
Quantum Lazy Sampling and Game-Playing Proofs for
Quantum Indifferentiability

Jan Czajkowski∗1, Christian Majenz†1, Christian Schaffner‡1, and Sebastian Zur§1

1QuSoft, University of Amsterdam

April 26, 2019

Abstract

Game-playing proofs constitute a powerful framework for classical cryptographic se-
curity arguments, most notably applied in the context of indifferentiability. An essential
ingredient in such proofs is lazy sampling of random primitives. We develop a quantum
game-playing proof framework by generalizing two recently developed proof techniques.
First, we describe how Zhandry’s compressed quantum oracles [Zha18] can be used to do
quantum lazy sampling from non-uniform function distributions. Second, we observe how
Unruh’s one-way-to-hiding lemma [Unr14] can also be applied to compressed oracles, pro-
viding a quantum counterpart to the fundamental lemma of game-playing.

Subsequently, we use our game-playing framework to prove quantum indifferentiability
of the sponge construction, assuming a random internal function or a random permutation.
Our results upgrade post-quantum security of SHA-3 to the same level that is proven against
classical adversaries.

∗j.czajkowski@uva.nl
†c.majenz@uva.nl
‡c.schaffner@uva.nl
§zursebastian@gmail.com

1

ar
X

iv
:1

90
4.

11
47

7v
1

 [
qu

an
t-

ph
]

 2
5

A
pr

 2
01

9
CORE Metadata, citation and similar papers at core.ac.uk

Provided by CWI's Institutional Repository

https://core.ac.uk/display/301632506?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Classical Game-Playing Proofs . 5
2.2 Indifferentiability . 5
2.3 Quantum Computing . 7

3 Quantum-Accessible Oracles 7
3.1 General Structure of the Oracles . 9
3.2 Non-uniform Oracles . 10

3.2.1 Conditionally Uniform Distributions . 15

4 One-way to Hiding Lemma for Compressed Oracles 16

5 Quantum Security of the Sponge Construction 21
5.1 Sponge Construction . 21
5.2 Classical Indifferentiability of Sponges with Random Functions 24
5.3 Quantum Indifferentiability of Sponges with Random Functions 26
5.4 Quantum Indifferentiability of Sponges with Random Permutations 29
5.5 Collapsingness of Sponges with Random Permutations 30

6 Conclusions 31

7 Acknowledgments 31

References 32

Symbol Index 35

A Additional Details on Quantum-Accessible Oracles 36
A.1 Uniform Oracles . 36

A.1.1 Full Oracles, Additional Details . 37
A.1.2 Compressed Oracles, Additional Details . 38

A.2 Detailed Algorithm for Alg. 1: CFOD . 40
A.3 Implementation of V for SampY\S . 44
A.4 SampD for Random Boolean Functions . 44

B Additional Details on O2H Lemma for Compressed Oracles 45

C Quantum Indifferentiability of Sponges with Random Permutations 47
C.1 Classical Indifferentiability of Sponges with Random Permutations 48
C.2 Quantum Indifferentiability of Sponges with Random Permutations 51

2

1 Introduction

The modern approach to cryptography relies on mathematical rigor: Trust in a given cryp-
tosystem is mainly established by proving that, given a set of assumptions, it fulfills a security
definition formalizing real-world security needs. Apart from the definition of security, themen-
tioned assumptions include the threat model, specifying the type of adversaries we want to be
protected against. One way of formalizing the above notions is via games, i.e. programs inter-
acting with the adversaries and outputting a result signifying whether there has been a breach
of security or not. Adversaries in this picture are also modeled as programs, or more formally
Turing machines.

The framework of game-playing proofs introduced by Bellare and Rogaway in [BR06]—
modeling security arguments as games, played by the adversaries—is especially useful because
it makes proofs easier to verify. Probabilistic considerationsmight become quite involvedwhen
talking about complex systems and their interactions; the structure imposed by games, how-
ever, simplifies them. In the game-playing framework, randomness can be, for example, con-
sidered to be sampled on the fly, making conditional events easier to analyze. A great example
of that technique is given in the proof of the PRP/PRF switching lemma in [BR06].

In this work we focus on idealized security notions; In the Random Oracle Model (ROM)
one assumes that the publicly accessible hash functions are in fact random [BR93]. This is a very
useful assumption as it makes the proof easier, but also cryptographic constructions designed
with ROM in mind are more efficient. A modification of the original idea—that we rely on—is
to assume the primitives used to construct larger objects are ideal, i.e. random.

We are interested in the post-quantum threat model, which is motivated by the present
strong efforts to build a quantum computer. It has been shown that quantum computers can ef-
ficiently solve problems that are considered hard for classical machines. Hardness of the factor-
ing and discrete-logarithm problems is, e.g., important for public-key cryptography, but these
problems can be solved efficiently on a quantum computer using Shor’s algorithm [Sho94]. The
obvious formalization of the threat model is to include adversaries operating a fault-tolerant
quantum computer, which is in particular capable of running the mentioned attacks. This
model is the basis of the field of post-quantum cryptography [BBD09].

While the attacks based on Shor’s algorithm are themostwell-known ones, public-key cryp-
tography may not be the only area with quantum vulnerabilities. Many cryptographic hash
functions are based on publicly available compression functions [Mer90; Dam90; Ber+07] and
as such they could be run on a quantum machine. This fact motivates us to analyze adver-
saries that have quantum access to the public building blocks of the cryptosystem. Therefore,
the quantum threat model takes us from the Random-Oracle Model [BR93]—often used in the
context of hash functions—to the Quantum Random-Oracle Model [Bon+11] (QROM), where
the random oracle can be accessed in superposition.

Having highlighted a desirable proof structure—fitting the clear and easy-to-verify game-
playing framework—and the need of including fully quantum adversaries with quantum ac-
cess to random oracles into the threat model, we encounter an obvious challenge: defining a
quantum game-playing framework. In this article, we resolve that challenge and apply the re-
sulting framework to the setting of hash functions. In the following paragraphs we are going
to describe our results and point to the main proof techniques we used to achieve them.

Our Results. We define a quantum game-playing framework for security proofs that involve
fully quantum adversaries. Our framework generalizes two recently developed proof tech-
niques: compressed quantum random oracles by Zhandry [Zha18] and the One-Way to Hid-
ing (O2H) lemma by Unruh [Unr14; AHU18]. The former provides a way to lazy-sample a
quantum-accessible random oracle, and the latter is a quantum counterpart of the Fundamen-
tal Game-Playing lemma—a key ingredient in the original game-playing framework. In this
paper, we show how to generalize the twomethods andmerge them to form a clear and power-

3

ful tool for proofs in post-quantum cryptography. In particular, we generalize the compressed-
oracle technique of [Zha18] to non-uniform distributions over functions, allowing amuchmore
general form of (quantum) lazy sampling. Subsequently, we observe that the techniques of
“puncturing oracles” proposed in [AHU18] can also be applied to compressed oracles, yield-
ing a more general version of the O2H lemma which forms the quantum counterpart of the
fundamental game-playing lemma.

We go on to present a use case for our quantum game-playing framework by proving quan-
tum indifferentiability of the sponge construction [Ber+07] used in SHA3. More precisely, we
show that the sponge construction is indifferentiable from a random oracle in case the internal
function is i) a random function, or ii) a random permutation. Above we call our approach a
framework, that is because of the wide range of possible applications and modular structure of
the method. While compressed-oracle method from [Zha18] is already widely applicable, the
easy translation of classical proofs to the quantum setting is the added value of our framework.

Additionally we prove that quantum indifferentiability implies collapsingness [Unr16b;
Unr16a], a quantum security notion strengthening collision resistance. Given our indifferen-
tiability results concerning the sponge construction, that gives a proof of collapsingness of the
sponge construction with random permutations, closing the security gap left in [Cza+18]. Note
that our result concerns only the QROM and in [Cza+18] the authors discuss standard security
notions: collision resistance and collapsingness.

Related Works. Indifferentiability is a security notion developed by Maurer, Renner, and
Holenstein [MRH04] commonly used for hash-function domain-extension schemes [Cor+05;
Ber+08]. Here, it captures the adversary’s access to both the construction and the internal func-
tion.

The subject of quantum indifferentiability, addressed in our work, has been recently ana-
lyzed in two articles. Carstens, Ebrahimi, Tabia, and Unruhmake a case in [Car+18] against the
possibility of fulfilling the definition of indifferentiability for quantum adversaries. Assuming
a technical conjecture, they prove a theorem stating that if two systems are perfectly (with zero
advantage) quantumly indifferentiable then there is a stateless classical indifferentiability sim-
ulator. In the last part of their work they show that there cannot be a stateless simulator for
domain-decreasing constructions—i.e. most constructions for hash functions. Zhandry on the
other hand [Zha18] develops a technique that allows to prove indifferentiability for theMerkle-
Damgård construction. His result does not contradict the result of [Car+18], as it is imperfect,
albeit with a negligible error. The technique of that paper, compressed quantum oracles, is
one of the two main ingredients of our framework. Recent work by Unruh and by Ambainis,
Hamburg, and Unruh [Unr14; AHU18] form the second main ingredient of our result. They
show the One-Way to Hiding (O2H) Lemma, which is the quantum counterpart of the Funda-
mental Game-Playing lemma—a key ingredient in the original game-playing framework. The
O2H lemma provides a way to “reprogram” quantum accessible oracles on some set of inputs,
formalized as ”punctured” oracles in the latter paper.

The quantum security of domain-extension schemes has been the topic of several recent
works. [SY17; CHS19] study domain extension for message authentication codes and pseu-
dorandom functions. For random inner function, [Zha18] has proven indifferentiability of the
Merkle-Damgård construction which hence has strong security in the QROM. For hash func-
tions in the standard model, quantum generalizations of collision resistance were defined in
[Unr16b; Ala+18]. For one of them, collapsingness, some domain extension schemes includ-
ing the Merkle-Damgård and sponge constructions, have been shown secure [Cza+18; Feh18;
Unr16a].

In a recent article [Unr19a] Unruh developed quantum Relational Hoare Logic for com-
puter verification of proofs in (post-)quantum cryptography. There he also uses the approach
of game-playing, but in general focuses on formal definitions of quantum programs and predi-
cates. To investigate the relation between [Unr19a] and our work inmore detail one would have

4

to express our results in the language of the new logic. We leave it as an interesting direction
for the future. The proof techniques of [Zha18] and [AHU18] have been recently used to show
security of the 4-Round Luby-Rackoff construction in [HI19] and of generic key-encapsulation
mechanisms in [JZM19] respectively.

Organization. In Section 2 we introduce the crucial classical notions we use. We provide the
necessary definitions of the classical game-playing framework and indifferentiability needed
in the remainder of the paper. In Section 3 we generalize the compressed-oracle technique of
[Zha18] to non-uniform distributions over functions. In Section 4 we prove a generalization
of the O2H lemma of [Unr14], adapted to the use with compressed oracles for non-uniform
distributions. The quantum game-playing framework is defined via the general compressed
quantum oracles that appear in security games, and a way to use hybrid arguments between
different games coming from our version of the O2H lemma. In Section 5 we use these results
to prove quantum indifferentiability of the sponge construction, thereby also proving collaps-
ingness.

2 Preliminaries

We write [N] := {0, 1, . . . , N − 1} for the set of size N . We denote the Euclidean norm of a
vector |ψ〉 ∈ Cd by ‖|ψ〉‖. By x ← A we denote sampling x from a distribution or getting the
output of a randomized algorithm. A summary of symbols used throughout the paper can be
found in the Symbol Index.

2.1 Classical Game-Playing Proofs

Many proofs of security in cryptography follow the Game-Playing framework, proposed
in [BR06]. It is a very powerful technique as cryptographic security proofs tend to be simpler to
follow and formulate in this framework. The central idea of this approach are identical-until-bad
games. Say gamesG andH are two programs that are syntactically identical except for code that
follows after setting a flag Bad to one, then we call those games identical-until-bad. Usually in
cryptographic proofs G and H will represent two functions that an adversary A will have oracle
access to. In the following we denote the situation when A interacts with H by AH. Then we can
say the following about the adversary’s view.

Lemma 1 (Fundamental lemma of game-playing, Lemma 2 of [BR06]). Let G and H be identical-
until-bad games and let A be an adversary that outputs a bit b. Then∣∣∣P[b = 1 : b← AH]− P[b = 1 : b← AG]

∣∣∣ ≤ P[Bad = 1 : AG]. (1)

2.2 Indifferentiability

In the Random-Oracle Model (ROM) we assume the hash function used in a cryptosystem to
be a random function [BR93]. This model is very useful in cryptographic proofs but might not
be applicable if the discussed hash function is constructed using some internal function. The
ROM can still be used in this setting but by assuming the internal function is random. The
notion of security is then indistinguishability of the constructed functions from a random oracle.
In most constructions however (such as in SHA-2 [NIS15] and SHA-3 [NIS14]), the internal
function is publicly known, rendering the security notion of indistinguishability too weak. A
notion of security dealing with this issue is indifferentiability introduced byMaurer, Renner, and
Holenstein [MRH04].

Access to the publicly known internal function and the hash function constructed from it
is handled by interfaces. An interface to a system is an access structure defined by the format

5

REAL IDEAL

C f

Cpriv Cpub

R S

Rpriv Rpub

A

Figure 1: A schematic representation of the notion of indifferentiability, Def. 2. Arrows denote
”access to” the pointed system.

of inputs and expected outputs. Let us illustrate this definition by an example, let the system
C under consideration be a hash function Hf : {0, 1}∗ → {0, 1}n, constructed using a function
f : {0, 1}n → {0, 1}n. Then the private interface of the system accepts finite-length strings as
inputs and outputs n-bit long strings. Outputs from the private interface are generated by the
hash function, so we can write (slightly abusing notation) Cpriv = Hf . The public interface
accepts n-bit long strings and outputs n-bit strings as well. We have that Cpub = f . Often we
consider one of the analyzed systems, R, to be a random oracle. Then both interfaces are the
same and output random outputs of appropriate given length.

The following definitions and Theorem 4 are the rephrased versions of definitions and the-
orems from [MRH04; Cor+05]. We also make explicit the fact that the definitions are indepen-
dent of the threat model we consider—whether it is the classical model or the quantummodel.
To expose those two cases we write “classical or quantum” next to algorithms that can be clas-
sical or quantum machines; Communication between algorithms (systems, adversaries, and
environments) can also be of two types, where quantum communication will involve quantum
states (consisting of superpositions of inputs)—explained in more detail in the remainder of
the paper.

Definition 2 (Indifferentiability [MRH04]). A cryptographic (classical or quantum) system C is
(q, ε)-indifferentiable from R, if there is an efficient (classical or quantum) simulator S and a neg-
ligible function ε such that for any efficient (classical or quantum) distinguisher D with binary output
(0 or 1) the advantage∣∣∣P [b = 1 : b← D[Cpriv

k ,Cpub
k]

]
− P

[
b = 1 : b← D[Rpriv

k ,S[Rpub
k]]

]∣∣∣ ≤ ε(k) , (2)

where k is the security parameter. The distinguisher makes at most q (classical or quantum) queries to
C.

By efficient we mean with runtime that is polynomial in the security parameter k. The
definitions are still valid and the theorem below holds also if we interpret efficiency in terms of
queries made by the algorithms. Note that then we can allow the algorithms to be unbounded
with respect to runtime, the distinction between quantum and classical queries is still of crucial
importance though. By square brackets we denote (classical or quantum) oracle access to some
algorithm, we also use AH if the oracle is denoted by a more confined symbol. In Fig. 1 we
present a a scheme of the situation captured by Def. 2.

Definition 3 (As secure as [MRH04]). A cryptographic (classical or quantum) system C is said to
be as secure as C′ if for all efficient (classical or quantum) environments Env the following holds: For

6

any efficient (classical or quantum) attacker A accessing C there exists another (classical or quantum)
attackerA′ accessingC′ such that the difference between the probability distributions of the binary outputs
of Env[C,A] and Env[C′,A′] is negligible, i.e.∣∣P [b = 1 : b← Env[C,A]]− P

[
b = 1 : b← Env[C′,A′]

]∣∣ ≤ ε(k) , (3)

where ε is a negligible function.

Indifferentiability is a strong notion of securitymainly because if fulfilled it guarantees com-
posability of the secure cryptosystem. In the following we say that a cryptosystem T is compat-
ible with C if the interfaces for interacting of T with C are matching.

Theorem 4 (Composability [MRH04]). Let T range over (classical or quantum) cryptosystems com-
patible with C and R, then C is (q, ε)-indifferentiable from R if and only if for all T, T[C] is as secure as
T[R].

Note that composability that is guaranteed by the above theorem holds only for single-stage
games [RSS11].

Indifferentiability is a strong security notion guaranteeing that a lower-level function (e.g.
a random permutation) can be used to construct a higher-level object (e.g. a variable input-
length random function) that is ”equivalent” to the ideal one—in the sense of Thm. 4. Here, an
adversary’s complexity is measured in terms of the number of queries to the oracles only, not in
terms of their time complexity. In quantum indifferentiability adversaries are allowed to access
the oracles in superposition. This is necessary in the post-quantum setting, as the building
blocks of many hash functions—like e.g those of SHA3 [NIS14]—are publicly specified and
can be implemented on a quantum computer.

2.3 Quantum Computing

Themodel of quantumadversarieswe use is quantumalgorithmsmaking q queries to an oracle.
Each query is intertwined by a unitary operation acting on the adversary’s state and all her
auxiliary states. A general introduction to quantum computing can be found in [NC11]. Here
we will only introduce specific operations important to understand the paper.

Let us define the Quantum Fourier Transform (QFT), a unitary change of basis that we will
make heavy use of. For N ∈ N>0 and x, ξ ∈ [N] = ZN the transform is defined as

QFTN |x〉 := 1√
N

∑
ξ∈[N]

ωξ·xN |ξ〉, (4)

where ωN := e
2πi
N is the N -th root of unity. An important identity for some calculations is∑

ξ∈[N]
ωx·ξN · ω̄

x′·ξ
N = Nδx,x′ , (5)

where ω̄N = e−
2πi
N is the complex conjugate of ωN and δx,x′ is the Kronecker delta function.

If we talk about n qubits an identity on their Hilbert space is denoted by 1n, we also use
this notation to denote the dimension of the identity operator, the actual meaning will be clear
from the context. We write UA to denote that we act with U on register A.

3 Quantum-Accessible Oracles

In the Quantum-Random-Oracle Model (QROM) [Bon+11], one assumes that the random or-
acle can be accessed in superposition. Quantum-accessible random oracles are motivated by

7

the possibility of running an actual instantiation of the oracle as function on a quantum com-
puter, whichwould allow for superposition access. In this section, oracles implement a function
f : X → Y distributed according to some probability distribution D on the set F of functions
fromX toY . Without loss of generalitywe setX = ZM andY = ZN for some integersM,N > 0.

Classically, an oracle for a function f is modeled via a tape with the queried input xwritten
on it, the tape is then overwritten with f(x). The usual way of translating this functional-
ity to the quantum circuit model is by introducing a special gate that implements the unitary
Uf |x, y〉 = |x, y + f(x)〉. In the literature + is usually the bitwise addition modulo 2, but in
general it can be any group operation. We are going to use addition in ZN .1

In the case where the function f is a random variable, so is the unitary Uf . Sometimes this
is not, however, the best way to think of a quantum random oracle, as the randomness of f is
accounted for using classical probability theory, yielding a hybrid description. To capture the
adversary’s point of view more explicitly, it is necessary to switch to the mixed-state formalism.
A mixed quantum state, or density matrix, is obtained by considering the projector onto the
one-dimensional subspace spanned by a pure state, and then taking the expectation over any
classical randomness. Say that the adversary sends the query state |Ψ0〉 =

∑
x,y αx,y|x, y〉 to the

oracle, the output state is then∑
f

P[f : f ← D] Uf |Ψ0〉〈Ψ0|U†f ⊗ |f〉〈f |F

=
∑
f

P[f : f ← D]
∑

x,x′,y,y′

αx,yᾱx′,y′ |x, y + f(x)〉〈x′, y′ + f(x′)| ⊗ |f〉〈f |F , (6)

where by ᾱ we denote the complex conjugate of α and we have recorded the random function
choice in a classical register F holding the full function table of f .

In quantum information science, a general recipe for simplifying the picture and to gain
additional insight is to purify mixed states, i.e. to consider a pure quantum state on a system
augmented by an additional register E, such that discarding E recovers the original mixed
state. In [Zha18] Zhandry applies this recipe to this quantum-random-oracle formalism.

In the resulting representation of a random oracle, the classical register F is replaced by a
quantum register holding a superposition of functions fromD. The joint state before an adver-
sarymakes the first querywith a state |Ψ0〉XY is |Ψ0〉XY

∑
f∈F

√
P[f : f ← D] |f〉F . The unitary

that corresponds to Uf after purification will be called the Standard Oracle StO and works by
reading the appropriate output of f from F and adding it to the algorithm’s output register,

StO|x, y〉XY |f〉F := |x, y + f(x)〉XY |f〉F . (7)

Applied to a superposition of functions as intended, StO will entangle the adversary’s registers
XY with the oracle register F .

Themain observation of [Zha18] is that if we change the basis of the initial state of the oracle
register F , the redundancy of this initial state becomes apparent. If we are interested in, e.g., an
oracle for a uniformly random function, the Fourier transform changes the initial oracle state∑
f

1√
|F|
|f〉 to a state holding only zeros |0M 〉, where 0 ∈ Y . The uniform case is treated in great

detail in [Unr19b].
Let us start by presenting the interaction of the adversary viewed in the same basis, called

the Fourier basis. The unitary operation acting in the Fourier basis is called the Fourier Oracle
FO. Another important insight from [Zha18] is that the Fourier Oracle, instead of adding the

1Note that introducing the formalism using the group ZN for some N ∈ N is quite general in the following sense:
Any finite Abelian group G is isomorphic to a product of cyclic groups, and the (quantum) Fourier transform with
respect to such a group is the tensor product of the Fourier transforms on the cyclic groups, given the natural tensor
product structure of CG.

8

output of the oracle to the adversary’s output register, does the opposite: It adds the value of
the adversary’s output register to the (Fourier-)transformed truth table

FO|x, η〉XY |φ〉F := |x, η〉XY |φ− χx,η〉F , (8)

where φ is the transformed truth table f and χx,η := (0, . . . , 0, η, 0, . . . , 0) is a transformed truth
table equal to 0 in all rows except for row x, where it has the value η. Note that we subtract χx,η
so that the reverse of QFT returns addition of f(x).

Classically, a (uniformly) random oracle can be “compressed” by lazy-sampling the re-
sponses, i.e. by answering with previous answers if there are any, and with a fresh random
value otherwise. Is lazy-sampling possible for quantum accessible oracles? Surprisingly, the
answer is yes. Thanks to the groundbreaking ideas presented in [Zha18] we know that there
exists a representation of a quantum random oracle that is efficiently implementable.

In the remainder of this section we present an efficient representation of oracles for func-
tions f sampled from an arbitrary distribution that fulfills the quantum analogue of the classi-
cal condition of efficiently sampleable conditional distributions. In the first part we introduce
a general structure of quantum-accessible oracles. In the second part we generalize the idea of
compressed random oracles to deal with non-uniform distributions of functions. We discuss
randompermutations in detail. InAppendixA,weprovide additional details on the implemen-
tation of the procedures introduced in this section and step-by-step calculations of important
identities and facts concerning compressed oracles. In Appendix A.1 we recall in detail the
compressed oracle introduced in [Zha18], where the distribution of functions is uniform and
the functions map bitstrings to bitstrings. We show the oracle in different bases and present
calculations that might be useful for developing intuition for working with the new view on
quantum random oracles.

3.1 General Structure of the Oracles

In this subsection we describe the general structure of quantum-accessible oracles that will
give us a high-level description of all the oracles we define in this paper. A quantum-accessible
random oracle consists of

1. Hilbert spaces for the inputHX , outputHY , and state registersHF ,

2. a procedure SampD that, on input a subset of the input space of the functions in D, pre-
pares a superposition of partial functions on that subset of inputs with weights according
to the respective marginal of the distribution D,

3. an update unitary FOD that might depend onD (in the case of compressed oracles) or not
(e.g. in the definition from Eq.(8)).

First of all, let us note thatwe use the Fourier picture of the oracle as the basis for our discussion.
This picture, even though less intuitive at first sight, is simpler to handle mathematically. The
distribution of the functions we model by the quantum oracle are implicitly given by the pro-
cedure SampD that when acting on the |0〉 state generates a superposition of values consistent
with outputs of a function f sampled from D.

In the above structure the way we implement the oracle—in a compressed way, or acting on
full function tables—depends on the way we define FOD.

In full generality, SampD can depend on both the input to f and previous queries made
by the adversary. Accordingly, FOD might behave differently depending to the distribution D.
The definition of SampD is such that SampD(X)|0N 〉 =

∑
f∈F

√
P[f ← D]|f〉 and is a unitary

operator. Whether SampD is defined on smaller inputs might depend on the distribution.
Quantum-accessible oracles work as follows. First the oracle state is prepared in an all-zero

state. Then at every query by the adversarywe run FOD which updates the state of the database.
Further details are provided in the following sections.

9

3.2 Non-uniform Oracles

One of the main results of this paper is generalizing the idea of purification and compression
of quantum random oracles to non-uniform function distributions. Examples of such functions
are random permutations or Boolean functions that output one with a given probability.

We aim at the following functionality

StO|x, y〉XY
∑
f∈F

√
P[f : f ← D] |f〉F =

∑
f∈F

√
P[f : f ← D] |x, y + f(x) mod N〉XY |f〉F , (9)

where D is a distribution on the set of functions F = {f : X → Y}. The first ingredient we
need is an operation that prepares the superposition of function truth tables according to the
given distribution. More formally, we know a unitary that for all S ⊆ X

SampD(S)|0|S|〉F (S) =
∑

f(x):f∈F ,x∈S

√
P[f(S) : f ← D]

⊗
x∈S
|f(x)〉F (x), (10)

where by f(S) we denote the part of the full truth table of f corresponding to inputs from S
and by F (x) register corresponding to x. Later we give explicit examples of SampD for different
D. Applying QFT to the adversary’s register gives us the Phase Oracle PhO that changes the
phase of the state according to the output value f(x). This picture is commonly used in the
context of bitstrings but is not very useful in our context. Additionally transforming the oracle
register brings us to the Fourier Oracle, that we will focus on. This series of transformations
can be depicted as a chain of oracles:

StO
QFTYN←−−−→ PhO

QFTFN←−−−→ FO, (11)

going “to the right” is done by applying QFTN and “to the left” by applying the adjoint. The
non-uniform Fourier Oracle is just FO = QFTY FN ◦ StO ◦ QFT† Y FN ,

FO|x, η〉XY
∑
φ

1√
NM

∑
f∈F

√
P[f : f ← D] ωφ·fN |φ〉F

= |x, η〉XY
∑
φ

1√
NM

∑
f∈F

√
P[f : f ← D] ωφ·fN |φ− χx,η mod N〉F .

(12)

The main difference between uniform oracles and non-uniform oracles is that in the latter,
the initial state of the oracle in the Fourier basis is not necessarily an all-zero state. That is
because the unitary SampD—that is used to prepare the initial state—is not the adjoint of the
transformation between oracle pictures, like it is the case for the uniform distribution.

Before defining compressed oracles for non-uniform function distributions, let us take a step
back and think about classical lazy sampling for such a distribution. Let f be a random function
from a distributionD. In principle, lazy sampling is always possible as follows. When the first
input x1 is queried, just sample from the marginal distribution for f(x1). Say the outcome is
y1 for the next query with x2, we sample from the conditional distribution of f(x2) given that
f(x1) = y1, etc.

Whether actual lazy sampling is feasible depends on the complexity of sampling from the
conditional distributions of function values given that a polynomial number of other function
values are already fixed.

The situation when constructing compressed superposition oracles for non-uniformly
distributed random functions is very similar. In this case we need the operations
SampD|f(x1)=y1,...,f(xs)=ys to be efficiently implementable for the compressed oracle to be effi-
cient. Here, D|f(x1) = y1, ..., f(xs) = ys denotes the function distribution on X \ S, with
S = {x1, ..., xs}, obtained by conditioningD on the event f(x1) = y1∧ ...∧f(xs) = ys. We write

SampD|f(x1)=y1,...,f(xs)=ys(X \ S) = SampD(X \ S | {x1, ..., xs}) (13)

10

where by inputting a set to SampD we mean that the operation will prepare a superposition of
outputs to elements of the set. By conditioning on a set {x1, ..., xs} we mean that pairs (xi, yi)
are input to SampD so that we get a sample of the conditional distribution. Hence we get

∀S ⊆ X :SampD(X \ S | S) ◦ SampD(S) = SampD(X). (14)

We additionally require that SampD(X \ S | S) does not modify the output values of S and is
only controlled on them. Note that while we require that SampD is local, so fulfills Eq. (14), and
that it prepares the correct distribution when acting on |0N 〉, Eq. (10), we also require it to be a
valid unitary. In general SampD fulfilling both requirements can be completed to a full unitary
in any way.

Note that for SampD(X \ S | S) to be efficient, it is not sufficient that the conditional prob-
ability distributions D|f(x1) = y1, ..., f(xs) = ys are classically efficiently sampleable. This
is because running a reversible circuit obtained from a classical sampling algorithm on a su-
perposition of random inputs will, in general, entangle the sample with the garbage output
of the reversible circuit. The problem of efficiently creating a superposition with amplitudes√
p(x) for some probability distribution p has appeared in other contexts, e.g. in classical-client

quantum fully homomorphic encryption [Mah18].
Before we state the algorithm that realizes the general Compressed Fourier Oracle CFOD we

provide a high-level description of the procedure. The oracle CFOD is a unitary algorithm
that performs quantum lazy sampling, maintaining a compressed database of the adversary’s
queries. For the algorithm to be correct—indistinguishable for all adversaries from the full
oracle—it has to respect the following invariants of the database: The full oracle is oblivious to
the order in which a set of inputs is queried. Hence the same has to hold for the compressed
oracle, i.e. we cannot keep entries (x, η) in the order of queries. We ensure this property by
keeping the database sorted according to x.

The second issue concerns the danger of storing toomuch information. If after the querywe
save (x, η) in the database but the resulting entry would map to (x, 0) in the unprepared basis,
i.e. the basis before applying Samp, then the compressed database would entangle itself with
the adversary, unlike in the case of the full oracle. Hence the database cannot contain 0 in the
unprepared basis.

CFOD: On input |x, η〉 do the following:

1. Find the index r ∈ [q] of the register into which we should insert (x, η).

2. If x 6= xr: insert x in a register after the last element of the database and shift it to position
r, moving the intermediate registers backwards.

3. Change the basis to the Fourier basis (in which the adversary’s η is encoded) and update
register r to contain (xr, ηr − η), change the basis back to original.

4. Check if any register contains a pair of the form (xi, 0), if yes subtract x from the first part
to yield (xi − x, 0) = (0, 0) and shift it back to the end of the database.

If after q queries the database has a suffix of ` pairs of the form (0, 0), we say the database has
s = q − ` non-padding entries.

Up till now we have described the compressed database only on a high-level, let us now
explain the basis changes mentioned above in more detail. To deal with the difference between
the initial 0 state and the initial Fourier basis truth tableswe use yet another alphabet and define
Д (pronounced as [dε]) which denotes the unprepared database. We call it like that because the
initial state of Д is the all-zero state, moreover only by applying QFTN ◦ SampD we transform
it to ∆, i.e the Fourier basis database. As we will see, operations on Д are more intuitive and
easier to define. We denote an unprepared database by |Д〉D = |x1, и1〉D1 |x2, и2〉D2 · · · |xq, иq〉Dq

11

(where the cyrillic letter и is pronounced as [i]). By ∆Y (x) we denote the η value corresponding
to the pair in ∆ containing x and by ДX we denote the x values kept in Д. The intuition behind
the preparation procedure is to initialize the truth table of the correct distribution in the correct
basis. This notion is not visible in the uniform-distribution case, because there the sampling
procedure for the uniform distribution U is the Hadamard transform: SampU = HT†n, and the
database pictures ∆ and Д are equivalent. The following chain of databases similar to Eq. (11)
represents different pictures, i.e. bases, in which the compressed database can be viewed

|Д〉 SampD←−−−→ |D〉
QFTDN←−−−→ |∆〉. (15)

Using this notation, Alg. 1 defines the procedure of updates of the database of the com-
pressed database. We refer to Appendix A.2 for the fully detailed description of CFOD. We

Algorithm 1: General CFOD

Input : Unprepared database and adversary query: |x, η〉XY |Д〉D
Output: |x, η〉XY |Д′〉D

1 Count in register S the number of non-padding (и 6= 0) entries s
2 if x 6∈ ДX then // add
3 Copy x to ДX in the right place and add 1 to S // Keeping ДX sorted

4 Apply QFTDYN SampDD(ДX) // Prepare the database: Д 7→ ∆
5 Subtract η from ∆Y (x) // update entry with x

6 Apply Samp†DD (ДX)QFT†D
Y

N // Unprepare the database: ∆ 7→ Д
7 for i = 1, 2, . . . , s do
8 if ДY

i = 0 then // remove or do nothing
9 Remove x from ДX

i

10 Update padding of Д and subtract 1 from S if necessary
11 Uncompute s from register S
12 Output |x, η〉XY |Д′〉D // Д′ is the modified database

would like to stress that to keep the compressed oracle CFOD a unitary operation we always
keep the database of size q. This can be easily changed by always appending an empty register
at the beginning of each query of adversary A. The current formulation of CFOD assumes that
there is a bound on the number of queries made by the adversary, this is not a fundamental
requirement.

The decompression procedure for the general Compressed Fourier Oracle is given byAlg. 2.
The output of the decompression procedureφ(Д) is the state holding the prepared Fourier-basis
truth table of the functions from D, which by construction is consistent with the adversary’s
interaction with the compressed oracle.

The decompression can be informally described as follows. The first operation coherently
counts the number of и 6= 0 and stores the result in a register S. Next we prepare a fresh all-
zero initial state of a function from X to Y , i.e. M registers of dimensionN , all in the zero state.
These registers will hold the final FO superposition oracle state. The next step is swapping
each Y -type register of the CFO-database with the prepared zero state in the FO at the position
indicated by the corresponding X-type register in the CFO database. The task left to do is
deleting x’s from D. It is made possible by the fact that the non-padding entries of the CFO
database are nonzero and ordered. That is why we can iterate over the entries of the truth table
F and, conditioned on the entry not being 0, delete the last entry of DX and reducing S by
one to update the number of remaining non-padding entries in the CFO-database. Finally, we
switch to the correct basis to end up with a full oracle of Fourier type, i.e. a FO.

12

Algorithm 2: General Decompressing Procedure DecD
Input : Unprepared database: |Д〉D
Output: Prepared, Fourier-basis truth table: |φ(Д)〉

1 Count in register S the number of non-padding (и 6= 0) entries s
2 Initialize a state

⊗
x∈X |0〉F (x)

3 for i = 1, 2, . . . , s do
4 Swap register DY

i with F (xi)
5 for x = M − 1,M − 2, ..., 0 do // x ∈ X in decreasing order
6 if F (x) 6= 0 then
7 Subtract x from DX

s

8 Subtract 1 from S

9 Discard D and S
10 Apply QFTFNSampFD(X) // Prepare the database

Theorem 5 (Correctness of CFOD). SayD is a distribution over functions, let CFOD be as defined in
Alg. 1 and FO as in Eq.(12), then for any quantum adversary A making q quantum queries we have

|ΨFO〉 = DecD|ΨCFO〉, (16)

where |ΨFO〉 is the state resulting from the interaction of A with FO and |ΨCFO〉 is the state resulting
from the interaction of A with CFOD.

Proof. We will show that
FO ◦ DecD = DecD ◦ CFOD, (17)

this is sufficient for the proof of the theorem as |ΨFO〉 is generated by a series of the adver-
sary’s unitaries intertwined with oracle calls. If we show that FO = DecD ◦ CFOD ◦ Dec†D then
everything that happens on the oracle’s register side can be compressed.

Let us start with the action of DecD on some database state

|Д(~x,~и)〉 := |x, η〉XY |x1, и1〉D1 · · · |xs, иs〉Ds · · · |0, 0〉Dq , (18)

where ~x := (x1, x2, . . . , xs) and ~и := (и1, и2, . . . ,иs), additionally note that no иi in ~и is zero.
Now we study the action of DecD on the above state. To write the output state we need to
name thematrix elements of the sampling unitary: (SampD(X))f~и = af~и(X), the column index
consists of a vector of sizeM with exactly s non-zero entries: ~и = (0, . . . , 0, и1, 0 . . . , 0, и2, 0, . . .).
The decompressed state is

|Υ(~x,~и)〉F :=DecD|Д(~x,~и)〉 =
∑
φ∈F

1√
NM

∑
f∈F

ωφ·fN af~и(X) |φ0〉F (0) · · · |φM−1〉F (M−1), (19)

where φ ·f =
∑
x∈X φxf(x) mod N and by f(x) we denote row number x of the function truth

table f .
Using locality of SampD as defined in Eq. (14), we have that SampD(X) = SampD(X \ {x} |

{x}) ◦ SampD(x) and we can focus our attention on some fixed x: isolate register F (x) with
amplitudes depending only on x. Let us compute this state after application of FO, note that
FO only subtracts η from F(x):

FO|x, η〉XY |Υ(~x,~и)〉F = |x, η〉XY
∑

φ′,f ′∈F(X\{x})

1√
NM−1

ωφ
′·f ′
N a

f ′~и′(X \ {x} | {x})

· |φ0〉F (0) · · ·

 ∑
ζ,z∈[N]

1√
N
ωζ·zN azиx(x) |ζ − η〉F (x)

 · · · |φM−1〉F (M−1),

(20)

13

where ~и′ ∈ YM−1 denotes the vector of иi without the row with index x. Note that иx = 0 if x
was not in ~x before decompression and иx 6= 0 otherwise.

The harder part of the proof is showing that the right hand side of Eq. (17) actually equals the
left hand side that we just analyzed. Let us inspect |Д(~x,~и)〉 after application of the compressed
oracle

CFOD|x, η〉XY |Д(~x,~и)〉D = |x, η〉XY

·

∑
и6=0

α(x, η, и̃, иx) |Д′ADD/UPD〉D + α(x, η, и̃, 0) |Д′REM/NOT〉D

 (21)

where by Д′ADD/UPD we denote the database Д(~x,~и) with entry (x, иx) added or updated and
by Д′REM/NOT we denote the database where (x, иx) was removed or nothing happened. The
function α(·) denotes the corresponding amplitudes. By и̃ we denote the original и in entry x
in the database.

Before we proceed with decompression of the above state let us calculate the amplitudes α.
Again using locality of SampD we describe the action of the compressed oracle on a single x
step by step. Belowwe denote by Rem removing и = 0 from Д and by Sub subtraction of η from
database register ∆Y . We start with a database containing (x, и̃), in the case x was not already
in Д, then и̃ = 0, otherwise it is the value defined in previous queries. The simplification we
make is describing CFOD acting on a single-entry database. We do not lose generality by that
as the only thing that changes for q larger than one is maintaining proper sorting and padding,
which can be easily done (see Appendix A.2 for details). The calculation of CFOD on a basis
state follows:

|x, η〉XY |x, и̃x〉D
SampD7→ |x, η〉XY

∑
z∈[N]

azи̃x(x) |x, z〉D (22)

QFTD
Y

N7→ |x, η〉XY
∑
z∈[N]

azи̃x(x)
∑
ζ∈[N]

1√
N
ωζ·zN |x, ζ〉D (23)

Sub7→|x, η〉XY
∑

z,ζ∈[N]
azи̃x(x) 1√

N
ωζ·zN |x, ζ − η〉D (24)

QFT†D
Y

N7→ |x, η〉XY
∑

z,ζ∈[N]
azи̃x(x) 1√

N
ωζ·zN

∑
z′∈[N]

1√
N
ω̄
z′·(ζ−η)
N |x, z′〉D (25)

=|x, η〉XY
∑
z∈[N]

azи̃x(x)
∑

z′,ζ∈[N]

1
N
ωζ·zN ω̄

z′·(ζ−η)
N︸ ︷︷ ︸

=ω̄−z·ηN δ(z′,z)

|x, z′〉D (26)

Samp†D
D

(x)
7→ |x, η〉XY

∑
z∈[N]

azи̃x(x) ωz·ηN
∑

и∈[N]
āzи(x) |x, и〉D (27)

=|x, η〉XY
∑

и∈[N]

∑
z∈[N]

azи̃x(x) ωz·ηN āzи(x)

︸ ︷︷ ︸
:=α(x,η,и̃,и)

|x, и〉D (28)

RemD

7→ |x, η〉XY

 ∑
и∈[N]\{0}

α(x, η, и̃x, и) |x, и〉D + α(x, η, и̃x, 0) |0, 0〉D

 . (29)

As we have already mentioned, locality is necessary for us to analyze the action of CFOD on a
basis state with a small database. Note however that it is not sufficient; We also have to argue
that SampD(X \ {x} | {x}), that is applied to the database too, commutes with subtraction of η,

14

namely

Samp†DD (X \ {x} | {x}) ◦ QFTD
Y
x

N SubDYx QFT†D
Y
x

N ◦ SampDD(X \ {x} | {x})

=QFTD
Y
x

N SubDYx QFT†D
Y
x

N . (30)

To prove the above statement we first note that SampDD(X \ {x} | {x}) is controlled on register
DY
x , but does not act on it. Secondly, in Eq.(26) we see that QFTDYN Sub QFT†D

Y

N multiplies the
state by phase factor ωz·ηN and also does not modify register DY

x , but is controlled on it though.
Hence Eq.(30) holds. In the above equations we have defined α as

α(x, η, и̃x, и) :=
∑
z∈[N]

azи̃x(x) āzи(x) ωz·ηN . (31)

After decompressing the state from Eq.(21), the resulting database state will be∑
и 6=0 α(x, η, и̃x, иx) |Υ(Д′ADD/UPD)〉 + α(x, η, и̃′x, 0) |Υ(Д′REM/NOT)〉D, where we overload no-

tation of |Υ(~x,~и)〉 to denote that (~x,~и) consists of values in the respective databases. We can
write down this state in more detail using Eq.(20):

DecD ◦ CFOD|x, η〉XY |Д(~x,~и)〉D =
∑

φ′,f ′∈F(X\{x})

1√
NM−1

ωφ
′·f ′
N a

f ′~и′(X \ {x} | {x}) |φ0〉F (0) · · ·

·

 ∑
иx 6=0

α(x, η, и̃, иx)
∑

ζ,z∈[N]

1√
N
ωζ·zN azиx(x)|ζ〉F (x) + α(x, η, и̃, 0)

∑
ζ,z∈[N]

1√
N
ωζ·zN az0(x)|ζ〉F (x)


︸ ︷︷ ︸

=
∑

ζ,z∈[N]
1√
N
ωζ·zN

∑
иx∈[N] α(x,η,и̃,иx) azиx (x) |ζ〉F (x)

· · · |φM−1〉F (M−1) = FO |x, η〉XY |Υ(~x,~и)〉 = FO ◦ DecD |x, η〉XY |Д(~x,~и)〉D. (32)

The second to last equality comes from the fact that SampD is a unitary and
∑
j∈[N] aij ākj = δik

and therefore we have∑
и∈[N]

α(x, η, и̃, и) azиx(x) =
∑
z′∈[N]

∑
и∈[N]

āz′и(x) azи(x)

︸ ︷︷ ︸
=δz′,z

az′и̃(x) ωz
′·η
N = azи̃(x) ωz·ηN . (33)

Together with changing the variable ζ 7→ ζ − η, we have derived the claimed identity.

3.2.1 Conditionally Uniform Distributions

Functions from conditionally uniform distributions are such that conditioned on any series of
input-output pairs the probability of any output is either zero or 1

L , whereL is some integer. An
example of such function is a random permutation: Conditioned on some queries the output of
a new querymust be a value different from previous outputs. Let us state the formal definition.

Definition 6 (Conditionally uniform distributions). Let D be a distribution over F :=
{f : X → Y}. We call D conditionally uniform if for all q ∈ N, for any set of input-output pairs
{(xi, yi)}i∈[q], for all (x, y) such that ∀i ∈ [q] : x 6= xi, and for all S (Y , possibly depending on
{(xi, yi)}i∈[q] and x, the following holds

P
f←D

[f(x) = y | ∀i ∈ [q] : f(xi) = yi] =

0 if y ∈ S
1
|Y\S| if y 6∈ S

. (34)

15

To accommodate for conditionally uniform distributions in the purified quantum oracle
approach we need a quantum operation that prepares an equal superposition over a given set
Y \ S. Say that the codomain of f is Y (of size N = |Y|) and the set with probability zero is
S. We propose that this is done first by applying the Quantum Fourier Transform over the set
[L], where L = |Y \ S|, to the state |0〉. After that we spread the values in [L] in a way that
values from S no longer appear in the set. The last operation may be realized by repeating the
following unitary

VAB|a〉A|b〉B =
{
|a〉A|b〉B if a > b

|a〉A|b+ 1 mod N〉B if a ≤ b
, (35)

where by VAB we denote applying V to registers A,B. Details about the efficient implementa-
tion of V are given in Appendix A.3. The definitions of the sampling operation for a condition-
ally uniform distribution is given by: ∀S ⊆ X

SampY\S(x) :=
|S|∏
i=1

VSiDY (x)QFTD
Y (x)†

L , (36)

where Si are the quantum registers holding elements of S. Note that we apply QFT†L to a
register of dimension N , we overload the notation but mean QFT†L

⊕
1N−L. The sampling

procedure from Eq. (36) is used to implement CStOY\S .
An example of a conditionally uniform distribution of this form is the uniform distribution

over the set of permutations, denoted by P. The sampling function is defined using Eq. (36)
with S defined as previous outputs, held in registers DY

i . The definitions reads as follows:

SampP(S) :=
|S|∏
i=1

SampY\DY ({x1,··· ,xi}) =
|S|∏
i=1

 i∏
j=1

VD
Y
j D

Y
i

QFTD
Y
i †

N−(i−1), (37)

where DY ({x1, · · · , xi} denotes the set of outputs y in entries of D corresponding to listed x.
We denote the compressed oracle returning outputs of random permutations by CPerOX .

For the inverse permutation the oracle should return the x such that the output is y. For
the full oracle we can implement this by rewriting the function table to contain the x values
explicitly and then treating the FX register as holding output values and F Y register as the
input register. In the case of compressed oracles we do a similar thing, applying sampling
operations SampP with roles of registers DX and DY swapped.

4 One-way to Hiding Lemma for Compressed Oracles

The fundamental game-playing lemma, Lemma 1, is a very powerful tool in proofs that include
a random oracle. By designing the games for a proof we can reprogram the random oracle in a
useful way. The fundamental lemma gives us a simple way of calculating howmuch the repro-
gramming costs in terms of the adversary’s advantage—the difference between probabilities
of A outputting 1 when interacting with one game or the other. The lemma that provides a
counterpart to Lemma 1 valid for quantum accessible oracles is the One-Way to Hiding (O2H)
Lemma first introduced by Unruh in [Unr14].

In the original statement of the O2H lemma, the main idea is that there is a marked subset
of inputs to the random oracle H and an adversary tries to distinguish the situation in which
she interacts with the normal oracle from an interaction with an oracle G that differs only on
this set. The lemma states a bound for the distinguishing advantage which depends on the
probability of an external algorithm measuring the input register of the adversary and seeing
an element of the marked set. This probability is usually small, for random marked sets.

16

Recently this technique was generalized by Ambainis, Hamburg, and Unruh in [AHU18].
The main technical idea introduced by the generalized O2H lemma is to exchange the oracle G
with a so-called punctured oracle that measures the input of the adversary after every query. The
bound on the adversary’s advantage is given by the probability of this measurement succeed-
ing. This technique forms the link with the classical identical-until-bad games: we perform a
binary measurement on the “bad” event and bound the advantage by the probability of suc-
ceeding.

In this work we present a generalization of this lemma that involves the use of compressed
oracles. Our idea is to measure the database of the compressed oracle, which makes the lemma
more versatile and easier to use for more general quantum oracles.

Below we state our generalized O2H lemmas. Most proofs of [AHU18] apply almost word
by word so we just describe the differences and refer the reader to the original work.

The key notion we use is a relation on the database of the compressed oracle.

Definition 7 (RelationR onD). LetD be a database of size q of pairs (x, y) ∈ X ×Y . We call a subset
R ⊆

⋃
s∈[q+1] (X × Y)s a relation R on D.

An example of such a relation is a collision, namely Rcoll := {((x1, y1), · · · , (xt, yt)) ∈⋃
s∈[q+1] (X × Y)s : ∃i,j i 6= j, xi 6= xj , yi = yj}. Note however, that it is only reasonable to

check if the non-padding entries are in R, omitting the (0, 0) pairs at the end of D. We also
write S instead of R (for some S ⊆ Y), then the relation is defined as entries of D that have
yi ∈ S.

If D is held in a quantum register, R has a corresponding projective measurement JR such
that ‖JR|(x1, y1), · · · , (xq, yq)〉D‖ = 1 if and only if for some s ((x1, y1), · · · , (xs, ys)) ∈ R holds
and (xi, yi) are padding entries for i > s. We also state an explicit algorithm to implement the
measurement of a relation R, given that the relation R is efficiently computable. Alg. 3 defines
the measurement procedure of measuring R defined in the standard basis of the database (D).

Algorithm 3:Measurement of a relation R
Input : Unprepared database |Д〉D
Output: Outcome p and post-measurement state |Д′〉D

1 Count in register S the number of non-padding (и 6= 0) entries s
2 Apply SampDD(S) // Prepare the database: Д 7→ D
3 Apply UR that saves a bit j := ‖JR|D〉D‖ in register J // j = 1 iff D in R

4 Apply SampD†D (S) // Unprepare the database D 7→ Д
5 Uncompute register S, measure register J , output the outcome j

While not directly relevant to our applications, we keep the generality of [AHU18] by intro-
ducing the notion of query depth as the number of sets of parallel queries an algorithm makes.
We usually assume quantum algorithms make q quantum queries in total and d (as in “query
depth”) sequentially, but those queries in sequence may involve a number of parallel queries.
A parallel query of width p to an oracle H involves p applications of H to p query registers. Note
that if H is considered to be a compressed oracle all parallel queries are held in a single database
register.

First we define a compressed oracle H punctured on relation R, denoted by H \R.

Definition 8 (Punctured compressed oracle H \ R). Let H be a compressed oracle and R a relation
on its database. The punctured compressed oracle H \ R is equal to H, except that R is measured after
every query as described in Alg. 3. By Find we denote the event that R outputs 1 at least once.

Using this definition we can prove a theorem similar to Theorem 1 of [AHU18]:

17

Theorem 9 (Compressed oracle O2H). Let R be a relation on the database of a quantum compressed
oracle H. Let z be a random string. R,H, and z may have arbitrary joint distribution. Let A be an oracle
algorithm of query depth d. Let H \R be a punctured oracle defined in Def. 8, then∣∣∣P[b = 1 : b← AH(z)]− P[b = 1 : b← AH\R(z)

∣∣∣ ≤ 2
√

(d+ 1)P[Find : AH\R(z)], and (38)∣∣∣∣√P[b = 1 : b← AH(z)]−
√
P[b = 1 : b← AH\R(z)

∣∣∣∣ ≤ 2
√

(d+ 1)P[Find : AH\R(z)]. (39)

Proof. The proof works almost the same as the proof of Theorem 1 of [AHU18]. Let us state the
analog of Lemma 5 from [AHU18].

For the following lemma let us first define two algorithms. Let AH(z) be a unitary quantum
algorithm with oracle access to H with query depth d. Let Q denote the quantum register of A
andD the database of the compressed oracleH. We also need a “query log” registerL consisting
of d qubits.

Let BH,R(z) be a unitary quantum algorithm acting on registers Q and L and having oracle
access to H. First we define the following unitary

UR|D〉D|l1, l2, . . . , ld〉L :=
{
|D〉D|l1, l2, . . . , ld〉L if R(|D〉D) = 0
|D〉D|l1, . . . , li ⊕ 1, . . . , ld〉L if R(|D〉D) = 1

, (40)

where R(|D〉D) denotes the outcome of the projective binary measurement on D. The uni-
tary exists for all relations. One can just coherently compute R(D) into an auxiliary register,
apply CNOT from that register to Li and then uncompute R(D). If the relation is efficiently
computable, then so is the unitary. We define BH,R(z) as:

• Initialize the register Lwith |0d〉.

• Perform all operations that AH(z) does.

• For all i, after the i-th query of A apply the unitary UR to registers D,L.

Let |ΨA〉 denote the final state of AH(z), and |ΨB〉 the final state of BH,R(z). Let P̃find be the
probability that a measurement of L in the computational basis in the state |ΨB〉 returns 6= 0d,
i.e. P̃find :=

∥∥∥1Q,D ⊗ (1L − |0d〉L〈0d|)|ΨB〉
∥∥∥2
.

Lemma 10 (Compressed oracle O2H for pure states). Fix a joint distribution for H, R, z. Consider
the definitions of algorithms A and B and their quantum states, then∥∥∥|ΨA〉 ⊗ |0d〉L − |ΨB〉

∥∥∥2
≤ (d+ 1)P̃find. (41)

Proof. This lemma can be proved in the same way as Lemma 5 of [AHU18]. Here we omit some
details and highlight the most important observation of the proof.

First define Bcount that works in the same way as B but instead of storing L, the log of
queries with D in relation, it keeps count—in register C—of how many times a query resulted
in R(|D〉D) = 1. The state that results from running Bcount is |ΨBcount〉 =

∑d
i=0|Ψi

Bcount
)|i〉C and

similarly |ΨB〉 =
∑
l∈{0,1}d |Ψl

B)|l〉L, where |Ψ) denotes a not normalized state. We can observe
that |ΨA〉 =

∑d
i=0|Ψi

Bcount
). As P̃find is the probability of measuring at least one bit in the register

L of B, or counting at least one fulfilling of R in C, we have that |Ψ0d
B) = |Ψ0

Bcount
). From the

definition we also have P̃find = 1−
∥∥∥|Ψ0

Bcount
)
∥∥∥2
. Using the above identities we can calculate the

18

bound

∥∥∥|ΨB〉 − |ΨA〉 ⊗ |0d〉L
∥∥∥2

=
∥∥∥∥∥
d∑
i=1
|Ψi

Bcount)
∥∥∥∥∥

2

+ P̃find
4
≤
(

d∑
i=1

∥∥∥|Ψi
Bcount)

∥∥∥)2

+ P̃find

J-I
≤ d

d∑
i=1

∥∥∥|Ψi
Bcount)

∥∥∥2

︸ ︷︷ ︸
=P̃find

+ P̃find = (d+ 1)P̃find, (42)

where 4 denotes the triangle inequality and J-I denotes the Jensen’s inequality. Now it is ap-
parent that introducing Bcount gave us a more coarse-grained look at the initial algorithm B,
resulting in a tighter bound.

The rest of the proof of the theorem follows the same reasoning as the proof of Lemma 6
in [AHU18] with the modifications shown in the above lemma. Using bounds on fidelity
(Lemma 3 and Lemma 4 of [AHU18]) and monotonicity and joint concavity of fidelity (from
Thm. 9.6 and Eq. 9.95 of [NC11]) one can generalize the results to the case of arbitrary mixed
states.

We continue by deriving an explicit formula for P[Find]. LetA be a quantum algorithmwith
oracle access to H, making at most q quantum queries with depth d. Let R be a relation on the
database of H and z an input to A. R and z can have any joint distribution. JR is the projector
from the measurement of R on D, UH

i is the i-th unitary performed by AH\R together with a
query to H, and |Ψ0〉 is the initial state of A. Then we have the formula

P[Find : AH\R(z)] = 1−
∥∥∥∥∥
d∏
i=1

(1− JR)UH
j |Ψ0〉

∥∥∥∥∥
2

. (43)

Let us now discuss the notion of “identical until bad” games in the case of compressed
oracles. For random oracles, the notion was introduced in [AHU18]. The definition is rather
straightforward as H and G are considered identical until bad if they had the same outputs ex-
cept for somemarked set. When using compressed oracles, the outputs ofH andG are quantum
lazy-sampled, making the definition of what it means for two oracles to be identical until bad
require more care. Here we state a definition that captures useful notions of identical-until-bad
punctured oracles.

Definition 11 (Almost identical oracles). LetH andG be compressed oracles andRi, i = 1, 2 relations
on their databases. We call the oracles H \R1 and G \R2 almost identical if they are equal conditioned
on the event ¬Find, i.e. for any event E, any strings y, z, and any quantum algorithm A

P[E : y ← AH\R1(z) | ¬Find] = P[E : y ← AG\R2(z) | ¬Find]. (44)

Note that unpunctured compressed oracles are a special case of punctured ones (forR = ∅),
so the above definition can be applied to a pair of oracles where one is punctured and one is
not. We can prove the following bound on the adversary’s advantage in distinguishing almost
identical punctured oracles.

Lemma 12 (Distinguishing almost identical punctured oracles). If H \ R1 and G \ R2 are almost
identical according to Def.11 then∣∣∣P[y ← AH\R1(z)]− P[y ← AG\R2(z)]

∣∣∣ ≤ 2P[Find : AH\R1(z)] + 2P[Find : AG\R2(z)]. (45)

19

Proof. We bound∣∣∣P[y ← AH\R1(z)]− P[y ← AG\R2(z)]
∣∣∣

Def. 11=
∣∣∣P[y ← AH\R1(z) | ¬Find]

(
P[¬Find : AH\R1(z)]− P[¬Find : AG\R2(z)]

)
+ P[y ← AH\R1(z) | Find]P[Find : AH\R1(z)]

−P[y ← AG\R2(z) | Find]P[Find : AG\R2(z)]
∣∣∣ (46)

4
≤

∣∣∣∣∣∣∣∣∣P[y ← AH\R1(z) | ¬Find]︸ ︷︷ ︸
≤1

(
P[¬Find : AH\R1(z)]− P[¬Find : AG\R2(z)]

)
︸ ︷︷ ︸

=P[Find:AG\R2 (z)]−P[Find:AH\R1 (z)]

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣P[y ← AH\R1(z) | Find]︸ ︷︷ ︸
≤1

P[Find : AH\R1(z)]

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣P[y ← AG\R2(z) | Find]︸ ︷︷ ︸
≤1

P[Find : AG\R2(z)]

∣∣∣∣∣∣∣ (47)

4
≤ 2P[Find : AH\R1(z)] + 2P[Find : AG\R2(z)], (48)

where by4we denote the triangle inequality.

Note that for R2 = ∅, the above lemma is essentially a special case of the well known
Gentle-Measurement Lemma of [Win99]. Some additional details on the compressed oracle
O2H lemma can be found in Appendix B.

In the following section we are going to use punctured compressed oracles to prove indif-
ferentiability. There is one more aspect of these oracles that we need to address: A punctured
oracle acts on a database that has been modified by the measurement of the relation. To not
induce more errors when querying such oracle we need to apply the SampD procedure with
respect to the database not being in relation.

For completeness we provide a definition of the general compressed standard oracle punc-
tured on R. We highlight the ”lazy” nature of this formulation but also note that the definition
here is equivalent to the one provided in Alg. 1. The earlier definition is more suitable for the
correctness proof and the following one might give a bit more insight and explain better why
we call the approach the quantum lazy-sampling technique. We define a compressed oracle for
any distributionD that has a Samp procedure fulfilling the requirement of locality and prepar-
ing the initial state, Eq. (14) and Eq. (10) respectively. Note that we also make explicit the fact
that the distribution of a new sample might crucially depend on the set of previous queries P .
Especially, we would like to address distributions with weights of outputs depending on the
previous queries. At this point it is also important to note that SampD(x | S) is defined to sam-
ple x conditioned on S that is in the prepared basis. By the locality requirement from Eq. (14)
we can always prepare or unprepare the database, by proceeding sample-by-sample.

The initial steps of Alg. 4 (lines 1 to 5) work under the condition of ¬Find. If the event
Find occured, we need to modify the distribution toD(R), with Samp conditioned on the struc-
ture of the databaseD corresponding to previous measurement outcomes. This information is
classical though, hence it introduces no additional problems with quantum controls.

InAlg. 4wewriteD\{x} to denote the content of databaseDwithout the entry that includes
x andDX (the x values inD). ByCStOD(P) wedenoteQFTY D(x)†

N ◦CFOD(P)◦QFTY D(x)
N acting on

registers XYD(x)Ds+1S—adversary registers XY , content of D corresponding to entry with
x, register holding the first padding entry Ds+1, and S holding the size of D. The oracle uses

20

Algorithm 4: General CStOD \R
Input : Standard database and adversary query: |x, y〉XY |D〉D
Output: |x, y + f(x)〉XY |D′〉D

1 Unprepare D by applying Samp†XYDD\R (DX) // D → Д

2 Count in register S the number of non-padding (и 6= 0) entries s
3 if x 6∈ ДX then // locate x
4 Copy (0, 0) to Д in the location x should be in and add 1 to S
5 Prepare D by applying SampXYDD\R (DX) // If x ∈ ДX nothing changed, else new

entry (0, 0)
6 Save the set of previous queries P in a fresh register P , controlled on D \ {x}
7 Apply CStOD(P) \R to registers XYD(x)Ds+1S controlled on registers PD \ {x}

// Lazy-sampling f(x)← D(P)
8 Uncompute s from register S and P from P // With the necessary basis switch
9 Output |x, y + f(x)〉XY |D′〉D // D is the modified database

the sampling function SampD(R) controlled on register P . Acting with this unitary on registers
Ds+1S gives the oracle space to update the padding. By D \ R we denote a distribution on
outputs that are never in relation R. Oracle (CStOD(P) \R) performs a measurement of R after
the last step of Alg. 1 and a basis transform of registerD. Wewould like to highlight that except
for the initial preparation (from line 1 to 5) and the final clearing of the auxiliary registers (in
line 8) the compressed oracle updates only one entry of the database. Moreover Alg. 4 clearly
shows that any dependence on the previous queries can be added to the new queries—a fact
that will be crucial in the proof of quantum indifferentiability.

5 Quantum Security of the Sponge Construction

We use our methods to show a detailed proof of quantum indifferentiability of the sponge
construction used with a random transformation as the internal function. In Thm. 16 we state
indifferentiability of Sponges with random permutations, in Appendix C we show the proof of
this theorem.

At the end of this section we prove that quantum indifferentiability implies collapsingness.
As a corollary we show that the sponge construction with random permutations is collapsing.

5.1 Sponge Construction

The sponge construction is used to design variable-input-length and variable-output-length
functions. It works by applying the internal functionϕmultiple times on the state of the function.
In Algorithm 5 we present the definition of the sponge construction, which we denote with
Sponge [Ber+07]. The state of Sponge consists of two parts: one in set A, called the rate, and
the other in set C, called the capacity. In the following we denote the part of the entire state
s ∈ A× C that is A by s̄ and call it the outer part and the part in C by ŝ, we will refer to it as the
inner part of a state. Naturally the internal function is a map ϕ : A × C → A × C. To denote
the internal function with output limited to the part in A and C we use the same notation as
for states, ϕ̄ and ϕ̂ respectively. Note that we use a general formulation of the construction,
using any finite sets as rate and capacity. All our results also work for Sponge defined with bit-
strings and addition modulo 2, as specified in [NIS14]. By pad we denote a padding function:
an efficiently computable bijection mapping an arbitrary message set to strings p of elements
of A. By |p| we denote the number of characters in A in p. A constructed function behaves as

21

0

0

m1

ϕ

m2

ϕ

m3

ϕ

z1

ϕ

z2

Absorbing phase Squeezing phase

Input: m = m1‖m2‖m3 Output: z = z1‖z2

Figure 2: A schematic representation of the sponge construction: Spongeϕ(m1‖m2‖m3) =
z1‖z2.

follows Spongeϕ : A∗ × N → A∗, where A∗ :=
⋃∞
n=0An. In Fig. 2 we present a scheme of the

sponge construction evaluated on inputm.
For a set S ⊆ A×C, by S we denote the outer part of the set: a set of outer parts of elements

of S . Similarly by Ŝ we denote the inner part of the set. We use similar notation for quantum
registers holding quantum state in HA×C : Y is the part of the register holding elements of A
and Ŷ holds the inner parts.

Algorithm 5: Spongeϕ[pad,A, C]
Input :m ∈ A∗, ` ≥ 0.
Output: z ∈ A`

1 p := pad(m)
2 s := (0, 0) ∈ A× C.
3 for i = 1 to |p| do // Absorbing phase
4 s := (s̄+ pi, ŝ)
5 s := ϕ(s)
6 z := s̄ // Squeezing phase
7 while |z| < ` do
8 s := ϕ(s)
9 z := z‖s̄
10 Output z

An important feature of the sponge construction that was introduced in [Ber+07] is the
fact that interaction with it can be represented on a graph G = (V, E). The set of vertices V
corresponds to all possible states of the sponge, namely V := A×C. The outer part is controlled
by the user, meaning that she can output that part andmodify to any value in a future evaluation
by querying an appropriate message. For that reason we group the nodes with the same inner-
part value into supernodes, so that we have |C| supernodes and every of those consists of |A|
nodes. A directed edge (s, t) ∈ E from a node s to a node t exists if ϕ(s) = t. From every node
there is exactly one edge, if ϕ is a permutation, then there is also exactly one edge arriving at
every node. Note that query algorithms add edges to E query by query. Then graph G reflects
the current knowledge of this algorithm about ϕ.

In the sponge graph G a sponge path is a path between supernodes that starts at 0-
supernode—called the root. A sponge path can represented by a string consisting of some

22

number of characters fromA: following the rules of evaluating Spongewe feed those characters
to the construction as inputs, every next character shifts us in a single supernode, evaluation
of ϕ can create an edge between any two nodes (also with different inner parts, so in different
supernodes). If the string representing a sponge path is a padding of some messagem, a path
corresponds to an input to Sponge. In the following proofs we are going to construct the input
to Sponge leading to a given node s, with a given sponge graphG. Our definition works under
the assumption that there is a series of edges ((vi, wi))i∈[`] of G (so a ”regular” path) that leads
to s, meaning w` = s. We define the sponge path construction operation as follows

SpPath(s,G) := v̄1‖(v̄2 − w̄1)‖ · · · ‖(v̄` − w̄`−1)‖0. (49)

Output of the above function is the input to the construction Spongeϕ(., ` = 1) that yields the
output s̄.

A supernode is called rooted if there is a path leading to it that starts in the root (the 0-
supernode). The set R is the set of all rooted supernodes in G. By U we denote the set of
supernodes with a node with an outgoing edge.

In the case of an adversary querying a random function ϕwe are going to treat the graph as
being created one edge per query. Graph G then symbolizes the current state of knowledge of
the adversary of the internal function. Note that this dynamical graph can be created efficiently
by focusing solely on nodes that appear in the queried edges.

A sponge graph is called saturated ifR∪U = C. It means that for every inner state in C there
is an edge in G that leads to it from 0 (the root) or leads from it to another node. Saturation
will be important in the proof of indifferentiability as the simulator wants to pick outputs of ϕ
without colliding inner parts (so not in R) and making the path leading from 0 to the output
longer by just one edge (so not in U).

The simulators defined in the proofs in this section are implicitly stateful. They maintain a
classical or quantum state containing a database of the adversary’s queries and the simulator’s
outputs. Basing on that database the simulator can always construct a sponge graph containing
all the current knowledge of ϕ.

For the proof of indifferentiability we also need an upper bound on the probability of find-
ing a collision in the inner part of outputs of a uniformly random function ϕ : A× C → A× C.
Note that by such collision we also consider inputs that map to 0 ∈ C. We define the bound as
a function of the number of queries q to ϕ:

fcoll(q) := q(q + 1)
2 |C| , (50)

the bound can be derived by bounding the probability of finding a collision and bounds on the
natural logarithm: ln(1− x) ≤ −x and ln(1− x

2) ≥ −x
2 for 0 ≤ x < 1.

As the sponge construction is used to design variable-input and variable-output functions
we define the random oracle H : A∗ × N→ A∗ accordingly:

H(x, `) :=


by′c` if (x, `′ ≥ `) ∈ D

y′‖
(
y

$← A`−`′
)

if (x, `′ < `) ∈ D

y
$← A` otherwise

, (51)

where by D we denote the database of previous queries, by primes we denote the contents of
entries of D, and by′c` denotes the first ` letters (in A) of y′. Note that such description can be
easily used to define a quantum accessible oracle for H. In the following section, we omit the
second input and we mean that we ask for a single letter H(x) = y ∈ A.

23

5.2 Classical Indifferentiability of Sponges with Random Functions

In the game-playing proofs and Algorithms 6 and 7 described in this section we use the follow-
ing convention: every version of the algorithm executes the part of the code that is not boxed
and among the boxed statements only the part that is inside the box in the color corresponding
to the color of the name in the definition.

First we present a slightly modified proof of indifferentiability from [Ber+08]. We modify
the proof to better fit the framework of game-playing proofs. It is not our goal to obtain the
tightest bounds nor the simplest (classical) proof. Instead, our classical game-playing proof
paves the way to the quantum security proof which is presented in the next section.

Theorem 13 (Sponge with functions, classical indifferentiability). Spongeϕ[pad,A, C] calling a
random function ϕ is (q, ε)-indifferentiable from a random oracle, Eq. (51), for classical adversaries for
any q < |C| and ε = 8 q(q+1)

2|C| .

Proof. The proof proceeds in six games that we show to be indistinguishable. We start with the
real world: the public interface corresponding to the internal function ϕ is a random transfor-
mation and the private interface is Spongeϕ. Then in a series of games we gradually change
the environment of the adversary to finally reach the ideal world, where the public interface is
simulated by the simulator and the private interface is a random oracle H. The simulators used
in different games of the proof are defined in Alg. 6, the index of the simulator corresponds to
the game in which the simulator is used. Explanations of the simulators follow.

Algorithm 6: Classical S2, S3 , S4 , S6 , functions
State : current sponge graph G
Input : s ∈ A× C
Output: ϕ(s)

1 if s has no outgoing edge then // new query
2 if ŝ ∈ R ∧R ∪ U 6= C then // ŝ-rooted, no saturation

3 t̂
$← C, if t̂ ∈ R ∪ U , set Bad = 1 , t̂ $← C \ (R∪ U)

4 Construct a path to s: p := SpPath(s,G)
5 if ∃x : p = pad(x) then
6 t̄

$← A

7 t̄ := H(x)

8 else
9 t̄

$← A
10 t := (t̄, t̂)
11 else
12 t

$← A× C
13 Add an edge (s, t) to E .
14 Set t to the vertex at the end of the edge starting at s
15 Output t

Game 1We start with the real world where the distinguisher A has access to a random function
ϕ : A× C → A× C and Spongeϕ using this random function. The formal definition of the first
game is the event

Game 1 := (b = 1 : b← A[Spongeϕ, ϕ]) . (52)

24

Game 2 In the second game we introduce the simulator S2—defined in Alg. 6—that lazy-
samples the random function ϕ. In Alg. 6 we define all simulators of this proof at once, but note
that the behavior of S2 is not influenced by any of the conditional “if” statements (in lines 1,
2, and 5), because in the end, the output state t is picked uniformly from A × C anyway. The
definition of the second game is

Game 2 := (b = 1 : b← A[SpongeS2 , S2]) . (53)
Because the simulator S2 perfectly models a random function and we use the same function for
the private interface we have

|P[Game 2]− P[Game 1]| = 0. (54)

Game 3 In the next step we modify S2 to S3. The game is then
Game 3 := (b = 1 : b← A[SpongeS3 , S3]) . (55)

We made a single change in S3 compared to S2, we introduce the “bad” event Bad that marks
the difference between algorithms. We use this event as the bad event in Lemma 1. With such
a change of the simulators we can use Lemma 1 to bound the difference of probabilities:

|P[Game 3]− P[Game 2]| ≤ P[Bad = 1]. (56)
It is now quite easy to bound P[Bad = 1] as it is the probability of finding a collision or preimage
of the root in the set C having made q random samples. Then we have that

P[Bad = 1] ≤ fcoll(q), (57)
where fcoll is defined in Eq. (50). The bound is not necessarily tight as not all queries are made
to rooted nodes.
Game 4 In this step we introduce the random oracle H but only to generate the outer part of the
output of ϕ. The game is defined as

Game 4 :=
(
b = 1 : b← A[SpongeS4 ,SH

4]
)
. (58)

Now we observe that if Bad = 0 the outputs are identically distributed.
Claim 14. Given that Bad = 0 the mentioned games are the same:

|P[Game 4 | Bad = 0]− P[Game 3 | Bad = 0]| = 0. (59)

Proof. Note that the inner part is distributed in the same way in both games if Bad = 0, so we
only need to take care of the outer part of the output. The problem might lie in the outer part,
as we modify the output from a random sample to H(x). If Bad = 0 then t̂ is not rooted and
has no outgoing edge, also the whole graph G does not contain two paths leading to the same
supernode. Hence, xwas not queried before and is uniformly random. This reasoning is made
more formal in Lemma 1 and Lemma 2 of [Ber+07].

The two games are identical-until-bad, this implies that the probability of setting Bad to one
in both games is the same P[Bad = 1 : Game 3] = P[Bad = 1 : Game 4]. Together with the
above claim we can derive the advantage:

|P[Game 4]− P[Game 3]| Claim 14=
∣∣∣∣∣P[Game 4 | Bad = 0]

· (P[Bad = 1 : Game 3]− P[Bad = 1 : Game 4]])︸ ︷︷ ︸
=0

+ P[Game 3 | Bad = 1]︸ ︷︷ ︸
≤1

P[Bad = 1] + P[Game 4 | Bad = 1]︸ ︷︷ ︸
≤1

P[Bad = 1]
∣∣∣∣∣ (60)

≤ 2P[Bad = 1]. (61)

25

Game 5 In this stage of the proof we change the private interface to contain the actual random
oracle. The simulator is the same as before and the game is

Game 5 :=
(
b = 1 : b← A[H,SH

4]
)
. (62)

Conditioned on Bad = 0, the outputs of the simulator in Games 4 and 5 act in the sameway and
are consistentwithH. To calculate the adversary’s advantage in distinguishing between the two
gameswe can follow the proof of Lemma 12. We changeH\R1 toGame 5, G\R2 toGame 4, and
event Find to Bad = 1. As the derivation of Lemma 12 uses no quantummechanical arguments
and the assumption holds—the games are identical conditioned on Bad = 0—the bound holds:

|P[Game 5]− P[Game 4]| ≤ 4P[Bad = 1] ≤ 4fcoll(q). (63)

Game 6 In the last game we use S6, a simulator that does not check for bad events and samples
from the ”good” subset of C. The game is

Game 6 :=
(
b = 1 : b← A[H,SH

6]
)

(64)

and the advantage is

|P[Game 6]− P[Game 5]| ≤ P[Bad = 1] ≤ fcoll(q). (65)

following Lemma 1. as the only difference is in code but not outputs. We included this last
game in the proof because S6 is clearly a simulator that might fail only if G is saturated but
this does not happen if q < |C|. Collecting and adding all the differences yields the claimed
ε = 8fcoll(q).

5.3 Quantum Indifferentiability of Sponges with Random Functions

In this subsection we prove quantum indifferentiability of the sponge construction with a uni-
formly random internal function.

In the quantum indifferentiability simulator we want to sample the outer part of inputs of ϕ
and the inner part separately, similarly to the classical one. To do that correctly in the quantum
case though we need to maintain two databases: one responsible for the outer part and the
other for the inner part. We denote them by D and D̂ respectively. Note that this division
makes our formulation fit the definition from Alg. 4 but in principle could be avoided by a
different formulation The crucial point here is maintaining the databases with the invariants
we specified in mind; If we add x toD when sampling t̂, the database is not in the correct form
from the point of sampling t̄.

At line 7 of the classical simulator we swap lazy sampled outer state to the output of the
random oracle. In the quantum case we want to do the same but still save the output in the
database. To do that we use CStO described in Alg. 4 with H instead of the sampling procedure
Samp. Another modification is that instead of feeding the adversary’s query s to H we use the
sponge path x, kept in registerXH . When acting on registersXXHY D(s), we denote this oracle
by

CHXXHY D(s). (66)

Theorem 15 (Sponge with functions, quantum indifferentiability). Spongeϕ[pad,A, C] calling a
random function ϕ is (q, ε)-indifferentiable from a random oracle, Eq. (51), for quantum adversaries for

any q < |C| and ε = 2
√

q(q+1)2

2|C| + 10q(q+1)
2|C| .

26

Proof. Even though we allow for quantum accessible oracles, the proof we present is very sim-
ilar to the classical case. The proof follows the same structure, the biggest difference is in the
simulators that now use the compressed oracle to lazy-sample appropriate answers.

We denote by UG the unitary that acting on |0〉 constructsG including edges consistent with
queries held by the quantum compressed database from register D. Similarly we define UR∪U
to temporarily create a description of the set of supernodes that are rooted or have an outgoing
edge.

In Alg. 7 we describe the simulators we use in this proof. In the quantum simulators we
also make use of the graph representation of sponges. Note however that in a single query
we only care about the graph before the query. Due to that fact we can apply the compressed
oracle defined in Alg. 4 and additionally analyzed in Lemma 21. Lemma 21 provides a bound
of the probability of Find in the case of compressed oracles and relations relevant for the sponge
construction.

Line 1 of Alg. 7 corresponds to lines 1 to 5 of Alg. 4, together with appropriate Samp pro-
cedure, as discussed below Alg. 4. For clarity of presentation we omit some of the details but
the procedure follows the mentioned part of the general algorithm for CStOD and uses Samp
corresponding to the correct version of the simulator, without the measurement in the case of
S4. In lines 3–13 of Alg. 7 we expand line 7 of Alg. 4 to accommodate for the changes in dif-
ferent games of the proof. It is important to note that the ”IF” statements are in fact quantum
controlled operations.

Algorithm 7: Quantum S2 , S3 , S4 , S6 , functions
State : Quantum compressed database register D
Input : |s, v〉 ∈ H⊗2

A×C
Output: |s, v + ϕ(s)〉

1 Locate input s in D and D̂ // Using the correct Samp
2 Apply UR∪U ◦ UG to register D̂ and two fresh registers
3 if ŝ ∈ R ∧R ∪ U 6= C then // ŝ-rooted, no saturation

4 Apply CStOXŶ D̂(s)
C , (CStOC \ (R∪ U))XŶ D̂(s) , CStOXŶ D̂(s)

C\(R∪U) , result: t̂ // The

red oracle is punctured!
5 Construct a path to s: p := SpPath(s,G)
6 if ∃x : p = pad(x) then

7 Apply CStOXY D(s)
A , result: t̄

8 Write x in a fresh register XH , apply CHXXHY D(s) , uncompute x from XH ,

result: t̄ // Random oracle, Eq. (66)
9 else
10 Apply CStOXY D(s)

A , result: t̄

11 t := (t̄, t̂), the value of registers (DY (s), D̂Y (s))
12 else
13 Apply CStOXYD(s)D̂(s)

A×C , result: t
14 Uncompute G andR∪ U
15 Output |s, v + t〉

An illustration of the simulators in the quantum case is depicted in Fig.3.

27

ϕ̂ :

ϕ̄ :

CStO
XŶ D̂(s)
C

CStO
XY D(s)
A

(CStOC \ (R∪ U))XŶ D̂(s)

CHXXHY D(s)

CStO
XŶ D̂(s)
C\(R∪U)

S2

S3

S4

S6

Game 3

Game 4

Game 6

Figure 3: Schematics of the simulators defined in Alg. 7, horizontal arrows signify the change
introduced in the labeled game. Note that despite the syntactic similarity of the red and blue
oracle, it is important to notice that the red oracle is punctured as in Definition 8, while the blue
oracle simply samples from the “good set” C \ (R∪ U).

Game 1We start with the real worldwhere the distinguisherA has quantum access to a random
function ϕ : A × C → A × C and the Spongeϕ construction using this random function. The
definition of the first game is

Game 1 := (b = 1 : b← A[Spongeϕ, ϕ]) . (67)

Game 2 In the second game we introduce the simulator S2, defined in Alg. 7. This algorithm
is essentially a compressed random oracle, the only difference are the if statements, note that
the behavior of S2 is not influenced by any of the conditional “if” statements (in lines 3, and
6), because in the end, the output state t is picked uniformly from A× C anyway. The game is
defined as:

Game 2 := (b = 1 : b← A[SpongeS2 , S2]) . (68)

Because the simulator S2 perfectly models a quantum random function and we use the same
function for the private interface we have

|P[Game 2]− P[Game 1]| = 0. (69)

Game 3 In the next step we modify S2 to S3. The game is then

Game 3 := (b = 1 : b← A[SpongeS3 , S3]) . (70)

With such a change of the simulatorswe can use Thm. 9 to bound the difference of probabilities:

|P[Game 3]− P[Game 2]| ≤ 2
√

(q + 1)P[Find : A[SpongeS3 ,S3]]. (71)

S3 measures the relation of being an element of R ∪ U . Being in this relation is equivalent
to finding a random sample that is an element of this set. Note that in the punctured oracle
(CStOC \ (R∪U))XYDŶ wemeasure the relation after each query of the adversary and her best
chance of finding an element in R ∪ U is querying a fresh input. The output of a fresh input
is an equal superposition of all elements of C; the following measurement of the relation has
probability of succeeding of at most |R ∪ U| / |C|. It follows that P[Find : A[SpongeS3 , S3]] is
upper bounded by the probability of finding a collision or a preimage of the root in the set C
having made q random samples. A formal statement of this claim is shown in Lemma 21, for
S = ∅ and Z = {0}. We have that

P[Find : A[SpongeS3 , S3]] ≤ fcoll(q). (72)

28

Game 4 In this step we introduce the random oracle H but only to generate the outer part of the
output of ϕ. The game is defined as

Game 4 :=
(
b = 1 : b← A[SpongeS4 ,SH

4]
)
. (73)

Thanks to the classical argument we have that S4 and S3 are identical until bad, as in Def. 11.
Then we can use Lemma 12 to bound the advantage of the adversary

|P[Game 4]− P[Game 3]| ≤ 4P[Find : A[SpongeS3 , S3]] ≤ 4fcoll(q). (74)

Game 5 In this stage of the proof we change the private interface to contain the actual random
oracle. In this game the simulator is still S4, the definition is as follows:

Game 5 :=
(
b = 1 : b← A[H,SH

4]
)

(75)

and the advantage is

|P[Game 5]− P[Game 4]| ≤ 4P[Find : A[SpongeS4 ,SH
4]] ≤ 4fcoll(q). (76)

Conditioned on ¬Find, the outputs of the private interface are the same, then the games are
identical-until-bad and we can use Lemma 12 to bound the advantage of the adversary.

Game 6 In the last game we use S6, a simulator that uses a non-uniform compressed oracle.
The game is

Game 6 :=
(
b = 1 : b← A[H,SH

6]
)

(77)

and the advantage is again

|P[Game 6]− P[Game 5]| ≤ 2P[Find : A[H,SH
4]] ≤ 2fcoll(q), (78)

now by Lemma 12 with R2 = ∅. The last simulator S6 works perfectly until the sponge graph
is saturated. Saturation certainly does not occur for q < |C| as the database in every branch of
the superposition increases by at most one in every query. Collecting the differences between
games yields the claimed ε.

5.4 Quantum Indifferentiability of Sponges with Random Permutations

In the same way as for a random internal function, we can prove quantum indifferentiability of
the sponge construction with the internal function instantiated with a random permutation.

Theorem 16 (Sponge with permutations, quantum indifferentiability). Spongeϕ[pad,A, C] call-
ing a random permutation ϕ is (q, ε)-indifferentiable from a random oracle, Eq. (51), for quantum
adversaries for any q < |C| and ε = 4

√
(q + 1)fcoll(q) + 12fcoll.

The proof is identical in spirit to the proof of Thm.15 and can be found in Appendix C.
The main difference between the proofs for random functions and random permutations lies
in the fact that the simulator has to provide interfaces for both ϕ and ϕ−1. Nonetheless our
framework, making heavy use of the classical proof—also presented inAppendix C—translates
the arguments to the quantum threat model.

29

5.5 Collapsingness of Sponges with Random Permutations

Collapsingness is a security notion defined in [Unr16b]; It is a purely quantum notion strength-
ening collision resistance. It was developed to capture the required feature of hash functions
used in cryptographic commitment protocols.

In this section we prove that quantum indifferentiability implies collapsingness, from what
follows that the sponge construction instantiated with a random permutation is collapsing. We
derive this result from Thm. 16, and previously proven results concerning random oracles. We
begin by introducing the notion of collapsing functions.

For quantum algorithms A, B with quantum access to H, consider the following games:

Collapse 1 : (S,M, h)← AH(), m← M(M), b← BH(S,M), (79)
Collapse 2 : (S,M, h)← AH(), b← BH(S,M). (80)

Here S,M are quantum registers. M(M) is a measurement of M in the computational basis.
The intuitive meaning of the above games is that part A of the adversary prepares a quantum
registerM that holds a superposition of inputs to H that all map to h. Then she sendsM along
with the side information S to B. The task of the second part of the adversary is to decide
whether measurement M of the registerM occurred or not.

We call an adversary (A,B) valid if and only if P[H(m) = h] = 1 when we run (S,M, h) ←
AH() in Collapse 1 from Eq.(79) and measureM in the computational basis asm.

Definition 17 (Collapsing [Unr16b]). A function H is collapsing if for any valid quantum-
polynomial-time adversary (A,B)

|P[b = 1 : Collapse 1]− P[b = 1 : Collapse 2]| < ε, (81)

where the collapsing-advantage ε is negligible.

A more in-depth analysis of this security notion can be found in [Unr16b; Unr16a; Cza+18;
Feh18].

It was shown in [Unr16b] that if H is a random oracle then is it collapsing:

Lemma 18 (Lemma 37 [Unr16b]). Let H : X → Y be a random oracle, then any valid adversary
(AH,BH) making q quantum queries to H has collapsing-advantage ε ∈ O

(√
q3

|Y|

)
.

In the rest of this section we state and prove that Sponge with a random permutation is
collapsing. Through the strong notion of indifferentiability we manage to overcome the limita-
tion of [Cza+18]. While there, the authors prove that sponges are collapsing if the adversary is
given one-way access to the internal function, we show that the sponge construction is collaps-
ing even given inverse access to the internal function. We begin by proving that any function
that is indifferentiable from a collapsing function is itself collapsing.

Theorem 19 (Quantum indifferentiability preserves collapsingness). LetC be a construction based
on an internal function f , and let C be (q, εI(q))-indifferentiable from an ideal function Cideal with
simulator S. Assume further that Cideal allows for a collapsingness advantage at most εcoll(q) for a q-
query adversary. Then C is collapsing with advantage εcoll(qC, qf) = 2 εI(qC + qf) + εcoll(qC + αqf),
where qC and qf are the number of queries to C and f , respectively, and α is the number of queries
simulator S makes (at most) to Cideal for each time it is queried.

Proof. Given a collapsingness distinguisher D̃ against C with advantage ε ≥ εcoll(qC +αqf) that
makes qC queries to C and qf queries to f , we build an indifferentiability distinguisher D as
follows. Chose b ∈ {0, 1} at random. Running D̃, if b = 0 simulate Collapse 1, if b = 1 simulate
Collapse 2. Output 1 if D̃ outputs b, and 0 else.

30

In the real world, we have that

P[1← D : Real] = 1
2
(
P[0← D̃C,f : Collapse 1] + P[1← D̃C,f : Collapse 2]

)
= 1

2 + 1
2
(
P[1← D̃C,f : Collapse 2]− P[1← D̃C,f : Collapse 1]

)
.

In the ideal world, the distinguisher together with the simulator S can be seen as a collapsing-
ness distinguisher for Cideal. Therefore we get

P[1← D : Ideal] = 1
2 + 1

2
(
P[1← D̃Cideal,S : Collapse 2]− P[1← D̃Cideal,S : Collapse 1]

)
and hence∣∣∣P[1← D : Real]−P[1← D : Ideal]

∣∣∣ = 1
2

∣∣∣P[1← D̃C,f : Collapse 2]− P[1← D̃C,f : Collapse 1]

− P[1← D̃Cideal,S : Collapse 2] + P[1← D̃Cideal,S : Collapse 1]
∣∣∣

≥ 1
2 (ε− εcoll(qC + αqf)) .

As a corollary we get the collapsingness of the sponge construction.
Corollary 20 (Sponge with random permutations, collapsingness). Fix the number of output char-
acters inA to `, and letH be a random oracle defined in Eq.(51).Then the sponge construction is collapsing
with advantage

ε = 2 εI +O
(√

q3

|A|`

)
, (82)

where εI is the indifferentiability error of the sponge constructions with random functions, or random
permutations, according to Theorem 15, or Theorem 16, repsectively. This holds against adversaries that
have oracle access to the internal function, or the internal permutation and its inverse, respectively.

Proof. follows directly from Theorem 19.
Given that the adversary picks the shortest output, ` = 1, the collapsing advantage we get

is of the same order as in [Cza+18].

6 Conclusions

We develop a tool that allows for easier translation of classical security proofs to the quantum
setting. Our technique shows that given the right proof structure it is relatively easy to prove
stronger security notions valid in the quantum world.

It remains open to what degree classical security implies quantum security. An important
open problem is specifying features of classical cryptographic constructions that allows con-
structions to retain their security properties in the quantum world. More concretely, tackling
the problem of indifferentiability of other constructions will provide more evidence and possi-
bly lead towards a general answer.

7 Acknowledgments

The authors thank Gorjan Alagic, Andreas Hülsing and Dominique Unruh for enlightening
discussions about the superposition oracle technique. Furthermore, the authors thank Do-
minique Unruh for sharing a draft of [Unr19b]. The authors were supported by a NWO VIDI
grant (Project No. 639.022.519). We would also like to thank the anonymous reviewers for their
insightful comments.

31

References

[Ala+18] Gorjan Alagic, Christian Majenz, Alexander Russell, and Fang Song. “Quantum-
secure message authentication via blind-unforgeability”. Cryptology ePrint
Archive, Report 2018/1150. https://eprint.iacr.org/2018/1150. 2018 (cit.
on p. 4).

[AHU18] Andris Ambainis, Mike Hamburg, and Dominique Unruh. “Quantum security
proofs using semi-classical oracles”. Cryptology ePrint Archive, Report 2018/904.
https://eprint.iacr.org/2018/904. 2018 (cit. on pp. 3, 4, 5, 17, 18, 19).

[BR93] Mihir Bellare and Phillip Rogaway. “Random oracles are practical: A paradigm for
designing efficient protocols”. In: Proceedings of the 1st ACM conference on Computer
and communications security. ACM. 1993, pp. 62–73. doi: 10.1145/168588.168596
(cit. on pp. 3, 5).

[BR06] Mihir Bellare and Phillip Rogaway. “The Security of Triple Encryption and a Frame-
work for Code-Based Game-Playing Proofs”. In: Advances in Cryptology - EURO-
CRYPT 2006. https://eprint.iacr.org/2004/331. Springer Berlin Heidelberg,
2006, pp. 409–426. doi: 10.1007/11761679_25 (cit. on pp. 3, 5).

[BBD09] D.J. Bernstein, J. Buchmann, and E. Dahmen. Post-Quantum Cryptography. Springer
Berlin Heidelberg, 2009 (cit. on p. 3).

[Ber+07] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. “Sponge
functions”. In: ECRYPT hash workshop. Vol. 2007. 9. https://keccak.team/files/
SpongeFunctions.pdf. Citeseer. 2007 (cit. on pp. 3, 4, 21, 22, 25).

[Ber+08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. “On the In-
differentiability of the Sponge Construction”. In: Advances in Cryptology – EURO-
CRYPT 2008. Springer Berlin Heidelberg, 2008, pp. 181–197. doi: 10.1007/978-3-
540-78967-3_11 (cit. on pp. 4, 24, 48).

[Bon+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner,
and Mark Zhandry. “Random Oracles in a QuantumWorld”. In: Advances in Cryp-
tology – ASIACRYPT 2011. LNCS 7073. 2011, pp. 41–69. doi: 10.1007/978-3-642-
25385-0_3 (cit. on pp. 3, 7).

[Car+18] Tore Vincent Carstens, Ehsan Ebrahimi, Gelo Noel Tabia, and Dominique Unruh.
“On Quantum Indifferentiability”. Cryptology ePrint Archive, Report 2018/257.
https://eprint.iacr.org/2018/257. 2018 (cit. on p. 4).

[Cor+05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.
“Merkle-Damgård Revisited: How to Construct a Hash Function”. In: Advances in
Cryptology – CRYPTO 2005. Springer Berlin Heidelberg, 2005, pp. 430–448. doi: 10.
1007/11535218_26 (cit. on pp. 4, 6).

[Cza+18] Jan Czajkowski, Leon Groot Bruinderink, Andreas Hülsing, Christian Schaffner,
and Dominique Unruh. “Post-quantum Security of the Sponge Construction”. In:
Post-Quantum Cryptography. Springer International Publishing, 2018, pp. 185–204.
doi: 10.1007/978-3-319-79063-3_9 (cit. on pp. 4, 30, 31).

[CHS19] Jan Czajkowski, Andreas Hülsing, and Christian Schaffner. “Quantum Indistin-
guishability of Random Sponges”. Cryptology ePrint Archive, Report 2019/069.
https://eprint.iacr.org/2019/069. 2019 (cit. on p. 4).

[Dam90] Ivan Bjerre Damgård. “A Design Principle for Hash Functions”. In: Advances in
Cryptology — CRYPTO’ 89 Proceedings. Springer New York, 1990, pp. 416–427. doi:
10.1007/0-387-34805-0_39 (cit. on p. 3).

32

https://eprint.iacr.org/2018/1150
https://eprint.iacr.org/2018/904
http://dx.doi.org/10.1145/168588.168596
https://eprint.iacr.org/2004/331
http://dx.doi.org/10.1007/11761679_25
https://keccak.team/files/SpongeFunctions.pdf
https://keccak.team/files/SpongeFunctions.pdf
http://dx.doi.org/10.1007/978-3-540-78967-3_11
http://dx.doi.org/10.1007/978-3-540-78967-3_11
http://dx.doi.org/10.1007/978-3-642-25385-0_3
http://dx.doi.org/10.1007/978-3-642-25385-0_3
https://eprint.iacr.org/2018/257
http://dx.doi.org/10.1007/11535218_26
http://dx.doi.org/10.1007/11535218_26
http://dx.doi.org/10.1007/978-3-319-79063-3_9
https://eprint.iacr.org/2019/069
http://dx.doi.org/10.1007/0-387-34805-0_39

[Feh18] Serge Fehr. “Classical Proofs for the Quantum Collapsing Property of Classical
Hash Functions”. In: Theory of Cryptography. Springer International Publishing,
2018, pp. 315–338. doi: 10.1007/978-3-030-03810-6_12 (cit. on pp. 4, 30).

[HI19] Akinori Hosoyamada and Tetsu Iwata. “Tight Quantum Security Bound of the 4-
Round Luby-Rackoff Construction”. Cryptology ePrint Archive, Report 2019/243.
https://eprint.iacr.org/2019/243. 2019 (cit. on pp. 5, 40).

[JZM19] Haodong Jiang, Zhenfeng Zhang, and Zhi Ma. “Tighter security proofs for generic
key encapsulation mechanism in the quantum random oracle model”. Cryptology
ePrint Archive, Report 2019/134. https://eprint.iacr.org/2019/134. 2019 (cit.
on p. 5).

[Mah18] U. Mahadev. “Classical Homomorphic Encryption for Quantum Circuits”. In: 2018
IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS). 2018,
pp. 332–338. doi: 10.1109/FOCS.2018.00039 (cit. on p. 11).

[MRH04] Ueli Maurer, Renato Renner, and Clemens Holenstein. “Indifferentiability, Impos-
sibility Results on Reductions, and Applications to the Random Oracle Methodol-
ogy”. In: Theory of Cryptography. Springer Berlin Heidelberg, 2004, pp. 21–39. doi:
10.1007/978-3-540-24638-1_2 (cit. on pp. 4, 5, 6, 7).

[Mer90] Ralph C. Merkle. “A Certified Digital Signature”. In: Advances in Cryptology —
CRYPTO’ 89 Proceedings. Springer New York, 1990, pp. 218–238. doi: 10.1007/0-
387-34805-0_21 (cit. on p. 3).

[NC11] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum In-
formation: 10th Anniversary Edition. 10th. Cambridge University Press, 2011 (cit. on
pp. 7, 19).

[NIS14] NIST. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions.
Draft FIPS 202. 2014. url: http://csrc.nist.gov/publications/drafts/fips-
202/fips_202_draft.pdf (cit. on pp. 5, 7, 21).

[NIS15] NIST. Secure Hash Standard (SHS). Draft FIPS 180-4. 2015. doi: 10.6028/NIST.FIPS.
180-4 (cit. on p. 5).

[OR07] David Sena Oliveira and Rubens Viana Ramos. “Quantum bit string comparator:
circuits and applications”. In:Quantum Computers and Computing 7.1 (2007), pp. 17–
26 (cit. on p. 40).

[RSS11] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. “Careful with Com-
position: Limitations of the Indifferentiability Framework”. In: Advances in Cryptol-
ogy – EUROCRYPT 2011. Springer Berlin Heidelberg, 2011, pp. 487–506. doi: 10.
1007/978-3-642-20465-4_27 (cit. on p. 7).

[Sho94] Peter W. Shor. “Algorithms for Quantum Computation: Discrete Logarithms and
Factoring”. In: 35th Annual Symposium on Foundations of Computer Science, Santa Fe,
New Mexico, USA, 20-22 November 1994. 1994, pp. 124–134. doi: 10 . 1109 / SFCS .
1994.365700 (cit. on p. 3).

[SY17] Fang Song and Aaram Yun. “Quantum Security of NMAC and Related Construc-
tions - PRF Domain Extension Against Quantum attacks”. In: CRYPTO. Springer,
2017, pp. 283–309. doi: 10.1007/978-3-319-63715-0_10 (cit. on p. 4).

[Unr14] Dominique Unruh. “Revocable Quantum Timed-Release Encryption”. In: Advances
in Cryptology – EUROCRYPT 2014. Springer Berlin Heidelberg, 2014, pp. 129–146.
doi: 10.1007/978-3-642-55220-5_8 (cit. on pp. 1, 3, 4, 5, 16).

[Unr16a] Dominique Unruh. “Collapse-Binding Quantum Commitments Without Random
Oracles”. In:Advances in Cryptology – ASIACRYPT 2016. Springer BerlinHeidelberg,
2016, pp. 166–195. doi: 10.1007/978-3-662-53890-6_6 (cit. on pp. 4, 30).

33

http://dx.doi.org/10.1007/978-3-030-03810-6_12
https://eprint.iacr.org/2019/243
https://eprint.iacr.org/2019/134
http://dx.doi.org/10.1109/FOCS.2018.00039
http://dx.doi.org/10.1007/978-3-540-24638-1_2
http://dx.doi.org/10.1007/0-387-34805-0_21
http://dx.doi.org/10.1007/0-387-34805-0_21
http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf
http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf
http://dx.doi.org/10.6028/NIST.FIPS.180-4
http://dx.doi.org/10.6028/NIST.FIPS.180-4
http://dx.doi.org/10.1007/978-3-642-20465-4_27
http://dx.doi.org/10.1007/978-3-642-20465-4_27
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1007/978-3-319-63715-0_10
http://dx.doi.org/10.1007/978-3-642-55220-5_8
http://dx.doi.org/10.1007/978-3-662-53890-6_6

[Unr16b] Dominique Unruh. “Computationally Binding Quantum Commitments”. In: Ad-
vances in Cryptology – EUROCRYPT 2016. Springer Berlin Heidelberg, 2016, pp. 497–
527. doi: 10.1007/978-3-662-49896-5_18 (cit. on pp. 4, 30).

[Unr19a] Dominique Unruh. “Quantum Relational Hoare Logic”. In: Proc. ACM Program.
Lang. POPL (2019), 33:1–33:31. doi: 10.1145/3290346 (cit. on p. 4).

[Unr19b] Dominique Unruh. Recording quantum queries – explained. In preparation. 2019 (cit.
on pp. 8, 31, 36).

[Win99] Andreas Winter. “Coding theorem and strong converse for quantum channels”. In:
IEEE Transactions on Information Theory 45.7 (1999), pp. 2481–2485. doi: 10.1109/
18.796385 (cit. on p. 20).

[Zha18] Mark Zhandry. “How to Record Quantum Queries, and Applications to Quan-
tum Indifferentiability”. Cryptology ePrint Archive, Report 2018/276. https://
eprint.iacr.org/2018/276. 2018 (cit. on pp. 1, 3, 4, 5, 8, 9, 36).

34

http://dx.doi.org/10.1007/978-3-662-49896-5_18
http://dx.doi.org/10.1145/3290346
http://dx.doi.org/10.1109/18.796385
http://dx.doi.org/10.1109/18.796385
https://eprint.iacr.org/2018/276
https://eprint.iacr.org/2018/276

Symbol Index

|x| Cardinality of a set x / length of a string x/ absolute
value

Add Function adding x to the compressed database 42
A Distribution of outer part of outputs of a randomper-

mutation
47

A,B An adversary, a classical or quantum algorithm 5, 18
A The alphabet set of outer states, generalization of

{0, 1}r, outer part of s ∈ A× C denoted by s̄
21

Bad A "bad" event in a game. 5, 24
C Distribution of inner part of outputs of a randomper-

mutation
47

CFOD Compressed Fourier Oracle for distribution D 12
C The set of inner states, generalization of {0, 1}c, inner

part of s ∈ A× C denoted by ŝ
21

Clean Clean up function for auxiliary register 44
Collapse 1 Collapsing game 30
CPerO Compressed Permutation Oracle 16
CH Compressed Oracle with oracle H as Samp 26
CPhOU Compressed Phase Oracle 38
CStOD,CStOY\S Compressed Standard Oracle, for distributionD and

for a conditionally uniform distribution over Y \ S
16, 21

D,∆,Д Prepared database in the standard basis (and the
database register), prepared database in the Fourier
basis, and the unprepared databse

12

DecD Decompression procedure 13
D The distinguisher 6
D A distribution. 10
D The set of outputs of queries 47
E The set of edges of a sponge graph 22
Find Event of measurement of the relation R returning 1 17, 19
FO Fourier Oracle, QFTY FN ◦ StO ◦ QFT†Y FN 9
H,G Compressed Oracle 16
HTn The Hadamard transform 36
|ψ〉 A quantum state, a normalized vector in a Hilbert

space)
Larger A unitary for comparing two bit-strings 40
Locate Locate the position of x in the database 41
O (n) Complexity class "big O"
pad Padding function 21
SpPath(s,G) Function constructing an input to Sponge leading to

a given node
23

P Uniform distribution over the set of permutations 16
P The permutation unitary 40
ϕ The map between states in Sponge. 21
ϕ̄ The general map between states with its output lim-

ited to the set A
21

ϕ̂ The general map between states with its output lim-
ited to the set C

21

PhO Phase Oracle, QFTYN ◦ StO ◦ QFT†YN 37

35

https://en.wikipedia.org/wiki/Big_O_notation

JR Projector on relation R. 17
QFTN The Quantum Fourier Transform 7
Rem Removing и = 0 from the database 43
R The set of rooted supernodes 23
SampD(S) Algorithm preparing a superposition of samples of

outputs of f ← D on inputs from S.
10, 16, 16

S Classical and quantum simulators. 24, 27, 49, 52
Spongeϕ[pad,A, C] Sponge construction with the internal function ϕ, ca-

pacity set C, and alphabet A
22

StO Standard Oracle 8
U The uniform distribution. 36
Upd Updating η in the database 42
U The set of supernodes with outgoing edges 23
V The "set spreading" operation. 16
V The set of vertices of a sponge graph 22
⊕ Bitwise XOR 37
y, η, и Values in the Y register of a database in different

bases
11

A Additional Details on Quantum-Accessible Oracles

A.1 Uniform Oracles

For ease of exposition, and to highlight the connection to the formalism in [Zha18], we present a
discussion of compressed oracles with uniform oracles that model functions sampled uniformly
at random from F := {f : {0, 1}m → {0, 1}n} . A complete formal treatment of the uniform
case, including applications, can be found in [Unr19b].

We denote the uniform distribution over F by U. The cardinality of the set of functions is
|F| = 2n2m and the truth table of any f ∈ F can be represented by 2m rows of n bits each.
Uniform oracles are the most studied in the random-oracle model and are also analyzed in
[Zha18].

The transformation we use in the case of uniformly sampled functions is the Hadamard
transform. The unitary operation to change between types of oracles is defined as

HTn|x〉 := 1√
2n

∑
ξ∈{0,1}n

(−1)ξ·x|ξ〉, (83)

where ξ ·x is the inner product modulo two between the n-bit strings ξ and x viewed as vectors.
In this section the registers X,Y are vectors in the n-qubit Hilbert space

B := (C2)⊗n. (84)

In what follows we first focus on full oracles, i.e. not compressed ones. We analyze in detail
the relations between different pictures of the oracles: the Standard Oracle, the Fourier Oracle,
and the intermediate Phase Oracle. Next we provide an explicit algorithmic description of the
compressed oracle and discuss the behavior of the compressed oracle in different pictures.

For the QROM, usually the Standard Oracle is the oracle used. The initial state of the oracle
is the uniform superposition of truth tables f representing functions f : {0, 1}m → {0, 1}n. The
Standard Oracle acts as follows

StOU|x, y〉XY
1√
|F|

∑
f∈F
|f〉F = 1√

|F|
∑
f∈F
|x, y ⊕ f(x)〉XY ⊗ |f〉F , (85)

36

where instead of modular addition we use bitwise XOR denoted by ⊕. Note that in the above
formulation StOU is just a controlled XOR operation from the x-th row of the truth table to the
output register Y . We add the subscript U to denote that in the case of uniform distribution
we also fix the input and output sets to bit-strings and the operation the oracle performs is not
addition modulo N like we introduced it in the main body. The register F contains vectors in
B⊗2m , where B is defined in Eq. (84).

The Fourier Oracle that stores the queries of the adversary is defined as

FOU|x, η〉XY |φ〉F := |x, η〉XY |φ⊕ χx,η〉F , (86)

where χx,η := (0n, . . . , 0n, η, 0n, . . . , 0n) is a table with 2m rows, amongwhich only the x-th row
equals η and the rest are filled with zeros. Note that initially the Y register is in the Hadamard
basis, for that reason we use Greek letters to denote its value.

To model the random oracle we initialize the oracle register F in the Hadamard basis in the
all 0 state |φ〉 = |0n2m〉.

If we take the StandardOracle again and transform the adversary’s Y register instead, again
using HT, we recover the commonly used Phase Oracle. More formally, the phase oracle is
defined as

PhOU := (1Xm ⊗ HTYn)⊗ 1Fn2m ◦ StOU ◦ (1Xm ⊗ HTYn)⊗ 1Fn2m , (87)
where 1n is the identity operator acting on n qubits.

Applying the Hadamard transform also to register F will give us the Fourier Oracle

FOU = (1XY)⊗ HTFn ◦ PhOU ◦ (1XY)⊗ HTFn . (88)

The above relations show that we have a chain of oracles, similar to Eq. (11):

StOU
HTYn←−−→ PhOU

HTFn←−−→ FOU. (89)

In the following paragraphs we present some calculations explicitly showing how to use
the technique and helping understanding why it is correct.

A.1.1 Full Oracles, Additional Details

In this section we show detailed calculations of identities claimed in Section A.1. First we ana-
lyze the Phase Oracle, introduced in Eq. (87). We can check by direct calculation that this yields
the standard Phase Oracle,

PhOU|x, η〉XY |f〉F = (−1)η·f(x)|x, η〉XY |f〉F . (90)

Including the full initial state of the oracle register, we calculate

PhOU|x, η〉XY
1√
|F|

∑
f∈F
|f〉F

= (1Xm ⊗ HTYn)⊗ 1Fn2mStOU|x〉X
1√
2n
∑
y

(−1)η·y|y〉Y
1√
|F|

∑
f∈F
|f〉F (91)

= (1Xm ⊗ HTYn)⊗ 1Fn2m |x〉X
1√
2n
∑
y

∑
f∈F

(−1)η·y|y ⊕ f(x)〉Y
1√
|F|
|f〉F (92)

= 1√
|F|

∑
f∈F
|x〉X

∑
ζ

1
2n
∑
y

(−1)η·y(−1)(y⊕f(x))·ζ

︸ ︷︷ ︸
=δ(η,ζ)(−1)ζ·f(x)

|ζ〉Y |f〉F (93)

= 1√
|F|

∑
f∈F

(−1)η·f(x)|x〉X |η〉Y |f〉F . (94)

37

Applying the Hadamard transform also to register F will give us the Fourier Oracle. In the
following calculation we denote acting on register F with HT⊗2m

n by HTFn .

HTFn ◦ PhOU ◦ HTFn |x, η〉XY |02mn〉F = HTFn
1√
|F|

∑
f∈F

(−1)η·f(x)|x, η〉|f〉F

= 1
|F|

∑
φ,f

(−1)φ·f (−1)η·f(x)|x, η〉|φ〉F

=
∑
φ

1
2n(2m−1)

∑
f(x′ 6=x)

(−1)φx′ ·f(x′)

︸ ︷︷ ︸
=δ(φx′ ,0n)

1
2n
∑
f(x)

(−1)φx·f(x)(−1)η·f(x)

︸ ︷︷ ︸
=δ(φx,η)

|x, η〉|φ〉F

= |x, η〉|02mn ⊕ χx,η〉 (95)

where we write f(x) and φx to denote the x-th row of the truth table f and φ respectively.

A.1.2 Compressed Oracles, Additional Details

Let us state the input-output behavior of the compressed oracleCFOU for uniform distributions.
The input-output behavior of CFOU is given by the following equation:

CFOU|x, η〉XY |x1, η1〉D1 · · · |xq−1, ηq−1〉Dq−1 |0m, 0n〉Dq = |x, η〉XY |ψr−1〉

⊗



|xr, ηr〉Dr · · · |xq−1, ηq−1〉Dq−1 |0m, 0n〉Dq if η = 0n,
|x, η〉Dr |xr, ηr〉Dr+1 · · · |xq−1, ηq−1〉Dq if η 6= 0n, x 6= xr,

|xr, ηr ⊕ η〉Dr · · · |xq−1, ηq−1〉Dq−1 |0m, 0n〉Dq if η 6= 0n, x = xr,

η 6= ηr,

|xr+1, ηr+1〉Dr · · · |xq−1, ηq−1〉Dq−2 |0m, 0n〉Fq−1 |0m, 0n〉Dq if η 6= 0n, x = xr,

η = ηr,

(96)

where |ψr−1〉 := |x1, η1〉D1 · · · |xr−1, ηr−1〉Dr−1 .
In the following let us change the picture of the compressed oracle to see how the Com-

pressed Standard Oracle and Compressed Phase Oracle act on basis states. Let us begin with
the Phase Oracle, given by the Hadamard transform of the oracle database

CPhOU := 1n+m ⊗ HTDYn ◦ CFOU ◦ 1n+m ⊗ HTDYn , (97)

where by HTDYn we denote transforming just the Y registers of the database: HTDYn := (1m⊗
HTn)⊗q. Let us calculate the outcome of applyingCPhO to a state for the first time, for simplicity
we omit all but the first register of D

CPhOU|x, η〉XY
1√
2n

∑
z∈{0,1}n

|0m, z〉D = 1n+m ◦ HTDYn ◦ CFOU|x, η〉XY |0m, 0n〉D (98)

= 1n+m ◦ HTDYn ((1− δ(η, 0n))|x, η〉XY |x, η〉D + δ(η, 0n)|x, η〉XY |0m, 0n〉D) (99)

= 1√
2n

∑
z∈{0,1}n

((1− δ(η, 0n))(−1)η·z|x, η〉XY |x, z〉D + δ(η, 0n)|x, 0n〉XY |0m, z〉D) . (100)

If we defined the Compressed Phase Oracle form the scratch we might be tempted to omit the
coherent deletion of η = 0n. The following attack shows that this would brake the correct-
ness of the compressed oracles: The adversary inputs the equal superposition in theX register

1√
2m
∑
x|x, 0n〉XY , after interacting with the regular CPhOU the state after a single query is

1√
2m

∑
x

|x, 0n〉XY
CPhOU7→ 1√

2m
∑
x

|x, 0n〉XY
1√
2n
∑
z

|0m, z〉D, (101)

38

but with a modified oracle that does not take care of this deleting, simply omits the term with
δ(η, 0n), let us call it CPhO′U, the resulting state is

1√
2m

∑
x

|x, 0n〉XY
CPhO′U7→ 1√

2m
∑
x

|x, 0n〉XY
1√
2n
∑
z

|x, z〉D. (102)

Performing ameasurement of theX register in theHadamard basis distinguishes the two states
with probability 1− 1

2m .
Let us inspect the state after making two queries to the Compressed Phase Oracle

CPhOU|x2, η2〉X2Y2CPhOU|x1, η1〉X1Y1
1
2n

∑
z1,z2∈{0,1}n

|0m, z1〉D1 |0m, z2〉D2

= |x2, η2〉|x1, η1〉
1
2n

∑
z1,z2

(−1)η1·z1δ(η2, 0n)(1− δ(η1, 0n))|x1, z1〉F1 |0m, z2〉F2︸ ︷︷ ︸
=|ψNOT)

+ δ(η2, 0n)δ(η1, 0n)|0m, z1〉F1 |0m, z2〉F2︸ ︷︷ ︸
=|ψNOT)

+ (−1)η2·z1(1− δ(η2, 0n))δ(η1, 0n)|x2, z1〉F1 |0m, z2〉F2︸ ︷︷ ︸
=|ψADD)

+(−1)η1·z1(−1)η2·z2(1− δ(η2, 0n))(1− δ(x1, x2))(1− δ(η1, 0n))|x1, z1〉F1 |x2, z2〉F2︸ ︷︷ ︸
=|ψADD)

+(1− δ(η2, 0n))δ(x1, x2)δ(η1, η2)(1− δ(η1, 0n))|0m, z1〉F1 |0m, z2〉F2︸ ︷︷ ︸
=|ψREM)

+ (1− δ(η2, 0n))δ(x1, x2)(1− δ(η1, η2))(1− δ(η1, 0n))

·(−1)(η1⊕η2)·z1 |x1, z1〉F1 |0m, z2〉F2︸ ︷︷ ︸
=|ψUPD)

 , (103)

where by the superscripts we denote the operation performed by CPhOU on the compressed
database. By ADD we denote adding a new pair (x, η), by UPD changing the Y register of an
already stored database entry, REM signifies removal of a database entry, and NOT stands for
doing nothing, that happens if the queried η = 0n.

Let us now discuss the Compressed Standard Oracle. We know that it is the Hadamard
transform of the adversary’s register followed by CPhOU

CStOU = 1m ⊗ HTYn ◦ CPhOU ◦ 1m ⊗ HTYn . (104)

Let us now present the action of CStO in the first query of the adversary

CStOU|x, y〉XY
1√
2n

∑
z∈{0,1}n

|0m, z〉D

= 1m ⊗ HTYn ◦ CPhOU
1√
2n

∑
η∈{0,1}n

(−1)η·y|x, η〉XY
1√
2n

∑
z∈{0,1}n

|0m, z〉D (105)

= 1m ⊗ HTYn
1√
2n

∑
η∈{0,1}n

1√
2n

∑
z∈{0,1}n

(−1)η·y
(

(1− δ(η, 0n))(−1)η·z|x, η〉XY |x, z〉D

+ δ(η, 0n)|x, 0n〉XY |0m, z〉D

)
(106)

39

= 1
2n
∑
y′,η

1√
2n
∑
z

(−1)η·y(−1)y′·η
(

(1− δ(η, 0n))(−1)η·z|x, y′〉XY |x, z〉D

+ δ(η, 0n)|x, y′〉XY |0m, z〉D

)
(107)

=
∑
y′

1√
2n
∑
z

1
2n
∑
η 6=0

(−1)η·y(−1)y′·η(−1)η·z

︸ ︷︷ ︸
=δ(y′,y⊕z)− 1

2n

|x, y′〉XY |x, z〉D

+
∑
y′

1√
2n
∑
z

1
2n |x, y

′〉XY |0m, z〉D (108)

= 1√
2n
∑
z

|x, y ⊕ z〉XY |x, z〉D − 1
2n
∑
y′

|x, y′〉XY |x, z〉D + 1
2n
∑
y′

|x, y′〉XY |0m, z〉D

 . (109)

We would like to note that a similar calculation and resulting state is presented in [HI19].

A.2 Detailed Algorithm for Alg. 1: CFOD

In Algorithm 8 we present the fully-detailed version of Algorithm 1. This algorithm runs the
following subroutines:

• Locate, Function 9: This subroutine locates the positions inДwhere the x−entry coincides
with the x−entry of the query. The result is represented as q bits, where qi = 1 ⇐⇒
ДX
i = x. This result is then bitwise XOR’d into an auxilliary register L.

• Add, Function 10: This subroutine adds queried x to the database and take care of appro-
priate padding.

• Upd, Function 11: This subroutine updates the database by subtracting η after a suitable
basis transformation.

• Rem, Function 12: This subroutine removes (0, 0) entries from the database and puts them
to the back in the form of padding.

• Clean, Function 13: This subroutine cleans the auxiliary registers setting them back to
initial values.

• Larger: This subroutine determines whether one value is larger than a second value, it
works on three registers, say DXXA and flips the bit in A if the value of DX is larger

than the value in X , so LargerDXXA|u〉DX |v〉X |a〉A = |u〉DX |v〉X

{
|a⊕ 1〉A if u > v

|a〉A otherwise
. In

[OR07] an efficient implementation of Larger for u, v being bitstrings can be found.

In the Add and Rem subroutine the unitary P can be found. P permutes the database such that
a recently removed entry in the database is moved to the end of the database. Conversely P−1

permutes the database such that an empty entry is created in the database as to ensure the
correct ordering of the x−entries after adding the query into this newly created empty entry:

P|x1, ..., xq〉 ⊗ |y1, ..., yn〉 := |σn ◦ ... ◦ σ1(x1, ..., xq)〉 ⊗ |y1, ..., yn〉 , (110)

where σi is applied conditioned on yi = 1 and σi(x1, ..., xn) :=
(x1, ..., xi−2, xi−1, xi+1, xi+2, ..., xq, xi).

40

Algorithm 8: Detailed CFOD

Input : Unprepared database and adversary query: |x, η〉XY |Д〉D
Output: |x, η〉XY |Д′〉D

1 |a〉A = |0 ∈ {0, 1}〉A // initialize auxiliary register A
2 |l〉L = |0q ∈ {0, 1}q〉L // initialize auxiliary register L
3 |l〉L 7→ Locate(|x〉X |Д〉D|l〉L) // locate x in the database
4 if l = 0q then // if not located
5 |a〉A 7→ |a⊕ 1〉A // save result to register A

6 if a = 1 then // if not located
7 |Д〉D|l〉L 7→ Add(|x〉X |Д〉D) // add x−entry to the database

8 |ДY 〉DY 7→ Upd(|η〉Y |ДY 〉DY |l〉L) // update register DY

9 |Д〉D|l〉L 7→ Rem(|x〉X |Д〉D|l〉L) // remove a database entry if и = 0
10 |a〉A 7→ Clean(|y〉Y |ДY 〉DY |l〉L) // uncompute register A
11 |l〉L 7→ Locate(|x〉X |Д〉D|l〉L) // uncompute register L
12 return |x, η〉XY |Д′〉D // Д′ is the modified database

Function 9: Locate
Input : |x〉X |Д〉D|l〉L
Output: |x〉X |Д〉D|l′〉L

1 Set |a〉A = |0 ∈ X〉A // initialize auxiliary register A
2 for i = 1, ..., q do
3 if иi 6= 0 then // locate entries in the database
4 |a〉A 7→ |a+ (ДX

i − x)〉A // database entry − query
5 if ai 6= 0 then // locate matches in the database
6 |li〉Li 7→ |li ⊕ 1〉Li // save the corresponding positions

7 |a〉A 7→ |a− (ДX
i − x)〉A // uncompute register A

8 return |x〉X |Д〉D|l′〉R // l′ contains the position of x in Д

41

Function 10: Add
Input : |x〉X |Д〉D|l〉L
Output: |x〉X |Д′〉D|l′〉L

1 Set |a〉A = |0q ∈ {0, 1}q〉A // initialize auxiliary register A
2 for i = 1, ..., q do
3 |ai〉Ai 7→ Larger(|ДX

i 〉DXi |x〉X |ai〉Ai) // check if database entry > query

4 if ДY
i 6= 0 then // correct for empty entries

5 |ai〉Ai 7→ |ai ⊕ 1〉Ai
6 for j = i+ 1, ..., q do // flip all higher entries
7 |aj〉Aj 7→ |aj ⊕ ai〉Aj // so we’re left with one position

8 |Д〉D 7→ P−1(|Д〉D ⊗ |a〉A) // permute D to create empty entry
// P is defined in (110)

9 for i = 1, ..., q do
10 if ai = 1 then // look for this empty entry
11 |ДX

i 〉DXi 7→ |Д
X
i − x〉DXi // add x−entry to the database

12 |li〉Li 7→ |li ⊕ 1〉Li // update location register

13 if x 6= 0 then // (Non zero x implies non zero a
14 for i = 1, ..., q do
15 if li = 1 then // if located
16 |ai〉Ai 7→ |ai ⊕ 1〉Ai // uncompute register A

17 return |x〉X |Д′〉D|l′〉L // Д′ is the modified database
// l′ is modified l

Function 11: Upd
Input : |η〉Y |ДY 〉DY |l〉L
Output: |η〉Y |Д′Y 〉DY |l〉L

1 Apply QFTDYN SampD // transform to the Fourier basis
2 for i = 1, ..., q do
3 if li = 1 then // if located
4 |∆Y

i 〉DYi 7→ |∆
Y
i − η〉DYi // Update the Y register of entry

5 Apply Samp†DQFT†D
Y

N // transform back to the unprepared database
6 return |η〉Y |Д′Y 〉DY |l〉L // Д′Y is modified Y register of the database

42

Function 12: Rem
Input : |x〉X |Д〉D|l〉L
Output: |x〉X |Д′〉D|l′〉L

1 Set |a〉A = |0q〉A // initialize auxiliary register A
2 Set |b〉B = |0〉B // initialize auxiliary register B
3 for i = 1, ..., q do
4 if li = 1 then
5 if иi = 0 then // if entry is incorrect
6 |ДX

i 〉DXi 7→ |Д
X
i − x〉DXi // remove the entry

7 |b〉B 7→ |b⊕ 1〉B // save that we have removed an entry

8 if b = 1 then // if we removed an entry
9 for i = 1, ..., q do
10 |ai〉Ai 7→ Larger(|x〉X , |ДX

i 〉DXi , |ai〉Ai) // check if query > database entry

11 if x = 0 then // Correct for x = 0
12 if ДY

i 6= 0 then // correct for empty entries
13 |ai〉Ai 7→ |ai ⊕ 1〉Ai

14 for j = i− 1, ..., 1 do // flip all lower entries
15 |aj〉Aj 7→ |aj ⊕ ai〉Aj // so we’re left with only the removed position

16 |li〉Li 7→ |li ⊕ ai〉Li // correct for the removed entry

17 |Д〉D 7→ P (|Д〉D ⊗ |a〉A) // permute D to move the empty entry
18 for i = q, ..., 1 do // uncompute register A
19 for j = q, ..., i+ 1 do // by calculating the first position
20 |aj〉Aj 7→ |aj ⊕ ai〉Aj // such that database entry > query

21 if ДY
i 6= 0 then // as in the Add subroutine

22 |ai〉Ai 7→ |ai ⊕ 1〉Ai
23 |ai〉Ai 7→ Larger(|ДX

i 〉DXi , |x〉X , |ai〉Ai)

24 |a〉A 7→ Locate(|x〉X |Д〉D|l〉A)
25 if A = 0q then // check if we have removed
26 |b〉B 7→ |b⊕ 1〉B // Uncompute register B

27 |a〉A 7→ Locate(|x〉X |Д〉D|l〉A) // uncompute register A
28 return |x〉X |Д′〉D|l′〉L // Д′ is modified database

// l′ is modified l

43

Function 13: Clean
Input : |η〉Y |ДY 〉D|l〉L|a〉A
Output: |η〉Y |ДY 〉D|l〉L|a′〉A

1 Set |b〉B = |0 ∈ Y〉B // initialize auxiliary register B

2 Apply QFTDYN SampD // transform to the Fourier basis
3 for i = 1, ..., q do
4 if li = 1 then
5 |b〉B 7→ |b+ (∆Y

i − η)〉B // database entry − query
6 if b = 0 then // locate matches in the database
7 if η 6= 0 then // if we added
8 |a〉A → |a⊕ 1〉A

9 |b〉B 7→ |b− (∆Y
i − η)〉B // uncompute register B

10 Apply Samp†DQFT†D
Y

N // transform back to the unprepared database
11 return |η〉Y |ДY 〉D|l〉L|a′〉A // a′ is modified register A

A.3 Implementation of V for SampY\S
The ”spreading” unitary is defined as follows:

VAB|a〉A|b〉B =
{
|a〉A|b〉B if a > b

|a〉A|b+ 1 mod N〉B if a ≤ b
. (111)

The operation V as stated above is defined only on a ∈ [N] and b ∈ [N − 1] (counted from 0), to
extend it to the full domain we need to add that V|a〉A|N − 1〉B := |a〉A|N − 1〉B . Action of V is
shifting the states in register B in a way that possible states skip a. Let us show that V is in fact
a unitary that is easy to construct. For that we need three unitary sub-routines,

V≤|a〉A|b〉B =
{
|a〉A|b〉B|0〉C if a > b

|a〉A|b〉B|1〉C if a ≤ b
, (112)

V+|a〉A|b〉B|c〉C = |a〉A|b+ c mod N〉B|c〉C , (113)

V−≤|a〉A|b〉B|c〉C =
{
|a〉A|b〉B|c⊕ 0〉C if a > b− 1 mod N

|a〉A|b〉B|c⊕ 1〉C if a ≤ b− 1 mod N
, (114)

where we additionally need to specify that V−≤|a > 0〉A|0〉B|c〉 = |a > 0〉A|0〉B|c〉. Now we
define V = V−≤V+V≤, we also discard register C after the three operations. In this approach
we need a register holding a description of the set S (that would be registers A) but as long as
we do, applying V to all registers describing S will give us the expected result.

A.4 SampD for Random Boolean Functions

Let us say we want to efficiently simulate a quantum oracle oracle for a random function h :
{0, 1}m → {0, 1}, such that h(x) = 1 with probability λ. Then the adding function of the
corresponding compressed oracle is ∀x ∈ {0, 1}m:

Sampλ(x) :=
(√

1− λ
√
λ√

λ −
√

1− λ

)
, (115)

independent from any previous queries. This might come useful in tasks like search in a sparse
database.

44

B Additional Details on O2H Lemma for Compressed Oracles

We state a lemma giving a bound on the probability of Find is conditionally uniform distribu-
tions. Below we write CStOY\S to denote the compressed oracle sampling from a conditionally
uniform distribution, note that S can depend on the previous queries. Let us first properly
define the relation stated in Lemma 21 below:

RD :=
{

(x, y) ∈ X × Y \ S : x 6∈ DX , y ∈ D
}
, (116)

by DX we denote the X part of the entries of the database D prior to the last oracle query.
In what follows we refer to this relation as simply D and by that mean that the database is in
relation if the new output of the new query is in the set D ⊆ Y .

Lemma 21. For any quantum adversary A interacting with a punctured oracle CStOY\S \ D—where
CStOY\S is an oracle with the sampling operation defined in Eq. (36), S is some subset of Y , and D is a
subset of outputs to previous queries together with Z ⊆ Y \ S—the probability of Find is bounded by:

P[Find : A[CStOY\S \ D]] ≤ q(q − 1) + 2q |Z|
2 |Y \ S| , (117)

where q is the number of queries made by A.

Proof. D defines a relation RD as shown in Eq. (116). The crucial aspect is how we define the
set D: As noted in the statement of the lemma, the set consists of y-values stored in DY before
the query: D ⊆ DY . Throughout the proof we just write JD when talking about measuring the
relation, but the full description of the measurement involves preparing an auxiliary register
storing a description of D and then conditioned on this register measuring the database.

Let us start with the analysis of the probability of Find, following the Eq. (43). As described
above, JD denotes the projector measuring the database for elements in D. In the calculation
below we write H instead of CStOY\S to have more concise formulas:

P[Find : A[CStOY\S \ D]] = 1−

∥∥∥∥∥∥
1∏
i=q

(1− JD)UH
i |Ψ0〉

∥∥∥∥∥∥
2

(118)

= 1−

∥∥∥∥∥∥
1∏

i=q−1
(1− JD)UH

j |Ψ0〉

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥JDUH
q

1∏
i=q−1

(1− JD)UH
j |Ψ0〉

∥∥∥∥∥∥
2

(119)

=
q∑
i=1

∥∥∥∥∥∥JDUH
i

1∏
j=i−1

(1− JD)UH
j |Ψ0〉

∥∥∥∥∥∥
2

(120)

=
q∑
i=1

∥∥∥∥∥∥∥∥∥∥∥∥
JDUH

i

1∥∥∥∏j(1− JD)UH
j |Ψ0〉

∥∥∥
1∏

j=i−1
(1− JD)UH

j |Ψ0〉

︸ ︷︷ ︸
:=|Φi〉

∥∥∥∥∥∥∥∥∥∥∥∥

2 ∥∥∥∥∥∥
1∏

j=i−1
(1− JD)UH

j |Ψ0〉

∥∥∥∥∥∥
2

(121)

≤
q∑
i=1
‖JD|Φi〉‖2 . (122)

Here, the second equation follows from the fact that ‖|v〉‖2 = ‖Π|v〉‖2 + ‖(1−Π)|v〉‖2 for all |v〉
and projectors Π.

Hence, we have that the probability of Find occurring is upper-bounded by the sum of the
probabilities of finding the relation after query i conditioned on not finding the relation in all

45

previous queries. Now let us inspect the state just after the query, conditioned on ¬Find. Let
us focus on a single query state in the adversary’s full state |Φi〉 =

∑
x,y,w βx,y,w |Φi(x, y)〉 |w〉W ,

where W is the adversary’s work register. By P we denote the set of x-values in entries prior
to the query, the basis state is then:

|Φi(x, y)〉 :=|x, y〉XY

SampY\S(P ∪ {x})
∑
и 6=0

α(x, y, и) |Д′ADD/UPD(и)〉D

+ SampY\S(P)α(x, y, 0) |Д′REM/NOT(0)〉D

)
, (123)

where byД′ADD/UPDwedenote the databasewith entryx being added or updated. ByД′REM/NOT
we denote the database where x entry has been removed or nothing happened . The function
α(·) denotes amplitudes of the corresponding databases.

We use the unprepared basis as it provides the clearest picture with respect to the possible
action of the oracle. Applying SampY\S transforms the database to the basis compatible with
the relation.

To calculate the bound from Eq. (122), note that Д′REM/NOT did not have an element in D
before the query and so there is no chance it has one now, as the database has either shrunk
or not changed. Hence

∥∥∥JD|D′REM/NOT〉D
∥∥∥ = 0. Similarly with updating the database, for the

relation to hold, a query has to increase the number of non-padding entries in Д. To highlight
this fact in what follows we omit the subscript UPD. The modified database on the other hand
increases by a new entry. For any и 6= 0 we have:

SampY\S(P ∪ {x}) |Д′ADD〉D = SampY\S(P)|Д〉D\{x} ⊗ SampY\S(x | P)|x, и〉D(x) (124)

= |D〉D\{x} ⊗
∑

z∈Y\S

1√
|Y \ S|

ω̄z
′·и
|Y\S| |x, z〉D(x), (125)

where by \{x} we denote omitting the register containing x in the database registers (note
however that this notation is only symbolic as the database is always kept in a sorted way),
by writing D instead of Д we mark the basis change, and by z′ we denote the fact that there
might be some discrepancy between z and the power of ω̄и

|Y\S| coming from the action of V
from Eq.(35).

From this calculation we can bound the probability of finding an element in D. In the fol-
lowing, by putting a prime overα: α′(x, y,и), we signify the fact that amplitudes corresponding
to database ДUPD are set to zero by JD,

‖JD|Φi〉‖2 =
∥∥∥∥∥JD ∑

x,y,w

βx,y,w|Φi(x, y)〉|w〉W

∥∥∥∥∥
2

(126)

=

∥∥∥∥∥∥JD
∑
x,y,w

βx,y,w|x, y〉XY
∑
и6=0

α′(x, y, и)SampY\S(P ∪ {x})|Д′ADD〉D|w〉W

∥∥∥∥∥∥
2

(127)

=
∑
x,y,w

|βx,y,w|2
∥∥∥∥∥∥JD

∑
и6=0

α′(x, y, и)|D〉D\{x} ⊗
∑

z∈Y\S

1√
|Y \ S|

ω̄z
′·и
|Y\S||x, z〉D(x)

∥∥∥∥∥∥
2

(128)

=
∑
x,y,w

|βx,y,w|2
∥∥∥∥∥∥
∑
и6=0

α′(x, y,и)
∑
z∈D

1√
|Y \ S|

ω̄z
′·и
|Y\S||z〉DY (x)

∥∥∥∥∥∥
2

(129)

≤
∑
x,y,w

|βx,y,w|2
∑
и6=0

∣∣α′(x, y,и)
∣∣2 ∑
z∈D

1
|Y \ S|

(130)

46

≤
∑
z∈D

1
|Y \ S|

≤ i− 1 + |Z|
|Y \ S|

. (131)

As we stated in the beginning the set D consists of y-values in DY prior to UH
i and Z , hence

its cardinality is at most i − 1 + |Z|. Note that JD collapsed only the x-entry in the updated
database, that is because the discussed relation is defined on the new entry relative to previous
entries.

The sum
∑q
i=1

i−1+|Z|
|Y\S| evaluates to q(q−1)+2q|Z|

2|Y\S| as claimed.

Note that if we omit previous outputs inD, then we recover a classical bound on finding an
element of the preimage of Z .

Corollary 22. For any quantum adversary A interacting with a punctured oracle CStOY\S \Z—where
Z ⊆ Y \ S—the probability of Find is bounded by:

P[Find : A[CStOY\S \ Z]] ≤ q |Z|
|Y \ S|

, (132)

where q is the number of queries made by A.

Proof. Follows from Lemma 21 without puncturing on outputs of previous queries.

C Quantum Indifferentiability of Sponges with Random Permuta-
tions

In the beginning of this section we focus on lazy sampling of a random permutation. Specifi-
cally for permutations ϕ : A×C → A×C, sampling done in two stages, first sampling the inner
part of the output and then the outer part.

ByD we denote the set of outputs of previous queries. In the language of the sponge graph
D−1 is the set of nodes with outgoing edges and D is the set of nodes with incoming edges. By
D̂we denote the set of supernodes with all nodes having an incoming edge. ByD(t̂) we denote
the set of nodes in the supernode t̂with an incoming edge.

We need to define a procedure to lazy-sample outputs of a random permutation. The obvi-
ous solution of sampling uniformly from A × C \ D is not good enough as we want to sample
the inner part before the outer part and retain the step-by-step structure of our proof, similarly
to the proof of Thm. 13.

Classically we are going to first sample uniformly fromA×C \D but then discard the outer
state. The value of the inner state t̂ is then effectively sampled from C with weights |A\D(t̂)|

|A×C\D| . We
call this distribution C. At this point we will be introducing bad events concerning the inner
part of the sampled state. To sample the outer state we just sample uniformly from A \ D(t̂).
We denote this distribution by A(t̂).

Quantumlly the situation is a bit more involved, so we are going to present the sampling
procedure in more detail. First we sample pairs fromA×C\D using SampA×C\D, defined simi-
larly to the procedure in Eq.(36). Then we un-sample the outer part, by applying the Hermitian
conjugate of SampA\D(t̂) to the resulting state. Note that we control the un-sample operation on
the inner-part of the initial sample. We start from the following state

SampA×C\D|0〉 =
∑

t∈A×C\D

1√
|A × C \ D|

|t〉 =
∑
t̂

√√√√ ∣∣∣A \ D(t̂)
∣∣∣

|A × C \ D|
∑

t̄∈A\D(t̂)

1√∣∣∣A \ D(t̂)
∣∣∣ |t̄, t̂〉,

(133)

47

where the right hand side of the equation follows by just rearranging the sums and noticing
that given some t̂ ∈ C we have t̄ ∈ A that have no incoming edges in the supernode t̂. Now the
definition of the second sampling procedure reads

SampA\D(t̂)|0, t̂〉 =
∑

t̄∈A\D(t̂)

1√∣∣∣A \ D(t̂)
∣∣∣ |t̄, t̂〉 (134)

and is completed to a unitary acting on every other s̄ ∈ A under the constraints of Eq.(14). Note
that we use the second register to control the unitary (by providing the set D(t̂) we exclude
from A). By applying Samp†A\D̄(t̂) to both sides of Eq.(134) we see that we can un-compute the

outer part t̄ from the initial superposition from Eq.(133) and sample t̂with probability |A\D(t̂)|
|A×C\D| .

The sampling procedure Samp†A\D(t̂) ◦ SampA×C\D is used to define CStOC. As in the classical
case in simulators after S2 will have this part modified. The outer part is then sampled using
SampA\D(t̂), with which we define CStOA(t̂).

In the following we denote sampling from the distribution C but with the set C changed to
C \ (R∪ U) by C \ (R∪ U). In the case of the inverse of the random permutation we use a sim-
ilar distribution but in the above definitions we take D−1—i.e. the set of nodes with outgoing
edges—in both C and A. We denote those distributions by C−1 and A−1(t̂) respectively.

The bound on P[Bad] in our proof for random permutations is the same as in the case of
random functions. We achieve a slightly weaker bound than in [Ber+08] because in our gradual
argument we first sample from the set of inner states excluding only ”full” supernodes D̂. We
can bound the size of this set by

∣∣∣D̂∣∣∣ ≥ 0 and following the same strategy as for derivation of
Eq. (50) achieve a bound of fcoll.

C.1 Classical Indifferentiability of Sponges with Random Permutations

First we will present a slightly modified proof of indifferentiability from [Ber+08]. We modify
the proof to better fit the framework of game-playing proofs.

Theorem 23 (Spongewith permutations, classical indifferentiability). Spongeϕ[pad,A, C] calling
a random permutationϕ is (q, ε)-indifferentiable from a random oracle, Eq. (51), for classical adversaries
for any q < |C| and ε = 10 q(q+1)

2|C| .

Proof. The proof is constructed in a similar way to the proof of Thm. 13. Wewill introducemore
steps in the proof though, as we want to keep a slow paste of statements so that each transition
between games is clear.

In Alg. 14we present the indifferentiability simulators for the case of randompermutations.

Game 1 We start with the real world where the distinguisher A has access to a random per-
mutation ϕ : A × C → A × C and the construction Spongeϕ using this function. The formal
definition of the first game is

Game 1 :=
(
b = 1 : b← A[Spongeϕ, (ϕ,ϕ−1)]

)
. (135)

Game 2 In the second game we introduce the simulator S2—defined in Alg. 14—that lazy-
samples the random permutation ϕ. In Alg 14 we define all simulators of this proof at once,
but note that all conditional statements lead to the same behavior of S2. The definition of the
second game is

Game 2 :=
(
b = 1 : b← A[SpongeS2 , (S2,S−1

2)]
)
, (136)

48

Algorithm 14: Classical S2, S3a , S3b , S4 , S6a , S6b , permutations
State : Current sponge graph G
Interface: ϕ, forward queries
Input : s ∈ A× C
Output : ϕ(s)

1 if s has no outgoing edge then // New query
2 if ŝ ∈ R ∧R ∪ U 6= C then // ŝ-rooted, no saturation

3 t̂← C, if t̂ ∈ R ∪ U , set Bad1 = 1 , t̂← C \ (R∪ U)

4 Construct a path to s: p := SpPath(s,G)
5 if ∃x : p = pad(x) then
6 t̄← A(t̂)

7 t̄ := H(x)

8 else
9 t̄← A(t̂)
10 t := (t̄, t̂)
11 else
12 t

$← (A× C) \ D
13 Add an edge (s, t) to E .
14 Set t to the vertex at the end of the edge starting at s
15 Output t

Interface: ϕ−1, backward queries
Input : s ∈ A× C
Output : ϕ−1(s)

16 Construct the sponge graph G
17 if s has no incoming edge then // New query

18 t̂← C−1, if t̂ ∈ R, set Bad2 = 1 , t̂← C−1 \ R

19 t̄← A−1(t̂)
20 t := (t̄, t̂)
21 Add an edge (t, s) to E .
22 Set t to the vertex at the beginning of the edge ending at s
23 Output t

49

where by S−1 we denote the backward interface of S. Because the simulator S2 perfectly models
a random permutation and we use the same function for the private interface we have

|P[Game 2]− P[Game 1]| = 0. (137)

Game 3a In the next step we modify S2 to S3a. The game is then

Game 3a :=
(
b = 1 : b← A[SpongeS3a , (S3a,S−1

3a)]
)
. (138)

We made a single change in S3a compared to S2, we introduce the “bad” event Bad1 that marks
the difference between algorithms. We use this event as the bad event in Lemma 1. With such
a change of the simulators we can use Lemma 1 to bound the difference of probabilities:

|P[Game 3a]− P[Game 2]| ≤ P[Bad1 = 1]. (139)

It is now quite easy to bound P[Bad1 = 1] as this is the probability of finding a collision or a
preimage of the root in the set C having made q random samples. Then we have that

P[Bad1 = 1] ≤ fcoll(q) (140)

where the inequality comes from the fact that not all queries are made to rooted nodes.

Game 3b In the next step we modify S3a to S3b. The game is then

Game 3b :=
(
b = 1 : b← A[SpongeS3b , (S3b,S−1

3b)]
)
. (141)

Wemade a single change in S3b compared to S3a, we introduce the “bad” event Bad2 that marks
the difference between algorithms. We use this event as the bad event in Lemma 1. With such
a change of the simulators we can use Lemma 1 to bound the difference of probabilities:

|P[Game 3b]− P[Game 3a]| ≤ P[Bad2 = 1]. (142)

We bound bound P[Bad2 = 1] similarly as before as again this is the probability of finding a
collision or a preimage of the root in the set C having made q random samples. Then we have
that

P[Bad2 = 1] ≤ fcoll(q) (143)

Game 4 In this step we introduce the random oracle H but only to generate the outer part of the
output of ϕ. The game is defined as

Game 4 :=
(
b = 1 : b← A[SpongeS4 , (SH

4 ,S−1
4)]

)
. (144)

Now we need to observe that if Bad1 = 0 the outputs are identically distributed. Following
Claim 14 and the derivation of Eq.(61) we get

|P[Game 4]− P[Game 3b]| ≤ 2P[Bad1 = 1] ≤ 2fcoll(q). (145)

Game 5 In this stage of the proof we change the private interface to contain the actual random
oracle. The simulator is the same and the game is

Game 5 :=
(
b = 1 : b← A[H, (SH

4 ,S−1
4)]

)
. (146)

Conditioned on Bad1 = 0, the outputs of the simulator in Games 4 and 5 are the same and
consistent with H. To calculate the adversary’s advantage in distinguishing between the two

50

games we can follow the proof of Lemma 12. We change H \ R1 to Game 5, G \ R2 to Game 4,
and event Find to Bad1 = 1. As the derivation of Lemma 12 uses no quantum mechanical
arguments and the assumption holds—the games are identical conditioned on Bad1 = 0—the
bound holds:

|P[Game 5]− P[Game 4]| ≤ 4P[Bad1 = 1] ≤ 4fcoll(q). (147)

Game 6a In this game we use S6a, a simulator that does not check for bad events. The game is

Game 6a :=
(
b = 1 : b← A[H, (SH

6a,S−1
6a)]

)
(148)

and the advantage is

|P[Game 6a]− P[Game 5]| ≤ P[Bad1 = 1] (149)

Game 6b In the last game we use S6b, a simulator that does not check for bad events. The game
is

Game 6b :=
(
b = 1 : b← A[H, (SH

6b, S−1
6b)]

)
(150)

and the advantage is

|P[Game 6b]− P[Game 6a]| ≤ P[Bad2 = 1]. (151)

We included this last game in the proof because S6 is clearly a simulator that might fail only
if G is saturated but this does not happen if q < |C|. Collecting and adding all the differences
yields the claimed ε = 10fcoll(q).

C.2 Quantum Indifferentiability of Sponges with Random Permutations

Theorem 24 (Sponge with permutations, quantum indifferentiability, restated).
Spongeϕ[pad,A, C] calling a random permutation ϕ is (q, ε)-indifferentiable from a random ora-
cle, Eq. (51), for quantum adversaries for any q < |C| and ε = 4

√
(q + 1)fcoll(q) + 12fcoll.

Proof. In the quantum case the operations are modified similarly to the proof of Thm. 15. The
main differences are the use of a different distribution, we apply Samp procedures defined in
the beginning of this section. In Alg. 15 we describe the simulators we use in this proof.

Game 1We start with the real worldwhere the distinguisherA has quantum access to a random
permutation ϕ : R× C → R× C and the construction Spongeϕ using this function. The formal
definition of the first game is

Game 1 :=
(
b = 1 : b← A[Spongeϕ, (ϕ,ϕ−1)]

)
. (152)

Game 2 In the second game we introduce the simulator S2—defined in Alg. 15—that lazy-
samples the random permutation ϕ. In Alg 15 we define all simulators of this proof at once,
but note that all conditional statements lead to the same behavior of S2. The definition of the
second game is

Game 2 :=
(
b = 1 : b← A[SpongeS2 , (S2,S−1

2)]
)
, (153)

where by S−1 we denote the backward interface of S. Because the simulator S2 perfectly models
a quantum randompermutation andwe use the same function for the private interface we have

|P[Game 2]− P[Game 1]| = 0. (154)

51

Algorithm 15: Quantum S2 , S3a , S3b , S4 , S6a , S6b , permutations
State : Quantum compressed database register D
Interface: ϕ, forward queries
Input : |s, v〉 ∈ H⊗2

A×C
Output : |s, v + ϕ(s)〉

1 Locate input s in D and D̂ // Using the correct Samp
2 Apply UR∪UUG to register D̂ and two fresh registers
3 if s ∈ R ∧R ∪ U 6= C then // s-rooted, no saturation

4 Apply CStOXŶ D̂(s)
C , (CStOC \ (R∪ U))XŶ D̂(s) , CStOXŶ D̂(s)

C\(R∪U) , result: t̂

// Find1 in S3a, S3b, and S4
5 Construct a path to s: p := SpPath(s,G)
6 if ∃x : p = pad(x) then

7 Apply CStOXY D(s)
A(t̂) , result: t̄

8 Write x in a fresh register XH , apply CHXXHY D(s) , uncompute x from XH ,

result: t̄ // Random oracle, Eq. (66)
9 else
10 Apply CStOXY D(s)

A(t̂) , result: t̄

11 t := (t̄, t̂), the value of registers (DY (s), D̂Y (s))
12 else
13 Apply CPerOXYD(s)D̂(s)

A×C , result t
14 Uncompute G andR∪ U
15 Output |s, v + t〉

Interface: ϕ−1, backward queries
Input : |s, v〉 ∈ H⊗2

A×C
Output : |s, v + ϕ−1(s)τ〉

16 Locate input s in D // Using the correct Samp
17 Apply UR∪U ◦ UG to registers D and two fresh registers

18 Apply CStOXŶ D̂(s)
C−1 , (CStOC−1 \ R)XŶ D̂(s) , CStOXŶ D̂(s)

C−1\R , result t̂ // Find2 in

S3b, S4, and S6a

19 Apply CStOXY D(s)
A−1(t̂) , result: t̄

20 t := (t̄, t̂), the value of registers (DY (s), D̂Y (s))
21 Uncompute G andR∪ U
22 Output |s, v + t〉

52

Game 3a In the next step we modify S2 to S3a. The game is then

Game 3a :=
(
b = 1 : b← A[SpongeS3a , (S3a,S−1

3a)]
)
. (155)

Wemade a single change in S3a compared to S2, we introduce a punctured oracle in the forward
interface. With such a change of the simulators we can use Thm. 9 to bound the difference of
probabilities:

|P[Game 3a]− P[Game 2]| ≤ 2
√

(q + 1)P[Find1 : A[SpongeS3a , S3a]], (156)

where Find1 denotes the success of the measurement in the punctured oracle of the forward
interface. We can bound P[Find1 : A[SpongeS3a , S3a]] using Lemma 21with S = D̂ andZ = {0}.
Note that we bound the size of this set by zero:

∣∣∣D̂∣∣∣ ≥ 0, as discussed in the beginning of this
section, giving us the same bound as in the case of random functions. Then we have that

P[Find1 : A[SpongeS3a ,S3a]] ≤ fcoll(q). (157)

Game 3b In the next step we modify S3a to S3b. The game is then

Game 3b :=
(
b = 1 : b← A[SpongeS3b , (S3b,S−1

3b)]
)
. (158)

We made a single change in S3b compared to S3a, we introduce a punctured oracle in the back-
ward simulator. With such a change of the simulatorswe can use Thm. 9 to bound the difference
of probabilities:

|P[Game 3b]− P[Game 3a]| ≤ 2
√

(q + 1)P[Find2 : A[SpongeS3b , S3b]], (159)

where Find2 denotes the success of the measurement in the punctured oracle of the backward
interface. It is now quite easy to bound P[Find2 : A[SpongeS3a , S3a]] as this is the probability of
finding a collision in the set C having made q random samples. Then we have that

P[Find2 : A[SpongeS3b , S3b]] ≤ fcoll(q). (160)

Game 4 In this step we introduce the random oracle H but only to generate the outer part of the
output of ϕ. The game is defined as

Game 4 :=
(
b = 1 : b← A[SpongeS4 , (SH

4 ,S−1
4)]

)
. (161)

Thanks to the classical argument, Claim 14 we have that S4 and S3a are identical until bad, as
in Def. 11. Then we can use Lemma 12 to bound the advantage of the adversary

|P[Game 4]− P[Game 3b]| ≤ 4P[Find1 : A[SpongeS3b , (S3b, S−1
3b)]] ≤ 4fcoll(q) (162)

Game 5 In this stage of the proof we change the private interface to contain the actual random
oracle. The simulator is the same and the game is

Game 5 :=
(
b = 1 : b← A[H, (SH

4 ,S−1
4)]

)
. (163)

The advantage is

|P[Game 5]− P[Game 4]| ≤ 4P[Find1 : A[SpongeS4 , (SH
4 ,S−1

4)]] ≤ 4fcoll(q), (164)

53

conditioned on¬Find, outputs of the private interface are the same, then the games are identical
until bad and we can use Lemma 12 to bound the advantage of the adversary.

Game 6a In the last game we use S6a, a simulator that uses a non-uniform compressed oracle.
The game is

Game 6a :=
(
b = 1 : b← A[H, (SH

6a,S−1
6a)]

)
(165)

and the advantage is again

|P[Game 6a]− P[Game 5]| ≤ 2P[Find1 : A[H, (SH
6a,S−1

6a)]] ≤ 2fcoll(q), (166)

by Lemma 12 with one relation being ∅.

Game 6b In the last game we use S6b, a simulator that uses a non-uniform compressed oracle.
The game is

Game 6b :=
(
b = 1 : b← A[H, (SH

6b, S−1
6b)]

)
(167)

and the advantage is again

|P[Game 6a]− P[Game 5]| ≤ 2P[Find2 : A[H, (SH
6b, S−1

6b)]] ≤ 2fcoll(q), (168)

by Lemma 12 with one relation being ∅.
The last simulator S6b works perfectly until the sponge graph is saturated. Saturation cer-

tainly does not occur for q < |C| as the database in every branch of the superposition increases
by at most one in every query. Collecting the differences between games yields the claimed
ε.

54

	1 Introduction
	2 Preliminaries
	2.1 Classical Game-Playing Proofs
	2.2 Indifferentiability
	2.3 Quantum Computing

	3 Quantum-Accessible Oracles
	3.1 General Structure of the Oracles
	3.2 Non-uniform Oracles
	3.2.1 Conditionally Uniform Distributions

	4 One-way to Hiding Lemma for Compressed Oracles
	5 Quantum Security of the Sponge Construction
	5.1 Sponge Construction
	5.2 Classical Indifferentiability of Sponges with Random Functions
	5.3 Quantum Indifferentiability of Sponges with Random Functions
	5.4 Quantum Indifferentiability of Sponges with Random Permutations
	5.5 Collapsingness of Sponges with Random Permutations

	6 Conclusions
	7 Acknowledgments
	References
	Symbol Index
	A Additional Details on Quantum-Accessible Oracles
	A.1 Uniform Oracles
	A.1.1 Full Oracles, Additional Details
	A.1.2 Compressed Oracles, Additional Details

	A.2 Detailed Algorithm for Alg. 1: CFOD
	A.3 Implementation of V for SampY-R
	A.4 SampD for Random Boolean Functions

	B Additional Details on O2H Lemma for Compressed Oracles
	C Quantum Indifferentiability of Sponges with Random Permutations
	C.1 Classical Indifferentiability of Sponges with Random Permutations
	C.2 Quantum Indifferentiability of Sponges with Random Permutations

