
Space 4 is approximately 1:120� 1050 codes. The sizes of
Spaces 0-4 are presented in Table 5. In Section 5.2, we explain
the methods behind sampling and counting. The presence of
unassigned codons in Spaces 3 and 4 causes the function
MSS to be ill defined. Therefore, we could not investigate the
nature of these spaces, as we will do for Spaces 1 and 2.

BUHRMAN ET AL.: SOME MATHEMATICAL REFINEMENTS CONCERNING ERROR MINIMIZATION IN THE GENETIC CODE 1363

Fig. 2 shows four plots (as in Fig. 1) of MSS-values, but of
codes sampled from Space 1 rather than Space 0. We notice
the great similarity with the plots in Fig. 1. Despite the fact
that Space 1 is about 2� 1027 times larger than Space 0, the
mean MSS0 -value is still about 10. The frequency distribu-
tions have the same general nature, and the position of the
frequency distribution relative to that of the standard
genetic code has not changed. We also notice that the
prominent shoulder at the left side of the MSS3 frequency
distribution in Fig. 1 has disappeared. We conjecture that the
particular block structure of the standard genetic code is
responsible for this shoulder.

Fig. 3 shows the same four plots for Space 2. It is hard to
find differences with Fig. 2. The genetic code seems a bit more
special against the background with progressively larger

spaces: the number of “better codes” found with a million

randomly generated codes decreased from 156 in Space 0, via
7 in Space 1, to just a single one (Table 6) in Space 2.

3 DISCUSSION

We now compare five published possible scenarios con-

cerning the evolution of the genetic code and show that they

are not inconsistent with low MS values.

3.1 Evolution of the Genetic Code by Selection for
Error Minimization

The concept that the codon assignments are a feature of living
organisms which protects them against damage to the genetic

information and which is, as such, specifically selected for by

1364 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2011

TABLE 5
Sizes and Characteristics of the Five Progressively Larger Spaces

Number of codes present in Spaces 0-4. The block structure of Spaces 1-4 is free, except for the constraints imposed by adherence to the Wobble
Rules, and the specifications listed under “Characteristics of codes.”

TABLE 4
Possible Types of Boxes

A = amino acid. B = amino acid, different from a. S = stop.

natural selection, was first published by Sonneborn [37].
Woese [38] elaborated on this concept by pointing out that it is
much more probable that translation errors instead of
mutations in the genome were the errors against which the
system in which the genetic code was developed had to be
protected. The concept and first experiment of producing
computer-generated random codes to compare with the
genetic code was published by Alff-Steinberger [39]. This
author points out that the differences found depending on the
codon position suggest translation errors rather than muta-
tions as responsible for determining (in part!) the structure of
the code. Haig and Hurst [4] developed the MS measure and
were able to generate much more random codes than Alff-
Steinberger. They again found differences depending on
codon position, but left the possibility open, that “. . . the code
acquired its major features before the evolution of proteins”
[4], implying that selection for protection against errors in
protein-coding messages maybe played no role in the
evolution of the genetic code. Freeland and Hurst [9]

elaborated on the work of Haig and Hurst, and presented

the code as “one in a million:” “We thus conclude not only

that the natural genetic code is extremely efficient at

minimizing the effects of errors, but also that its structure

reflects biases in these errors, as might be expected were

the code the product of selection” [9]. The extreme version of

the “Error Minimization Hypothesis” would be that all

possible codes were tested by natural selection, and the

standard genetic code was the best. With a measure which

would be a good model for the errors against which the

genetic code was optimized, the standard genetic code would

then be found to be the global minimum code. There probably

are no scientists who adhere to such an extreme variant of the

“Error Minimization Hypothesis.” It is, however, tempting to

see the lowMS0 value as an indication that specific selection

for error minimization was a major determinant of the codon

assignments in the standard genetic code (e.g., [40]).

BUHRMAN ET AL.: SOME MATHEMATICAL REFINEMENTS CONCERNING ERROR MINIMIZATION IN THE GENETIC CODE 1365

Fig. 2. Histograms for the MS values obtained from codes randomly sampled from Space 1. MS value of the standard genetic code indicated by the

blue bar. 106 samples. The modified MS measure was used to calculate an MS value because the random redistribution of the three stop codons

made the use of the MS measure from earlier work impossible. The distribution of randomly generated codes is more regular with respect to changes

in the third codon position compared with that distribution resulting from codes sampled from Space 0 (shown in Fig. 1). (a) MSS0 . (b) MSS1 . (c) MSS2 .

(d) MSS3 .

3.2 The Sequential “2-1-3” Model of Genetic Code
Evolution

Fig. 3 shows that the main result of Freeland and Hurst [9]
remains valid when Space 0 is enlarged to Space 1, and
subsequently to Space 2: the MS value of the standard genetic
code is better than the MS value of the average code when
point mutations in the second position are considered; it is
much better when point mutations in the first position are
considered; and it is so much better when point mutations in
the third position are considered that better codes in this
respect are not visible in the graphs. This could point to the
chronological order in which the codon positions acquired
coding information. Massey [41], [42], [43] published a series
of papers in which the sequential acquisition of coding
information by the second, then the first, and finally the third
codon position is the major determinant of the codon
assignments in the standard genetic code. According to this
“2-1-3” model, the genetic code started with full degeneracy

in the side positions. The amino acid repertoire would
originally have been limited to four amino acids, and coding
information was carried by the middle position. Subse-
quently, the amino acid repertoire was expanded by assign-
ing coding information to the first position. Because the code
expansion would be “. . . facilitated by duplication of the
genes encoding adaptor molecules and charging enzymes”
[42], amino acids of similar properties would be assigned to
codons with the same middle nucleotide. Selection on error
minimization plays a limited role in the “2-1-3” model in so
far that code expansion via duplication of adaptor molecules
followed by mutation of the middle position of the anticodon
is selected against. Hence, “. . . amino acids of similar
properties were selectively assigned to codons separated
from one another by a single potential mutation” [41].
Finally, a further expansion was possible by assigning coding
information to the third codon position. A consideration of
the structure of the tRNA anticodon leads Massey to

1366 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2011

Fig. 3. Histograms for the MS values obtained from codes randomly sampled from Space 2. MS value of the standard genetic code indicated by the

blue bar. 106 samples. The modified MS measure was used to calculate an MS value because random redistribution of 0�4 stop codons made the

use of the MS measure from earlier work impossible. The behavior of the distributions is virtually the same as that sampled from Space 1 and shown

in the previous figure. (a) MSS0 . (b) MSS1 . (c) MSS2 . (d) MSS3 .

conclude that the third codon position is intrinsically the
most error prone. Therefore, it is logical that distinguishing
codons unambiguously on the third position is only possible
when protein biochemistry has already progressed beyond
the initial stages. Massey states that his analyses “. . .
demonstrate that a substantial proportion of error minimiza-
tion is likely to have arisen neutrally, simply as a conse-
quence of code expansion, facilitated by duplication of the
genes encoding adaptor molecules and charging enzymes.
This implies that selection is at best only partly responsible
for the property of error minimization” [42]. The concept of a
genetic code in which coding information was carried by the
middle position only, has been around since the 1960s (e.g.,
with Crick: “for example, only the middle base of a triplet
may have been recognized, a U in that position standing for
any of a number of hydrophobic amino acids, an A for an
acidic one, etc.” [3]). The “2-1-3” model, however, goes
further than that: it presents the chronological order in which
the codon positions acquired coding information as the major
determinant of the error minimization present in the code.
The low MS0 value is not incompatible with the “2-1-3”
model; to the contrary, the “2-1-3” model is based on the low
MS0 value.

3.3 The Frozen Accident Theory

A third scenario is the Frozen Accident Theory of Crick [3]. In
this scenario, “. . . the actual allocation of amino acid to
codons is mainly accidental and yet related amino acids
would be expected to have related codons” [3]. This is because
there “. . . are several reasons why one might expect [. . .] a
substitution of one amino acid for another to take place
between structurally similar amino acids. First, [. . .] such a
resemblance would diminish the bad effects of the initial
substitution. Second, the new tRNA would probably start as a
gene duplication of the existing tRNA for those codons.
Moreover, the new activating enzyme might well be a
modification of the existing activating enzyme. This again
might be easier if the amino acids were related. Thus, the net
effect of a whole series of such changes would be that similar

amino acids would tend to have similar codons, which is just what
we observe in the present code” [3]. Please note that in text
preceding this fragment, the possibility has been raised that
“. . . the primitive tRNA was its own activating enzyme” [3],
which is a description of a ribozyme avant la lettre. At a certain
moment, the system would reach a stage in which “. . . more
and more proteins would be coded and their design would
become more sophisticated until eventually one would reach
a point where no new amino acid could be introduced
without disrupting too many proteins. At this stage, the code
would be frozen” [3]. Please note that on the very first page of
the paper, the possibility is mentioned that the genetic code is
not exactly identical for all organisms, although for widely
different organisms it had been found to be very similar.
Therefore, the word “frozen” was probably from the start
meant to be interpreted with a small degree of flexibility. The
concept “relatedness” of amino acids is not rigorously
defined in the paper, but Crick presents three examples of
what he considers to be groups of related amino acids. “All
codons with U in the second place code for hydrophobic
amino acids.” The polar requirements of this specific group of
hydrophobic amino acids are 5.0, 4.9, again 4.9, 5.3, and 5.6. A
second group of “related” amino acids is described in: “The
basic and acidic amino acids are all grouped near together
toward the bottom right-hand side . . . ” The polar require-
ments of this group of charged (and thus hydrophilic) amino
acids are 10.1, 9.1, 13.0, and 12.5. The third example is the
group of aromatic amino acids: “Phenylalanine, tyrosine, and
tryptophan all have codons starting with U.” The polar
requirements of these are 5.0, 5.4, and 5.2. Because “related”
amino acids according to Crick tend to share a similar polar
requirement, the low MS0 value is not incompatible with
the “Frozen Accident Theory.” A clear difference between the
“2-1-3” model and the “Frozen Accident Theory” is the
presence of pairs of “related” amino acids with a second
position difference in the latter: e.g., lysine-arginine, and
phenylalanine-tyrosine. In this respect, it is relevant to
observe that the MS value of the genetic code is lower than
the MS value of the average code when point mutations in the

BUHRMAN ET AL.: SOME MATHEMATICAL REFINEMENTS CONCERNING ERROR MINIMIZATION IN THE GENETIC CODE 1367

TABLE 6
Basic Descriptive Statistics of Space 0, Space 1, and Space 2

From each space, 106 codes were randomly sampled.

second position are considered. Both the “2-1-3” model and

the “Frozen Accident Theory” are scenarios in which the

genetic code is basically a piece of historical information.

Differences between these two scenarios are a lack of

emphasis on sequential acquisition of coding information

for the different codon positions in Crick’s scenario; and a

“refusal” by Crick to have a role for specific selection for error
minimization in the scenario: “There is no reason to believe,

however, that the present code is the best possible, and it

could have easily reached its present form by a sequence of

happy accidents. In other words, it may not be the result of

trying all possible codes and selecting the best. Instead, it may

be frozen at a local minimum which it has reached by a rather

random path” [3].

3.4 The Stereochemical Theory

A fourth scenario is what Crick named “The Stereochemical

Theory” [3]. According to this scenario, there is a physico-

chemical relationship between certain nucleic acid triplets

and certain amino acids. The first such proposal was

published by Gamow [44]. Woese spent a lot of effort

collecting evidence for the support of the Stereochemical

Theory [45], [38], [46], [2], [47]. Orgel described this scenario

as follows: “The simplest theory suggests that the role of

tRNA’s was originally filled by a set of much shorter

polynucleotides, perhaps the anticodon trinucleotides them-

selves. In this form, the theory postulates that trinucleotides

have a selective affinity for the amino acid coded by their

complementary trinucleotide. Of course, the selectivity must

have been limited in the first place, but it is argued that it

might have been sufficient to produce primitive activating

enzymes in the presence of a suitable messenger RNA. Then,

the system could have perfected itself by the “bootstrap”

principle, [. . .]. If this type of theory is correct, the code is

not arbitrary; if life were to start again, certain features of the

code would be reproduced because the physical interactions

on which it is based are unchanging” [48]. Exactly these kind

of unchanging physical interactions are found in a number

of recently published experiments ([49], [50], [51], and

references therein). Anticodons like GAA, GUA, GUG, and

CCA are part of RNA molecules which bind, respectively,

phenylalanine, tyrosine, histidine, and tryptophan. Again,

phenylalanine and tyrosine form a group of amino acids

coded by codons with U in the first position (contributing to

a low MS0 value), but in this scenario, the formation of the

group is due to a straightforward binding affinity of a GAA-

containing RNA for phenylalanine, and another one of a

GUA-containing RNA for tyrosine. Earlier experimental

work pointed to a stereochemical relationship between the

anticodons GCC, AGC, and GAC and the simple amino

acids glycine, alanine, and valine, respectively [52]. The

same author published models in which, e.g., asparagine

and lysine were shown binding their cognate anticodons

[53]. If the major determinant for the codon assignments in

the standard genetic code is stereochemical affinity between

triplets and amino acids as reported in these publications,

this implies a low MS0 value. Therefore, the Stereochemical

Theory is not incompatible with a low MS0 value.

3.5 A Four-Column Theory for the Origin of the
Genetic Code

The four scenarios discussed above share the characteristic
that one factor (either “minimization,” “history,” or
“stereochemistry”) is the major determinant of the codon
assignments in the standard genetic code. They share this
characteristic with the scenarios published by Wong [54]
and by Ikehara [55]. Other scenarios are present in which all
three factors are major determinants [56], [57]. As a last
scenario, we discuss the four-column theory published by
Higgs [13]. Like the scenario proposed by Massey, the
earliest genetic code according to the four-column theory is
encoding a repertoire of four amino acids. Higgs is very
detailed on the amino acids and the codon assignments in
this earliest genetic code: the 16 codons with U in the
middle originally encoded valine, the 16 middle-C codons
alanine, the 16 middle-A codons aspartate, and the
16 middle-G codons glycine. Later, amino acids were added
to this code by a process of subdivision of these 16-codon
blocks, in which a subset of the codons assigned to an early
amino acid were reassigned to a later amino acid. In the
four-column theory, codons with a certain middle position
are reassigned to amino acids similar to the one originally
assigned to codons with this middle position because this is
the least disturbing to already existing protein sequences.
The driving force for the reassignment is the “positive
selection for the increased diversity and functionality of the
proteins that can be made with a larger amino acid
alphabet” [13]. An intermediate code is presented, with
Leu, Ile, and Val coded by middle-U codons, Ser, Pro, Thr,
and Ala coded by middle-C codons, Asp and Glu coded by
middle-A codons, and all middle-G codons coding Gly. At
this stage, the total of protein-coding sequences starts to
influence the further development of the code even more
strongly (code-message coevolution, as in the series of
papers by Sella and Ardell [58], [59], [60], [61]) because, as a
consequence of their function in proteins, glycine codons
become rare codons. The consequence of this is that the
constraint to reassign them is relaxed. The final result is that
amino acids which are not similar to glycine, but which are
associated with strong positive selection because they bring
radical new functions for proteins (cysteine, tryptophan,
and arginine) are found coded by middle-G codons.
Although Higgs emphasizes that the driving force during
the process of expansion of the amino acid repertoire is not
the minimization of translational error, the four-column
theory is not as “neutral” as the “2-1-3” model, because the
“minimal disruption to the proteins already encoded by the
earlier code” by adding “. . . later amino acids into positions
formerly occupied by amino acids with similar properties”
is such an important component of the scenario.

Like the other discussed scenarios, the four-column theory
is compatible with a low MS0 value. All five discussed
scenarios agree that error robustness due to codon assign-
ments is present in the standard genetic code. The scenarios
differ in the way they propose the error robustness has been
built.

3.6 Consequence of the Error Robustness

The consequence of the error robustness is an enormous
potential to evolve. A variation in an RNA sequence can have
different kinds of consequences in the protein sequence. At
the one end of the spectrum, the different codon does not lead

1368 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2011

to a different amino acid. Slightly more effect would be that a
different codon would lead to a different amino acid, but this
would be so similar to the original amino acid that no
difference in protein structure is the consequence. Most
important would be the effect that there is a difference in
protein structure, but so small that natural selection can use it
as a slight step along an evolutionary path. At the far end of
the spectrum, finally, we find the lethal mutations. Because of
this graded intensity of evolutionary effect, the nature of the
relationship between RNA sequence and protein sequence
(i.e., the genetic code) gives biochemistry an enormous
evolvability [62], [63]. This not necessarily implies that the
phenomenon itself is built by direct optimizing selection for
the error minimizing aspects (exactly the same argument
holds for the aspects of stop codons allowing additional
information to be encoded in protein-coding sequences as
described by Itzkovitz and Alon [64]).

4 CONCLUSIONS

Formulating the minimization problem as a Quadratic
Assignment Problem, we certify that 3.489, Goldman’s best
solution [6] is in fact the optimal one. In spite of its theoretical
hardness, the size of the problem allows for exact solution
methods instead of mere heuristics, that may fail in finding
the optimal solution. We demonstrated that it is possible to
sample from much larger and more realistic code spaces.
Leaving Space 0, and using simple wobble rules, we
constructed four progressively larger code spaces. Their size
is of a completely different order than that of Space 0. Spaces
3 and 4 contain all existing genetic code variations. Using a
modified MS measure, the nature of Spaces 1 and 2 could be
investigated. In Spaces 1 and 2, the standard genetic code was
found to be a little more error robust when compared to
randomly generated codes than it was found to be in Space 0.

Finally, limitation of error robustness as a means to decide
between different evolutionary scenarios is discussed.

5 MATERIALS AND METHODS

5.1 Quadratic Assignment Problem

We formulate determining the minimumMS0 as a Quadratic

Assignment Problem. We use the graph model presented in

the Section 1 for adjacency of the codon pairs. We number the

amino acidsA1; . . . ; A20 and the blocks in the standard genetic

code B1; . . . ; B20. We introduce binary decision variables xik,

i ¼ 1; . . . ; 20, k ¼ 1; . . . ; 20; xik gets value 1 if amino acidAi is

assigned code block Bk and value 0 otherwise. If xik ¼ 1 and

xj‘ ¼ 1, then this contributes to the objective a value

dikj‘ ¼
X

c2Bk;c02Bl;fc;c0g2E
rðAiÞ � rðAjÞ
� �2

:

To find the code with minimum MS0-value, we minimize

X20

i¼1

X20

j¼1

X20

k¼1

X20

‘¼1

dikj‘xikxj‘;

subject to the restrictions

X20

i¼1

xik ¼ 1; for k ¼ 1; . . . ; 20;

X20

k¼1

xik ¼ 1; for i ¼ 1; . . . ; 20;

ensuring that each block encodes some amino acid and that
each amino acid is encoded by some block, and the
restrictions

xik 2 f0; 1g; for i ¼ 1; . . . ; 20; k ¼ 1; . . . ; 20;

BUHRMAN ET AL.: SOME MATHEMATICAL REFINEMENTS CONCERNING ERROR MINIMIZATION IN THE GENETIC CODE 1369

TABLE 7
tRNA Induced Counts

ensuring that blocks cannot be assigned fractionally to some
amino acid and for another fraction to some other amino acid.

A similar model can be used to compute the code
achieving minimum MSS0 value, although it requires time
in the order of weeks to compute, as opposed to hours for
the MS0 value. Further extending the above model, to
compute the minima of the even larger code spaces, leads to
programs that even state-of-the-art algorithms cannot solve
in any reasonable amount of computer time.

5.2 Counting and Sampling

In Table 7, we have listed the possible ways to fill a single
box that are compatible with the considered tRNA wobble
rules. Let fp1; . . . ; pMg enumerate the possible tRNA
patterns as listed in the rightmost column of Table 7. We
write aðpÞ, sðpÞ, and uðpÞ for the number of amino acids,
stop codons, and unassigned codons present in pattern p.

Problem. We now consider the problem of filling 16 boxes
(64 codons in total) using 20 different amino acids, s stop
codons, and u unassigned codons. It is useful to solve a
slightly more general problem: the number of ways to fill b
boxes using

. N amino acids,

. each of the first a amino acids at least once,

. exactly s stop codons, and

. exactly u unassigned codons.

The original problem is obtained by setting a ¼ N ¼ 20
and b ¼ 16.

Recurrence. We denote the number of such fillings by
#Nðb; a; s; uÞ and compute their values by the recurrence

#Nðb; a; s; uÞ ¼
XM
i¼1

XaðpiÞ
j¼0

aðpiÞ!
a

j

� �
N � a
aðpiÞ � j

� �

#Nðb� 1; a� j; s� sðpiÞ; u� uðpiÞÞ;
ð1Þ

with basis

#Nð0; 0; 0; 0Þ ¼ 1;

#Nðb; a; s; uÞ ¼ 0 if 4b < aþ sþ u:

Rationale. The reasoning behind (1) is the following. We fill
box number b first, and worry about the remaining boxes
later. We iterate over the possible tRNA patterns with
variable i. To realize pattern pi, we need aðpiÞ amino acids,
sðpiÞ stop codons, and uðpiÞ unassigned codons. There is
only one way to choose stop codons and unassigned
codons, but we can obtain the amino acids from two
sources. We can take some from the a still-to-use amino
acids that we have to use at least once, and we must take
the others from the N � a free amino acids that can be used
as desired. We consider all possible ways to realize the
choice: we first iterate over the number of amino acids that
we take from the still-to-use pool with variable j. Selecting j
out of a still-to-use amino acids can be done in ðajÞ ways.
Similarly, taking the remaining aðpiÞ � j amino acids from
N � a free amino acids can be done in ð N�aaðpiÞ�jÞ ways. All
these aðpiÞ chosen amino acids are different, and so there
are aðpiÞ! ways to instantiate the pattern using them. Now,
we still have to fill the remaining b� 1 boxes, using the
remaining a� j still-to-use amino acids at least once, while

using exactly s� sðpiÞ stop codons and leaving u� uðpiÞ
codons unassigned.

Implementation. The value #20ð16; 20; s; uÞ can be
efficiently evaluated by dynamic programming. This is
achieved by storing all intermediate values of # that are
computed in memory, and recalling them when they are
needed instead of reevaluating #. This way, #Nðb; a; s; uÞ
can be evaluated in time and space OðbasuÞ. Note that a
single call to #Nðb; a; s; uÞ computes #Nðb0; a0; s0; u0Þ for
many b0 � b, a0 � a, s0 � s and u0 � u.

Sampling. The above dynamic programming implemen-
tation has the advantage that it allows uniform sampling
over the space of all codes. We first sample a number
uniformly between 1 and #Nðb; a; s; uÞ. Then, we use the
recurrence in reverse to determine which code this number
corresponds to. This is done as follows: say the number
sampled was n. We then incrementally evaluate the sum of
(1). Once the partial sum up to i surpasses n, we know that
pattern pi was used in code number n. Similarly, we decode
which amino acids are used and in which order they are
placed. By explicitly keeping track of the set of still-to-use
amino acids, we can retrieve the entire code recursively.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Steven de Rooij for
taking part in the effort to determine the global minimum.
Furthermore, they gratefully acknowledge the large im-
provements of the manuscript by comments from Paul G.
Higgs and two anonymous referees. Part of this research
has been funded by the Dutch BSIK/BRICKS grant, Vici
grant 639-023-302 from the Netherlands Organization for
Scientific Research (NWO), and the CLS project.

REFERENCES

[1] F.H.C. Crick, “Codon-Anticodon Pairing: The Wobble Hypoth-
esis,” J. Molecular Biology, vol. 19, pp. 548-555, 1966.

[2] C. Woese, D.H. Dugre, S.A. Dugre, M. Kondo, and W.C. Saxinger,
“On the Fundamental Nature and Evolution of the Genetic Code,”
Proc. Cold Spring Harbor Symp. Quantitative Biology, vol. 31,
pp. 723-736, 1966.

[3] F.H.C. Crick, “The Origin of the Genetic Code,” J. Molecular
Biology, vol. 38, pp. 367-379, 1968.

[4] D. Haig and L.D. Hurst, “A Quantitative Measure of Error
Minimization in the Genetic Code,” J. Molecular Evolution, vol. 33,
pp. 412-417, 1991.

[5] D. Haig and L.D. Hurst, “A Quantitative Measure of Error
Minimization in the Genetic Code,” J. Molecular Evolution, vol. 49,
no. 5, p. 708, 1999.

[6] N. Goldman, “Further Results on Error Minimization in the
Genetic Code,” J. Molecular Evolution, vol. 37, pp. 662-664,
1993.

[7] A.S. Novozhilov, Y.I. Wolf, and E.V. Koonin, “Evolution of the
Genetic Code: Partial Optimization of a Random Code for
Robustness to Translation Error in a Rugged Fitness Landscape,”
Biology Direct, vol. 2, no. 24, pp. 1-24, 2007.

[8] S. Sengupta, X. Yang, and P.G. Higgs, “The Mechanisms of Codon
Reassignments in Mitochondrial Genetic Codes,” J. Molecular
Evolution, vol. 64, pp. 662-688, 2007.

[9] S.J. Freeland and L.D. Hurst, “The Genetic Code Is One in a
Million,” J. Molecular Evolution, vol. 47, pp. 238-248, 1998.

[10] D.H. Ardell, “On Error Minimization in a Sequential Origin of the
Standard Genetic Code,” J. Molecular Evolution, vol. 47, pp. 1-13,
1998.

[11] S.J. Freeland, R.D. Knight, L.F. Landweber, and L.D. Hurst, “Early
Fixation of an Optimal Genetic Code,” Molecular Biology and
Evolution, vol. 17, pp. 511-518, 2000.

1370 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2011

[12] D. Gilis, S. Massar, N.J. Cerf, and M. Rooman, “Optimality of
the Genetic Code with Respect to Protein Stability and Amino-
Acid Frequencies,” Genome Biology, vol. 2, no. 11, research
0049.1-0049.12, pp. 1-12, 2001.

[13] P.G. Higgs, “A Four-Column Theory for the Origin of the Genetic
Code: Tracing the Evolutionary Pathways that Gave Rise to an
Optimized Code,” Biology Direct, vol. 4, no. 16, pp. 1-29, 2009.

[14] E. Çela, The Quadratic Assignment Problem: Theory and Algorithms.
Kluwer Academic Publishers, 1998.

[15] QAPLIB, http://www.opt.math.tu-graz.ac.at/qaplib/, 2011.

[16] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman, 1979.

[17] E.M. Loiola, N.M.M. Abreu, P.O. Boaventura-Netto, P. Hahn, and
T. Querido, “A Survey for the Quadratic Assignment Problem,”
European J. Operational Research, vol. 176, no. 2, pp. 657-690, 2007.

[18] M. Turmell, C. Otis, and C. Lemiaux, “A Deviant Genetic Code in
the Reduced Mitochondrial Genome of the Picoplanktonic Green
Alga Pycnococcus provasolii,” J. Molecular Evolution, vol. 70,
pp. 203-214, 2010.

[19] B. Lewin, Genes IX, pp. 208-209. Jones and Bartlett Publishers,
2008.

[20] E.B. Kramer and P.J. Farabaugh, “The Frequency of Translational
Misreading Errors in E. coli Is Largely Determined by tRNA
Competition,” RNA, vol. 13, pp. 87-96, 2007.

[21] J.M. Berg, J.L. Tymoczko, and L. Stryer, Biochemistry, p. 875, sixth
ed. W.H. Freeman and Company, 2007.

[22] K. Takai, “Classification of the Possible Pairs between the First
Anticodon and the Third Codon Positions Based on a Simple
Model Assuming Two Geometries with Which the Pairing
Effectively Potentiates the Decoding Complex,” J. Theoretical
Biology, vol. 242, pp. 564-580, 2006.

[23] T. Numata, Y. Ikeuchi, S. Fukai, T. Suzuki, and O. Nureki,
“Snapshots of tRNA Sulphuration via an Adenylated Intermedi-
ate,” Nature, vol. 442, pp. 419-424, 2006.

[24] M.J. Johansson, A. Esberg, B. Huang, G.R. Bjork, and A.S.
Bystrom, “Eukaryotic Wobble Uridine Modifications Promote a
Functionally Redundant Decoding System,” Molecular and Cellular
Biology, vol. 28, pp. 3301-3312, 2008.

[25] B. Lewin, Genes IX, p. 198. Jones and Bartlett Publishers, 2008.

[26] Y. Andachi, F. Yamao, A. Muto, and S. Osawa, “Codon
Recognition Pattern as Deduced from Sequences of the Complete
Set of Transfer RNA Species in Mycoplasma capricolum,”
J. Molecular Biology, vol. 209, pp. 37-54, 1989.

[27] B.G. Barrell, S. Anderson, A.T. Bankier, M.H. de Bruijn, A.R.
Coulson, J. Drouin, I.C. Eperon, D.P. Nierlich, B.A. Roe, F. Sanger,
P.H. Schreier, A.J. Smith, R. Staden, and I.G. Young, “Different
Pattern of Codon Recognition by Mammalian Mitochondrial
tRNAs,” Proc. Nat’l Academy of Sciences USA, vol. 77, pp. 3164-
3166, 1980.

[28] S.G. Bonitz, R. Berlani, G. Coruzzi, M. Li, G. Macino, F.G.
Nobrega, M.P. Nobrega, B.E. Thalenfeld, and A. Tzagoloff,
“Codon Recognition Rules in Yeast Mitochondria,” Proc. Nat’l
Academy of Sciences USA, vol. 77, pp. 3167-3170, 1980.

[29] J.E. Heckman, J. Sarnoff, W.B. Alzner-De, S. Yin, and U.L.
RajBhandary, “Novel Features in the Genetic Code and Codon
Reading Patterns, in Neurospora crassa Mitochondria Based on
Sequences of Six Mitochondrial tRNAs,” Proc. Nat’l Academy of
Sciences USA, vol. 77, pp. 3159-3163, 1980.

[30] T. Samuelsson, T. Axberg, T. Boren, and U. Lagerkvist, “Un-
conventional Reading of the Glycine Codons,” J. Biological
Chemistry, vol. 258, pp. 13178-13184, 1983.

[31] U. Lagerkvist, “‘Two Out of Three’: An Alternative Method for
Codon Reading,” Proc. Nat’l Academy of Sciences USA, vol. 75,
pp. 1759-1762, 1978.

[32] U. Lagerkvist, “Unorthodox Codon Reading and the Evolution of
the Genetic Code,” Cell, vol. 23, pp. 305-306, 1981.

[33] Y. Inagaki, A. Kojima, Y. Bessho, H. Hori, T. Ohama, and S. Osawa,
“Translation of Synonymous Codons in Family Boxes by Myco-
plasma capricolum, tRNAs with Unmodified Uridine or Adeno-
sine at the First Anticodon Position,” J. Molecular Biology, vol. 251,
pp. 486-492, 1995.

[34] C. Marck and H. Grosjean, “tRNomics: Analysis of tRNA Genes
from 50 Genomes of Eukarya, Archaea, and Bacteria Reveals
Anticodon-Sparing Strategies and Domain-Specific Features,”
RNA, vol. 8, pp. 1189-1232, 2002.

[35] K. Takai and S. Yokoyama, “Roles of 5-Substituents of tRNA
Wobble Uridines in the Recognition of Purine-Ending Codons,”
Nucleic Acids Research, vol. 31, pp. 6383-6391, 2003.

[36] T.H. Jukes, Molecules and Evolution. Columbia Press, 1966.
[37] T.M. Sonneborn, “Degeneracy of the Genetic Code: Extent,

Nature, and Genetic Implications,” Evolving Genes and Proteins,
V. Bryson and H.J. Vogel, eds., Academic Press, 1965.

[38] C. Woese, “On the Evolution of the Genetic Code,” Proc. Nat’l
Academy of Sciences USA, vol. 54, pp. 1546-1552, 1965.

[39] C. Alff-Steinberger, “The Genetic Code and Error Transmission,”
Proc. Nat’l Academy of Sciences of USA, vol. 64, pp. 584-591, 1969.

[40] S.J. Freeland, T. Wu, and N. Keulmann, “The Case for an Error
Minimizing Standard Genetic Code,” Origins of Life and Evolution
of the Biosphere: The J. Int’l Soc. for the Study of the Origin of Life,
vol. 33, pp. 457-477, 2003.

[41] S.E. Massey, “A Sequential 2-1-3 Model of Genetic Code Evolution
that Explains Codon Constraints,” J. Molecular Evolution, vol. 62,
pp. 809-810, 2006.

[42] S.E. Massey, “A Neutral Origin for Error Minimization in the
Genetic Code,” J. Molecular Evolution, vol. 67, pp. 510-516, 2008.

[43] S.E. Massey, “Searching of Code Space for an Error-Minimized
Genetic Code via Codon Capture Leads to Failure, or Requires at
Least 20 Improving Codon Reassignments via the Ambiguous
Intermediate Mechanism,” J. Molecular Evolution, vol. 70, pp. 106-
115, 2010.

[44] G. Gamow, “Possible Relation between Deoxyribonucleic Acid
and Protein Structure,” Nature, vol. 173, p. 318, 1954.

[45] C.R. Woese, “Order in the Genetic Code,” Proc. Nat’l Academy of
Sciences USA, vol. 54, pp. 71-75, 1965.

[46] C.R. Woese, D.H. Dugre, W.C. Saxinger, and S.A. Dugre, “The
Molecular Basis for the Genetic Code,” Proc. Nat’l Academy of
Sciences USA, vol. 55, pp. 966-974, 1966.

[47] C.R. Woese, The Genetic Code. Harper and Row, 1967.
[48] L.E. Orgel, “Evolution of the Genetic Apparatus,” J. Molecular

Biology, vol. 38, pp. 381-393, 1968.
[49] J.G. Caporaso, M. Yarus, and R. Knight, “Error Minimization and

Coding Triplet/Binding Site Associations Are Independent
Features of the Canonical Genetic Code,” J. Molecular Evolution,
vol. 61, pp. 597-607, 2005.

[50] M. Yarus, J.G. Caporaso, and R. Knight, “Origins of the Genetic
Code: The Escaped Triplet Theory,” Ann. Rev. of Biochemistry,
vol. 74, pp. 179-198, 2005.

[51] M. Yarus, J.J. Widmann, and R. Knight, “RNA-Amino Acid
Binding: A Stereochemical Era for the Genetic Code,” J. Molecular
Evolution, vol. 69, pp. 406-429, 2009.

[52] M. Shimizu, “Specific Aminoacylation of C4N Hairpin RNAs with
the Cognate Aminoacyl-Adenylates in the Presence of a Dipep-
tide: Origin of the Genetic Code,” J. Biochemistry, vol. 117, pp. 23-
26, 1995.

[53] M. Shimizu, “Molecular Basis for the Genetic Code,” J. Molecular
Evolution, vol. 18, pp. 297-303, 1982.

[54] J.-T.F. Wong, “A Co-Evolution Theory of the Genetic Code,” Proc.
Nat’l Academy of Sciences USA, vol. 72, pp. 1909-1912, 1968.

[55] K. Ikehara, “Origins of Gene, Genetic Code, Protein and Life:
Comprehensive View of Life Systems from a GNC-SNS Primitive
Genetic Code Hypothesis,” J. Biosciences, vol. 27, pp. 165-186, 2002.

[56] R.D. Knight, S.J. Freeland, and L.F. Landweber, “Selection,
History and Chemistry: The Three Faces of the Genetic Code,”
Trends in Biochemical Sciences, vol. 24, pp. 241-247, 1999.

[57] P.T.S. van der Gulik, “Three Phases in the Evolution of the
Standard Genetic Code: How Translation Could Get Started,”
Arxiv0711.0700, 2007.

[58] D.H. Ardell and G. Sella, “On the Evolution of Redundancy in
Genetic Codes,” J. Molecular Evolution, vol. 53, pp. 269-281, 2001.

[59] G. Sella and D.H. Ardell, “The Impact of Message Mutation on the
Fitness of a Genetic Code,” J. Molecular Evolution, vol. 54, pp. 638-
651, 2002.

[60] D.H. Ardell and G. Sella, “No Accident: Genetic Codes Freeze in
Error-Correcting Patterns of the Standard Genetic Code,” Philoso-
phical Trans. Royal Soc. of London, Series B, vol. 357, pp. 1625-1642,
2002.

[61] G. Sella and D.H. Ardell, “The Coevolution of Genes and Genetic
Codes: Crick’s Frozen Accident Revisited,” J. Molecular Evolution,
vol. 63, pp. 297-313, 2006.

[62] A. Wagner, Robustness and Evolvability in Living Systems. Princeton
Univ. Press, 2005.

BUHRMAN ET AL.: SOME MATHEMATICAL REFINEMENTS CONCERNING ERROR MINIMIZATION IN THE GENETIC CODE 1371

[63] W. Zhu and S. Freeland, “The Standard Genetic Code Enhances
Adaptive Evolution of Proteins,” J. Theoretical Biology, vol. 239,
pp. 63-70, 2006.

[64] S. Itzkovitz and U. Alon, “The Genetic Code Is Nearly Optimal for
Allowing Additional Information within Protein-Coding Se-
quences,” Genome Research, vol. 17, pp. 405-412, 2007.

Harry Buhrman is leader of the group Algo-
rithms & Complexity at the Centrum Wiskunde &
Informatica (CWI) in Amsterdam. He is also a full
professor at the University of Amsterdam. He
works on computational complexity, quantum
information, and bioinformatics.

Peter T.S. van der Gulik is a biologist at the
Centrum Wiskunde & Informatica in Amsterdam,
working on problems at the interface of biology
and computer science. He is interested in the
structure and origin of the genetic code, the role
in the primordial cell of the first coded oligopep-
tide, batch selection, and conserved hydrogen
bonds involved in protein folding.

Steven M. Kelk is since 2004 postdoc at the
Centrum Wiskunde & Informatica (CWI) in
Amsterdam, where he works on applications of
combinatorial optimization and discrete mathe-
matics to computational biology. His main
research interests are approximation algorithms,
phylogenetic networks, metabolic networks and
exploring the interface between discrete, and
continuous mathematical biology.

Wouter M. Koolen is working toward the PhD
degree at the Centrum Wiskunde & Informatica
in Amsterdam, working on the theory of machine
learning. He is interested in online learning,
prediction with expert advice, Bayesian meth-
ods, and applications of game theory, and
decision theory to learning.

Leen Stougie is a full professor in operations
research at the Free University of Amsterdam,
since November 1, 2008. Since 2000, he has
been affiliated part time to the Centrum
Wiskunde & Informatica (CWI) in Amsterdam,
where he works mainly on combinatorial
problems from computational biology.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1372 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 8, NO. 5, SEPTEMBER/OCTOBER 2011

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

