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Abstract

Let p be an odd prime. Let P be a finite p-group of class 2 and exponent p, whose com-
mutator quotient P/[P, P ] is of order pn. We define two parameters for P related to central
decompositions. The first parameter, κ(P ), is the smallest integer s for the existence of a
subgroup S of P satisfying (1) S ∩ [P, P ] = [S, S], (2) |S/[S, S]| = pn−s, and (3) S admits a
non-trivial central decomposition. The second parameter, λ(P ), is the smallest integer s for
the existence of a central subgroup N of order ps, such that P/N admits a non-trivial central
decomposition.

While defined in purely group-theoretic terms, these two parameters generalise respectively
the vertex and edge connectivities of graphs: For a simple undirected graph G, through the
classical procedures of Baer (Trans. Am. Math. Soc., 1938), Tutte (J. Lond. Math. Soc., 1947)
and Lovász (B. Braz. Math. Soc., 1989), there is a p-group PG of class 2 and exponent p that is
naturally associated with G. Our main results show that the vertex connectivity κ(G) is equal to
κ(PG), and the edge connectivity λ(G) is equal to λ(PG). We also discuss the relation between
κ(P ) and λ(P ) for a general p-group P of class 2 and exponent p, as well as the computational
aspects of these parameters.
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1 Introduction

The main purpose of this note is to define and explore two natural group-theoretic parameters,
which are closely related to vertex and edge connectivities in graphs.

In this introduction, we first introduce the classical procedures of Baer [Bae38], Tutte [Tut47],
and Lovász [Lov89] which relate graphs with p-groups of class 2 and exponent p. We then define
two group-theoretic parameters. Our main result shows that the vertex and edge connectivities of
a graph are equal to the two parameters we defined on the corresponding group respectively. We
then compare the two parameters and discuss on their computational aspects.

Since the main goal of this note is to set up a link between graph theory and group theory, we
shall include certain background information, despite that it is well-known to researchers in the
respective areas.
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1.1 From graphs to groups: the Baer-Lovász-Tutte procedure

The route from graphs to groups, following Baer [Bae38], Tutte [Tut47], and Lovász [Lov89], goes
via linear spaces of alternating matrices and alternating bilinear maps.

We set up some notation. For n ∈ N, let [n] := {1, . . . , n}. Let
(
[n]
2

)
be the set of size-2 subsets

of [n]. We use F to denote a field, and Fq to denote the finite field with q elements. Vectors in Fn
are column vectors, and 〈·〉 denotes the linear span over underlying field F. Let Λ(n,F) be the linear
space of n×n alternating matrices over F. Recall that an n×n matrix A over F is alternating if for
any v ∈ Fn, vtAv = 0. That is, A represents an alternating bilinear form. Subspaces A of Λ(n,F),
denoted by A ≤ Λ(n,F), are called alternating matrix spaces. Fix a field F. For {i, j} ∈

(
[n]
2

)
with

i < j, the elementary alternating matrix Ai,j over F is the matrix with the (i, j)th entry being 1,
the (j, i)th entry being −1, and the rest entries being 0.

In this note, we only consider non-empty, simple, and undirected graphs with the vertex set
being [n]. That is, a graph is G = ([n], E) where E ⊆

(
[n]
2

)
. Let |E| = m. Note that the non-empty

condition implies that n ≥ 2 and m ≥ 1.
Let p be an odd prime. We use Bp,2 to denote the class of non-abelian p-groups of class 2 and

exponent p. That is, a non-abelian group P is in Bp,2, if for any g ∈ P , gp = 1, and the commutator
subgroup [P, P ] is contained in the centre Z(P ). For n,m ∈ N, we further define Bp,2(n,m) ⊆ Bp,2,
which consists of those P ∈ Bp,2 with |P/[P, P ]| = pn and |[P, P ]| = pm. Note that the non-abelian
condition implies that n ≥ 2 and m ≥ 1 are required for Bp,2(n,m) to be non-empty.

We then explain the procedure from graphs to groups in Bp,2 following Baer, Tutte and Lovász.

1. Let G = ([n], E) be a simple and undirected graph with m edges. Following Tutte [Tut47] and
Lovász [Lov89], we construct from G an m-dimensional alternating matrix space in Λ(n,F)
by setting

AG = 〈Ai,j : {i, j} ∈ E〉. (1)

2. Given an m-dimensional A ≤ Λ(n,F), let A = (A1, . . . , Am) ∈ Λ(n,F)m be an ordered basis
of A. The alternating bilinear map defined by A, φA : Fn × Fn → Fm, is

φA(v, u) = (vtA1u, . . . , v
tAmu)t. (2)

Since A is of dimension m, we have that φA(Fn,Fn) = Fm.

3. Let p be an odd prime. Let φ : Fnp × Fnp → Fmp be an alternating bilinear map, such that
φ(Fnp ,Fnp ) = Fmp . Following Baer [Bae38], we define a p-group, Pφ ∈ Bp,2(n,m), as follows.
The group elements are from Fnp ⊕ Fmp . For (vi, ui) ∈ Fnp ⊕ Fmp , i = 1, 2, the group product ◦
is defined as

(v1, u1) ◦ (v2, u2) := (v1 + v2, u1 + u2 +
1

2
· φ(v1, v2)). (3)

It can be verified that Pφ ∈ Bp,2(n,m), because of the condition that φ(Fnp ,Fnp ) = Fmp .

Starting from a graph G, we follow the above three steps to obtain a p-group of class 2 and
exponent p, denoted by PG. It can be verified easily that this process preserves isomorphism types,
despite that the procedure from alternating matrix sapces to alternating bilinear maps depends on
choices of ordered bases; see Remark 3. That is, if the graphs G1 and G2 are isomorphic, then the
corresponding p-groups PG1 and PG2 are isomorphic as well.

Definition 1 (The Baer-Lovász-Tutte procedure). Let G = ([n], E) be an undirected simple graph
with |E| = m > 0. The Baer-Lovász-Tutte procedure, as specified in the above three steps, takes G
and a prime p > 2, and produces a p-group of class 2 and exponent p, PG ∈ Bp,2(n,m).
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1.2 Our results

Two group-theoretic parameters. Let H be a finite group. We use J ≤ H to denote that
J is a subgroup of H, and J < H to denote that J is a proper subgroup of H. For S, T ⊆ H,
ST = {st : s ∈ S, t ∈ T}. If two subgroups J,K ≤ H satisfy that JK = KJ , then JK is a subgroup
of H.

Recall that H is a central product of two subgroups J and K, if (1) every element of J commutes
with every element of K, i.e. [J,K] = 1, and (2) H is generated by J and K, i.e. H = JK. See
e.g. [Suz82, pp. 137]. In the following, we always assume that a central product is non-trivial, i.e.,
J and K are non-trivial proper subgroups of H. If such J and K exist, then we say that H admits
a central decomposition.

Given P ∈ Bp,2, a subgroup S ≤ P is regular with respect to commutation, or simply regular
for short, if [S, S] = S ∩ [P, P ].

Definition 2 (κ and λ for p-groups of class 2 and exponent p). Let P ∈ Bp,2(n,m).
The regular-subgroup central-decomposition number of P , denoted by κ(P ), is the smallest

s ∈ N for the existence of a regular subgroup S with |S/[S, S]| = pn−s, such that S admits a central
decomposition.

The central-quotient central-decomposition number of P , denoted as λ(P ), is the smallest s ∈ N
for the existence of a central subgroup N of order ps, such that P/N admits a central decomposition.

An explanation for imposing the regularity condition in the definition of κ(P ) can be found in
Remark 10. In the definition of λ(P ), we can actually restrict N to be from those central subgroups
contained in [P, P ] (cf. Observation 8 (2)).

The results. Recall that for a graph G, the vertex connectivity κ(G) denotes the smallest number
of vertices needed to remove to disconnect G, and the edge connectivity λ(G) denotes the smallest
number of edges needed to remove to disconnect G [Die17].

Given the above preparation, we can state our main result.

Theorem 1. For an n-vertex and m-edge graph G, let PG ∈ Bp,2(n,m) be the result of applying
the Baer-Lovász-Tutte procedure to G and a prime p > 2. Then κ(G) = κ(PG), and λ(G) = λ(PG).

Recall that κ(PG) and λ(PG) are defined in purely group-theoretic terms, while κ(G) and λ(G)
are classical notions in graph theory. Therefore, Theorem 1 sets up a surprising link between group
theory and graph theory.

To understand these two parameters and their relation better, we consider the following ques-
tion. Recall that for a graph G, it is well-known that κ(G) ≤ λ(G) ≤ δ(G), where δ(G) denotes
the minimum degree of vertices in G (cf. e.g. [Die17, Proposition 1.4.2]). We study a question of
the same type in the context of p-groups of class 2 and exponent p. For this we need the following
definition.

Definition 3 (Degrees and δ for p-groups of class 2 and exponent p). For P ∈ Bp,2(n,m) and g ∈ P ,
suppose CP (g) = {h ∈ P : [h, g] = 1} is of order pd. Then the degree of g is deg(g) = n +m− d.
The minimum degree of P , δ(P ), is the minimum degree over g ∈ P \ [P, P ].

It is easy to see that for any g ∈ P , deg(g) ≤ n − 1 (cf. Observation 8 (3)). Therefore
δ(P ) ≤ n− 1. We then have the following.
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Proposition 2. 1. For any P ∈ Bp,2, κ(P ) ≤ δ(P ), and λ(P ) ≤ δ(P ).

2. There exists P ∈ Bp,2, such that κ(P ) > λ(P ).

That is, while we can still upper bound κ(P ) and δ(P ) using a certain minimum degree notion,
the inequality κ(·) ≤ λ(·) does not hold in general in the p-group setting.

1.3 Related works and open ends

Related works. Alternating matrix spaces and alternating bilinear maps serve as the interme-
diate objects between graphs and groups in the Baer-Lovász-Tutte procedure. We elaborate more
on the previous works that demonstrate their links to the two sides.

The link between graphs and alternating matrix spaces dates back to the works of Tutte and
Lovász [Tut47, Lov89] in the context of perfect matchings. Let G = ([n], E) be a graph, and let
AG ≤ Λ(n,F) be the alternating matrix space associated with G as in Step 1. Tutte and Lovász
realised that the matching number of G, µ(G), is equal to the maximum rank over matrices in AG.1

More specifically, Tutte represented G as a symbolic matrix, that is a matrix whose entries are either
variables or 0 [Tut47]. It can be interpreted as a linear space of matrices in a straightforward fashion.
Lovász then more systematically studied this construction from the latter perspective [Lov89].

Recently in [BCG+19], the second author and collaborators showed that the independence
number of G, α(G), is equal to the maximum dimension over the isotropic spaces2 of AG. They
also showed that the chromatic number of G, χ(G), is equal to the minimum c such that there
exists a direct sum decomposition of Fn into c non-trivial isotropic spaces for AG. As the reader
will see below, the proof of Theorem 1 also goes by defining appropriate parameters κ(·) and λ(·)
for alternating matrix spaces, and proving that κ(AG) = κ(G) and λ(AG) = λ(G). This translates
another two graph-theoretic parameters to the alternating matrix space setting.

The work most relevant to the current note in this direction is [LQ17] by the present authors.
In that work, we adapted a combinatorial technique for the graph isomorphism problem by Babai,
Erdős, and Selkow [BES80], to tackle isomorphism testing of groups from Bp,2, via alternating
matrix spaces. This leads to the definition of a “cut” for alternating matrix spaces, which in turn
naturally leads to the edge connectivity notion; cf. the proof of Proposition 5.

The link between alternating bilinear maps and Bp,2 dates back to the work of Baer [Bae38].
That is, from an alternating bilinear map φ, we can construct a group Pφ in Bp,2 as in Step 3. On
the other hand, given P ∈ Bp,2(n,m), by taking the commutator bracket we obtain an alternating
bilinear map φP . A generalisation of this link to p-groups of Frattini class 2 was crucial in Higman’s
enumeration of p-groups [Hig60]. Alperin [Alp65], Ol’shanskii [Ol’78] and Buhler, Gupta, and Harris
[BGH87] used this link to study large abelian subgroups of p-groups, a question first considered by
Burnside [Bur13]. This is because abelian subgroups of P containing [P, P ] correspond to isotropic
spaces of φP .

The works most relevant to the current note in this direction are [Wil09a, Wil09b] by James
B. Wilson. He studied central decompositions of P via the link between alternating bilinear maps
and Bp,2. In particular, he utilised that central decompositions of P correspond to orthogonal
decompositions of φP .

1This is straightforward to see if the underlying field F is large enough. If F is small, it follows e.g. as a consequence
of the linear matroid parity theorem; cf. the discussion after [Lov89, Theorem 4].

2A subspace U ≤ Fn is an isotropic space of A ≤ Λ(n,F), if for any u, u′ ∈ U , and any A ∈ A, utAu′ = 0.
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Finally, we recently learnt of the work [RV19] of Rossmann and Voll, who study those p-groups
of class 2 and exponent p obtained from graphs through the Baer-Lovász-Tutte procedure in the
context of zeta functions of groups.

Open ends. The most interesting questions to us are the computational aspects of these param-
eters. That is, given the linear basis of an alternating matrix space A ≤ Λ(n,F), compute κ(A) and
λ(A) (see Definition 4). When F = Fq with q odd, there is a randomised polynomial-time algorithm
to decide whether κ(A) = λ(A) = 0 by Wilson [Wil09b]. When F = R or C, by utilising certain
machineries from [IQ19], Wilson’s algorithm can be adapted to yield a deterministic polynomial-
time algorithm to decide whether κ(A) = λ(A) = 0. However, to directly use Wilson’s algorithm
to compute κ(A) or λ(A) seems difficult, as when κ(A) = λ(A) = 0, a non-trivial orthogonal
decomposition can be nicely translated to a certain idempotent in an involutive algebra associated
with any linear basis of A; for details, see [Wil09b].

2 Proofs

2.1 Preparations

Some notation has been introduced at the beginning of sections 1.1 and 1.2. We add some more
here. For a field F and d, e ∈ N, we use M(d × e,F) to denote the linear space of d × e matrices
over F, and M(d,F) := M(d× d,F). The ith standard basis vector of Fn is denoted by ei.

Some notions for alternating matrix spaces. We introduce some basic concepts, and then
define κ and λ, for alternating matrix spaces.

Let A,B ≤ Λ(n,F). We say that A and B are isometric, if there exists T ∈ GL(n,F), such that
A = T tBT := {T tBT : B ∈ B}.

For a d-dimensional W ≤ Fn, let T be an n × d matrix whose columns span W . Then the
restriction of A to W via T is A|W,T := {T tAT : A ∈ A} ≤ Λ(d,F). For a different n × d matrix
T ′ whose columns also span W , A|W,T ′ is isometric to A|W,T . So we can write A|W to indicate a
restriction of A to W via some such T .

Let A ≤ Λ(n,F) be of dimension m. An orthogonal decomposition of A is a direct sum decom-
position of Fn into U ⊕ V , such that for any u ∈ U , v ∈ V , and A ∈ A, utAv = 0. An orthogonal
decomposition is non-trivial, if neither U nor V is the trivial space. In the following, we always
assume an orthogonal decomposition to be non-trivial unless otherwise stated.

In the degenerate case when A ≤ Λ(n,F) is the zero space, we define it to have an orthogonal
decomposition for any n ∈ N. When A = 〈A〉 ≤ Λ(n,F) is of dimension 1 and n > 2, A always
admits an orthogonal decomposition. This can be seen easily from the canonical form for alternating
matrices [Lan02, Chap. XV, Sec. 8].

Definition 4 (κ and λ for alternating matrix spaces). Let A ≤ Λ(n,F) be of dimension m.
We define the restriction-orthogonal number of A, κ(A), as the minimum c ∈ N for the existence

of a dimension-(n− c) subspace W ≤ Fn, such that A|W admits an orthogonal decomposition.
We define the subspace-orthogonal number of A, λ(A), as the minimum c ∈ N for the existence

of a dimension-(m− c) subspace A′ ≤ A, such that A′ admits an orthogonal decomposition.
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Clearly, A itself admits an orthogonal decomposition if and only if κ(A) = λ(A) = 0. Since we
defined the zero alternating matrix space to have an orthogonal decomposition, κ(A) ≤ n− 1 and
λ(A) ≤ m.

Suppose we are given a dimension-m A = 〈A1, . . . , Am〉 ≤ Λ(n,F). We form a 3-tensor A ∈
Fn×n×m such that A(i, j, k) = Ak(i, j). We illustrate the existence of an orthogonal decomposition
for A, the existence of W such that A|W has an orthogonal decomposition, and the existence of
A′ ≤ A with an orthogonal decomposition, up to appropriate basis changes, in Figure 1.

(a) κ(A) = λ(A) = 0 (b) κ(A) ≤ n− dim(W ) (c) λ(A) ≤ m− dim(A′)

Figure 1: Pictorial descriptions of the alternating matrix space parameters. The white regions
indicate that the entries there are all zero. For example, in (a), suppose U ⊕ V is an orthogonal
decomposition for A. Then up to a change of basis, the upper-right and the lower-left corners of A
have all-zero entries. (b) and (c) also indicate the situations with appropriate changes of bases.

Some notions for alternating bilinear maps. We introduce basic concepts, and then define
κ and λ, for alternating bilinear maps.

Let φ, ψ : Fn × Fn → Fm be two alternating bilinear maps. Following [Wil09a], we say that φ
and ψ are pseudo-isometric, if they are the same under the natural action of GL(n,F)×GL(m,F).

For U ≤ Fn, φ naturally restricts to U to give φ|U : U × U → Fm. For X ≤ Fm, φ naturally
induces φ/X : Fn × Fn → Fm/X by composing φ with the projection from Fm to Fm/X.

Let φ : Fn × Fn → Fm be an alternating bilinear map. An orthogonal decomposition of φ is a
direct sum decomposition of Fn = U ⊕ V , such that for any u ∈ U , v ∈ V , we have φ(u, v) = 0. In
the following, unless stated otherwise, we always assume an orthogonal decomposition of φ to be
non-trivial, i.e., neither U nor V is the trivial space.

Definition 5 (κ and λ for alternating bilinear maps). Let φ : Fn × Fn → Fm be an alternating
bilinear map.

The restriction-orthogonal number of φ, κ(φ), is the minimum c ∈ N for the existence of a
dimension-(n− c) subspace U ≤ Fn, such that φ|U admits an orthogonal decomposition.

The quotient-orthogonal number of φ, λ(φ), is the minimum c ∈ N for the existence of a
dimension-c X ≤ Fm, such that φ/X admits an orthogonal decomposition.

Remark 3 (From alternating matrix spaces to bilinear maps). This connection is simple but may
deserve some discussion. Recall that, given an m-dimensional alternating matrix space A ≤ Λ(n,F),
we can fix an ordered basis of A as A = (A1, . . . , Am) ∈ Λ(n,F)m, and construct an alternating
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bilinear map φA : Fn × Fn → Fm as in Equation 2. Furthermore, φA(Fn,Fn) = Fm because A is of
dimension m.

In the above transformation, we shall need A ∈ Λ(n,F)m as an intermediate object. For a
different ordered bases A′, φA′ is pseudo-isometric to φA. Because of this, we shall write φA to
indicate φA with some ordered basis A of A.

Furthermore, if A and B are isometric and A (resp. B) is an ordered basis for A (resp. B),
then φA and φB are pseudo-isometric as well.

2.2 Proof of Theorem 1

The proof of Theorem 1 goes by showing that the parameters κ(·) and λ(·) defined for graphs,
alternating matrix spaces, alternating bilinear maps, and groups from Bp,2, are preserved in the
three steps of the Baer-Lovász-Tutte procedure. The first step, from graphs to alternating matrix
spaces, is the tricky one, at least for λ(·). The other two steps are rather straightforward.

From graphs to alternating matrix spaces.

Proposition 4. Let G = ([n], E) be a graph, and let AG ≤ Λ(n,F) be defined in Step 1. Then
κ(G) = κ(AG).

Proof. We first show κ(AG) ≤ κ(G). Let I ⊆ [n] be a subset of vertices of size d = n− κ(G), such
that the induced subgraph of G on I is disconnected. Let W = 〈ei : i ∈ I〉, and T be the n × d
matrix over F whose columns are ei ∈ Fn, i ∈ I. It is straightforward to verify that AG|W,T admits
an orthogonal decomposition.

We then show κ(AG) ≥ κ(G). Let W ≤ Fn be a subspace of dimension d = n − κ(AG), such
that A|W admits an orthogonal decomposition. That is, there exists W = U ⊕ V such that

∀u ∈ U, v ∈ V,∀A ∈ A, utAv = 0. (4)

Suppose dim(U) = b and dim(V ) = c, so d = b+ c. Construct an n× d matrix T =
[
T1 T2

]
where

T1 (resp. T2) is of size n× b (resp. n× c) and its columns form a basis of U (resp. V ). Let the ith
row of T1 be uti where ui ∈ Fb, and let the jth row of T2 be vtj where vj ∈ Fc, for i, j ∈ [n]. Then
by Equation 4, for any {i, j} ∈ E,

T t1(eie
t
j − ejeti)T2 = uiv

t
j − ujvti (5)

is the all-zero matrix of size b× c.
Because T is of rank d, there exists a d × d submatrix R of T of rank d. Let I ⊆ [n] be the

set of row indices of this submatrix R. We claim that the induced subgraph of G on I, G[I], is
disconnected. To show this, we exhibit a partition of I = I1 ] I2 such that no edges in G[I] go
across I1 and I2.

Recall that R is of rank d. As an easy consequence of the Laplace expansion, there exists a
partition of I, I = I1 ] I2 with |I1| = b, |I2| = d− b = c, such that the following holds. Let R1 be
the b × b submatrix of R with row indices from I1 and column indices from [b], and R2 the c × c
submatrix of R with row indices from I2 and column indices from [d] \ [b]. Then R1 and R2 are
both full-rank. Note that {uti : i ∈ I1} is the set of rows of R1 and {vtj : j ∈ I2} is the set of rows
of R2.
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We then claim that no edges in G[I] go across I1 and I2. By contradiction, suppose there is an
edge {i, j}, i ∈ I1 and j ∈ I2, in G[I]. Then the same edge {i, j} is also in G. By Equation 5, we
have uiv

t
j−ujvti is the all-zero matrix. Since R1 and R2 are full-rank, we have ui and vj are nonzero

vectors. This implies that uj = αui and vi = (1/α)vj for some nonzero α ∈ F. But this implies
that

[
utj vtj

]
= α

[
uti vti

]
, that is, the ith and jth rows of T are linearly dependent. Noting that

these rows are in R which is full-rank, we arrive at the desired contradiction. This concludes the
proof.

Proposition 5. Let G = ([n], E) be a graph, and let AG ≤ Λ(n,F) be defined in Step 1. Then
λ(G) = λ(AG).

Proof. We first show λ(AG) ≤ λ(G). Let D be a size-λ(G) subset of E such that G′ = ([n], E \D)
is disconnected. Let AG′ = 〈Ai,j : {i, j} ∈ E \D〉 ≤ AG. It is straightforward to verify that AG′
admits an orthogonal decomposition.

We then show λ(AG) ≥ λ(G). For this, it is convenient to introduce an equivalent formulation
of λ(·) for alternating matrix spaces, which is originated from [LQ17].

Given a direct sum decomposition Fn = U ⊕ V with dim(U) = b and dim(V ) = c = n − b, let
T1 (resp. T2) be a n× b (resp. n× c) matrix whose columns form a basis of U (resp. V ). Given an
m-dimensional A ≤ Λ(n,F), let CU,V,T1,T2(A) = {T t1AT2 : A ∈ A} ≤ M(b×c,F). Note that different
choices of T1 and T2 result in a subspace of M(b× c,F) which can be transformed to CU,V,T1,T2(A)
by left-multiplying some X ∈ GL(b,F) and right-multiplying some Y ∈ GL(c,F). So we can write
CU,V to indicate CU,V,T1,T2 via some such T1 and T2. We claim that

λ(A) = min{dim(CU,V (A)) : ∀ non-trivial Fn = U ⊕ V }. (6)

To see this, let A′ ≤ A be of dimension m − λ(A) which admits an orthogonal decomposition
Fn = U ⊕V . It is easy to verify that dim(CU,V (A)) ≤ m− (m−λ(A)) = λ(A). On the other hand,
let Fn = U ⊕ V be a direct sum decomposition such that dim(CU,V (A)) is minimal. Let T1 (resp.
T2) be a matrix whose columns form a basis of U (resp. V ). Let A′ = {A ∈ A : T t1AT2 = 0}. We
then have dim(A′) = m− dim(CU,V (A)), and clearly A′ admits an orthogonal decomposition. This
gives λ(A) ≤ m− dim(A′) = dim(CU,V (A)).

After introducing this formulation, let Fn = U⊕V be a direct sum decomposition with dim(U) =
b and dim(V ) = c = n − b, such that dim(CU,V (AG)) = λ(AG) = d. Construct an n × n full-rank
matrix T =

[
T1 T2

]
where T1 (resp. T2) is a n × b (resp. n × c) matrix whose columns form a

basis of U (resp. V ). Let the ith row of T1 be uti where ui ∈ Fb, and let the jth row of T2 be vtj
where vj ∈ Fc. We distinguish two cases:

1. Suppose for any i ∈ [n], ui 6= 0 if and only if vi = 0. Then there exists [n] = I1 ] I2 with
|I1| = b and |I2| = c, such that i ∈ I1 if and only if ui 6= 0, and j ∈ I2 if and only if vj 6= 0.
Furthermore, vectors in {ui : i ∈ I1} are linearly independent, and vectors in {vj : j ∈ I2} are
linearly independent. We claim that there is no more than d edges of G crossing I1 and I2.
Suppose not, then there exists {{i1, j1}, . . . , {id+1, jd+1}} ⊆ E, such that ik ∈ I1, and jk ∈ I2
for k ∈ [d+ 1]. Note that

T t1(eike
t
jk
− ejke

t
ik

)T2 = uikv
t
jk
− ujkv

t
ik

= uikv
t
jk
∈ CU,V (AG) (7)

for all k ∈ [d + 1]. It is straightforward to verify that uikv
t
jk

, k ∈ [d + 1], are linearly
independent, which contradicts that CU,V (AG) is of dimension d.
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2. Suppose there exists i ∈ [n], such that both ui and vi are nonzero. Suppose by contradiction
that λ(G) > d. It follows that the vertex i is of degree at least d + 1. Suppose i is adjacent
to j1, . . . , jd+1 ∈ [n]. Then uiv

t
jk
− ujkvti ∈ CU,V (AG) for k ∈ [d + 1] by Equation 7. Since

dim(CU,V (AG)) = d, the matrices uiv
t
jk
− ujkvti , k ∈ [d+ 1], are linearly dependent. It follows

that there exist αk ∈ F for k ∈ [d+ 1], at least one of which is nonzero, such that

d+1∑
k=1

αk(uiv
t
jk
− ujkv

t
i) = 0.

This implies that

ui(

d+1∑
k=1

αkv
t
jk

) = (

d+1∑
k=1

αkujk)vti

as two rank-1 matrices. From the above, and by the assumption that ui and vi are nonzero,
we have that βui =

∑d+1
k=1 αkujk and βvi =

∑d+1
k=1 αkvjk for some nonzero β ∈ F. Since at

least one of αk’s is nonzero, this means that the rows in T with indices {i, j1, . . . , jd+1} are
linearly dependent, which contradicts that T is full-rank.

These conclude the proof that λ(AG) ≥ λ(G).

Remark 6 (Cuts in alternating matrix spaces). The alternative formulation of λ(·) as in Equation 6
rests on a natural generalisation of the notion of cuts in graphs. Proposition 5 then indicates that
for an alternating matrix space AG constructed from a graph G, the minimum cut sizes of AG and
G are equal.

From alternating matrix spaces to alternating bilinear maps. We now relate the param-
eters κ(·) and λ(·) for alternating matrix spaces and alternating bilinear maps in the following easy
proposition. Note that we use the notation φA due to the discussions in Remark 3.

Proposition 7. For an m-dimensional A ≤ Λ(n,F), let an alternating bilinear map φA : Fn×Fn →
Fm be defined in Step 2. Then we have κ(A) = κ(φA), and λ(A) = λ(φA).

Proof. The equality κ(A) = κ(φA) is straightforward to verify.
To show that λ(A) ≥ λ(φA), let A′ ≤ A be a dimension-(n−λ(A)) subspace of A admitting an

orthogonal decomposition. Let c = λ(A). We fix an ordered basis of A, A = (A1, . . . , Am), such
that {A1, . . . , Am−c} spans A′. Let X ≤ Fm be the linear span of the last c standard basis vectors.
We claim that φA/X admits an orthogonal decomposition. Indeed, let U ⊕ V be an orthogonal
decomposition of A′. Then for any u ∈ U, v ∈ V , we have φA(u, v) ∈ X, which means that U ⊕ V
is also an orthogonal decomposition for φA/X .

To show that λ(A) ≤ λ(φA), let A = (A1, . . . , Am) be an ordered basis of A, and let c = λ(φA).
Let X be a dimension-c subspace of Fm, such that φA/X admits an orthogonal decomposition
Fn = U ⊕ V . That is, for any u ∈ U and v ∈ V , φA(u, v) ∈ X. Form an ordered basis of Fm,

(w1, . . . , wm), where wi =

wi,1...
wi,m

 ∈ Fm, such that the last c vectors form a basis of X. Let

A′i =
∑

j∈[m]wi,jAj be another ordered basis of A, and A′ = (A′1, . . . , A
′
m). Then for any u ∈ U

and v ∈ V , since φA(u, v) ∈ X, the first m − c entries of φA′(u, v) are zero. In particular, this
implies that Fn = U ⊕ V is an orthogonal decomposition for A′ = 〈A′1, . . . , A′m−c〉, where A′ is of
dimension m− c.
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From alternating bilinear maps to groups from Bp,2. To start with, we observe the following
basic properties of κ, λ, and δ for groups from Bp,2(n,m).

Observation 8. Let P ∈ Bp,2(n,m). Then we have the following.

1. Suppose P = JK is a central decomposition. Let J ′ = J [P, P ], and K ′ = K[P, P ]. Then J ′

and K ′ form a central decomposition of P , and both of them properly contain [P, P ].

2. If for a central subgroup N , P/N admits a central decomposition, then P/(N ∩ [P, P ]) admits
a central decomposition.

3. For any g ∈ P , deg(g) ≤ n− 1.

Proof. (1): To show that J ′ and K ′ form a central decomposition of P , we only need to verify that
J ′ and K ′ are proper. For the sake of contradiction, suppose P = J ′ = J [P, P ]. Since [P, P ] is the
Frattini subgroup of P , it follows that J = P , contradicting that J is proper.

To show that J ′ properly contains [P, P ], again for the sake of contradiction suppose J ′ ≤ [P, P ].
Then P = J ′K ′ ≤ [P, P ]K ′ = K ′, a contradiction to K ′ being a proper subgroup of P .

(2): If N ≤ [P, P ], the conclusion holds trivially. Suppose otherwise. Let J/N and K/N be a
central product of P/N for J,K ≤ P . That is, for any j ∈ J and k ∈ K, jkj−1k−1 ∈ N , so in fact
jkj−1k−1 = [j, k] ∈ N ∩ [P, P ]. It then follows easily that J/(N ∩ [P, P ]) and K/(N ∩ [P, P ]) form
a central product of P/(N ∩ [P, P ]).

(3): If g ∈ Z(P ), deg(g) = 0. If g 6∈ Z(P ), then CP (g) contains the subgroup generated by g
and [P, P ], which is of order ≥ pm+1.

Recall that in Step 3, we start from bilinear map φ : Fnp × Fnp → Fmp satisfying φ(Fnp ,Fnp ) = Fmp ,
and construct Pφ, a p-group of class 2 and exponent p. Then [Pφ, Pφ] ∼= Zmp , and Pφ/[Pφ, Pφ] ∼= Znp .

It is easily checked that, by Equation 3, subspaces of Fmp correspond to subgroups of [Pφ, Pφ],
and subspaces of Fnp correspond to subgroups of Pφ/[Pφ, Pφ]. We then set up the following nota-
tion. For U ≤ Fnp , let QU be the subgroup of Pφ/[Pφ, Pφ] corresponding to U , and let SU be the
smallest subgroup of Pφ satisfying SU [P, P ]/[P, P ] = QU . Note that SU is regular with respect to
commutation, that is, SU ∩ [P, P ] = [SU , SU ]. For X ≤ Fmp , let NX be the subgroup of [Pφ, Pφ]
corresponding to X.

Proposition 9. Let φ : Fnp × Fnp → Fmp and Pφ ∈ Bp,2(n,m) be as above. Then κ(φ) = κ(Pφ), and
λ(φ) = λ(Pφ).

Proof. To show that κ(φ) ≥ κ(Pφ), suppose there exists a (n−κ(φ))-dimensional U ≤ Fnp such that
φ|U admits an orthogonal decomposition. It can be verified easily that this induces a central de-
composition for the regular subgroup SU ≤ Pφ. Furthermore, by the second isomorphism theorem,
SU/[SU , SU ] = SU/(SU ∩ [Pφ, Pφ]) ∼= SU [Pφ, Pφ]/[Pφ, Pφ] = QU , which is of order pn−κ(φ).

To show that κ(φ) ≤ κ(Pφ), suppose that a regular S ≤ Pφ satisfying |S/[S, S]| = pn−κ(Pφ)

admits a central decomposition S = JK. Appyling Observation 8 (1) to S, we can assume that J
and K both properly contain [S, S]. Let US (resp. UJ , UK) be the subspace of Fnp corresponding
to S[Pφ, Pφ]/[Pφ, Pφ] (resp. J [Pφ, Pφ]/[Pφ, Pφ], K[Pφ, Pφ]/[Pφ, Pφ]). Then it can be verified, using
Equation 3, that UJ and UK form an orthogonal decomposition for φ|US . Furthermore, by the
second isomorphism theorem, S[Pφ, Pφ]/[Pφ, Pφ] ∼= S/[S, S], which holds with S replaced by J or
K as well. In particular we have dim(US) = n− κ(Pφ).
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To show that λ(φ) ≥ λ(Pφ), we translate a subspace X ≤ Fmp such that φ/X admits an
orthogonal decomposition, to a subgroup NX ≤ [Pφ, Pφ]. Then it can be verified easily that the
orthogonal decomposition of φ/X yields a central decomposition of Pφ/NX .

To show that λ(φ) ≤ λ(Pφ), suppose N ≤ Pφ is a central subgroup of order pλ(Pφ) such that
Pφ/N admits a central decomposition. By Observation 8 (2), we can assume that N ≤ [Pφ, Pφ]. Let
X be the subspace of Fmp corresponding to N . Let J/N,K/N ≤ Pφ/N be a central decomposition
of Pφ/N for J,K ≤ Pφ. Applying Observation 8 (1) to Pφ/N , we can assume that J/N and
K/N both properly contain [Pφ/N, Pφ/N ] = [Pφ, Pφ]/N . In particular, J and K properly contain
[Pφ, Pφ], so J/[Pφ, Pφ] (resp. K/[Pφ, Pφ]) corresponds to a non-trivial proper subspace UJ ≤ Fnp
(resp. UK ≤ Fnp ). Then it can be verified that UJ and UK span Fnp , and for any u ∈ UJ and u′ ∈ UK ,
we have φ(u, u′) ∈ X. Therefore UJ and UK form an orthogonal decomposition for φ/X .

Remark 10 (On the regular condition). The reason for imposing the regular condition is to rule
out the following central decompositions, which is not well-behaved regarding the correspondence
between φ and Pφ. Suppose that S ≤ Pφ satisfies [S, S] < [Pφ, Pφ]. Then S and [Pφ, Pφ] form a cen-
tral decomposition of S[Pφ, Pφ]. Translating back to φ, [S, S] < [Pφ, Pφ] just says that φ(US , US) is
a proper subspace of Fm, which is not related to whether φ|US admits an orthogonal decomposition.

2.3 Proof of Proposition 2

We shall work in the setting of alternating matrix spaces. So we state the correspondence of
Definition 3 in this setting, which was proposed in [Qia19] and has been used in [BCG+19].

Definition 6 (Degrees and δ for alternating matrix spaces). Let A ≤ Λ(n,F). For v ∈ Fn, the
degree of v in A is the dimension of Av := {Av : A ∈ A}. The minimum degree of A, denoted as
δ(A), is the minimum degree over all 0 6= v ∈ Fn.

To translate from groups in Bp,2(n,m) to alternating matrix spaces, we recall the following
procedure which consists of inverses of the last two steps of the Baer-Lovász-Tutte procedure.

For any P ∈ Bp,2(n,m), let V = P/[P, P ] ∼= Znp and U = [P, P ] ∼= Zmp . The commutator
map φP : V × V → U is alternating and bilinear. After fixing bases of V and U as Fp-vector
spaces, we can represent φP : Fnp × Fnp → Fmp as (A1, . . . , Am) ∈ Λ(n,Fp)m, which spans an m-
dimensional AP ≤ Λ(n,Fp). It is easy to check that isomorphic groups yield isometric alternating
matrix spaces. Furthermore, this procedure preserves κ and λ, by essentially the same proof for
Proposition 7 and 9, and δ, by a straightforward calculation.

The following proposition then implies Proposition 2 (1).

Proposition 11. Given A ≤ Λ(n,F), we have κ(A) ≤ δ(A) and λ(A) ≤ δ(A).

Proof. We first show that κ(A) ≤ δ(A). Take some v ∈ Fn such that deg(v) = δ(A). If δ(A) = n−1,
then the inequality holds trivially. Otherwise, let U = {u ∈ Fn : ∀ A ∈ A, utAv = 0}. Note that
dim(U) = n− deg(v) ≥ 2, and v ∈ U . Let V be any complement space of 〈v〉 in U . Then 〈v〉 ⊕ V
is an orthogonal decomposition of A|U . It follows that κ(A) ≤ n− dim(U) = deg(v) = δ(A).

We then show that λ(A) ≤ δ(A). Take some v ∈ Fn such that deg(v) = δ(A). Let W be any
complement subspace of 〈v〉 in Fn, and let TW be an n × (n − 1) matrix whose columns form a
basis of W . The space vtATW = {vtATW : A ∈ A} ≤ M(1× (n− 1),F) is of dimension deg(v). By
Equation 6, we then have λ(A) ≤ dim(vtATW ) = deg(v) = δ(A).
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In contrast to the graph setting, we show that it is possible that κ(A) > λ(A) over Q and Fq,
therefore proving Proposition 2 (2). For this we need the following definition.

Definition 7. We say that A ≤ Λ(n,F) is fully connected, if for any linearly independent u, v ∈ Fn,
there exists A ∈ A, such that utAv 6= 0.

An observation on fully connected A follows from the definition easily.

Observation 12. Suppose that A ≤ Λ(n,F) is fully connected. Then κ(A) = n− 1.

We shall construct a fully connected A ≤ Λ(n,F) with λ(A) < n − 1 = κ(A). To do this we
need the fully connected notion in the (not necessarily alternating) matrix space setting. That is,
B ≤ M(s× t,F) is fully connected, if for any nonzero u ∈ Fs and nonzero v ∈ Ft, there exists B ∈ B,
such that utBv 6= 0. The following fact is well-known.

Fact 13. Let F be a finite field or Q. Then over F, there exists a fully connected matrix space in
M(s,F) of dimension s.

Proof. Let K be a degree-s field extension of F. The regular representation of K on Fs gives an
s-dimensional C ≤ M(s,F), such that each nonzero C ∈ C is of full rank. Let (C1, . . . , Cs) be an
ordered basis of B. Let Bi ∈ M(s,F), i ∈ [s], be defined by Bi =

[
C1ei C2ei . . . Csei

]
. That

is, the jth column of Bi is the ith column of Cj . Then B = 〈B1, . . . , Bs〉 ≤ M(s,F) is of dimension
s and fully connected. Indeed, if B is not fully connected, then there exist nonzero v ∈ Fs and

nonzero u =


u1
u2
...
us

 ∈ Fs such that vtBiu = 0 for any i ∈ [s]. But this just means that v is in the

left kernel of C ′ = u1C1 + · · ·+ usCs, contradicting that C ′ is of full rank.

Let s, t ∈ N and n = s+ t. Let B ≤ M(s× t,F) be a fully connected matrix space of dimension
d < n−1. We shall use B to construct a fully connected A ≤ Λ(n,F) such that λ(A) ≤ d < n−1 =
κ(A).

Suppose B is spanned by B1, . . . , Bd ∈ M(s× t,F). Let Ai =

[
0 Bi
−Bt

i 0

]
for i ∈ [d]. For 1 ≤ i <

j ≤ s, let Ci,j =

[
Ei,j 0

0 0

]
∈ Λ(n,F), where Ei,j = eie

t
j−ejeti ∈ Λ(s,F) is an elementary alternating

matrix. For 1 ≤ i < j ≤ t, let Di,j =

[
0 0
0 Fi,j

]
∈ Λ(n,F), where Fi,j = eie

t
j − ejeti ∈ Λ(t,F) is an

elementary alternating matrix. Let A be spanned by {Ai : i ∈ [d]} ∪ {Ci,j : 1 ≤ i < j ≤ s} ∪ {Di,j :
1 ≤ i < j ≤ t}.

Proposition 14. Let A ≤ Λ(n,F) be as above. Then A is fully connected.

Proof. Assume there exist linearly independent u, v ∈ Fn such that for any A ∈ A, utAv = 0. Take

u =

[
u1
u2

]
and v =

[
v1
v2

]
, where u1, v1 ∈ Fs and u2, v2 ∈ Ft. Note that for any 1 ≤ i < j ≤ s,

[
ut1 ut2

] [Ei,j 0
0 0

] [
v1
v2

]
= ut1Ei,jv1 = 0.
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Similarly, we have ut2Fi,jv2 = 0 for all 1 ≤ i < j ≤ t.
We then distinguish among the following cases.

1. v1 and v2 are both nonzero. In this case we have u1 = λv1 and u2 = µv2 for some λ 6= µ ∈ F.
Therefore, we have

[
ut1 ut2

] [ 0 Bi
−Bt

i 0

] [
v1
v2

]
= −ut2Bt

iv1 + ut1Biv2 = −µvt2Bt
iv1 + λvt1Biv2 = (λ− µ)vt1Biv2.

Since B is fully connected, this implies that v1 = 0 or v2 = 0, a contradiction to the assumption
of this case.

2. v1 is zero and v2 is nonzero. Then u2 = λv2, and u1 cannot be zero. Therefore, we have

[
ut1 ut2

] [ 0 Bi
−Bt

i 0

] [
v1
v2

]
= −ut2Bt

iv1 + ut1Biv2 = ut1Biv2 = 0,

which is a contradiction to the full connectivity of B.

3. v1 is nonzero and v2 is zero. This case is in complete analogy with the previous case.

This concludes the proof that A is fully connected.

We then have κ(A) = n − 1 by Observation 12. Now observe that the subspace of A spanned
by Ci,j and Di,j admits a central decomposition. This gives that λ(A) ≤ d < n− 1 = κ(A). Over
Fq and Q, such B exists for s > 1 by Fact 13. This concludes the proof of Proposition 2 (2).
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