
IMPROVING MEDIA FRAGMENT
INTEGRATION IN EMERGING WEB

FORMATS

LLOYD RUTLEDGE AND PATRICK SCHMITZ

CWI, P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands
email: Lloyd.Rutledge@cwi.nl, Patrick.Schmitz@cwi.nl

The media components integrated into multimedia presentations are typically entire
files. At times the media component desired for integration, either as a navigation
destination or as coordinate presentation, is a part of a file, or what we call a frag-
ment. Basic media fragment integration has long been implemented in hypermedia
systems, but not to the degree envisioned by hypermedia research. The current emer-
gence of several XML-based formats is beginning to extend the possibilities for me-
dia fragment integration on a large scale. This paper presents a set of requirements
for media fragment integration, describes how standards currently meet some of
these requirements and proposes extensions to these standards for meeting remaining
requirements.

1 Introduction

The computer system file, as the most basic unit of data storage and distribution, has
long provided the initially conceived division between distinct media components in
multimedia integration. Most systems most easily, or only, handle the integration of a
media object, whether as the destination of a hyperlink navigation or as one compo-
nent of a coordinated presentation, as a single, entire file. When integrated media ob-
jects must be entire files, then they can only be reused in multimedia presentations that
can work with the whole file. Consequently, if a portion of an existing media file is to
incorporated in a multimedia display, then a separate file must be created whose sole
contents are that portion. This results in redundant media data. Preventing this moti-
vates the ability of multimedia systems to integrate portions of media files.

We call a portion of media file that is integrated into a multimedia presentation a
fragment. If multimedia presentations can handle fragments of media files as whole
media objects in their own right, then one media file can have many fragments that are
integrated separately into different multimedia presentations. This results in more ef-
ficient storage of media data. It also requires that a fragment can be located within a
media file, extracted and processed as distinct from the rest of the file.

We call a portion of media file that is not a fragment within it that fragment’s con-
text. Often times a media file makes up a whole conceptual unit. A multimedia presen-
tation may present a fragment of the file but also present its context as distinct from
the fragment but also containing information important to the user for understanding
the fragment’s significance. The resulting requirement is that the context must not

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301632545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

only be able to be processed distinctly from the fragment, it must also be presentable
as distinct from the fragment.

This paper explores the possibilities for expressing and implementing fragment-
ed media integration with existing and emerging standards. First, we present our main
functions for fragmented media integration and deduce the requirements for express-
ing and processing them. Then we describe the ability of current standards and their
implementations to meet these requirements in processing and presenting fragments
and their contexts. Finally, we discuss some requirements for media fragmenting and
integrated presentation that remain unmet and propose future directions in standards
for meeting them. These future directions relate in large part to focussing fragment lo-
cating in URI attribute values and fragment display in style specifications.

2 Background and Related Work

Multimedia authoring systems such as CMIFed [12][22] have long provided spatial
and temporal measurements as a means of fragmenting media files. In such systems,
authors can apply numeric coordinates in space, time or both to media files to extract
portions of them for placement in their presentations. This enables, for example, the
cropping of image files to include smaller images. It also enables the clipping of audio
and video files into shorter segments. These cropped image fragments are typically
rectangular in shape. Spatial and temporal fragmenting can be combined in some of
these systems to crop the image of a played video, though the dimensions of the crop
do not change as the video is played.

Digital video editing tools have long provided edit lists as a means of reusing
clips taken from a single video. Edit lists consist of a sequences of time stamp pairs
denoting clips from the source video. They enable source video files to be reused dur-
ing editing without modifying them or copying segments of them into smaller files.
Many different edit lists can exist for one collection of source video, each playing dif-
ferent cuts from the same source video.

Early work on more structure-based approaches to video clip sequencing in-
cludes the Video Retrieval and Sequencing System (VRSS) [4]. The VRSS handled
all levels of video production. At the beginning of the process, VRSS segments the
video into structured and semantically-significant segments to enable retrieving and
sequencing them for display of different edit cuts. It then provides retrieval of the seg-
ment and then sequences them for edited cut presentations.

The emerging standard MPEG-7 imposes hierarchical semantic structure on dig-
ital media such as video and audio, allowing fragments of it to be labelled for external
reference [16][18]. The locations of these fragments within their host files can be de-
fined both temporally and spatially. Multimedia applications integrating these frag-
ments can locate them through their MPEG-7 labels, without needing to know their

spatial and temporal coordinates. Furthermore, spatial coordinates for cropping in
temporal clips can change during the progression of the clip, defining the classic user
case of “following the car as it drives across the screen”. The Institut National de
l’Audiovisuel (INA) in France has explored using an MPEG-7-based approach for
structuring and fragmenting large-scale digital archives for authoring multimedia ap-
plications [2]. The VideoMadeus multimedia authoring tool allows intricate hyperme-
dia integration of fragments from structured video [21].

The MacWeb project explored the issues involved when portions of text files are
endpoints in hyperlinks [19]. In this system, our term “fragment” corresponds to the
term “anchor”, which is a text file segment that is navigated to from outside the text
file. The MacWeb project discusses extra information necessary for each endpoint of
the link beyond that used for the link as a whole. This includes the endpoint’s type,
which is the role it plays in the link. If the endpoint is an anchor, then the context of
the anchor is useful information for the endpoint within the link. The context is the
portion of the text file around the anchor that should be shown to the user with the an-
chor when the link is traversed so that the anchor itself and its meaning in the link
makes sense to the user. MacWeb’s “context” is not necessarily all of the file except
the fragment. It is a conceptual context rather than a file boundary concept. However,
a context in MacWeb cannot extend beyond the file in which its fragment sits.

The terms “anchor” and “context” are used similarly in the Amsterdam Hyper-
media Model (AHM) [12][13], an extension of time and multimedia constructs to the
Dexter Hypertext model [11]. An AHM atomic component integrates all or part of a
media file into a hypermedia document. An anchor is then a segment of an atomic
component that can be linked to from elsewhere. A context in AHM is defined for ei-
ther or both the source and destination endpoints of a navigational hyperlink. The
source context states what parts of the presentation change when the link is traversed,
thus allowing other parts of the presentation to stay the same after link traversal, pro-
viding a sense of continuance during navigation.

The destination context of a link is an ancestor of the destination linkend in the
AHM document hierarchy. The entire destination context is displayed as a result of
the link traversal to its descendent, the actual destination. The presentation specifica-
tion of the destination endpoint can set a style for the anchor to distinguish it from its
context. Presentation specification in AHM refer to channels through which compo-
nents of the document get presented. Channels act as abstract presentation peripherals
or devices and contain much specification on how media get processed and displayed
for a given circumstance.

An important different between AHM context and MacWeb context is that AHM
destination context is structured in the integrating document, not in the integrated file.
Thus the destination context is not necessarily entirely from the fragment’s host file,

nor does it have to contain the fragment in the fragment’s host file. Therefore it is the
hypermedia author that determines what the context can be, not the media object cre-
ator.

The Look of the Link discussed the visualization of source and destination anchors
in hypertext documents [23]. That is, it described how hyperlink starting points can be
indicated, as well as the targeted fragments in destination presentation files. Here, a
number of historic and current visual approaches are described. Some new visual pat-
terns for distinguishing anchor fragments of hyperlinks are also proposed.

3 Requirements

We define the term “fragment” as a portion of a file. This article is concerned in par-
ticular with the integration of fragments into interactive multimedia presentations.
Thus, these will be fragments will be media files, including not just text but also im-
ages, graphics and video. The multimedia author will need to specify what portion of
each file the fragment is. The multimedia browser will need to processing this speci-
fication, retrieve the fragment and display it appropriately. The nature of these frag-
ments’ integration will be as endpoints of navigational link traversals and as media ob-
jects whose presentation is coordinated with that of other media objects in a multime-
dia application.

An important part of integrating a media fragment is determining how to treat its
context. We define a fragment’s context as the portion of the fragment’s host media
file that is not the fragment itself. Although our use of the term may differ from earlier
literature, it is consistent with how W3C fragmenting standards use the term [10]. Of-
ten, from the user perspective, the context disappears completely, making the frag-
ment the only part of the media file shown in any form to the user. At other times, hav-
ing the user understand the context in which a fragment appears is important. In such
cases, the user should be able to perceive and navigate through both the context and
fragment, but should still be able to distinguish between the two because the author
would not have specified access to the fragment if the distinction was not important to
the user.

Given these definitions and perspectives of fragments and contexts, we present
below a list of requirements for media fragment integration. This list is used to struc-
ture our discussion of media fragment integration in the remainder of this paper.
• spatial fragmenting — There should be a spatial means of specifying what por-

tion of the media object makes up the desired fragment.
• temporal fragmenting — There should be a temporal means of specifying what

portion of the media object makes up the desired fragment.
• nominal fragmenting — Fragments that are given a name in should be referable to

by integrating formats with this name. This name can either be assigned by the

host media file or by another external data source associating names with location
specifiers in the media file.

• structural fragmenting — There should be a structural means of specifying what
portion of the media object makes up the desired fragment. This means of locat-
ing will be dependent on the data format representing the media.

• context removal — The display of the context should be removable without
affecting the fragment’s appearance.

• fragment distinction — The specification of how the fragment appears should be
able to be distinct from that of its context.

• initial navigation to fragment — The fragment should be made readily apparent
upon initial access.

• integration control over fragment handling — The integrating multimedia pre-
sentation author should able to specify each fragment’s context removal, distinc-
tion and initial navigation, rather than having it decided by the browser or the
media content creator.

4 Current Standards-based Solutions

The recent development of several XML-based structured media formats empowers
further the integration of media files. One impact is that the structure of integrated me-
dia can be used as the basis for specifying fragments of it. Such a fragment can then
be displayed alone, or differently from, its context. Another impact is that a common
style mechanism can be applied to multiple XML-defined media components. This al-
lows details of how a fragment is presented to be specified outside of its context. These
features enable current standards to fulfill some of the requirements for fragmented
media integration.

The main Web formats for media presentation are HTML, SVG and SMIL. Hy-
pertext Markup Language (HTML) defines the XML encoding of text documents for
presentation on the Web [20]. Scalable Vector Graphics (SVG) offers two-dimension-
al vector graphics as a structured representation of visual content, also using XML [8].
The Synchronized Multimedia Integration Language (SMIL) is an XML encoding for
multimedia on the Web. Version 1.0 of SMIL came out in 1998 with the basics for dis-
tributed multimedia [14]. SMIL 2.0 is expected to be released soon as a recommenda-
tion [6]. It has all SMIL 1.0 features and adds many more, defining state-of-the-art
Web-based multimedia.

In terms of presentation and integration, HTML, SVG and SMIL have much in
common. All three define presentations that can be integrated, in whole or in part, into
other presentations. Furthermore, all three have facilities for integrating the display of
other media into their own presentations. All three can integrate other media either as
presented directly or as the destination of a navigational hyperlink. Finally, Cascading

Style Sheets (CSS) provides a unified way to specify the style which XML-structured
media is to be presented, and has been incorporated into XHTML, SMIL and SVG [3].

HTML is a multimedia language in the sense that it can refer to other media files
to integrate their presentations with its text content. The HTML img element refers to
an external image file for in-line display. The iframe element allows external
HTML files to be integrated into this HTML file’s display. SVG has an image ele-
ment for placing displays from external image files with its graphic objects. SMIL has
a more general-purpose constructs for media integration with its media object ele-
ments.

4.1 Current Measured Fragmenting
CSS style sheets for integrated displays can simulate some spatial cropping in HTML,
SVG and SMIL. They can do so by placing the display of entire image files in boxes
that are sized only for the fragments. Then they would use the overflow:hidden
property assignment to remove the display of the image areas beyond the box. The
vertical-align and text-align properties provide the basic vertical and hor-
izontal alignment of the image in the box that controls what sides get cropped off.
However, the crops can only be centered or laid along corners and edges.

SMIL has XML constructs that imitate cropping much like these CSS properties,
as does SVG. SMIL 1.0 attributes for regions in the layout have the CSS equivalent
constructs for the same limited spatial fragmenting. SMIL 2.0 introduces the reg-
Point construct, which can position an image anywhere within its region, thus being
able simulate cropping any rectangle of the image. However, all of these properties
and attributes do not describe true cropping — they refer to an entire image that has
its context hidden rather than directly referring to the desired fragment of the image
and displaying that in its entirety. Furthermore, these standards provide no means for
having link destinations be spatial fragments.

SMIL1.0 has the clipBegin and clipEnd attributes, which take a temporal
media object such as an audio or video file or stream and present only part of it, start-
ing it and ending it at particular times. The attributes can be assigned to both media
object and hyperlinking elements, providing both types of temporal media fragment
integration. The SMIL 2.0 mediaRepeat attribute performs a particular kind of
temporal fragmenting: it removes any top-level repeats that happen on an media file,
such as one encoded with animated GIF. Thus, the mediaRepeat attribute effec-
tively clips the first iteration of a repeat as its temporal fragment.

4.2 Current Nominal Fragmenting
SMIL 2.0 clipBegin and clipEnd attributes also approach a time-based subset
of nominal fragmenting with media clip markers. When their values being with

"marker=", what follows is a URI locating a timestamp within the media file. If the
URI begins with ’#’ then what comes after is a name of a timestamp encoded in the
media file itself. Below is an example of such media clip markers.

<video src="http://www.examples.org/romeo.vidx"
 clipBegin="marker=#act2scene3line2"
 clipEnd="marker=#act2scene3line3" />

If the URI begins with a file on the Internet followed by a ’#’ then the file pro-
vides third party markers for the media file. What comes after the ’#’ is a string the
third party file associates with a point in time in the media file. This could potentially
be used to extract timestamps from third party MPEG-7 files that annotate the host me-
dia files from which fragment comes.

Although SMIL media clip markers approach it, they do not provide full nominal
fragment. First of all, they only clip the media file in terms of time. Furthermore, they
do not use one name to locate the fragment itself, they use two names for locating the
bounding timestamps of the fragment.

Nominal fragmenting is more directly implemented with current URI fragment
identifiers. The XML term “fragment” refers primarily to the fragment identifier por-
tion of a URI: the part after the ’#’, which defines a portion of the file referenced.
These can be used by the src and href attributes of XHTML, SMIL and SVG. In
current implementations of these formats, the fragment can refer to the element with
the named anchor or unique identifier in XML-defined integrated media. This requires
that the integrated media have an identified element encapsulate the desired fragment.
The resulting behavior is discussed in Section 4.4.

4.3 Current Structural Fragmenting with XPointer
The clear emerging standard for providing more fragmented media fragmenting is
XPointer [7]. XPointer defines the locations of fragments of XML code in terms of
XML structure. It enables any subcomponent of an XML document to be referenced,
whereas without XPointer, references can only be made to XML elements with unique
identifiers. In principle, any URI attribute in any XML document can have an XPoint-
er reference as its value. This includes, for example, the src and href attributes of
XHTML, SMIL and SVG. However, XPointer is currently not implemented in any of
these language’s browsers, so XPointer values for these attributes cannot yet be pro-
cessed. While XPointer can separate a fragment from its context, it explicitly leaves it
up to its applications to specify how to process or present a fragment in relation to its
context. Since XPointer is not yet released, none of its applications have formalized
how fragments and their contexts are to be handled differently.

However, a small subset of XPointer is widely used, and thus provides a prece-
dent. XPointer specifies the bare name XPointer value as a shortcut for identifier ref-

erencing that is consistent with the use of fragment identifiers in href attribute values
in XHTML. That is, if a URI attribute value has a ’#’ character followed by a name,
then XPointer accepts that as locating the element in the reference document that is
assigned that unique identifier. As such, XHTML href attribute named anchor refer-
ences use valid XPointer values. For example, the following bare name XPointer value

http://www.examples.org/index.html#foo

is valid XPointer and is equivalent to the full XPointer value
http://www.examples.org/index.html#xpointer(id("foo"))

In addition to the presentation-oriented and user-perceived distinction between
fragment and context, the use of XML-based solutions makes syntactic context also
important to consider. Even if only the fragment is to be presented, often the XML
code for its context needs to be processed for the fragment’s presentation to be ren-
dered. For example, CSS code at the beginning of the document could affect the dis-
play of the fragment, even if the CSS was not in the fragment code itself. Rendering
the fragment would need to account for this CSS code to determine its appearance.
Similarly, spatial transform elements in SVG can affect the display of elements else-
where in the same document. When rendering an SVG fragment, spatial transforms in
the context that applies to the fragment would need to be processed.

4.4 Current Initial Navigation to Fragments
HTML, SVG and SMIL all allow fragment identifiers to be used in URIs that address
them. Typically, upon initial access they load the entire file into the presentation space
but scroll forward along the vertical, horizontal and temporal axes, whichever apply,
until the object is shown. Normal access to the entire file is then resumed.

The display of an XPointer-located fragment with its HTML context is illustrated
in Figure 1. It shows the fragment of text “It is the east, and Juliet is the sun” from the
play Romeo and Juliet in a current HTML browser. Here, the display is scrolled to
where the fragment appears so that the user can see it at first. But after initial access
the user if free to scroll through the rest of the play. This would be preferred to initially
scrolling to the beginning of Romeo and Juliet, and requiring the user scroll to find the
fragment. One the other hand, if this passage from Shakespeare appears as a caption
in a multimedia display, one typically does not want scrollbars to appear with the pas-
sage to allow access to the rest of the play. This would clutter the visual appearance
of the display as a whole.

When an SVG document is accessed with an XPointer fragment, the closest an-
cestor svg element is displayed according to its view specifications. The SVG speci-
fication does not state what happens to its context svg elements, and there are no cur-
rent implementations of these features to set a precedent with. SVG also defines an
SVG view specification syntax that can be used as a URI fragment. It provides the co-

ordinates to which the initial view should be scrolled, and specifies other initial user
interface activities such as zooming and panning. SVG view specifications also pro-
vide transforms, which can alter this presentation of the graphics from its default.

SMIL has adopted the HTML constructs for hyperlinking to XML-located frag-
ments, keeping equivalent semantics as they apply to timed multimedia. The href at-
tribute of SMIL <a> element hyperlinks can refer to a portion of the same or an ex-
ternal SMIL presentation by having as its value the unique identifier of an element in
that presentation. Triggering such an access causes the presentation to be loaded and
forwarded, or “seeked” to the point in time when that element is scheduled to start. As
with HTML, such references are valid XPointer.

The behavior that XHTML and SMIL browsers apply to the types of XPointer
attribute values described above is that the referenced document be loaded for presen-
tation in its entirety, but the presentation scrolls so that the referenced fragment ap-
pears. This behavior is not specified in XHTML. However, when a link is triggered
that is defined with a fragment value of the href attribute, current browsers typically
display the whole document, but scroll it so that the beginning of the fragment is at the
top of the window. This is the only distinction made between fragment and syntax: at
initial access, the user can see where the fragment starts. However, the user cannot see

Figure 1. Fragment “It is the east, and Juliet is the sun” of Romeo and Juliet shown in a current HTML
browser.

where it ends. After this initial display, the user can scroll to anywhere in the document
in a manner that does not distinguish fragment from context.

The corresponding forwarding in SMIL linking is similar, but applies to time
rather than space. Forwarding in SMIL does not mean scrolling spatially through the
flow of text but “seeking” forward along the timeline. When a SMIL hyperlink that
has an XPointer bare name value to within a SMIL presentation fires, that presentation
is loaded and played starting at the time that the referenced element would start play-
ing. The default behavior is that the linked-to presentation continues playing until the
end of the presentation as a whole, which is not necessarily the ending time of the frag-
ment. Once the fragment starts playing, its begin is not longer indicated. Furthermore,
subsequent navigation within the SMIL document makes no distinction between frag-
ment and context. However, the SMIL src attribute of media object elements speci-
fies neither this behavior nor any other for the use of bare name XPointer values or
other XPointer values.

4.5 Current Fragment Distinction with Target
The primary means on the Web of varying the appearance of a piece of a document is
through style specifications. The primary example of style specification on the Web is
the use of CSS to define the style for presenting XML documents in general and
HTML documents in particular. CSS is currently evolving to be able to apply different
styles for fragments and their context.

For the most part, a CSS style sheet is a list of rules, where each rule consists of
a selector, specifying some components of the document, and a declaration block,
which states how those components are to appear. If a selector could specify either a
fragment or its context, then a distinct style could be applied to it. One type of CSS
selector is the pseudo-class, which matches a document portion by a manner other
than its location in the XML structure. While the current version of the CSS recom-
mendation, CSS2 [3], does not distinguish the fragment, the version of CSS currently
under development, CSS3 [17], does. Among CSS3’s proposed new selectors [9] is
the pseudo-class target, which applies a particular style to those portions of a doc-
ument that are targeted by a fragment identifier URI.

For example, significant pieces of text are often highlighted, typically by being
given a yellow background, to distinguish them. The piece of CSS code below uses
the target pseudo-class to define such a yellow background as distinguishing frag-
ments from their context. This code can be included in the CSS style sheet for an
HTML document to cause fragments of it to be highlighted in yellow when linked to
or when integrated into other presentations.

:target { background-color: yellow }

The display of a fragment as visually distinct is illustrated in Figure 2.

SVG’s viewTarget attribute of the view element and the viewTargetSpec pa-
rameter of SVG view specifications locate a target in the SVG document being pre-
sented that is to be highlighted. The nature of this highlighting is not defined by the
SVG specification. Perhaps with the release of CSS3, SVG’s target could be linked
with CSS’s target so that CSS target style would define SVG target highlighting.

4.6 Current Context Removal with CSS3
CSS can also remove the fragment’s context from the presentation. First, CSS3 can
select the context by combining its target pseudo-class with another pseudo-class
it introduces: the negation, or not, pseudo-class. Then CSS2 can apply to the selected
context a style that effectively removes it from display: a display property with a
none value. This property assignment causes the objects to not be displayed. It also
makes the objects’ implicit height and width zero, thus affecting the spatial layout of
other objects that are displayed in the presentation. These CSS constructs are com-
bined for removing the context in the following CSS3 rule:

:not(:target) { display: none }

4.7 Current Integration Control over Fragment Handling
The emerging format XML Fragment Interchange addresses syntactic fragmenting
and integration [10]. This format enables fragments of XML code to be parsed when

Figure 2. Fragment from Figure 1 shown as highlighted.

included as entities in other XML code. It includes accounting for code in the frag-
ment’s context when the fragment is parsed where it is included. However, XML
Fragment Interchange address fragments and their context primarily for parsing,
whereas this paper is concerned with processing the semantics of fragments and their
context that relate to rendering presentations. It does not formalize how the issues are
handled for processing outside parsing.

5 Open Issues and Potential Future Directions

Current and emerging Web standards provide some constructs for media fragment in-
tegration, as discussed in Section 4. However, significant aspects of media fragment
integration remain unaddressed by these standards. Furthermore, the solutions that do
exist are often not unified or consistent. They are often scattered across different as-
pects of XML document structure. Also, different standards sometimes provide differ-
ent solutions for the same aspects of media fragment integration. This section address-
es these shortcomings by suggesting new tools for missing solutions and by discussing
the unification existing solutions into one approach that is consistent across standards.

5.1 Potential Future Directions for Fragment Locating

Whether the basis for fragmenting is spatial, temporal or structural, all fragmenting lo-
cates a particular portion of a file. In the emerging Web architecture, locating is typi-
cally specified in URI attributes. Putting all fragment specification, be it spatial, tem-
poral or structure, in the fragment part of a URI (after the ’#’) would introduce more
unification, consistency and simplicity to Web fragmenting. XPointer introduces
schemes as a place to put new means of locating fragments on the Web [7], making
itself is one such scheme. XPointer specifies that the long form of the fragment portion
of a URI begins with the name of the scheme followed by the address using the scheme
in parentheses. Thus, to keep all fragment addressing consistently located in URI frag-
ments, each type of fragment addressing that currently don’t have XPointer schemes
can be given one.

Another important characteristic of the URI is that it is the only data in an inte-
grating document that is communicated over the network to the server. There is no
stated requirement that the server process the fragment data. In fact, in current sys-
tems, the server receiving a fragment request will typically still transfer the whole file,
leaving it to the client to perform the fragment extraction. However, future systems
may instruct the server to perform the extraction, when possible. This results in only
the fragment being transferred over the network, reducing network traffic. This would
be the most efficient use of bandwidth if the context of the fragment is not displayed
and not otherwise needed for processing the fragment. If fragment locating informa-
tion is not put in the URI but instead put elsewhere in the XML structure, then there

is not possibility of performing the fragment extraction at the server and lowering
bandwidth requirements.

There are thus three benefits to putting all fragment locating information in the
URI. One is that authors would know where to find all information that locates a frag-
ment. This place for fragment locating would be unified over all constructs and stan-
dards. The authors also benefit the means for media fragmenting for all Web standards
could itself be standardized as one format. Unifying the syntax and location of frag-
ment locating code also makes it easier to standardize and incorporate, syntactically
and mechanically, into multiple document formats and their browsers. Network effi-
ciency is the final beneficiary of UIR-centered fragmenting, since it enables servers to
perform fragment extraction when the context is not needed for processing.

5.1.1 Potential Future Directions for Measured Fragmenting
Current spatial fragmenting solutions, as presented in Section 4.1, typically use four
measurements out of the following six: left, right and width and top, bottom and
height. The units for each measurement are typically pixel units of the rendered image
or percentages. These measurements could be used as parameters is a new number-
based locator scheme. Their values, for consistency, could be the same as now used
uniformly in CSS, HTML, SVG and SMIL. Below is an example URI using such a
hypothetical scheme called “coords”.

http://www.examples.org/juliet.jpg#
coords(left="50px",right="30px",top="60px",height="100px")

Current temporal fragmenting solutions, as presented in Section 4.1, typically
specify the begin time and end time of the fragment clip in terms of the timing of the
file as a whole. These timestamps could be used as parameters is a number-based lo-
cator scheme. These parameters can be used in the same scheme use for spatial frag-
menting, since the coordinates won’t conflict with each other. Furthermore, using one
scheme for both spatial and temporal fragmenting allows them to be used together
more easily, such as for locating a spatial crop of a video clip. Below is an example
URI using such the hypothetical coords scheme.

http://www.examples.org/romeo.mpg#
coords(left="50px",right="30px",top="60px",height="100px",
begin="0:30:15",end="0:31:20")

The equivalent of SMIL’s media clip markers can be used in the coords scheme
to add some nominal fragmenting, such as in the following example.

http://www.examples.org/romeo.mpg#
coords(left="50px",right="30px",top="60px",height="100px",
begin="marker=#act2scene2line3",
end="marker=#act2scene2line4")

5.1.2 Potential Future Directions for Nominal Fragmenting

Truer nominal fragmenting comes from using one name directly representing the frag-
ment itself to extract it. Fragments of HTML, SVG and SMIL files can be nominally
located with bare name XPointer values. It would be consistent to introduce using the
same URI syntax for non-XML media with named fragments, as in the following
code.

http://www.examples.org/romeo.vids#act2scene2line3

Third party nominal fragmenting could be introduced into the URI fragment with
a locator scheme for separate media annotation files such as those encoded in MPEG-
7. Below is an example of how an MPEG-7-based nominal fragment URI may appear.

http://www.examples.org/romeo.mpg#
mpeg7(annotFile="http://www.examples.org/romeo.mpg7",
clip="act2scene2line3")

5.1.3 Potential Future Directions for Structured Fragmenting

Structured fragment addressing in XML is already completely contained in the URI.
Annotation formats such as MPEG-7, however, define non-XML structure imposed
on a media file. Location specifications using MPEG-7 structure could be added to the
hypothetical MPEG-7 locator scheme described above. Below is an example of how
an MPEG-7-based structural fragment URI may appear.

http://www.examples.org/romeo.mpg#
mpeg7(annotFile="http://www.examples.org/romeo.mpg7",
act=”2”, scene=”2”, line=”3”)

5.2 Potential Future Directions for Context Removal

In Section 4.6, we discussed how the CSS property assignment display:none
makes context removal possible for current XML-encoded displays. To make this
property assignment function in multimedia, we propose extending the semantics of
none to apply in the same way to time as well as space and visual display. The
premise of this semantic extension is that the object whose style is assigned the none
property should have no affect on the timing of the rest of the presentation. Whatever
influence the object timing itself would have had on the presentation when its display
wasn’t assigned none would be removed. One implication is that the duration of such
a non-displayed object would be treated as if it were zero. Thus, if it appears in a SMIL
sequence, the object after it in the sequence starts when the object before it ends. An-
other implication is that an undisplayed element never triggers any events, so any tim-
ing dependent on undisplayed object events never happens.

5.3 Potential Future Directions for Initial Navigation to Fragment
There are many ways to navigate to fragments in such a wide variety of presentation
formats. Therefore, there are many potential ways to specify initial navigations that
would make a fragment best perceived in its context. This results also in many issues
and complications to address in developing the means of specifying and processing
such initial navigations. We leave most of these to future work. What we present here
is two alternatives. One is that initial navigation be put in the URI fragment, as is done
in SVG with SVG view specifications, which are essentially a distinct XPointer-en-
abled locator scheme. In order to apply it more broadly, such a locator scheme could
be applied to any media that can be scrolled in one or both spatial dimensions. Navi-
gation schemes could be appended to fragment schemes in URI fragments, causing
both types of processing to occur sequentially.

The other alternative is to put initial navigation in style sheets with a simple yet
useful potential extension to what CSS currently provides. CSS has constructs for
aligning objects within the boxes they are presented in: vertical-align and
text-align. These constructs specify, respectively, the vertical and horizontal po-
sitioning of an object within its box. Similar vertical and horizontal alignment could
position a fragment within its presentation window, effectively automatically per-
forming the scrolling of the entire file’s display that is necessary to do so. New CSS
properties could be made for each direction of alignment that apply to window scroll-
ing instead of box positioning. These new fragment-oriented window-scrolling prop-
erties would take the same values with the same semantics as their box positioning
counterparts. The CSS code below, with such extensions, defines the de facto standard
behavior of current HTML browsers, that of scrolling so that the fragment’s top is at
the top of the window, as shown in Figure 1 and Figure 2.

* { fraginit-vertical-align: text-top }

This de facto browser fragment scrolling does not provide good initial perception
of context if information important to appreciating the fragment is directly above it.
For many fragments, useful information is in the context close to the fragment both
above and below it. Similarly, for fragments on wide lines, useful context display may
be both to the left and right of the fragment. In both these cases, scrolling the display
so that the fragment is centered in the window along both axes would provide the best
initial navigation. Such a display is illustrated in Figure 3. Potential code for defining
the alignment of the display is below.

* { fraginit-vertical-align: middle;
 fraginit-text-align: center }

Further initial navigation could be specified in CSS by introducing CSS proper-
ties that are the equivalents of what are in SVG view specifications. The SVG view-
Box construct, which provides the coordinates for initial scrolling, would be particu-

larly valuable for initial access. However, it must use coordinates and cannot simply
refer to the fragment.

5.4 Potential Future Directions for Integration Control over Fragment
Handling with Integration Style

This paper has presented several ways in which CSS style sheets could be used to
specify how fragments and their contexts are displayed. A shortcoming of this ap-
proach in the current Web architecture is that style sheets that apply to external XML
code integrated into a presentation can only be written by the author of that external
XML code or by the user it is presented to. There is currently no mechanism in HTML,
SVG or SMIL with which the author of an integrating multimedia presentation can
write CSS style sheets that apply to the presentation of the media being integrated.

However, HTML, SVG and SMIL each have constructs for applying CSS to con-
structs within the same XML file. HTML and SVG both have a style element and
attribute, which allows CSS style sheets to be applied to text and color objects con-

Figure 3. Fragment from Figure 1 shown as highlighted and centered.

tained in the same HTML or SVG file. SMIL does not directly contain directly-pre-
sentable media to which style could be applied, and thus has no style construct.
However, SMIL’s layout constructs do use direct CSS equivalents to position media
that is integrated. Furthermore, SMIL allows an alternative layout to be defined for a
presentation that uses CSS directly, although this is currently not implemented.

These constructs for internal styling could be extended and modified to apply to
external styling: the style of presentation of external media and fragments that are in-
tegrated into a presentation. This styling would need to apply to media that is both
inked to and integrated into a coordinated display. If HTML, SVG and SMIL all used
the same styling constructs, and if these constructs applied to both internal and inte-
grated media, then it would make style authoring easier to learn. It would also make
these constructs modularizable, and thus more easily incorporated into future XML
formats for integrated presentation [1].

One possibility is a new channel element that replaces the style constructs
of HTML and SVG and the region constructs of SMIL. This channel elements
would correspond with AHM’s channel, acting as a conduit through which all media
gets processed and presented, and which specifies all aspects of how this media is to
be processed and presented. It would contain or refer to CSS code that defines the style
of internal media, integrated media, and media fragments and their context.

The channel element would be incorporated into the evolving Web architec-
ture more cleanly if all aspects of style were put in CSS. This would include the ex-
tensions already suggested. It would also include introducing new CSS properties to
replace the XML constructs for fragment integration described in Section 4. There are
many more details for channel element and CSS property unification than would fit
in this paper, so we leave these to future work.

6 Conclusion

Integrating media objects into multimedia presentations is limited if these objects are
treated as atomic at the file level. Structured document data, as provided by XML, en-
ables media file fragments to be accessed and integrated in a unified manner. Several
recent and emerging standards, such as SMIL, XPointer, SVG and CSS contribute to
this ability. We described here the issues and possibilities for integrating media frag-
ments, provided an overview of current solutions, and proposed further directions.
How current standards and our proposed extensions meet our proposed requirements
is illustrated in Table 1.

Our first primary conclusion is that all locating of media file fragment should be
put in fragment portion of URI attribute values. This facilitates authoring and enables
improved network efficiency. The second primary conclusion is that style specifica-
tion and processing is a good place for handling fragment and context presentation is-
sues. Thus, it is beneficial to extend how style sheets can be used in integrating media
and media file fragments. These two conclusions together indicate that most aspects
of fragment integration should be taken out of other XML structure such as local at-
tribute values and put in either URI fragments or style sheets. This results in necessary
extensions to current URI fragments and style sheets, for which we propose specific
possibilities.

Table 1. Fragment integration requirements with their current and proposed solutions

Requirement Current Solution Potential Future Direction

spatial fragmenting region element fit and
measurement attributes

coords locator scheme

temporal fragmenting
temporal clipping

mediaRepeat attribute
time markers

nominal fragmenting ID, SMIL media clip markers make applicable to non-XML

structural fragmenting XPointer mpeg7 locator scheme

context removal
XML Fragment Interchange

:not(:target)
{ display: none }

applying display:none to
time

fragment distinction :target {} none needed

initial navigation to
fragment

start forwarded to with href="#"
in HTML, SVG and SMIL
SVG view specifications

add fraginit-vertical-
align and fraginit-

text-align properties to
CSS

add SVG view specification
as CSS properties

Integration Control
over Fragment

Handling

HTML and SVG style
SMIL region

SVG view specifications

unified channel construct
related current XML

constructs introduced as
CSS properties

7 Acknowledgements

The research for this paper was funded in part by the Multimedia Information Analysis
(MIA) project and by the RTIPA project. Essential feedback was provided by Steven
Pemberton, Jacco van Ossenbruggen and Lynda Hardman.

8 References

[1] M. Altheim, F. Boumphrey, S. Dooley, S. McCarron, S. Schnitzenbaumer and
T. Wugofski. Modularization of XHTML. W3C Recommendation. April 10,
2001. http://www.w3.org/TR/.

[2] G. Auffret, J. Carrive, O. Chevet and T. Dechilly . “Audiovisual-based Hyper-
media Authoring: using structured representations for efficient access to AV
documents”. Proceedings of the Tenth ACM Conference on Hypertext (Hyper-
text ‘99), Darmstadt, Germany. February 1999, pp. 169-178.

[3] B. Bos, H. W. Lie, C. Lilley, and I. Jacobs (eds). Cascading Style Sheets, level
2 — CSS2 Specification. W3C Recommendation. May 12, 1998. http://
www.w3.org/TR/.

[4] T.S. Chua and L.Q. Ruan. “A Video Retrieval and Sequencing System”. ACM
Transactions on Information Systems. vol. 3, no. 4, October 1995. pp. 373-407.

[5] T. Boutell. PNG (Portable Network Graphics) Specification. W3C Recommen-
dation. October 1, 1996. http://www.w3.org/TR/.

[6] A. Cohen, et. al. (eds). Synchronized Multimedia Integration Language (SMIL)
2.0 Specification. W3C Recommendation. August 7, 2001. http://www.w3.org/
TR/.

[7] S. DeRose, E. Maler, and J. Ron Daniel. (eds). XML Pointer Language (XPoint-
er) Version 1.0. W3C Last Call Working Draft. January 8, 2001. http://
www.w3.org/TR/. (work in progress)

[8] J. Ferraiolo. (ed). Scalable Vector Graphics (SVG) 1.0 Specification. W3C Rec-
ommendation. September 4, 2001. http://www.w3.org/TR/.

[9] D. Glazman, T. Çelik, I. Hickson, P. Linss and J. Williams (eds). CSS3 module:
W3C selectors. W3C Working Draft. January 26, 2001. http://www.w3.org/
TR/. (work in progress)

[10] P. Grosso and D. Veillard (eds). XML Fragment Interchange. W3C Candidate
Recommendation. February 12, 2001. http://www.w3.org/TR/. (work in
progress)

[11] F. Halasz and M. Schwarz. “The Dexter Hypertext Reference Model”. Commu-
nications of the ACM, vol. 37, no. 2. February 1994, pp. 30-39.

[12] L. Hardman. “Modelling and Authoring Hypermedia Documents”. Ph.D. The-
sis, University of Amsterdam, March 8, 1998.

[13] L. Hardman, D.C.A. Bulterman, and G. van Rossum. “The Amsterdam Hyper-
media Model: Adding Time and Context to the Dexter Model”. Communica-
tions of the ACM, vol. 37, no. 2, February 1994, pp. 50-62.

[14] P. Hoschka (ed). Synchronized Multimedia Integration Language (SMIL) 1.0
Specification. W3C Recommendation. June 15, 1998. http://www.w3.org/TR/.

[15] International Organization for Standardization/International Electrotechnical
Commission. MHEG-5: Coding of multimedia and hypermedia information --
Part 5: Support for base-level interactive applications. 1997. International Stan-
dard ISO/IEC 13522-5:1997 (MHEG-5).

[16] International Organization for Standardization/International Electrotechnical
Commission. MPEG-7: Context and Objectives, 1998. (work in progress)

[17] E. A. Meyer, and B. Bos (eds). Introduction to CSS3. W3C Working Draft. May
23, 2001. http://www.w3.org/TR/. (work in progress)

[18] F. Nack and A.T. Lindsay. “Everything You Wanted to Know About MPEG-7:
Part 1”. IEEE Multimedia, vol. 6, no. 2. July-September 1999, pp. 65-77.

[19] J. Nanard and M. Nanard. “Should Anchors be Typed Too? An Experiment with
MacWeb”. Proceedings of the Fifth ACM Conference on Hypertext (Hypertext
‘93), Seattle, USA. March 1993, pp. 51-62.

[20] D. Raggett, A. L. Hors, and I. Jacobs. HTML 4.01 Specification. W3C Recom-
mendation. December 24, 1999. http://www.w3.org/TR/.

[21] C. Roisin, T. Tran_Thuong and L. Villard. “A Proposal for a Video Modeling
for Composing Multimedia Document”. Proceedings of the 7th International
Conference on Multimedia Modeling (MMM 2000), November 2000, Nagano,
Japan.

[22] G. van Rossum, J. Jansen, K. S. Mullender and D.C.A Bulterman. “CMIFed: A
Presentation Environment for Portable Hypermedia Documents”. Proceedings of
the First ACM International Conference on Multimedia (Multimedia ‘93), Anaheim,
USA, August 1993, pp. 183-188.

[23] H. Weinreich, H. Obendorf and W. Lamersdorf, “The Look of the Link — Con-
cepts for the User Interface of Extended Hyperlinks”. Proceedings of the
Twelfth ACM Conference on Hypertext and Hypermedia (Hypertext ‘01), Aar-
hus, Denmark, August 2001, pp. 19-28.

