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Abstract

In this paper, we develop new tools and connections for exponential time approxima-
tion. In this setting, we are given a problem instance and an integer » > 1, and the
goal is to design an approximation algorithm with the fastest possible running time.
We give randomized algorithms that establish an approximation ratio of

1. r for maximum independent set in O*(exp(é(n /r log2 r+r log2 r))) time,

2. r for chromatic number in O*(exp(@(n/r logr + rlog?r))) time,

3. (2 — 1/r) for minimum vertex cover in O*(exp(n/r*"))) time, and

4. (k — 1/r) for minimum k-hypergraph vertex cover in O* (exp(n/(kr)***")) time.

(Throughout, O and O* omit polyloglog(r) and factors polynomial in the input size,
respectively.) The best known time bounds for all problems were O*(2"/") (Bourgeois
etal. in Discret Appl Math 159(17):1954-1970, 2011; Cygan et al. in Exponential-time
approximation of hard problems, 2008). For maximum independent set and chromatic
number, these bounds were complemented by exp(n!=°(" /r1T°(D) Jower bounds
(under the Exponential Time Hypothesis (ETH)) (Chalermsook et al. in Foundations
of computer science, FOCS, pp. 370-379, 2013; Laekhanukit in Inapproximability of
combinatorial problems in subexponential-time. Ph.D. thesis, 2014). Our results show
that the naturally-looking O*(2"/") bounds are not tight for all these problems. The
key to these results is a sparsification procedure that reduces a problem to a bounded-
degree variant, allowing the use of approximation algorithms for bounded-degree
graphs. To obtain the first two results, we introduce a new randomized branching
rule. Finally, we show a connection between PCP parameters and exponential-time
approximation algorithms. This connection together with our independent set algo-
rithm refute the possibility to overly reduce the size of Chan’s PCP (Chan in J. ACM
63(3):27:1-27:32, 2016). It also implies that a (significant) improvement over our
result will refute the gap-ETH conjecture (Dinur in Electron Colloq Comput Complex
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(ECCC) 23:128, 2016; Manurangsi and Raghavendra in A birthday repetition theorem
and complexity of approximating dense CSPs, 2016).

Keywords Approximation algorithms - PCP’s - Exponential time algorithms

1 Introduction

The Independent Set, Vertex Cover, and Coloring problems are central problems in
combinatorial optimization and have been extensively studied. Most of the classical
results concern either approximation algorithms that run in polynomial time or exact
algorithms that run in (sub)exponential-time. While these algorithms are useful in
most scenarios, they lack flexibility: Sometimes, we wish for a better approximation
ratio with worse running time (e.g., computationally powerful devices), or faster algo-
rithms with less accuracy. In particular, the trade-offs between the running time and
approximation ratios are needed in these settings.

Algorithmic results on the trade-offs between approximation ratio have been
studied already in the literature in several settings, most notably in the context of
Polynomial-time Approximation Schemes (PTAS). For instance, in planar graphs,
Baker’s celebrated approximation scheme for several NP-hard problems [2] gives
an (1 4 &)-approximation for, e.g., Independent Set in time O*(exp(O(1/¢))) time.
In graphs of small treewidth, Czumaj et al. [16] give an O* (exp(tw/r)) time algorithm
that given a graph along with a tree decomposition of it of width at most fw, find an
r-approximation for Independent Set. For general graphs, approximation results for
several problems have been studied in several works (see, e.g., [6-8,13—15]). A basic
building block that lies behind many of these results is to partition the input instance
in smaller parts in which the optimal (sub)solution can be computed quickly (or at
least faster than fully exponential-time). For example, to obtain an r-approximation
for Independent Set one may arbitrarily partition the vertex set in r blocks and restrict
attention to independent sets that are subsets of these blocks to get a O*(exp(n/r))
time r-approximation algorithm.

While at first sight one might think that such a naive algorithm should be eas-
ily improvable via more advanced techniques, it was shown in [6,11] that almost
linear-size PCPs with sub-constant error imply that r-approximating Independent
Set [11] and Coloring [31] requires at least exp(n' ~°(1) /r1+to(1)) time assuming the
popular Exponential Time Hypothesis (ETH). In the setting of the more sophisti-
cated Baker-style approximation schemes for planar graphs, Marx [34] showed that
no (1 + &)-approximating algorithm for planar Independent Set can run in time
O0*(exp((1/¢)' %)) assuming ETH, which implies that the algorithm of Czumaj can-
not be improved to run in time O* (exp(rw/r'*¢)).

These lower bounds, despite being interesting, do not say anything about the lower
order terms and by no means answer the question whether the known approximation
trade-offs can be improved significantly, and in fact in many settings we are far from
understanding the full power of exponential time approximation. For example, until
recently [10], we cannot exclude (under any plausible complexity assumption) algo-
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rithms that 2-approximate k-Independent Set! in time n°® (see also [30]), nor do
we know algorithms that run asymptotically faster than the fastest exact algorithm that
runs in time n%79% time [36].

In this paper, we aim to advance this understanding and study the question of design-
ing fast (exponential-time) algorithms that guarantee the designated approximation
ratios of r for Independent Set, Coloring and Vertex Cover in general (hyper)graphs.
Ultimately, we wish to design approximation algorithms that are as fast as possible.

1.1 Our Results

For Independent Set, our result is the following. Here we use O to omit log log factors
inr.

Theorem 1 There is a randomized algorithm that given an n-vertex graph G and
integer r outputs an independent set that, with constant positive probability, has size
at least a(G)/r, where a(G) denotes the maximum independent set size of G. The
algorithm runs in expected time O*(exp(é(n/(r log2 ry+r log2 r))).

To prove this result, we introduce a new randomized branching rule that we will
now introduce and put in context towards previous results. This follows a sparsification
technique that reduces the maximum degree to a given number. This technique was
already studied before in the setting of exponential time approximation algorithms for
Independent Set by Cygan et al. (see [13, paragraph ‘Search Tree Techniques’]) and
Bourgeois et al. (see [8, Section 2.1]), but the authors did not obtain running times
sub-exponential in n/r. Specifically, the sparsification technique is to branch (e.g.,
select a vertex and try to both include v in an independent set or discard and recurse
for both possibilities) on vertices of sufficiently high degree. The key property is that
if we decide to include a vertex in the independent set, we may discard all neighbors
of v. If we generate instances by keeping branching on vertices of degree at least d
until the maximum degree is smaller than d, then at most (n? d) < exp(nlog(d)/d)
instances are created. In each such instance, the maximum independent set can be
easily d-approximated by a greedy argument. Cygan et al. [13] note that this gives
worse than O*(2"/") running times.

Our algorithm works along this line but incorporates two (simple) ideas. Our first
observation is that instead of solving each leaf instance by greedy d-approximation
algorithm, one can use a recent O (longd) approximation algorithm by Bansal et al. [3]

for Independent Set on bounded degree graphs. If we choose d 2 r log? r, this imme-
diat'ely gives an improvement, an r-appro'x.imation in t'ime ess'entie'llly ex p(@).
To improve this further, we present an additional (more innovative) idea introducing
randomization. This idea relies on the fact that in the sparsification step we have (unex-
ploited) slack as we aim for an approximation.” Specifically, whenever we branch, we

only consider the ‘include’ branch with probability 1/r. This will lower the expected

! That s, given a graph and integer k answer YES if it has an independent set of size at least 2k and NO if
it has no independent set of size at least k.

2 This observation was already made by Bourgeois et al. [8], but we exploit it in a new way.
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number of produced leaf instances in the sparsification step to 2""/¢ ~ exp(rlo’; 5 r)
and preserves the approximation factor with good probability.
Via fairly standard methods (see, e.g., [5S]) we show this also gives a faster algorithm

for coloring in the following sense:

Theorem 2 There is a randomized algorithm that, given an n-vertex graph G and an
integer r > 0, outputs with constant positive probability a proper coloring of G using
atmostr-x (G) colors. The algorithm runs in time O* (exp(O (n/(r logr)+r log2 r))).

As a final indication that sparsification is a very powerful tool to obtain fast expo-
nential time approximation algorithms, we show that a combination of a result of
Halperin [22] and the sparsification Lemma [25] gives the following result for the
Vertex Cover problem in hypergraphs with edges of size at most k (a.k.a. the Set
Cover problem with frequency at most k).

Theorem 3 For every k, there is an ry := r(k) such that for every r > rq there is an
0*(exp(m)) time randomized (k — %)-approximation algorithm for the Vertex
Cover problem in hypergraphs with edges of size at most k.

Note that for k = 2 (e.g., vertex cover in graphs), this gives an 0*(exp(r§w))
running time, which gives an exponential improvement (in the denominator of the
exponent) upon the (2 — 1/r) approximation by Bonnet et al. [8] that runs in time
O*(2""y. Tt was recently brought to our attention that Williams and Yu [38] inde-
pendently have unpublished results for (hypergraph) vertex cover and independent set
using sparsification techniques similar to ours.

Connections to PCP parameters The question of approximating the maximum inde-
pendent set problem in sub-exponential time has close connections to the trade-off
between three important parameters of PCPs: size, gap and free-bit. We discuss the
implications of our algorithmic results in terms of these PCP parameters.

Roughly speaking, the gap parameter is the ratio of completeness to soundness,
while the freeness parameter is the number of “locally” distinct proofs that would cause
the verifier to accept >; the free-bit is simply a logarithm of freeness. For convenience,
we will continue our discussions in terms of freeness, instead of freebit.

— Freebit versus Gap The dependency between freeness and gap has played an
important role in hardness of approximation. Most notably, the existence of PCPs
with freeness g°(!) where g is a gap parameter is “equivalent” to n' ~°(1) hardness of
approximating maximum independent set [4,23]; this result is a building block for
proving other hardness of approximation for many other combinatorial problems,
e.g., coloring [20], disjoint paths [1], induced matching [11], cycle packing [21],
and pricing [11]. Arguably, the trade-off of these PCP parameters captures the
approximability of many natural combinatorial problems.

Better parameter trade-off implies stronger hardness results. The existence of a PCP

3 Thatis, restricting ourselves to the set of variables {x; };cp queried by the verifier, freeness is the number
of possible assignments to these variables that cause the verifier to accept.
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with arbitrarily large gap, freeness 1 (lowest possible), and completeness close to
1/2,1isin fact equivalent to (2—e€) inapproximability for Vertex Cover [4]. The best
known trade-off is due to Chan [12]: For any g > 0, there is a polynomial-sized
PCP with gap g (completeness close to one) and freeness O (log g), yielding the
best known NP-hardness of approximating maximum independent set in sparse
graphs, i.e., £2(d/log* d) NP-hardness of approximating maximum independent
set in degree-d graphs. 4

— Size, Freebit, and Gap When a polynomial-time approximation algorithm is the
main concern, polynomial size PCPs are the only thing that matter. But when
it comes to exponential time approximability, another important parameter, size
of the PCPs, has come into play. The trade-off between size, freebit, and gap
tightly captures the (sub-)exponential time approximability of many combinato-
rial problems. For instance, for any constant g > 0, Moshkovitz and Raz [35]
construct PCPs’ of size n!™°(M) and freeness 201088 and gap g; this implies
that r-approximating Independent Set requires time pn! 7o e [11].
Our exponential-time approximation result for Independent Set implies the fol-

lowing trade-off results.

Corollary 1 Unless the ETH fails, a freebit PCP on an n-variable SAT formula, with
gap parameter g, freeness parameter F and size parameter S must satisfy F - S =
R(nlog? g).

In particular, this implies that (i) the size of Chan’s PCP cannot be made smaller
than o(n log g) unless ETH breaks, and (ii) in light of the equivalence between gap-
amplifying freebit PCPs with freeness 1 and (2 — €) approximation for Vertex Cover,
our result shows that such a PCP must have size at least £2(n log2 g). We remark that
no such trade-off results are known for polynomial-sized PCPs. To our knowledge,
this is the first result of its kind.

Further Related Results The best known results for Independent Set in the
n(loglogn)?
log> n
of n/exp(0(log®*t°(M u)) (which also holds for Coloring) [28]. For Vertex Cover,
the best known hardness of approximation is (v/2 — 0(1)) NP-hardness [26,27] and
(2—¢€) hardness assuming the unique games conjecture [29]. All three problems (Inde-
pendent Set, Coloring, and Vertex Cover) do not admit exact algorithms that run in
time 2°0V, unless ETH fails. Besides the aforementioned works [8,13] sparsification
techniques for exponential time approximation were studied by Bonnet and Paschos

in [7], but mainly hardness results were obtained.

polynomial-time regime are an O ( )-approximation [18], and the hardness

4 Roughly speaking, the existence of a PCP with freeness F(g) (where g is a gap) implies £2 ( )

d
F(d)log3 d
hardness of approximating independent set in degree-d graphs.

5 In fact, Moshkovitz and Raz give a construction of nearly linear-size 2-query PCPs with sub-constant
error; this can be composed with the results of, e.g., [23,24,37] to get a PCP with low freebit complexity.
The above parameters are taken from the composition with [37].
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2 Preliminaries

We first formally define the three problems that we consider in this paper. Independent
Set: Given a graph G = (V, E), we say that / C V is an independent set if there
is no edge with both endpoints in J. The goal of Independent Set is to output an
independent set J of maximum cardinality. Denote by «(G), the cardinality of a
maximum independent set. Vertex Cover: Given a graph G = (V, E), we say that
J C Visavertex cover of G if every edge is incident to at least one vertex in J. The goal
of Vertex Cover is to output a vertex cover of minimum size. A generalization of vertex
cover, called k-Hypergraph Vertex Cover (k-Vertex Cover),® is defined as follows.
Given a hypergraph G = (V, £) where each hyperedge i € £ has cardinality at most
k, the goal is to find a collection of vertices J C V such that each hyperedge is incident
to at least one vertex in J, while minimizing |J|. The degree A(H) of hypergraph
H is the maximum frequency of an element. Coloring: Given a graph G = (V, E),
a proper k-coloring of G is a function f : V — [k] such that f(u) # f(v) for all
uv € E. The goal of Coloring is to compute a minimum integer k > 0 such that
G admits a (proper) k-coloring; this number is referred to as the chromatic number,
denoted x (G).

Foragraph G = (V, E), Ng(v) denotes the set of neighbors of v and d¢ (v) denotes
INg(v)|. If X € V welet G[X] denote the graph (X, EN (X x X)), i.e., the subgraph
of G induced by X. We use exp(x) to denote 2* in order to avoid superscripts. We use
the O*(-)-notation to suppress factors polynomial in the input size. We use O and 2
to suppress factors polyloglog in r in respectively upper and lower bounds and write
O for all functions that are in both O and £2.

3 Faster Approximation via Randomized Branching and
Sparsification

3.1 Maximum Independent Set

In this section, we prove Theorem 1. Below is our key lemma.

Lemma 1 Suppose there is an approximation algorithm dIS(G, r) that runs in time
T (n, r) and outputs an independent set of G of size «(G) /r if G has maximum degree
d(r), (where d(r) > 2r). Then there is an algorithm IS(G, r) running in expected
time O*(exp(% log(4d(r)/r))T (n, r)) that outputs an independent set of expected
size a(G)/r.

Proof Consider the algorithm listed in Fig. 1.

For convenience, let us fix r and d := d(r). We start by analyzing the expected run-
ning time of this algorithm. Per recursive call the algorithm clearly uses O*(T (n, r))
time. It remains to bound the expected number of recursive calls R(n) made by

6 The problem is also known under other names, such as k-Hitting Set and Hypergraph Transversal in
k-uniform hypergraphs
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Algorithm IS(G = (V,E),r)
1: if v € V : dg(v) > d(r) then

2 Draw a random Boolean variable b such that Pr[b = true] = 1/r.

3 if b = true then

4: return the largest of IS(G[V \ {v}]) and IS(G[V \ N(v)]) U {v}.
5:  else

6 return IS(G[V \ {v}]).

7: else

8 return dIS(G).

Fig. 1 Approximation algorithm for the maximum independent set problem using an approximation algo-
rithm d 1§ that works in bounded degree graphs

1S(G, r) when G has n vertices. We will bound R(n) < 2*" for A = log(4d /r)/d by
induction on n. Note that here A is chosen such that

exp(—h - d) = r/(4d) < %‘W”

7 ey

where we use d/r > 2 for the inequality. For the base case of the induction, note that
if the condition at Line 1 does not hold, the algorithm does not use any recursive calls
and the statement is trivial as A is clearly positive. For the inductive step, we see that

R(n) < Rn— 1)+ Pr[b =true] - R(n — d)
=Rmn—1)+4+R(n—d)/r
= exp(A(n — 1)) +exp(h(n — d))/r
= exp(An) (exp(—A) + exp(—Ad)/r) Using exp(—x) <1 —x/2forx € [0, 1]
<exp(in) (1 — A/2 + exp(—Ad)/r) Using exp(—A - d(r)) < Ar/2 from (1)
< exp(in).

We continue by analyzing the output of the algorithm. It clearly returns a valid inde-
pendent set as all neighbors of v are discarded when v is included in Line 4 and an
independent set is returned at Line 8. It remains to show E[|IS(G, r)|] > «(G)/r
which we do by induction on . In the base case in which no recursive call is made, note
that on Line 8 we indeed obtain an r-approximation as G has maximum degree d(r).
For the inductive case, let X be a maximum independent set of G and let v be the vertex
as picked on Line 1. We distinguish two cases based on whether v € X.If v ¢ X, then
a(G) = a(G[V\v]) and the inductive step follows as E[|IS(G[V \v], r)|] = «(G)/r
by the induction hypothesis. Otherwise, if v € X, then E[|IS(G, r)|] is at least

Pr[b = false] - E[|IS(G[V\{v}], r)|] + Pr[b = true] - E[|IS(G[N\N(v)], r)| + 1]
(RN LRy ECEY
r r

7

-
a(G) —1
=———+;=a@)/r,
as required. Here the first inequality uses the induction hypothesis twice. O
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Algorithm CHR(G = (V, E), )

1: Let n =|V]|, ¢ =0.

2: while |V| > n/(rlogr) do

3: c—c+1.

4:  C.+ 18H(G[V],r/In(rlogr)).

5: V—V\C..

6: Let (Ceq1,...,Cy) < optcol(G[V]) be some optimum coloring of the remaining
graph G(V).

7: return (C1,...,Cy).

Fig.2 Approximation algorithm for the chromatic number

We will invoke the above lemma by using the algorithm d/S(G) by Bansal et al.
[3] implied by the following theorem:

Theorem 4 ([3], Theorem 1.3) There is an O(d / log2 d) approximation algorithm
dIS(G) for Independent Set on graphs of maximum degree d running in time
0*(exp(0(d))).

Proof of Theorem 1 We apply Lemma 1. By virtue of Theorem 4, d1S(G) runs in
time T (n, r) = O*(exp(O(r log? r))), and outputs an independent set of size at least
«(G)/r if G has maximum degree d(r) for some function d(r) = é(r log2 r) with
d(r) > 2r. We obtain an 0*(exp(é(n /r log2 r+r log2 r))) expected time algorithm
that outputs an independent set of expected size o (G)/r.

To obtain the required probabilistic guarantee, we apply this algorithm with r /3
instead of r. Since the size of the output is upper bounded by «(G) we obtain an
independent set of size at least «(G)/r with probability at least 1/(3r), and we may
boost this constant positive probability using O (r) repetitions.

By Markov’s inequality these repetitions together run in 0*(exp(6(n Jrlog?r +
rlog? r))) time with probability 3/4. The theorem statement follows by a union bound
as these O (r) repetitions run in the claimed running time and simultaneously some
repetition finds an independent set of size at least «(G)/r, with probability at least
1/2. O

A deterministic algorithm  An interesting question here is whether our randomized
branching algorithm can be derandomized. We show a deterministic r-approximation
algorithm that has in slightly worse running time of exp(O (n/r log r)). The algorithm
utilizes Feige’s algorithm [18] as a blackbox, and is deferred to Sect. 6.1.

3.2 Graph Coloring

Now we use the approximation algorithm for Independent Set as a subroutine for an
approximation algorithm for Coloring to prove Theorem 2 as follows (Fig. 2):

Proof of Theorem 2 The algorithm combines the approximation algorithm IS from
Sect. 3.1 for Independent Set with an exact algorithm optcol for Coloring (see,
e.g., [5]) as follows:
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In the algorithm, IS* denote the algorithm that makes n calls to IS and
outputs the maximum size independent set found to boost the success probabil-
ity. Specifically, IS (G[V], r/In(r logr)) clearly finds an independent set of size
a(G[V]) In(r logr)/r with probability at least 1 — exp(—£2(n)), and thus it will find
with at least constant positive probability in each of the at most » iterations an inde-
pendent set of size at least «(G[V]) In(r logr)/r.

We claim that CHR(G, r) returns with high probability a proper coloring of G
using £ < (r + 2) - x(G) colors. To prove the theorem, we invoke CHR(G, r — 2)
which has the same asymptotic running time. First, note that in each iteration of the
while loop (Line 2 of Algorithm 2), [V] is decreased by a multiplicative factor of
at most 1 — mr(.rl—o(%r) because G[V] must have an independent set of size at least
n/x(G) and therefore |C.| > In(rlogr)n/(r - x(G)). Before the last iteration, we
have |V| > n/(r Inr). Thus, the number £ of iterations must satisfy

{—1
1/(rlogr) < (1 B In(r logr)> < exp (_ln(r logr) (€ — 1)) ‘
r-x(G) r-x(G)
This implies that (¢ — 1) < r - x (G). Consequently, the number of colors used in the
first phase of the algorithm (Line 1 to Line 5) is ¢ < rx(G) + 1. The claimed upper
bound on £ follows because the number of colors used for G[V] in the second phase
(Line 6) is clearly upper bounded by x (G).
To upper bound the running time, note that Line 4 runs in time

<O~ < nln(rlogr) +rlog? )) <0~ < n ) e )
ex rlog“r = ex r r],
P rlog?(r/In(r logr)) g P rlogr &

and implementing optcol(G = (V, E)) by using the 0*(2!!) time algorithm from
[5], Line 6 also takes O*(2"/"1°27)) time and the running time follows. O

Let us remark that Algorithm CHR uses exp(n/r log r) space, but by using a space
efficient alternative for optcol (see, i.e., [5]) this space usage can be reduced to

poly(n).
3.3 Vertex Cover and Hypergraph Vertex Cover

In this section, we show an application of the sparsification technique to Vertex Cover
to obtain Theorem 3. Here the sparsification step is not applied explicitly. Instead,
we utilize the sparsification Lemma of Impagliazzo et al. [25] as a blackbox. Subse-
quently, we solve each low-degree instance by using an algorithm of Halperin [22].
The sparsification lemma due to Impagliazzo et al. [25], shows that an instance of the
k-Hypergraph Vertex Cover problem can be reduced to a (sub-)exponential number of
low-degree instances.’

7 The original formulation is for the Set Cover problem and the most popular formulation is for CNF-SAT
problem, but they are all equivalent by direct transformation.
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Lemma 2 (Sparsification Lemma, [9,25]) There is an algorithm that, given a hyper-
graph H = (V, E) with edges of size at most k > 2, a real number ¢ > 0, produces
set systems Hy = (V, &), ..., Hy = (V, &) with edges of size at most k in O*({)
time such that

1. every subset X C V is a vertex cover of H if and only if X is a vertex cover of H;
for some i,

2. foreveryi =1, ..., 4, the degree A(H;) is at most (k/8)3k,

3. £ is at most exp(en).

The next tool is an approximation algorithm for the k-Hypergraph Vertex Cover
problem when the input graph has low degree due to Halperin [22].

Theorem 5 ([22]) There is a polynomial time k—(1—o0(1)) W -approximation

algorithm for the vertex cover problem in hypergraphs with edges of size at most k in
which every element has degree at most A, for large enough A := A(k). Here o(1)
denotes a term that tends to 0 when A tends to infinity.

Now we complete the proof of the theorem by applying Lemma 2 with parameter
¢ = k/(kr)*". The number of low-degree instances H; produced by Lemma 2 is

at most exp(en) = exp (0 ( )) Each graph H; has degree at most A(H;) <

(k/e)3 = (kr)>°r. Note that

_k
(kr)kr

Inln A(H) _ InGkr Inkr) _ 1
InA(H;) —  3k2rintkr) — 3k2%r°

Plugging this value of A(H;), Halperin’s algorithm gives the approximation fac-
tor of
(k—1)Inln A 1 k(k—1) _ 1

k
k—(0—-0(1)—/——— <k —_— - —.
(I =oM)=—=4 =Ty = e
Thus this gives an k — 1/(6r)-approximation running in time O* (exp(nk/ (kr)*ry)
which translates to an k— 1 /r-approximation running in time O* (exp(nk /(kr/ 6)kr/0y).

4 PCP Parameters and Exponential-Time Approximation Hardness

Exponential-time approximation has connections to the trade-off questions between
three parameters of PCPs: size, freebit, and gap. To formally quantify this connection,
we define new terms, formally illustrating the ideas that have been already around in
the literature. We define a class of languages FGPCP which stands for Freebit and Gap-
amplifiable PCP. Let ¢ and g be positive reals, and S, F be non-decreasing functions.
A language L is in FGPCP.(S, F) if there is a constant ggp > 1 such that, for all
constants g > go, there is a verifier V, that, on input x € {0, 1}", has access to a proof
7w |m| = O(S(n, g)) and satisfies the properties:
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— The verifier runs in 2°® time.

If x € L, then there is a proof 7 such that Vg (x) accepts with probability > c.

If x ¢ L, then for any proof r, V; (x) accepts with probability < c¢/g.

— For each x and each random string r, the verifier has < F(g) accepting configu-
rations.

The parameters g, S and log F are referred to as gap, size and freebit of the PCPs
respectively. For convenience, we call F(g) the freeness of the PCP. Intuitively, ones
may view FGPCP as a class of PCPs parameterized by gap g. An interesting question
in the PCPs and hardness of approximation literature has been to find the smallest
functions S and F. Roughly speaking, if one can construct a small PCP with small
freeness, this could be turned into a stronger lower bound on the running time. The
following theorem made this intuition precise.

Theorem 6 Let r > 1 be a constant. If SAT € FGPCPs(S, F) for some function S

such that @ is a non-decreasing function in n,® then an r-approximation algorithm

for Independent Set, on graph G, requires the running time 0]‘2'(2(57l (IVIGI)/rF ()
unless ETH fails.

Here the connection between PCP size and running time lower bound is captured
by the term S~!. When r is fixed and S is an increasing function, then S~!(-, r) is well-
defined (e.g., the size function such as S(n, r) = nlogr has an inverse SN, r) =
N/logr).

We prove the theorem later in this section. Meanwhile, we argue that the trade-off
result follows directly.

Corollary 2 Assuming that SAT has no 2°-time randomized algorithm and that

SAT € FGPCPs(S, F), then it must be the case that S(n,g) - F(g) = 2 -
log® ¢

poly(loglog g) )-

Proof Assume otherwise that such a PCP exists with the parameters S and F

2 .
such that S(n, g)F(g) = o(n - #{ﬁogg)). Denote |V(G)| by N. Notice that

S™UN,r) = o(N - W), and Theorem 6 would imply that there is no

o(IV(G))- poly(loglogr)
2 rlog?r~ contradicting the existence of our approximation algorithm for

the maximum independent set problem. O

Now let us phrase the known PCPs in our framework of FGPCP. Chan’s PCPs
[12] can be stated that SAT € FGPCP_,1)(poly, O(log g)). Applying our results,
this means that if one wants to keep the same freebit parameters given by Chan’s
PCPs, then the size must be at least £2(n log g). Another interesting consequence is
a connection between Vertex Cover and Freebit PCPs in the polynomial time setting

[4].

8 Since we think of r as a fixed number, the function S(n, r) should be seen as a function on a single
variable n. We will focus on the size functions § that are invertible over the domain of sufficiently large
natural numbers. This is generally true for polynomial functions and near-linear functions (such as S(n, r) =
n log2 nlogr).
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Theorem 7 ([4]—Section 7 on the “reverse connection’) Vertex Cover is (2 —¢€) hard
to approximate if and only if SAT € FGPCP1_<(poly, 1).

The intended PCPs in Theorem 7 have arbitrary small soundness while the freeness
remains 1. Our Corollary 2 implies that such a PCP must have size at least £2 (n log® g).

4.1 Proof of Theorem 6

First, we define a standard terminology for dealing with constraint satisfaction prob-
lems (CSP ). An input to the general CSP is a collection of clauses Cy, ..., C,, over
n variables x1, ..., x, where each clause is a predicate over some subset of variables.
Given a CSP ¢, the value of ¢, denoted by val(¢) is the maximum number of clauses
that can be simultaneously satisfied by an assignment. The goal of the problem is to
compute the value of an input CSP. For each clause C;, let ¥; € {xq, ..., x,} be the
set of variables appearing in C;. The freeness of ¢ is the maximum, over all clauses
C;, of the number of ways C; can be satisfied by different assignments on variables in
Y;.

Step 1: Creating a hard CSP We will need the following lemma that creates a “hard”
CSP from FGPCP. This CSP will be used later to construct a hard instance of Indepen-
dent Set.

Lemma3 If SAT e FGPCPs(S, F), then, for any g > 1, there is a randomized
reduction from an n-variable SAT ¢ to a CSP ¢’ having the following properties

(w.h.p.):

The number of variables of ¢’ is < S(n).

The number of clauses of ¢’ is < 10S(n)g/é.

— The freeness of ¢ is < F(g).

If ¢ is satisfiable, then val(¢') > §/2. Otherwise, val(¢') < 65/g.

Proof Let g be any number and V be the corresponding verifier. On input ¢, we create
a CSP ¢’ as follows. For each proof bit I;, we have variable x;. The set of variables
is X = {x1,..., x5} We perform M = 10[S(n)g/8] iterations. In iteration j, the
verifier picks a random string r; € {0, l}R where R is the random coins used by the
verifier and create a predicate P;(xp,, ..., qu), where by, ..., b, are the proof bits
read by the verifier Vgn on random string r;. This predicate is true on assignment y if
and only if the verifier accepts the local assignment where I1;, = y (x;) foralli € [g].

First, assume that ¢ is satisfiable. Then there is a proof IT* such that the verifier
VI (¢) accepts with probability 8. Let y : X — {0, 1} be an assignment that agrees
with the proof IT*. So, y satisfies each predicate P; with probability &, and there-
fore, the expected number of satisfied predicates is M. By Chernoff’s bound, the
probability that y satisfies less than ‘STM predicates is at most 279M/8 < 2=

Next, assume that ¢ is not satisfiable. For each assignment y : X — {0, 1}, the
fraction of random strings satisfied by the corresponding proof IT, is at most §/g.
When we pick a random string r;, the probability that Vi (p,r j) accepts is then
at most §/g. So, over all the choices of M strings, the expected number of satisfied
predicates is M /g > 10S(n). By Chernoff’s bound, the probability that y satisfies
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more than M /g predicates is at most 27195 By union bound over all possible
proofs of length S(n) (there are 257" such proofs), the probability that there is such a
y is at most 250102105 < =80 o

Step 2: FGLSS reduction The FGLSS reduction is a standard reduction from CSP to
Independent Set introduced by Feige et al. [19]. The reduction simply lists all possible
configurations (partial assignment) for each clause as vertices and adding edges if there
is a conflict between two configuration. In more detail, for each predicate P; and each
partial assignment y such that P;(y) is true, we have a vertex v(i, y). For each pair
of vertices v(i, y)v(i’, y’) such that there is a variable appearing in both P; and P;
for which y (x;) # y’(x;), we have an edge between v(i, y) and v(i’, y').

Lemma4 (FGLSS Reduction [19]) There is an algorithm that, given an input CSP
¢ with m clauses, n variables, and freeness F, produces a graph G = (V, E) such
that (i) |V(G)| < mF and (ii) a(G) = val(¢p)m, where val (¢p) denotes the maximum
number of predicates of ¢ that can be satisfied by an assignment.

Combining everything Assume that SAT € FGPCPs(S, F). Let g > 0 be a constant
and V, be the verifier of SAT that gives the gap of g. By invoking Lemma 3, we have
a CSP ¢ with S(n, g) variables and 100S(n, g)g /5 clauses. Moreover, the freeness
and gap of ¢ are F'(g) and g, respectively. Applying the FGLSS reduction, we have a
graph G with N = |V(G)| = 100S(n, g)F(g)g/s = O(S(n, g)F(g)g). Now assume

o5~ (.0
that we have an algorithm A that gives a g-approximation algorithmin time2 7

Notice that S~1(N, g) < O(ngF(g)) (here we used the assumption that § is at least
a linearly growing function.) and therefore algorithm .4 distinguishes between Yes-
and No-instance in time 2°™ a contradiction.

Hardness under Gap-ETH Dinur [17] and Manurangsi and Raghavendra [32] made a
conjecture that SAT does not admit an approximation scheme that runs in 2°® time.
We observe a Gap-ETH hardness of r-approximating Independent Set in time 2"/"°
for some constant c. The proof uses a standard amplification technique and is deferred
to Sect. 6.2.

5 Further Research

Our work leaves ample opportunity for exciting research. An obvious open question
is to derandomize our branching, e.g., whether Theorem 1 can be proved without
randomized algorithms. While the probabilistic approximation guarantee can be easily
derandomized using splitters, it seems harder to strengthen the expected running time
bound to a worst-case running time bound.

Can we improve the running times of the other algorithms mentioned in the intro-
duction that use the partition argument, possibly using the randomized branching
strategy? Specifically, can we (1 4 ¢)-approximate Independent Set on planar graphs
intime O*(2(1/8)/102(1/2)) or r_approximate Independent Set in time O* (2//71027)?
As mentioned in the introduction, a result of Marx [34] still leaves room for such
lower order improvements. Another open question in this category is how fast we
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can r-approximate k-Independent Set, where the goal is to find an independent set
of size of k. Recently, Chalermsook et al. [10] showed, under the Gap-ETH assump-
tion, that finding a k-Independent Set always takes time 1n*?®), despite assuming the
existence of g-clique for ¢ >> k. It remains open whether one can rule out such an
algorithm under ETH. Finally, a big open question in the area is to find or exclude a
(2 — e)-approximation for Vertex Cover in graphs in subexponential time for some
fixed constant ¢ > 0. We remark that the dependence on € presented in our paper has
recently been improved by Manurangsi and Trevisan [33].

6 Omitted Results
6.1 A Deterministic Algorithm for Independent Set

In this section, we give a deterministic »-approximation algorithm that runs in time

20(/rlogr) This algorithm is a simple consequence of Feige’s algorithm [18], that
we restate below in a slightly different form.

Theorem 8 ([18]) Let G be a graph with independence ratio |V(G)| = 1/k. Then, for
any parameter t € N, one can find an independent set of size t - |log (gr7)] in time
k9® . poly(n).

Feige used the above theorem with parameter k = polylogn, and ¢t =
®(logn/loglogn), so he obtained an algorithm that runs in polynomial time. Here
we will be using the power of his algorithm in (mildly) exponential time.

- If (G) < longr, then we can enumerate all independent sets of size

n/(rlog? r) (this is an r-approximation) in time ( < (erlog?r)riogr <
20@/(rlogr))
— Otherwise, the independence ratio is at least 1/k where k = log® r. We choose

t = [n/(rlogr)], so Feige’s algorithm finds an independent set of size at least

log? 1)
n/(r log2 r)

n n
t - log; (6kt) =R <rlogr -log (r logr)> = 2(n/(rloglogr))

The running time of this algorithm is

n(loglog r))

kO(l)poly(n) =2 ( rlogr

If we redefine r’ = r loglog r, then the algorithm is an r’-approximation algorithm
that runs in time 20 (#(loglogr")?/r'logr’),
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6.2 Gap-ETH Hardness of Independent Set (Sketch)

We now sketch the proof. We are given an n-variable 3-CNF-SAT formula ¢ with
perfect completeness and soundness 1 — € for some € > 0. We first perform standard
amplification and sparsification to get ¢’ with gap parameter g, the number of clauses
isng,and freenessis g O0(1/€) Then we perform FGLSS reduction to get a graph G such
that |V (G)| = ng?(1/€)_ Therefore, g-approximation in time 200V@1/8°Y) would
lead to an algorithm that satisfies more than (1 — €) fraction of clauses in 3-CNF-SAT
formula in time 2°). In other words, any 2"/"*-time algorithm that r-approximates
Independent Set can be turned into a (1 + O(1/c))-approximation algorithm for
approximating 3-CNF-SAT in sub-exponential time.
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