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ABSTRACT

A multimedia presentation can be viewed as a collection of multimedia items (such as image, text, video and

audio), along with detailed information that describes the spatial and temporal placement of the items as part

of the presentation. Manual multimedia authoring involves explicitly stating the placement of each media item

in the spatial and temporal dimensions. The drawback of this approach is that resulting presentations are hard

to adapt to different target platforms, network resources, and user preferences.

An approach to solving this problem is to abstract from the low-level presentation details, for example by

specifying the high-level semantic relations between the media items. The presentation itself can then be

generated from the semantic relations along with a generic set of transformation rules, specifying how each

semantic relation can be conveyed using multimedia constructs. These constructs may differ depending on

the target platform, current network conditions or user preferences. We are thus able to automatically adapt

the presentation to a wide variety of different circumstances while ensuring that the underlying message of the

presentation remains the same.

This approach requires an execution environment in which transformation rules, resulting in a set of con-

straints, are derived from a given semantic description. The resulting set of constraints can then be solved

to create a final multimedia presentation. The paper describes the design and implementation of such a sys-

tem. It explains the advantages of using constraint logic programming to realize the implementation of both

the transformation rules and the constraints system. It also demonstrates the need for two different types of

constraints. Quantitative constraints are needed to verify whether the final form presentation meets all the

numeric constraints that are required by the environment. Qualitative constraints are needed to facilitate high-

level reasoning and presentation encoding. While the quantitative constraints can be handled by off-the-shelf

constraint solvers, the qualitative constraints needed are specific to the multimedia domain and need to be

defined explicitly.

1998 ACM Computing Classification System: H.5.4, H.5.1, I.7

Keywords and Phrases: Multimedia, transformations, constraints, CLP, CHR, ECLiPSe

Note: The research reported here has been carried out under the Dynamo, RTIPA and ToKeN2000 projects.

1. Introduction

The need for presentation adaptation to a wide variety of circumstances is of crucial importance
to current and future content providers. From a technical perspective, different devices such as
mobile phones, PDAs and fully equipped multimedia PCs should be able to convey basically the same
information while exploiting their device-specific capabilities. In addition, to maximize the user’s level
of understanding, the presentation should be conveyed in the way most suited to the particular user.
Manually authoring all these different presentations is in principle an option, but is in practice too
costly. Generating presentations automatically is an alternative for obtaining multiple presentations
of reasonable quality which are tailored to the context in which the presentation is played.

In order to construct a presentation, whether by a human author or a system, a number of aspects
have to be taken into account. In particular, the “message” of the presentation has to be conveyed
using selected media items, the media items have to be arranged in some aesthetically pleasing manner,
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and all this has to be presented in the screen dimensions of the user’s device and time-limits of the
user. Solutions are possible, but only after contradictory requirements have been traded-off against
one another. Examples of such trade-offs include:

• Semantics versus aesthetics The presentation as perceived by the user is intended to convey
the message as envisaged by the author. The message itself is conveyed through the media
items included in the presentation, the temporal and spatial layout of the items and the choice
of style characteristics. These are both the means used for increasing the aesthetic appeal
of a presentation and for expressing the author’s message. Just as for established paper-based
graphic design, there is a trade-off between using any particular technique for emphasizing either
the aesthetic appeal or the semantic content. For example, the padding distance between the
items on the screen can be varied purely for aesthetic reasons to improve the layout. On the
other hand, padding distance could also have a semantic purpose, for emphasizing structural
relations among items by strengthening the visual grouping in the presentation. Determining
the resulting padding distances needs to take both semantic and aesthetic effects into account.

• Aesthetics versus feasibility Having established design rules for a desired layout, these may
prove to be insoluble for the user’s device. In which case, some sort of compromise needs to
be made in order to come up with a feasible alternative. For example, the designer decides to
place a label above an image to provide a title and to do this throughout the presentation for
maintaining consistency. This turns out to be infeasible because of lack of screen space. There
is, however, sufficient room to position the labels consistently to one side of the image. The
designer has to make a choice as to whether the preferred position is used wherever possible, or
to use the less aesthetically pleasing position consistently.

• Semantics versus feasibility A designer may even be forced to discard some of the media
items intended to be presented. For example, suppose a number of concepts in the presentation
are to be clarified by an example. A query to a multimedia database supplies the author with
various media items which are examples of the concepts to be conveyed. The designer, however,
is restricted to a maximum duration of the presentation. The designer thus has to make a
decision as to which concepts can be illustrated by an example and which have to be omitted.

In practice, there are many reasons why the “ideal” presentation may prove to be infeasible. In
the majority of cases, a trade-off between different objectives is necessary. For example, in the last
example the media items that best illustrate the concept would be the first choice. These media items,
however, might not be suitable for the presentation because of their size or duration, and so some
trade-off needs to be made to select media items which satisfy some combination of the objectives as
best as possible.

These examples show that the process of creating a presentation is not linear. Rather, the process
consists of going back and forth through the conceptual layers of generating a presentation. Solutions
to an aesthetic problem can trigger semantic problems and vice-versa. While a human author is
faced with these difficulties in creating an ideal presentation, the same problems are also faced when
attempting to capture the process in a presentation generation system.

As shown by the fundamental trade-offs of semantics, aesthetics and resources, presentation gen-
eration does not lend itself readily to the traditional divide and conquer techniques commonly used
in computer science. Decisions taken about the semantics of the presentation steer the allocation of
screen and temporal resources, while final details at the resource level (e.g. an image that is a few
pixels too wide or a video that is a tenth of a second too long) may force the system to re-evaluate
previously made semantic decisions.

From an implementor’s perspective, a system for creating multimedia presentations automatically
has to not only make the decisions an author would make, but also cope with the trade-offs that have
to be made when chosen solutions fail for other reasons.
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Our approach to creating a prototype multimedia presentation generation system is thus to identify
a number of different levels of abstraction encountered in the process of creating a multimedia presen-
tation, and to embody these in conceptually distinct steps in a presentation creation process. Starting
with a presentation-independent abstraction, specified in semantic terms, the prototype makes selec-
tions and choices, calculating potential solutions for providing a presentation, and finally creates a
final-form presentation tailored to the specific requirements of the user, device and network conditions.
At run-time, backtracking can take place at each step, and a number of steps are highly intertwined.

Constraints play an important role in a number of steps in the generation process, and it is this role
which is the focus of this paper. In particular, we show that quantitative constraints are important
for making decisions as to the feasibility of potential solutions, and that quantitative constraints are
of themselves insufficient, requiring a higher-level constraint mechanism, which we term qualitative
constraints, for providing higher-level abstractions for processing.

The remainder of the paper is structured as follows. In the next section we incrementally introduce
more complex constraint solving techniques as potential solutions to deal with the complexity issues
described above. In section 3 we briefly give an overview of our multimedia presentation generation
prototype, Cuypers, and then describe in detail how quantitative and qualitative constraints have
been implemented. We discuss related work in section 4 and present our conclusions and future work
in section 5.

2. Constraint Solving Techniques

The problem of generating multimedia presentations can be viewed from different perspectives using
different techniques. A first step towards a solution is the choice of a suitable platform and framework
able to process the type of information needed. We argue that constraint satisfaction techniques are
beneficial to the problem of generating multimedia because of their efficiency and their suitability for
expressing the problem at a high level.

Constraint solving is similar to other declarative approaches to the extent that the programmer
does not provide an algorithm but gives the requirements the solution has to conform to. How these
requirements are processed internally is not an issue for the programmer. Constraint solving focuses on
problems where there are many variables and large associated domains. It is the task of the constraint
solver to reduce the size of the domains as efficiently as possible. For example, suppose we have two
variables x ∈ [0..5], y ∈ [0..100] and the constraint x > y. The values 5..100 of y will never satisfy
the constraint and could thus be eliminated from the domain. This results in: x ∈ [0..5], y ∈ [0..4]
which reduces the domain of y by 96 possibilities. While this is an extremely simple example, similar
techniques can be used to reduce the domain efficiently in multimedia presentation generation, in
particular when calculating the spatio-temporal layout of the various media items.

Our research group has been involved in developing several prototypes to explore different aspects
of multimedia presentation generation. The prototypes have been developed in an incremental way
and each prototype can be regarded as a reaction to the lessons learned during the development
of its predecessor. While they all use some form of constraint satisfaction, they each approach the
problem differently. Below, we give a short overview of the prototypes developed, since they provide
key insights in both the practical aspects of constraint solving and the more theoretical aspects of
multimedia presentation generation.

2.1 Constraint Programming
The first prototype, developed by Bailey et al. [8], aimed at the automatic transformation of the
results of simple multimedia database queries into a multimedia presentation encoded in SMIL. The
system initially consisted of a set of high-level transformation rules, specified in Prolog, that con-
verted structured results from the database into SMIL presentation constructs. However, the detailed
calculation of the exact spatial coordinates of the presentation’s visual layout and the precise synchro-
nization requirements made it difficult to ensure that the transformation rules remained generic and
were specified at the right level of abstraction. To address this problem, an extra layer was added to
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the system. The transformation rules in Prolog no longer needed to do the calculations, and instead
needed only to generate the set of constraints that the desired spatio-temporal layout should meet.
A second program, written in Java, used these constraints to determine the exact coordinates of the
resulting SMIL presentation. The prototype used an off-the-shelf constraint solver, Cassowary [4], to
apply different types of domain reduction rules.

The problem with this approach, however, is that it is in general not possible to efficiently revise a
constraint. Once a set of constraints has been determined, the system can either solve them or not.
If it cannot, it is not known which constraint caused a failure and a complete new set of constraints
needs to be developed, in the hope that the new set will resolve the previous problem. Only when all
possible sets of constraints have been tried is it known whether they were feasible or not. Additionally,
the fact that the constraint generator (in Prolog) and the constraint solver (in Java) were two separate
programs made it even harder to control the revision of constraints in a convenient way. Constraint
Logic Programming(CLP) focuses on this type of problem.

2.2 Constraint Logic Programming
Constraint Logic Programming is a combination of logic programming and constraint solving. It
combines features from Prolog, such as backtracking and unification, with the domain reduction
techniques from the constraint solver paradigm. Practically, this means that alternative constraints
can be invoked when the original one caused a failure. This is an improvement in comparison with
the previous approach, since we need only try alternatives for constraints which caused a failure.

The next prototype was based on ECLiPSe [14], a true constraint logic programming system that
supports different types of domains such as integers, reals, sets etc. In addition to its built-in ability
to revise constraints, another improvement of ECLiPSe is that the system is able to combine the
processing of the transformation rules and the constraints within a single execution environment.
This is not only more efficient, but also allows for a more sophisticated interaction between these two
phases in the generation process.

Another improvement of the ECLiPSe-based prototype is the introduction of another abstraction
layer for the transformation rules. In fact, when transforming from the semantic structure of the
document to a set of constraints, two types of decisions need to be made. First, one needs to decide
on how the semantics can best be presented. Second, one needs to decide on how this presentation
is to be represented by a set of constraints. To be able to discriminate between these two different
levels, we introduced the notion of a communicative device [9]. Communicative devices are patterns
of often used multimedia presentation design, and allow the designer to choose the most appropriate
presentation pattern to convey the semantics of the document to the user. The transformation of
the communicative devices into a set of constraints is a separate task, and is the responsibility of the
programmer, not the designer.

Despite these improvements, the new prototype suffered from a different drawback. While multime-
dia presentations could be described easily by sets of constraints that were automatically generated by
the transformation rules, for various types of processing these constraints proved to be too low level.
For example, due to the low-level specification of spatial layout in SMIL, a solved set of constraints
provides the necessary spatial information at exactly the right level: in the form of x and y coordi-
nates, with width and height values. In contrast, SMIL has much higher level facilities for defining
the temporal structure of the presentation, and the flat list of numeric begin and end times for each
media item is not the most appropriate level of abstraction. Clearly, higher-level descriptions of the
temporal relations, including grouping and hierarchical structures, are needed to deliver high quality
SMIL output.

Other, perhaps more fundamental, drawbacks of the low-level nature are related to inappropriate
backtracking behavior. For example, when the domain of a specific coordinate has been reduced to,
say [5..15], and the resulting layout with x = 5 fails for some other reason and causes the system to
backtrack, the solver might try x = 6, x = 7, etc. This will, when the coordinates are expressed in
pixel units, generate a number of similar layouts that differ by only one pixel value for one media
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item: clearly, in most cases this is not the desired backtrack behavior. Instead of backtracking on
the quantitative level, it is often more appropriate to backtrack on a more qualitative level, e.g. by
backtracking over the decision that A should be left of B, by trying, for example, A above B.

While ECLiPSe has no built-in solvers for qualitative constraints such as “left-of” or “above”, it
supports the definition of application-specific domains and constraints. These are typically called
user-defined constraints.

2.3 User-Defined Constraints
The drawbacks of the use of only numerical domains and constraints in the prototype discussed above
lead to our current prototype, which implements an extra layer of abstraction, based on qualitative
constraints. Unlike the generic numerical constraints, the qualitative constraints used are specific
to multimedia presentation applications. In ECLiPSe, qualitative, or user-defined, constraints have
no associated built-in library which specifies how to deal with these types of constraints. Instead,
the application needs to provide the rules which the system can use to reduce the domains of the
associated variables. For example, we need a transitive rule which states that if image A is left of
image B and B is left of image C then A is left of C as well. We also need a symmetric rule which
states that if A is left of B then B is right of A, etc.

Together, these domain reduction rules can be seen as a formalization of the implicit “common
knowledge” human authors have about spatial and temporal relations. A complete specification of
these rules, however, is not trivial and is in fact a programming task in itself. One way of specifying
such rules is with a language that is designed for this purpose: Constraint Handling Rules (CHR), a
declarative language extension of constraint-based systems such as ECLiPSe.

A CHR program consists of several rules, where each rule consists of a name, head, type, guard and
body. Basically there are two types of rules which are simplification rules and propagation rules1. For
example, the symmetry relation between left and right mentioned above might be specified using a
simplification rule (⇔) named sym1, defined as:

% Name Head Type Guard Body
sym1 @ A rgt B <=> visual([A,B]) | B lft A.

Note the use of the guard that prevents this rule to be tried for non-visual items (such as audio
fragments). The transitive nature of the left of relation could be specified using a propagation (⇒)
rule named trans1:

% Name Head Type Guard Body
trans1 @ A lft B, B lft C ==> A##B, B##C | A lft C.

These CHR rules can be applied as follows: suppose we have specified the constraints “image 1 should
be placed to the right of image 2” and “image 1 should be left of image 3” then initially the working
set of constraints (also called the constraint store) is:

{ img1 rgt img2, img1 lft img3 }
The CHR-rules all have a name which is only there for debugging reasons — it is convenient to know
which rule is applied when. They also have a head, which is a constraint (or a sequence of constraints)
which determines whether a rule is applicable or not. If a constraint from the constraint store matches
a head, the rule is applied. So in our example the constraint “img1 rgt img2” matches the head of the
rule sym1. This is a simplification rule as the⇔ operator shows. Simplification rules replace the head
by the constraint which is defined by the body of the rule. But before this replacement can proceed,
we have to pass the guard. A guard is a final test which should succeed before the rule is applied. In
our case the guard states that A or B should be visual items. Since we only have images here the test
will succeed and we pass to the body. The body defines a new constraint and replaces “A rgt B” for
“B lft A”. So the constraint store was

1Strictly speaking there is a third type, called the simpagation rule which is a combination of the first two.
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{ img1 rgt img2, img1 lft img3 }

and after the rule sym1 is applied the constraint store is

{ img2 lft img1, img1 lft img3 }

This set of constraints matches the head of rule trans1 which is a propagation rule. This means that
the constraint store is now extended with the new constructed constraint from the body. So after the
rule trans1 is applied the constraint store will look like:

{ img2 lft img1, img1 lft img3, img2 lft img3 }

Note that unlike Prolog clauses, CHR rules have no order. The next rule that fires is determined by
the CHR-compiler, and the order in which the rules are specified does not influence the behavior of
the program. If there is no applicable rule then the constraint-processing delays until a variable in one
of the constraints changes. The rules whose head match the altered constraint will then be re-applied.

2.4 Automatic Rule Generation
User-defined constraints eventually need to be mapped onto built-in constraints, such as inequality
(≤,≥) or equality (=), which will evaluate to either true or false. Since inequality constraints are only
defined for numerical values, we have to enumerate all possibilities by means of equality constraints.
In practice, the number of possibilities is often too large to allow manual enumeration, thus requiring
some means of automatic rule generation.

For example suppose we have a Boolean domain {false, true} and a constraint and(A,B,C) rep-
resenting A ∧ B = C. The domain and constraint are not numeric, so we have to express the and
constraint by means of equality constraints. While A, B and C can all be either true or false, once we
know C is true we also know that A and B have to be true, etc. CHR rules to express this could be:

and(A,B,true) ==> A=true, B=true

% other rules for the ‘‘and’’ constraint:

and(true,true,C) ==> C=true

and(A,true,true) ==> A=true

and(true,B,true) ==> B=true

and(A,false,C) ==> A={true,false}, C=false

and(false,B,C) ==> B={true,false}, C=false

These six rules completely define the ‘and’ constraint. This constraint uses a binary domain and is
therefore quite straightforward. In practice, the domains for multimedia generation are often larger
which result in more complex rules. For example, to fully define the transitive behavior of the 13 Allen
temporal relations [1], it turns out that almost 500 CHR rules are needed. In addition, our constraint
system also needs similar rules for the spatial dimensions. Clearly, manual specification of all these
rules is not realistic.

Fortunately, the majority of these rules can be generated automatically. In particular, we used the
rule generation algorithms and tools developed by Apt and Monfroy [3] to generate many of the needed
rules automatically. Since the Allen domain consists of 13 values, there are 13×13 = 169 combinations
which reduce the domain of the third variable. These combinations are completely defined by Allen
([1], the table in Figure 4 on page 836). The translation of this table to the corresponding CHR-rules
is done automatically by the algorithm.

Apt and Monfroy define two versions of the algorithm. The first leads to a local consistency notion
called arc consistency. Practically, this means that the domains associated with the three variables
in a transitive constraint contain only values which participate in a solution. The other version of
the algorithm leads to a local consistency notion called rule consistency. This notion excludes values
which do not lead to a solution. Since rule consistency is a weaker notion than arc consistency, the
arc consistent rules can exclude more values which results in faster solutions.
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Figure 1: Overview of the Cuypers client/server architecture

The generation of all the arc consistent rules, however, takes about 5 days on a 500MHz PC, and
results in more than 26000 rules. In contrast, the rule consistent algorithm generates only 498 rules in
less than 6 seconds. Apart from the time it takes the algorithm to produce all the rules (which needs
to be done only once), there is also a huge difference in the time needed to load the generated rules
during the start-up of the presentation engine. So from a practical perspective, we choose to used the
rule consistent version in our current prototype even though, theoretically, the arc consistent version
is more efficient. In future versions of the system, when we have a more stable, continuously running
presentation engine, the increase in run-time efficiency of the arc consistent rules might outweigh
the extra overhead at start-up time. The next section describes the current prototype, the Cuypers
multimedia presentation engine, in more detail.

3. Constraint Processing in Cuypers

Cuypers is our current prototype system for generating multimedia presentations. This section initially
gives an overview of the system including how an abstract semantic structure is transformed into a
playable multimedia presentation. It then discusses in detail the use of constraints in the different
stages in the generation process.

The Cuypers system is designed to operate in the context of a client/server architecture, as depicted
in Figure 1. The figure shows two different servers: one dedicated server to deliver streaming media
(such as audio and video fragments) to the client, and another, off-the-shelf, Web server to deliver the
other data, including the generated multimedia presentation itself (we currently use SMIL [13] for this
purpose). The core of the Cuypers system receives, from a multimedia information retrieval system,
a semantic description of the multimedia document as its input, and sends the generated presentation
to the server, for further delivery to the client (see [12] for more details).

The core generation engine, as depicted in Figure 2, is built around the five conceptual abstraction
layers discussed in the previous section.

1. Semantic structure The semantic structure is a high-level semantic description of the presen-
tation. It completely abstracts from the design and layout of the presentation. The designer
provides a set of transformation rules to transform this structure into a specification based on
communicative devices.

2. Communicative devices Communicative devices are abstract constructs that specify how the
information should be conveyed to the user. Communicative devices are device independent,
and can be used to convey the similar presentations for different devices. An example of a
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Figure 2: Levels of abstraction in the Cuypers generation engine

communicative device given in [9] is the “bookshelf”, which ensures that a sequence of media
items is presented in a particular order. The layout that is chosen to achieve this goal may
depend on the capabilities of the target device, the preferences of the user, etc. This layout is
specified using a set of qualitative constraints.

3. Qualitative constraints Qualitative constraints are used to specify communicative devices at
a high level, as described in section 2.

4. Quantitative constraints Quantitative constraints make the transformation from qualitative
constraints to numeric finite-domain constraints. At this level one can determine the exact
position of the different media items in the presentation and whether they will fit on the screen,
do not exceed a given time-limit, etc.

5. Final form presentation The last step is finalizing the presentation to a format suitable for
the player or browser on the target device. Examples of such formats include XHTML, SVG
and SMIL. Cuypers currently focuses on generating SMIL [13].

In the remainder of this section, we describe the design of the two constraint layers. For more details
about the other layers see [9, 12]. As we discussed in section 2, the use of both qualitative and
quantitative constraints within a system requires the translation of the qualitative constraints into
quantitative constraints. To provide a clear understanding of how this translation should be done,
we need to describe the domains that are involved in multimedia generation, the data structures that
are needed to process the associated constraints and, most importantly, the rules that are needed to
reason with them. These are detailed in the following.

3.1 Dimensions in Multimedia Generation
Multimedia presentations are built up from different media types which use different presentation
dimensions:

• visual media, such as images, text and video use the two common spatial x and y dimensions;

• visual media also have a z dimension, describing the layering order of (overlapping) items;

• continuous media such as audio and video also use a temporal t dimension;

• in addition to these spatio-temporal dimensions, parts of the presentation can be connected by
hyperlinks. Automatic link generation is, however, beyond the scope of this paper.
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The “traditional” x, y and t dimensions are described using both quantitative and qualitative con-
straints. For the quantitative constraints, we use integer domains. As described in section 2, the
qualitative constraints for the temporal dimension make use of the 13 interval relations specified by
Allen. Each of the spatial x and y dimensions is treated similarly to the temporal dimension, so Allen’s
interval relations are also used for the spatial dimensions. Note that this “bounding box” approach
limits the ability to model, for example, the rotation of visual items. The z dimension could, in
theory, also be modeled qualitatively. There are, however, only three possible relations (A in front of
B, A behind B and A on the same level as B), and these map directly onto the equivalent numerical
constraints (A < B,B > A,A = B). Therefore, we currently only use numerical constraints for the z
dimension.

3.2 A Data-Structure for Qualitative Multimedia Constraints
To be able to describe a multimedia presentation by a set of high level qualitative constraints, and
to be able to reason with these constraints, the constraints need to be organized into an adequate
datastructure that provides more information than just the constraints that apply between the media
items. For example, it is often convenient to be able to explicitly model the hierarchical structure of a
multimedia presentation. While this suggests the use of a tree-based datastructure, lesson learned from
earlier prototypes indicate that this is too restrictive. For example, when modeling grid structures,
it is convenient to be able to group the same item both vertically and horizontally. Because this is
not possible in a strict tree, our data structure is based on the notion of a fully connected graph,
consisting of nodes and edges.

image 1

group 1

image 2

image 2

image 1

label 1

group 1

left

above

inlabel 1

in

Figure 3: Graph datastructure for multimedia constraints.

In Figure 3, an example fragment of a presentation is displayed on the left, with the associated
graph structure on the right. Note that only a single relation is displayed on the edges. The reverse
relation and the relations representing the other dimensions have been left out for clarity. Initially
all media items can have any relationship with each other. Constraints can be explicitly set, in the
example the rules associated with the communicative device used have decided to group image 1 and
label 1 together, to position this group left of image 2, and to position label 1 above image 1. This
information can then be used to reduce the number of possibilities for the other edges in an intelligent
way. The reasoning rules required for this reduction are specified using CHR. Once all reduction rules
are applied and the system has not detect any inconsistencies, it picks an arbitrary value for a variable
from its associated domain. The new binding of this variable and its value can trigger reduction rules
once again. If the constraint solver detects an inconsistency, it backtracks over the available choices
and picks another value, after which the process of applying reduction rules repeats itself. Once an
inconsistency is found and there are no alternatives left, the set of constraints fails. This triggers
backtracking on the Prolog level, which might result in an alternative set of constraints. As soon as
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the system succeeds in binding every variable to a suitable value, these values are used to generate
the associated multimedia presentation.

To build the graph structure, the transformation rules deploy two primitives: nodes and edges. In
a later phase, nodes will also be used to represent the quantitative aspects of the presentation. The
number of nodes for each media item depends on its type and the presentation dimensions involved.
An image has 6 nodes (x1, y1, x2, y2, t1, t2) and an audio fragment has 2 (t1, t2). A node can be
represented in ECLiPSe as:

% NodeId is a structure of the form ’Id:Dimension/Nr’ e.g. ’img1:x/1’)

% Value is then a variable or atom associated with the x/1 domain of img1

node(NodeId,Value).

Note that all media items are assumed to have a unique ID. An edge relates two IDs along a partic-
ular dimension, thus representing a qualitative constraint. The number of edges between two IDs is
dependent on the number of presentation dimensions they share. Between two images, there are six
edges (for the x, y, t dimensions and their inverses) while between an audio and image there are only
two (t with an inverse). An edge is represented in Cuypers as:

% IdX are the Ids of the associated media items

% Dimension is the label of the edge x,y or t

% Value is a variable or an atom associated with the domain of Dimension

edge(IdA,IdB,Dimension,Value).

To simplify the building of a consistent graph, a set of CHR rules specifies the relationship between
nodes and edges. Whenever an edge is asserted, the system looks for the associated nodes. When
these are not yet defined, the system introduces them automatically, according to the associated CHR
rules. For example, for the temporal dimension a CHR rule relating temporal nodes with edges may
be specified as:

% Node introduction

edge(IdA,IdB,t, _Value) % Temporal

==>

node(IdA:t/1,VA1), % introduce start-node t1

node(IdA:t/2,VA2). % introduce end-node t2

When the initial graph is built, typically the qualitative relationships of only a few edges have been
fully determined. The set of CHR rules that allow the system to infer possible values for the remaining
edges. will be defined below.

3.3 CHR Rules for Qualitative Multimedia Constraints
In order to reduce the domains of the variables in the remaining edges in an intelligent way, we
need specific rules which state how and when these reductions should be invoked. These rules range
from optimization rules to rules that are needed for reasoning over spatio-temporal dimensions. For
example, both application of the Prolog transformation rules and application of the domain reduction
rules might result in duplicate edges. Accordingly, we need a rule that specifies that when two edges
are identical, one can be omitted:

% Equality

edge(IdA,IdB,Dimension,Value), edge(IdA,IdB,Dimension,Value)

<=> % substitute for

edge(IdA,IdB,Dimension,Value).

Another rule is needed to specify that if two edges between the same two nodes have the same
dimension, then their values should also be the same:

% Unification

edge(IdA,IdB,Dimension,ValueA), edge(IdA,IdB,Dimension,ValueB)

==> % implies

ValueA = ValueB.
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We also need to be able to deal with inverse relations. If there is a (directed) edge between two nodes
A and B with a certain dimension and a certain value for a relation, then there is also an edge between
nodes B and A with the same dimension but with an inverse relation:

% Inverse

edge(IdA,IdB,Dimension,Value)

==> % implies

inverse(Value,RValue) % only when relation has inverse

|

edge(IdB,IdA,Dimension,RValue).

Further rules are needed to specify the transitive behavior of many of the Allen relations. For example,
if there is an edge between node A and node B (on dimension x, y or t) and there is an edge between
node B and C with value ‘b’ (before) then there is also an edge between A and C with value ‘b’:

% Transitivity

edge(IdA,IdB,Dimension,b), edge(IdB,IdC,Dimension,b)

==> % implies

allenDim(Dimension) % only for x,y and t domain

|

edge(IdA,IdC,Dimension,b).

As discussed in section 2, it is not practical to specify the transitive behavior of all 13×13 combinations
in this manner. Therefore, the rule below defers the implementation of the transitivity rules to the
predicate tr, and rule generation tools of Apt and Monfroy have been used to define the truth values
of all possible combinations of variables of this predicate.

% Transitivity (dim x,y,t)

edge(IdA,IdB,Dimension,ValueAB), edge(IdB,IdC,Dimension,ValueBC)

==> % implies

allenDim(label), % only for x,y and t domain

A \= B, A \= C, B \= C % A, B and C are different nodes

|

tr(ValueAB,ValueBC,ValueAC), % rule automatically generated

% by Apt et al.

edge(A,C, Dimension ,ValueAC). % add the deduced constraint

Using these CHR rules we can, on the basis of the edges explicitly defined by the transformation
rules, reduce the domains of the remaining edges. This allows us to define higher level constraints.
For example, we can define a “meta-constraint” that specifies that if a label is positioned above an
image, then all other labels should also be placed consistently above their corresponding images.
However, a solved set of qualitative constraints in itself is insufficient. Quantitative constraints are
needed to check whether a certain set of qualitative constraints does not violate some hard quantitative
requirements such as the target platform’s screen size or the maximum duration of the presentation.
Below, we define a set of CHR rules that maps the qualitative constraint graph to a set of quantitative
constraints.

3.4 CHR Rules for Translating Qualitative to Quantitative Constraints
Most of the quantitative constraints can be generated by mapping the qualitative Allen relations to
numerical constraints. The qualitative Allen relations can, for each of the three dimensions x, y, and
t, be mapped to one or more corresponding numeric constraints. Figure 4 on the following page
defines this mapping for the x dimension, using X1 as the left coordinate and X2 as the right. Similar
mappings can be defined for the other dimensions. Given these mappings, we can define CHR rules
to map all qualitative (Allen) constraints into numeric constraints that can be solved by ECLiPSe
built-in libraries. For example, we can define the translation rules for meet (“b”) in CHR as follows:2

2Note the use of the hashmark to discriminate equality constraints (# =) from the usual equality operator in Prolog
(=).
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Allen relation Quantitative constraints

A before B XA
2 < XB

1

A during B XA
1 > XB

1 , X
A
2 < XB

2

A overlaps B XA
1 < XB

2 , X
A
2 > XB

1 , X
A
2 < XB

2

A meets B XA
2 = XB

1

A starts B XA
1 = XB

1 , X
A
2 −XA

1 < XB
2 −XB

1

A finishes B XA
2 = XB

2 , X
A
2 −XA

1 < XB
2 −XB

1

A equals B XA
1 = XB

1 , X
A
2 = XB

2

Figure 4: Allen’s relations expressed using quantitative constraints.

% transform qualitative to quantitative

edge(IdA,IdB,Dimension,m), % A meets B

node(IdA:Dimension/2,CoordinateA), % A.coordinate2

node(IdB:Dimension/1,CoordinateB) % B.coordinate1.

==>

meets(CoordinateA, CoordinateB).

% meets -> the second coordinate of A should be equal to the

% first coordinate of B

meets(CoordinateA2,CoordinateB1)

==> % implies

integers([CoordinateA2,CoordinateB]1), % only integers

|

CoordinateA2 #= CoordinateB1 % A2 equals B1

The Allen relations before, during and overlap require an extra input parameter to define the corre-
sponding quantitative constraints. The relation between two objects A and B is not entirely defined
by its X1 and X2 coordinates. The missing parameter is the padding-distance. This is the distance
between two of the coordinates of the A and B object. The definition depends on the type of relation.
The padding between a before relation is defined to be the difference of its XB

1 and XA
2 coordinates.

The padding between a during relation is defined to be the difference between XA
1 and XB

1 and the
padding for the overlap relation is defined to be the difference between XA

2 and XB
1 .

before(CoordinateA2,CoordinateB1, Padding)

==> % implies

integers([CoordinateA2,CoordinateB1, Padding]), % only integers

|

CoordinateA2 #< CoordinateB1 % A before B

Padding #= CoordinateB1 - CoordinateA2 % P = B1 - A2

The padding between two objects is added as a constraint to the constraint store. This enables a
convenient way of constraining distances between media items in a consistent way, e.g., ensuring the
padding between an enumeration of media items to be the same:

edge(A,B,Dim,b),

node(A:Dim/2,AD2),

node(B:Dim/1,BD1)

==> % implies

BD1 - AD2 #= P, % calculate padding

padding(A,B,P), % add padding constraint

before(AD2,BD1,P). % -> enough information to specify
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% qualitative constraint

Relations, such as during, starts and finishes, require certain constraints on the length of the items.
There is an optimization possible if we enable a combination of qualitative and quantitative domains.
We know, for example, that an “A during B” constraint will never be met if the length of A exceeds
the length of B:

edge(A,B,x,d), width(A,WA), width(B,WB) % suppose widths are known

<=>

ground(WA),ground(WB), % WA and WB are known

WA >= WB % WA >= WB

|

false. % this constraint is not feasible.

edge(A,B,x,d), width(A,WA), width(B,WB)

==>

(nonground(WA);nonground(WB)) % either WA or WB is unknown

|

WA #< WB. % constraint: length of A should be

% smaller than the length of B

Finally, grouping enables the user to define constraints on a group of nodes in a convenient way.
Instead of stating every relation between a target object and the members of the group they can be
stated by defining a group containing all those members and a constraint between the group and the
target object. In practice a group is a node which is not bound to a media item. All its members are
placed within this node by means of ‘during’ constraints in the x,y and t dimensions. A group forms
a ‘bounding box’ around its members. The exact width, height, duration and position of a group are
not known until its members are sufficiently instantiated.

4. Related Work

Generation of synchronized multimedia presentations from higher level descriptions is not novel in it-
self. Spatial and temporal constraints for specifying multimedia are used, for example, in the Madeus
system [6]. The common architecture of a number of model-based systems for multimedia presenta-
tions developed within the AI community resulted in the Standard Reference Model for Intelligent
Multimedia Presentation Systems (SRM-IMMPS) [5], and the relation between SRM-IMMPS with a
previous prototype of the system presented here has been described in [10].

Our work is also closely related to the work of Elisabeth André, who described the use of AI
planning techniques in combination with constraint solvers in her WIP and PPP systems [2]. The
main contribution of our approach is that it integrates the several processing steps into a single run
time environment so that the system can freely backtrack across the different levels. This allows high-
level presentation decisions to be re-evaluated as a result of constraints that turn out to be insolvable
at the lower levels (e.g. pixel level). Nevertheless, the individual levels remain conceptually separated,
which allows the definition of small, declarative design rules instead of the single hierarchy of planning
operators used by André.

5. Conclusions and Future Work

This paper shows how constraints and constraint logic programming can be beneficial to the auto-
matic generation of multimedia presentations. We demonstrated that the generation process consists
of several conceptual layers transforming a high level semantic description of the presentation through
different stages into a playable multimedia presentation. Constraints are applied to create an abstrac-
tion layer which simplifies the specification of the transformation rules while conserving the ability
to output a fully specified final form multimedia presentation. We argued that both qualitative and
quantitative constraints are needed in order to generate a presentation. Quantitative constraints form
a first abstraction above the final-form presentation, and allow for (minor) adaptation of a presen-
tation to different screen sizes etc. A solved set of constraints ensures that quantitative measures,
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such as maximum screen size and maximum duration, are not violated. Qualitative constraints form a
higher-level specification of the layout of a presentation. They allow for a wider range of adaptation,
and also allow for reasoning over the results by specifying “meta constraints”, such as consistency con-
straints. They also make the generation process more efficient, because of their small domains, and
allow higher level structures to be used in the final form specification language. While the domain
reduction rules needed to reason with qualitative constraints can be expressed in CHR, additional
algorithms and tools support are needed to generate the large number of rules required.

The Cuypers system we are currently developing makes use of the techniques presented here. It
chooses the first presentation which satisfies all constraints as the one that is presented to the user.
In most cases this is, from an author’s perspective, unlikely to be the best one. We are currently
investigating methods of choosing among the possible alternatives on the basis of some predefined
evaluation function that reflects the “quality” of the generated presentation. What are good quality
measures for multimedia presentations and how can we formalize them are further points of research.
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