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ABSTRACT
We give a general method for rounding linear programs that com-

bines the commonly used iterated rounding and randomized round-

ing techniques. In particular, we show that whenever iterated round-

ing can be applied to a problem with some slack, there is a random-

ized procedure that returns an integral solution that satisfies the

guarantees of iterated rounding and also has concentration prop-

erties. We use this to give new results for several classic problems

where iterated rounding has been useful.
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1 INTRODUCTION
A powerful approach in approximation algorithms is to formulate

the problem at hand as a 0-1 integer program and consider some

efficiently solvable relaxation for it. Then, given some fractional

solution x ∈ [0, 1]n to this relaxation, apply a suitable rounding
procedure to x to obtain an integral 0-1 solution. Arguably the two

most basic and extensively studied techniques for rounding such

relaxations are randomized rounding and iterated rounding.

Randomized Rounding. Here, the fractional values xi ∈ [0, 1]

are interpreted as probabilities, and used to round the variables

independently to 0 or 1. A key property of this rounding is that

each linear constraint is preserved in expectation, and its value is

tightly concentrated around its mean as given by Chernoff bounds,

or more generally Bernstein’s inequality (definitions in Section

2). Randomized rounding is well-suited to problems where the

constraints do not have much structure, or when they are soft and
some error can be tolerated. Sometimes these errors can be fixed
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by applying problem-specific alteration steps. We refer to [33, 34]

for various applications of randomized rounding.

Iterated Rounding. This on the other hand, is based on linear

algebra and is useful for problems with hard combinatorial con-

straints or when the constraints have some interesting structure.

Here, the rounding proceeds in several iterations k = 0, 1, 2, . . .,

until all variables are rounded to 0 or 1. Let x (k ) ∈ Rn denote the

solution at the beginning of iteration k , and let nk denote the num-

ber of fractional variables in x (k) (i.e. those strictly between 0 and

1). Then one (cleverly) chooses some collection of linear constraints

on these nk fractional variables, say specified by rows of the matrix

W (k )
, with dimension dim(W (k )) ≤ nk − 1, and updates the solu-

tion as x (k+1) = x (k ) + y(k ) by some arbitrary non-zero vector y(k )

satisfyingW (k )y(k ) = 0 so that some fractional variable reaches

0 or 1. The process is then iterated with x (k+1). Note that once a
variable reaches 0 or 1 it stays fixed.

Despite its simplicity, this method is extremely powerful and

most basic results in combinatorial optimization such as the inte-

grality of matroid, matroid-intersection and non-bipartite matching

polytopes follow very cleanly using this approach. Similarly, several

breakthrough results for problems such as degree-bounded span-

ning trees, survivable network design and rounding for column-

sparse LPs were obtained by this method. An excellent reference is

[21].

1.1 Our Results
Motivated by several problems that we describe in Section 1.3, a

natural question is whether the strengths these of two seemingly

different techniques can be combined to give a more powerful

rounding approach.

Our main result is that such an algorithm exists, and we call

it sub-isotropic rounding. In particular, it combines iterated and

randomized rounding in a completely generic way and significantly

the extends the scope of previous dependent rounding techniques.

Before describing our result, we need some definitions.

Let X1, . . . ,Xn be independent 0-1 random variables with mean

xi = E[Xi ] and a1, . . . ,an be arbitrary reals (possibly negative),

then the sum S =
∑
i aiXi is concentrated about its mean and

satisfies the following tail bound give by Bernstein’s inequality

[13],

Pr[S − E[S] ≥ t] ≤ exp

(
−

t2

2(
∑
i a

2

i (xi − x2i ) +Mt/3)

)
(1)

whereM = maxi |ai |. The lower tail follows by applying the above

to −Xi , and the standard Chernoff bounds correspond to (1) when

ai ∈ [0, 1] for i ∈ [n] (details in Section 2).

The following relaxation of Bernstein’s inequality will be ex-

tremely relevant for us.
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Definition 1.1 (β-concentration). Let β ≥ 1. For a vector valued

random variableX = (X1, . . . ,Xn )whereXi are possibly dependent
0-1 random variables with, we say that X is β-concentrated around

the mean x = (x1, . . . ,xn ) where xi = E[Xi ], if for every a ∈ Rn ,
a · X is well-concentrated and satisfies Bernstein’s inequality up to

factor β in the exponent, i.e.

Pr[a · X − E[a · X ] ≥ t] ≤ exp

(
−

t2/β

2(
∑
i a

2

i (xi − x2i ) +Mt/3)

)
(2)

Main result. We show that whenever iterated rounding can

be applied to a problem so that in any iteration k , there is some

slack in the sense that dim(W (k )) ≤ (1 − δ )nk for some δ > 0, then

O(1/δ )-concentration can be achieved for free. More precisely, we

show the following.

Theorem 1.2. Let P be a problem for which there is an iterated
rounding algorithm A, that at iteration k , chooses a subspaceW (k )

with dim(W (k )) ≤ (1−δ )nk , where δ > 0. Then there is a polynomial
time randomized algorithm that given a starting solution x ∈ [0, 1]n ,
returns X ∈ {0, 1}n such that

• With probability 1,X satisfies all the guarantees of the iterated
rounding algorithm A.

• E[Xi ] = xi for every variable i , and X is β-concentrated with
β = 10/δ .

A simple example in Appendix A shows that the dependence

β = Ω(1/δ ) cannot be improved beyond constant factors.

The generality of Theorem 1.2 directly gives new results for sev-

eral problems where iterated rounding gives useful guarantees. All

one needs to show is that the original iterated rounding argument

for the problem can be applied with some slack, which is often

straightforward and only worsens the approximation guarantee

slightly. Before describing these applications in Section 1.3, we dis-

cuss some prior work on dependent rounding to place our results

and techniques in the proper context.

1.2 Comparison with Dependent Rounding
Approaches

Motivated by problems that involve both soft and hard constraints,

there has been extensive work on developing dependent rounding
techniques, that round the fractional solution in some correlated

way to satisfy both the hard constraints and ensure some concen-

tration properties. Such problems arise naturally in many ways.

E.g. the hard constraints might arise from an underlying combi-

natorial object such as spanning tree or matching that needs to

be produced, and the soft constraints may arise due to multiple

budget constraints, or when the object to be output is used as input

to another problem and needs to satisfy additional properties, see

e.g. [3, 14, 15, 17].

Some examples of such methods include swap rounding [14, 15],

randomized pipage [2, 17, 18, 31], maximum-entropy sampling

[3, 4, 30], rounding via discrepancy [10, 24, 28] and gaussian ran-

dom walks [27]. A key idea here is that the weaker property of

negative dependence (instead of independence) also suffices to get

concentration. There is a rich and deep theory of negative depen-

dence and various notions such as negative correlation, negative

cylinder dependence, negative association, strongly rayleigh prop-

erty and determinantal measures, imply interesting concentration

properties [12, 16, 26]. This insight has been extremely useful and

for many general problems such as those involving assignment

or matroid polytopes, one can exploit the underlying combinato-

rial structure to design rounding approaches that ensure negative

dependence between all or some suitable collection of random

variables.

Limitations. Even though very powerful and ingenious, these

methods are also limited by the fact that requiring negative depen-

dence can substantially restrict the kinds of rounding steps that can

be designed, and the problems they can be applied to. Moreover,

even when such a rounding is possible, it typically requires a lot

of creativity and careful understanding of the problem structure to

come up with the rounding.

Our approach. In contrast, Theorem 1.2 makes no assumption

on the structure of the problem and by working with the more

relaxed notion of β-concentration, we can get rid of the need for

negative dependence. Moreover, our algorithm needs no major

ingenuity to apply, and minor tweaks to previous iterated rounding

algorithms suffice to create some slack.

1.3 Motivating Problems and Applications
We now give several applications and briefly discuss why they seem

beyond the reach of current dependent rounding methods.

1.3.1 Rounding Column-Sparse LPs. Let x ∈ [0, 1]n be some frac-

tional solution satisfying Ax = b, where A ∈ Rm×n
is an m × n

matrix. The celebrated Beck-Fiala algorithm [11] gives an integral

solution X so that |AX − Ax |∞ ≤ t , where t is the maximum ℓ1
norm of the columns of A. This guarantee is substantially stronger

than that given by randomized rounding if t is small.

Many problems however, involve both some column-sparse con-

straints that come from the underlying combinatorial question, and

some general arbitrary constraints which might not have much

structure. This motivates the following natural question.

The problem. Let M be a linear system with two sets of con-

straints given by matricesA and B, whereA is column-sparse, while

B is arbitrary. Given some fractional solution x , can we round it to

get errorO(t) for rows ofA, while doing no worse than randomized

rounding for B?
Note that simply applying iterated rounding on the rows of A

gives no control on the error for B. Similarly, just doing randomized

rounding will not giveO(t) error forA. Also asA and B can be com-

pletely arbitrary, previous negative dependence based techniques

do not seem to apply.

Solution. We show that a direct modification of the Beck-Fiala

argument gives slack δ , for any δ ∈ [0, 1), while worsening the

error bound slightly to t/(1 − δ ). Setting, say δ = 1/2 and applying

Theorem 1.2 gives X ∈ {−1, 1}n that (i) has error at most 2t for
rows of A, (ii) satisfies E[Xi ] = xi and is O(1)-concentrated, thus
giving similar guarantees as randomized rounding for the rows

of B. In fact, the solution produced by the algorithm will satisfy

concentration for all linear constraints and not just for the rows of

B.
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Komlós Setting.We also describe an extension to the so-called

Komlós setting, where the error depends on the maximum ℓ2 norm

of columns of A.
These results are described in Section 5.1.

1.3.2 Makespan Minimization on Unrelated Machines. The classic
makespan minimization problem on unrelated machines is the

following. Given n jobs andm machines, where each job j ∈ [n] has
arbitrary size pi j on machine i ∈ [m], assign the jobs to machines

to minimize the maximum machine load. In a celebrated result, [22]

gave a rounding method with additive error pmax := maxi j pi j . In
many practical problems however, there are other soft resource

constraints and side constraints that are added to the fractional

formulation. So it is useful to find a rounding that satisfies these

approximately but still violates the main load constraint by only

O(pmax). This motivates the following natural problem.

The Problem. Given a fractional assignment x , find an inte-

gral assignment X with additive error O(pmax) and that satisfies

E[Xi j ] = xi j and concentration for all linear functions of xi j .
Questions related to finding a good assignment with some con-

centration properties have been studied before [2, 15, 17], and sev-

eral methods such as randomized pipage and swap rounding have

been developed for this. However, these methods crucially rely

on the underlying matching structure and round the variables al-

ternately along cycles, which limits them in various ways: either

they give partial assignments, or only get concentration for edges

incident to a vertex.

Solution.We show that the iterated rounding proof of the result

of [22] can be easily modified to work for any slack δ ∈ [0, 1/2)

while giving additive error pmax/(1 − 2δ ). Theorem 1.2 (say with

δ = 1/4), thus gives a solution that has additive error at most 2pmax

and satisfies O(1)-concentration.
The result also extends naturally to the k resource setting, where

pi j is a k-dimensional vector. These results are described in Section

5.2

1.3.3 Degree-bounded Spanning Trees and Thin Trees. In the min-

imum cost degree-bounded spanning tree problem, we are given

an undirected graph G = (V ,E) with edge costs ce ≥ 0 for e ∈ E,
and integer degree bounds bv for v ∈ V , and the goal is to find

a minimum cost spanning tree satisfying the degree bounds. In a

breakthrough result, Singh and Lau [29] gave an iterated round-

ing algorithm that given any fractional spanning tree x , finds a
spanning tree T with cost at most c · x and degree violation +1.

The celebrated thin-tree conjecture (details in Appendix B) asks

if given a fractional spanning tree x , there is a spanning tree T
satisfying δT (S) ≤ βδx (S) for every S ⊂ V , where β = O(1). Here
δT (S) is the number of edges of T crossing S , and δx (S) is the x-
value crossing S .

The result of [29] implies that the degree δT (v) ≤ 2δx (v) of
every vertex v . However, despite remarkable progress [1], the

best known algorithmic results for the thin-tree problem give β =
O(logn/log logn) [3, 14, 18, 30]. The motivates the following natu-

ral question as a first step towards the thin-tree conjecture.

The Problem. Can we find a spanning tree with β = O(1) for
single vertex cuts and β = O(logn/log logn) for general cuts?

The current algorithmic methods for thin-trees crucially rely on

the negative dependence properties of spanning trees, which do not

give anything better for single vertex cuts (e.g. even if bv = 2 for all

v , by a balls and bins argument a random tree will have maximum

degree Θ(logn/log logn)). On the other hand, if we only care about

single vertex cuts the methods of [29] do not give anything for

general cuts.

Solution.We show that the iterated rounding algorithm of [29]

can be easily modified to create slack δ ∈ (0, 1/2) while violating

the degree bounds by at most 2/(1 − 2δ ). Applying Theorem 1.2

with δ = 1/6 − ϵ thus gives a distribution supported on trees with

degree violation +2, and has O(1) concentration. By a standard

cut counting argument [3], the concentration property implies

O(logn/logn logn)-thinness for every cut.

We describe these results in Section 5.3, where in fact we consider

the more general setting of the minimum cost degree bounded

matroid basis problem.

1.3.4 Multi-budgeted bipartite matchings. In the above examples, it

was relatively easy to create slack since the number of hard combi-

natorial constraints were bounded a constant factor away from nk ,
and the slack could be introduced in the soft constraints (e.g. ma-

chine load or vertex degrees) while worsening the approximation

slightly.

As a different type of illustrative example, we now consider

the perfect matching problem in bipartite graphs. Here, and more

generally in matroid intersection, one needs to maintain tight rank

constraints for two matroids, which typically requires n− 1 linearly

independent constraints for n elements, and it is not immediately

clear how to introduce slack.

Problem. Let G = (V ,E) be a bipartite graph with V = L ∪ R
and |L| = |R |, and given a fractional perfect matching x defined by∑
e ∈δ (v) xe = 1 for all v ∈ V , and xe ∈ [0, 1] for all e ∈ E. Can we

round it to a perfect or almost perfect matching while satisfying

O(1)-concentration.
Building on the work of [2], [15] designed a beautiful randomized

swap rounding procedure that for any δ > 0, finds an almost perfect

matching where each vertex is matched with probability at least

1 − δ , and satisfies O(1/δ )-concentration. They also extend this

result to non-bipartite matchings and matroid intersection.

We give an alternate proof of this result using our framework.

Our proof is different from that in [15] and is more in the spirit of

iterated rounding where we carefully choose the set of constraints

to maintain as the rounding proceeds. This is described in Section

5.4.

1.4 Overview of Techniques
We now give a high level overview of our algorithm and analysis.

The starting observation is that randomized rounding can be viewed

as a iterative algorithm, by doing a standard Brownian motion on

the cube as follows. Given x (0) as the starting fractional solution,

consider a random walk in the [0, 1]n cube starting at x (0), with
tiny step size ±γ chosen independently for each coordinate, where

upon reaching a face of the cube (i.e. some xi reaches 0 or 1) the
walk stays on that face. The process stops upon reaching some

vertex X = (X1, . . . ,Xn ) of the cube. By the martingale property of

random walks, the probability that Xi = 1 is exactly x
(0)

i and as the

walk in each coordinate is independent,X has the same distribution

on {0, 1}n as under randomized rounding.
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Now consider iterated rounding, and recall that here the update

y(k ) at step k must lie in the nullspace ofW (k)
. So a natural idea

is to do a random walk in the null space ofW (k )
until some vari-

able reaches 0 or 1. The slack condition dim(W (k )) ≤ (1 − δ )nk
implies that the nullspace has at least δnk dimensions, which could

potentially give “enough randomness" to the random walk.

It turns out however that doing a standard random walk in

the null space ofW (k )
does not work. The problem is that as the

constraints definingW (k )
can be completely arbitrary in our setting,

the random walk can lead to very high correlations between certain

subsets of coordinates causing the β-concentration property to

fail. For example, suppose δ = 1/2 andW (0)
consists of the n/2

constraints x1 = x2,x2 = x3, . . . ,xn/2−1 = xn/2. Then the random

walk will update xn/2, . . . ,xn independently, but for x1, . . . ,xn/2
the updates must satisfy ∆x1 = . . . = ∆xn/2, and hence will be

completely correlated. So the linear function x1 + . . . + xn/2 will
have very bad concentration (as all the variables will simultaneously

rise by −δ or by +δ ).
To get around this problem, we design a different random walk

that looks almost like an independent walk in every direction. More

formally, consider a random vector Y = (Y1, . . . ,Yn ), where Yi are
mean-zero random variables. We say that Y is η-almost pairwise

independent if for every a = (a1, . . . ,an ) ∈ R
n
,

E[(a · Y )2] = E[(
∑
i
aiYi )

2] ≤ η
∑
i
a2i E[Y

2

i ]

If Y1, . . . ,Yn are pairwise independent, note that the above holds as

equality with η = 1, and hence this can be viewed as a relaxation of

pairwise independence. We show that whenever dim(W (k )) ≤ (1 −

δ )nk , there exist γ -almost pairwise independent random updates

y(k ) that lie in the null space ofW (k)
with γ ≈ 1/δ . Moreover these

updates can be found by solving a semidefinite program (SDP).

Next, using a variant of Freedman’s martingale analysis, we show

that applying these almost pairwise independent random updates

(with small increments) until all the variables reach 0-1, gives an

integral solution that satisfies O(η)-concentration.
These techniques are motivated by our recent works on algo-

rithmic discrepancy [7, 8]. While discrepancy is closely related to

rounding [23, 28], a key difference in discrepancy is that the error

for rounding a linear systemAx = b depends on the ℓ2 norms of the

coefficients of the constraints and not on b. E.g. suppose x ∈ [0, 1]n

satisfies x1 + . . . + xn = logn, then the sum stays O(logn) upon
randomized rounding with high probability, while using discrep-

ancy methods directly gives Ω(
√
n) error. So our results can be

viewed as using techniques from discrepancy to obtain bounds that

are sensitive to x . Recently, this direction was explored in [10] but

their method gave much weaker results and applied to very limited

settings.

2 TECHNICAL PRELIMINARIES
2.1 Probabilistic Tail Bounds and Martingales
The standard Bernstein’s probabilistic tail bound for independent

random variables is the following.

Theorem 2.1. (Bernstein’s inequality.) Let Y1, . . . ,Yn be indepen-
dent random variables, with |Yi − E[Yi ]| ≤ M for all i ∈ [n]. Let

S =
∑
i Yi and t > 0. Then, with σ 2

i = E[Y
2

i ] − E[Yi ]
2 we have,

Pr[S − E[S] ≥ t] ≤ exp

(
−

t2

2(
∑
i σ

2

i +Mt/3)

)
The lower tail follows by applying the above to −Yi , so we only

consider the upper tail. As we will be interested in bounding S =∑
i aiXi , where the random variables Xi are 0-1 and the ai are

arbitrary reals (possibly negative), we will use the form given by

(1).

The well-known Chernoff bounds correspond to the special case

of (1) when ai ∈ [0, 1] for i ∈ [n]. In particular, setting t = εµ
with µ = E[S] =

∑
i aixi , M = 1 and using that

∑
i a

2

i (xi − x2i ) ≤∑
i a

2

i xi ≤
∑
i aixi ≤ µ in (1), we get

Pr[X ≥ (1 + ϵ)µ] ≤ exp

(
−ϵ2µ/(2(1 + ε/3))

)
. (3)

Remark: For ϵ > 1, the bound (3) can be improved slightly to(
eε /((1 + ε)1+ε )

)µ
by optimizing the choice of parameters in the

proof. In this regime, an analogous version of Theorem 2.1 is called

Bennett’s inequality ([13]), and similar calculations also give such

a variant of Theorem 1.2. As this is relatively standard, we do not

discuss this here.

We will use the following Freedman-type martingale inequality.

Lemma 2.2. Let {Zk : k = 0, 1, . . . , } be a sequence of random
variables with Yk := Zk − Zk−1, such that Z0 is deterministic and
Yk ≤ 1 for all k = 1, . . .. If for all k = 1, 2, . . . ,

Ek−1[Yk ] ≤ −αEk−1[Y
2

k ]

where Ek−1[ · ] denotes E[ · |Z1, . . . ,Zk−1]. Then for all 0 < α < 1

and t ≥ 0, it holds that

Pr[Zk − Z0 > t] ≤ exp(−αt).

Before proving Theorem 2.2, we first need a simple lemma.

Lemma 2.3. If X ≤ 1 and λ > 0, then

E[eλX ] ≤ exp

(
λE[X ] + (eλ − λ − 1)E[X 2]

)
.

Proof. Let f (x) = (eλx − λx − 1)/x2, where we set f (0) = λ2/2.
It can be verified that f (x) is increasing for all x , which implies

that for any x ≤ 1, eλx ≤ 1+λx + f (1)x2 = 1+λx + (eλ −λ− 1)x2.
Taking expectations and using that 1 + x ≤ ex for all x ∈ R this

gives,

E[eλX ] ≤ 1 + λE[X ] + (eλ − λ − 1)E[X 2]

≤ exp(λE[X ] + (eλ − λ − 1)E[X 2]).

□

Proof. (Lemma 2.2) By Markov’s inequality,

Pr[Zk − Z0 > t] = Pr[exp(α(Zk − Z0)) ≥ exp(αt)]

≤
E[exp(α(Zk − Z0))]

exp(αt)

so it suffices to show that E[exp(α(Zk − Z0))] ≤ 1. As Z0 is deter-
ministic, this is same as E[exp(αZk )] ≤ exp(αZ0). Now,

Ek−1

[
eαZk

]
= eαZk−1Ek−1

[
eα (Zk−Zk−1)

]
= eαZk−1Ek−1

[
eαYk

]
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≤ eαZk−1 exp
(
αEk−1[Yk ] + (e

α − α − 1)Ek−1
[
Y 2

k
] )

(By Lemma 2.3)

≤ eαZk−1 exp
(
(eα − α2 − α − 1)Ek−1

[
Y 2

k
] )

≤ eαZk−1 (as eα ≤ 1 + α + α2 for 0 ≤ α ≤ 1)

As this holds for all k , using that E[ · ] = E0[E1[· · ·Ek−1[ · ]]] gives
the result. □

2.2 Semidefinite Matrices
LetMn denote the class of all symmetric n × n matrices with real

entries. For two matrices A,B ∈ Rn×n , the trace inner product

of A and B is defined as ⟨A,B⟩ = tr(AT B) =
∑n
i=1

∑n
j=1 ai jbi j . A

matrixU ∈ Mn is positive semidefinite (psd) if all its eigenvalues

are non-negative and we note this by U ⪰ 0. Equivalently,U ⪰ 0

iff aTUa = ⟨aaT ,U ⟩ ≥ 0 for all a ∈ Rn .

For, U ⪰ 0 let U 1/2 =
∑
i λ

1/2

i uiu
T
i , where U =

∑
i λiuiu

T
i is

the spectral decomposition of Y with orthonormal eigenvectors ui .

Then U 1/2
is psd and U = VTV for V = U 1/2

. For Y ,Z ∈ Mn , we

say that Y ⪯ Z if Z − Y ⪰ 0.

2.3 Sub-isotropic Random Vectors
Let Y = (Y1, . . . ,Yn ) be a random vector with Y1, . . . ,Yn possibly

dependent.

Definition 2.4 ((a,η) sub-isotropic random vector). For a ∈ (0, 1]

and η ≥ 1, We say that Y is (a,η) sub-isotropic if it satisfies the
following conditions.

(1) E[Yi ] = 0 and E[Y 2

i ] ≤ 1 for all i ∈ [n], and
∑n
i=1 E[Y

2

i ] ≥ an.
(2) For all c = (c1, . . . , cn ) ∈ R

n
it holds that

E[(
n∑
i=1

ciYi )
2] ≤ η

n∑
i=1

c2i E[Yi ]
2. (4)

Note that ifY1, . . . ,Yn are independent then (4) holds with equal-

ity for η = 1.

Let U ∈ Mn be the n × n covariance matrix of Y1, . . . ,Yn . That
is,Ui j = E[YiYj ]. Every covariance matrix is psd as

cTUc = E[(
∑
i
ciYi )

2] ≥ 0

for all c ∈ Rn . Let diag(U ) denote the diagonal n × n matrix with

entries Uii , then (4) can be written as cT (η diag(U ) −U )c ≥ 0 for

every c ∈ Rn , and hence equivalently expressed as

U ⪯ η diag(U ).

Generic construction.We will use the following generic way

to produce (a,η) sub-isotropic vectors. LetU be a n × n PSD matrix

satisfying: Uii ≤ 1, Tr(U ) ≥ an and U ⪯ η diag(U ). Let r ∈ Rn

be a random vector where each coordinate is independently and

uniformly ±1. Then it is easily verified that Y = U 1/2r is an (a,η)
sub-isotropic random vector, as its covariance vector E[YYT ] =

U 1/2E[rrT ](UT )1/2 = U .

Remark: Typically, r is chosen to be a random Gaussian, but

random ±1 is more preferable for us as it is bounded.

We will need the following result from [8], about finding sub-

isotropic random vectors orthogonal to a subspace.

Theorem 2.5 ([8]). LetW ⊂ Rn be a subspace with dimension
dim(W ) = ℓ = (1 − δ )n. Then for any a > 0 and η > 1 satisfying
1/η + a ≤ δ , there is a n × n PSD matrixU satisfying the following:
(i) ⟨wwT ,U ⟩ = 0 for all w ∈ W , (ii) Uii ≤ 1 for all i ∈ [n], (iii)
Tr(U ) ≥ an and (iv)U ⪯ η diag(U ).

Note that the condition ⟨wwT ,U ⟩ = 0 is equivalent towTUw =

∥U 1/2w ∥2 = 0, which gives that wTU 1/2
is the 0 vector. So, for

Y = U 1/2r , w is orthogonal to Y as YTw = rTU 1/2w = 0. So this

gives a polynomial time algorithm to find a (a,η) sub-isotropic
random vector Y ∈ Rn such that Y is orthogonal to the subspace

W with probability 1.

2.4 Formal Description of Iterated Rounding
By iterated rounding we refer to any procedure that works as fol-

lows. Let x be the starting fractional solution. We set x (0) = x , and
round it to a 0-1 solution by applying a sequence of updates as

follows. Let x (k ) denote the solution at the beginning of iteration k .

We say that variable i ∈ [n] frozen if x
(k )
i is 0 to 1, otherwise it is

alive. Frozen variables are never updated anymore. Let nk denote

the number of alive variables.

Based on x (k ), the algorithm picks a set of constraints of rank at

most r ≤ nk − 1, given by the rows of some matrixW (k )
. It finds

an (arbitrary) non-zero direction y(k) such thatW (k )y(k ) = 0 and

y
(k )
i = 0 if i is frozen. The solution is updated as x (k+1) = x (k )+y(k).

In typical applications of iterated rounding,W (k)
is obtained

by dropping one or more rows ofW (k−1)
, and x (k+1) is obtained

in a black-box way by solving the LP given by the constraints

W (k )x (k+1) = b(k) where b(k ) = W (k )x (k ), restricted to the alive

variables and x (k+1) ∈ [0, 1]n . As dim(W (k )) < nk , at least onemore

variable inX (k+1)
reaches 0 or 1 and hence the algorithm terminates

in at most n steps. However, as we will not work with basic feasible

solutions, we will view the processing of generating the update

y(k ) by taking a step in the null space ofW (k )
as described above.

3 ROUNDING ALGORITHM
We assume that the problem to be solved has an iterated rounding

procedure, as discussed in Section 2.4 that in any iterationk specifies

some subspaceW (k )
with dim(W (k )) ≤ (1 − δ )nk , and the update

y(k ) must satisfy W (k )y(k ) = 0 We now describe the rounding

algorithm.

Algorithm. Initialize x (0) = x , where x in the starting fractional

solution given as input. For each iteration k = 0, 1, . . . , repeat the

following until all variables reach 0 or 1.

Iteration k . Let x (k ) be the current solution and Ak ⊂ [n] be
the fractional variables in (0, 1). As the variables not in Ak do not

change anymore, we assume for ease of notation that Ak = [nk ].

(1) Apply theorem 2.5, with n = nk ,W =W
(k )

, a = δ/10 and
η = 10/(9δ ) to find the covariance matrixU .

(2) Let γ = 1/(2n3/2). Let rk ∈ Rnk be a random vector with

independent ±1 entries. Set

x (k+1) = x (k ) + y(k) with y(k ) = γk (U
1/2rk )

whereγk ≤ γ is the largest number such thatx (k )+y(k ),x (k )−

y(k ) ∈ [0, 1]nk .

1129



STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Nikhil Bansal

4 ALGORITHM ANALYSIS
Let X denote the final solution. The property that E[Xi ] = xi
follows directly as the update y(k ) at each time step has mean zero

in each coordinate. As the algorithm always moves in the nullspace

ofW (k )
, clearly it will also satisfy the iterated rounding guarantee

with probability 1.

To analyze the running time, we note that whenever γk < γ ,
there is at least 1/2 probability that some new variable will reach 0

or 1 after the update by y(k). So, in expectation there are at most

2n such steps. So we focus on the iterations where γk = γ . During

these iterations the energy E(k ) :=
∑
i (x

(k )
i )2 rises is expectation

by at least γ 2nka ≥ γ 2a, as,

E[E(k+1)] − E(k) = γ 2
∑
i
E[(yi (k))

2] = γ 2Tr(U ) ≥ γ 2ank .

By a standard argument [6], this implies that the algorithm termi-

nates inO(n/γ 2) time with constant probability. One can also make

the energy increase in a deterministic way by adding an extra con-

straint that y(k ) be orthogonal toW (k)
. This only adds one to the

dimension ofW (k )
, which can be subsumed by making δ slightly

smaller as dim(W (k )) ≤ (1−δ/2)nk , as long as nk = Ω(1/δ ). When

nk becomes smaller, one can revert to the analysis above. This gives

an improved running time of O((logn)/γ 2).
It remains to show that the rounding satisfies the concentration

property, which we do next.

4.1 Isotropic Updates Imply Concentration
Let Xi be the final rounded solution, and fix some linear function

S =
∑
i aiXi . We will show that

Pr[S − E[S] ≥ t] ≤ exp

(
−

t2/β

2(
∑
i a

2

i (xi − x2i ) +Mt/3)

)
for β = 9η which is 10/δ by the choice of the parameters.

Proof. By scaling of ai ’s and t , we can assume thatM = 1. Let

us define the random variable

Zk =
∑
i
aix

(k )
i + λ

∑
i
a2i x

(k )
i (1 − x

(k )
i ),

where λ ≤ 1 will be optimized later.

Initially, Z0 = µ +λv where µ =
∑
i aix

(0)

i and v =
∑
i a

2

i x
(0)

i (1−

x
(0)

i ).

As x (k ) = x (k−1) + y(k ), a simple calculation gives that

Yk = Zk − Zk−1 =
∑
i
ai (x

(k )
i − x

(k−1)
i ) (5)

+
∑
i

(
λa2i (x

(k)
i (1 − x

(k )
i ) − x

(k−1)
i (1 − x

(k−1)
i ))

)
=

∑
i
aiy

(k)
i +

∑
i

(
λa2i (y

(k)
i (1 − 2x

(k−1)
i − y

(k )
i ))

)
. (6)

We now show that Zk satisfies the conditions of Lemma 2.2 for a

suitable α .

Claim 4.1. Ek−1[Yk ] ≤ −(λ/4η)Ek−1[Y
2

k ]

Proof. As Ek−1[y
(k )
i ] = 0 for all i , and as x

(k−1)
i is deterministic

conditioned on the randomness until k − 1, taking expectations

Ek−1[·] in (6) gives that

Ek−1[Yk ] = −λ
∑
i
a2i Ek−1[(y

(k )
i )2]. (7)

We now upper bound Ek−1[Y
2

k ]. Using (a +b)
2 ≤ 2a2 + 2b2 and the

expression for Yk in (6)

Ek−1[Y
2

k ] ≤ 2Ek−1[(
∑
i
aiy

(k)
i )2]

+2Ek−1[λ
2(

∑
i
a2iy

(k )
i (1 − 2x

(k−1)
i − y

(k )
i ))2]

≤ 2Ek−1(
∑
i
aiy

(k)
i )2 + 2Ek−1[λ

2(
∑
i
a2iy

(k))2]

where we use that 1− 2x
(k−1)
i −y

(k )
i ∈ [−1, 1], as 1− x

(k−1)
i ∈ [0, 1]

and x
(k−1)
i + y

(k )
i = x

(k )
i ∈ [0, 1].

As y(k ) is (a,η) sub-isotropic,

Ek−1[(
∑
i
aiy

(k )
i )2] ≤ η

∑
i
a2i Ek−1[(y

(k )
i )2]

and

Ek−1(
∑
i
a2iy

(k )
i )2 ≤ ηEk−1

∑
i
a4i (y

(k )
i )2,

and we can bound Ek−1[Y
2

k ] as

Ek−1[Y
2

k ] ≤ 2η
∑
i
a2i Ek−1[(y

(k)
i )2] + 2η

∑
i
λ2a4i Ek−1[(y

(k )
i )2]

≤ 4η
∑
i
a2i Ek−1(y

(k )
i )2 = −(4η/λ)E[Yk ]

where we use that λ2a2i ≤ 1 for all i as λ,M ≤ 1, and the expression

for Ek−1[Yk ] in (7).

As λ,η > 0, this gives that Ek−1[Yk ] ≤ −(λ/4η)E[Y 2

k ] □

By Claim 4.1, we can apply Lemma 2.2 with α = λ/4η, provided
the conditions for Lemma 2.2 are satisfied. Now, α ≤ 1 as λ ≤ 1

and η ≥ 1. To show that Yk < 1 we argue as follows. By (6) and

as a2i ≤ |ai | (as M = 1), λ ≤ 1 and 1 − 2x
(k−1)
i − y

(k )
i ∈ [−1, 1], we

have

|Yk | ≤ 2∥a∥2∥y
(k )∥2 ≤ 2n1/2γ ∥U 1/2rk ∥.

As Uii ≤ 1, the columns of U 1/2
have length at most 1, and thus

∥U 1/2rk ∥2 ≤ ∥rk ∥1 ≤ n, and thus

|Yk | ≤ 2γn3/2 = 1.

By Lemma 2.2, this gives that Pr[ZT − Z0 ≥ t] ≤ exp(−λt/4η), or
equivalently

Pr[ZT − µ − λv ≥ t] ≤ exp(−tλ/4η). (8)

Let λ = t/(t + 2v) (note this satisfies our assumption that λ ≤ 1).

Then λv ≤ t/2 and (8) gives Pr[ZT − µ ≥ 3t/2] ≤ exp(−tλ/4η).
Setting t ′ = 3t/2 and the values of λ,η gives

Pr[ZT − µ ≥ t ′] ≤ exp

(
−

t ′2/(10β)

2(v + t ′/3)

)
which gives the desired result. □
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5 APPLICATIONS
5.1 Rounding Column-Sparse LPs
Let x ∈ [0, 1]n be a fractional solution satisfyingAx = b, whereA ∈

Rm×n
is an arbitrarym × n matrix. Let t = maxj ∈[n](

∑
i ∈[m] |ai j |)

be the maximum ℓ1 norm of the columns of A. Beck and Fiala [11]

gave a rounding method to find X ∈ {0, 1}n so that the error row

|AX − b |∞ ≤ t .
Beck-Fiala Rounding. We first recall the iterated rounding

algorithm of [11]. Initially x0 = x . Consider some iteration k , and
let Ak denote the matrix A restricted to the alive coordinates. Call

row i big if its ℓ1-norm in Ak is strictly more than t . The number

of big rows is strictly less than nk as each column as norm at most

t and thus the total ℓ1 norm of all entries Ak is at most tnk . So

the algorithm setsW (k )
to be the big rows of Ak , and applies the

iterated rounding update.

We now analyze the error. Fix some row i . As long as row i is
big, its rounding error is 0 during the update steps. But when it

is no longer big no matter how the remaining alive variables are

rounded in subsequent iterations, the error incurred can be at most

its ℓ1-norm, which is at most t .
Introducing Slack. To apply Theorem 1.2, we can easily intro-

duce δ -slack for any 0 ≤ δ < 1, as follows. In iteration k , call a row
big if its ℓ1 norm exceeds t/(1 − δ ), and by the argument above the

number of big rows is strictly less than nk (1 − δ ). This gives the
following result.

Theorem 5.1. Given a matrix A with maximum ℓ1-norm of any
column at most t , and any x ∈ [0, 1]n , then for any 0 ≤ δ < 1 the
algorithm returns X ∈ {0, 1}n such that |A(X − x)|∞ ≤ t/(1 − δ ),
and E[Xi ] = xi and X satisfies O(1/δ )-concentration.

This implies the following useful corollary.

Corollary 5.2. Given a matrixM with some collection of rows A
such that the columns restricted toA have ℓ1 norm at most t , then say
setting δ = 1/2, the rounding ensures at most error 2t for rows of A,
while the error for other rows ofM is similar to that as for randomized
rounding.

Komlós Setting. For a matrix A, let t2 = maxj ∈[n](
∑
i ∈[m] a

2

i j )
1/2

denote the maximum ℓ2 norm of the columns of A. Note that t2 ≤ t
(and it can be much smaller, e.g. if A is 0-1, t2 =

√
t ).

The long-standing Komlos conjecture (together with a connec-

tion between hereditary discrepancy and rounding due to [23])

states that any x ∈ [0, 1]n can be rounded to X ∈ {0, 1}n , so that

|A(X − x)|∞ = O(t2). Currently, the best known bound for this

problem is O(t2
√
logm) [5, 7].

An argument similar to that for Theorem 5.1 gives the following

result in this setting.

Theorem 5.3. If A has maximum column ℓ2-norm t2, then given
any x ∈ [0, 1]n , the algorithm returns X ∈ {0, 1}n such that |A(X −

x)|∞ ≤ t2
√
logm, where X also satisfies O(1)-concentration.

Proof. We will apply Theorem 1.2 with δ = 1/2. During any

iteration k , call row i big if its squared ℓ2 norm inAk exceeds 2(t2)
2
.

As the sum of squared entries of Ak is at most (t2)
2nk , the number

big rows is at most nk/2 and we setW (k )
to Ak restricted to the

big rows.

The O(1) concentration follows directly from Theorem 1.2. To

bound the error for rows of A, we argue as follows. Fix a row i .
Clearly, row i incurs zero error while it is big. Let k be the first

iteration when row i is not big. Call j large if |ai j | ≥ t2/
√
logm,

and let L denote the set of these coordinates. As

∑
j a

2

i j ≤ 2t , |L| ≤

2 logm. By Cauchy-Schwarz the rounding error due to coordinates

in L is at most∑
j ∈L

|ai j | ≤ |L|1/2(
∑
j ∈L

|ai j |
2)1/2 = O(t2

√
logm).

Applying the O(1)-concentration property to the solution x (k ), the
rounding error due to the entries not in L in row i satisfies

Pr


∑
j<L

ai j (yj − x
(k )
j ) = Ω(t2

√
logm)


≤ exp

©«−
(t2

√
logm)2

O(
∑
j<L a

2

i j +Mt2
√
logm)

ª®¬
But as

∑
j<L a

2

i j ≤ 2t2
2
and M ≤

√
t2/logm, this is exp(−Ω(logm)).

By choosing the constants suitably above, this can be made arbi-

trarily smaller than 1/m and the result follows by a union bound

over the rows. □

5.2 Makespan Minimization on Unrelated
Machines

In the unrelated machine setting, there are r jobs (we use n for the

number of fraction variables) andm machines, and each job j ∈ [r ]
has size pi j on a machine i ∈ [m]. The goal is to assign all jobs to

machines to minimize the maximum machine load.

LP Formulation. The standard LP relaxation has fractional as-

signment variables xi j ∈ [0, 1] for j ∈ [r ] and i ∈ [m]. Consider the

smallest target makespan T for which the following LP is feasible.∑
j ∈[r ]

pi jxi j ≤ T ∀i ∈ [m] (load constraints)∑
i ∈[m]

xi j = 1 ∀j ∈ [r ] (assignment constraints)

Setting xi j = 0 if pi j > T , which is a valid constraint for the integral
solution, we can also assume that pmax := maxi j pi j is at mostT . In
a classic result, [22] gave a rounding that gives makespanT +pmax.

We now sketch the iterated rounding based proof of this result from

[21].

Iterated rounding proof. As always, we start with x (0) = x
and fix the variables that get rounded to 0 or 1. Consider some

iteration k . Let nk denote the number of fractional variables, and

let Rk denote the set of jobs that are still not integrally assigned to

some machine. For a machine i , define the excess as

ei :=
∑

j ∈Rk :x
(k )
i j >0

(1 − x
(k )
i j ), (9)

and note that ei is the maximum extra load that i can possibly incur

(if all the non-zero variables are rounded to 1). A nice counting

argument [21] shows that ifW (k )
consists of load constraints for

machines with ei > pmax, and assignment constraints for jobs in

Rk , then dim(W (k )) < nk .
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Introducing slack. We now modify the argument of [21] to

have some slack and apply Theorem 1.2. This will give the following

result.

Theorem 5.4. Given any δ ∈ [0, 1/2), and a fractional solution
x to the problem, there is a rounding where the integral solution
X increases the load on any machine by pmax/(1 − 2δ ), satisfies
E[Xi j ] = xi j for all i, j and has O(1/δ ) concentration.

Proof. Without loss of generality, let us assume that pmax =

1. Consider some iteration k , and let nk denote the number of

fractional variables x
(k )
i j ∈ (0, 1), and Rk denote the jobs that are

still not integrally assigned. Let rk = |Rk |. For a machine i , we
define the excess ei as in (9). Let Mk denote the set of machines

with ei > 1/(1 − 2δ ).
W (k )

will consist of load constraints for machines in Mk and

assignment constraints for jobs in Rk . More precisely, the update

y
(k )
i j will satisfy:

∑
j pi jy

(k )
i j = 0 for all i ∈ [Mk ] and

∑
i y

(k )
i j = 0,

for all j ∈ [Rk ]. We say that i is protected in iteration k if i ∈ Mk .

For a protected machine, the fractional load does not change on

an update and its the excess can only decrease (when xi j reaches
0 for some j ∈ Rk ). So all machines in Mk were also protected in

previous iterations. When a machine ceases to be protected, the

excess ensures that its extra load can be at most pmax/(1 − 2δ ).
It remains to show that dim(Wk ) ≤ (1 − δ )nk . As each job in Rk

contributes at least two fractional variables to nk , we first note that

2rk ≤ nk (10)

Next, we claim that

Claim 5.1. mk ≤ (1 − 2δ )(nk − rk ).

Proof. Clearly mk/(1 − 2δ ) ≤
∑
i ∈Mk

ei , as each i ∈ Mk has

excess more than 1/(1 − 2δ ). Next,∑
i ∈Mk

ei =
∑
i ∈Mk

∑
j ∈Rk :x

(k )
i j >0

(1 − x
(k )
i j )

≤
∑
i ∈M

∑
j ∈Rk :x

(k )
i j >0

(1 − x
(k)
i j ) = nk − rk ,

where the first equality uses the definition of ei and second uses

the definition of nk and that for each job j ∈ Rk ,
∑
i ∈M x

(k )
i j = 1.

Together this givesmk ≤ (1 − 2δ )(nk − rk ). □

Multiplying (10) by δ and adding to the inequality in Claim 5.1

givesmk + rk ≤ (1 − δ )nk , which implies the result as dim(Wk ) ≤

rk +mk . □

Remarks: Setting δ = 0 recovers the additive pmax result of [22].

Theorem 5.4 also generalizes directly to q resources, where job j has
load vector pi j = (pi j (1), . . . ,pi j (q)) on machine i , and the goal is

to find an assignment A to minimize maxh maxi (
∑
j :A(j)=i pi j (h)).

A direct modification of the proof above gives a qpmax/(1 − 2δ )
error, with O(δ ) concentration.

5.3 Minimum Cost Degree-Bounded Matroid
Basis

Instead of just the degree bounded spanning tree problem, we

consider the more general matroid setting as all the arguments

apply directly without additional work.

Minimumcost degree boundedmatroid problem (DegMat).
The input is a matroid M defined on elements V = [n] with costs

c : V → R+ and m “degree constraints” specified by (Sj ,bj ) for
j ∈ [m], where Sj ⊂ [n] and bj ∈ Z

+
. The goal is to find a minimum-

cost base I inM satisfying the degree bounds, i.e. |I ∩ Sj | ≤ bj for
all j ∈ [m]. The matroidM is given implicitly, by an independence

oracle (which given a query I , returns whether I is an independent

set or not).

Iterated rounding algorithm. The natural LP formulation has

the variables xi ∈ [0, 1] for each element i ∈ [n] and the goal is to

minimize the cost

∑
i cixi , subject to the following constraints.∑

i ∈S
xi ≤ r (S) ∀S ⊆ [n] (rank constraints)∑

i ∈V
xi = r (V ) (matroid base constraint)∑

i∩Sj

xi ≤ bj ∀j ∈ [m] (degree constraints)

Here r (·) is the rank function ofM .

Given a feasible LP solution with cost c∗, [9, 20] gave an iterated

rounding algorithm that finds a solution with cost at most c∗ and
degree violation at mostq−1. Hereq := maxi ∈[m](

∑
j ∈[m] |Sj∩{i}|)

is the maximum number of sets Sj that any element i lies in. Note
that q = 2 for degree bounded spanning tree, as the elements are

edges and Sj consist of edges incident to a vertex.

We briefly sketch their argument. We start with x (0) = x and

apply iterated rounding as follows. Consider some iteration k . Let
Ak denote the set of fractional variables and let nk = |Ak |. For a
set Sj , define the excess as

ej :=
∑

i ∈Ak∩Sj

(1 − x
(k )
i ), (11)

the maximum degree violation for Sj even if all current fractional

variables are rounded to 1.

Let Dk be the set of indices j of degree constraints with excess

ej ≥ q. The algorithm choosesW (k )
to be the degree constraints

in Dk (call these protected constraints) and some basis for the

tight matroid rank constraints. An elegant counting argument then

shows that dim(Wk ) ≤ nk −1. The correctness follows as if a degree
constraint is no longer protected, then its excess is strictly below q,
and by integrality of bj and the final rounded solution, the degree

violation can be at most q − 1.

Introducing slack. We will modify the argument above in a

direct way to introduce some slack, and then apply Theorem 1.2.

This will imply the following.

Theorem 5.5. For any 0 < δ < 1, there is an algorithm that
produces a basis with degree violation strictly less than q/(1 − 2δ ),
and satisfies Ω(δ )-concentration.

Setting δ < 1/6 − ϵ , and noting that 2/(1 − δ ) < 3, we get the

following.
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Corollary 5.6. For minimum cost degree bounded spanning tree,
given a fractional solution x there is an algorithm to find a tree
satisfying +2 degree violation and O(1)-concentration.

We now describe the argument. Consider iteration k . Let Ak be

the set of fractional variables and nk = |Ak |. We need to specify

how the chooseW (k )
and show that dim(W (k )) ≤ (1−δ )nk . Let Dk

denote the set of indices j of degree constraints with excess ej ≥
q(1 − 2δ ). Let F denote the family of the tight matroid constraints

that holds with equality, i.e.

∑
i ∈S∩Ak xi = rk (S), where rk in the

rank function of the matroid Mk obtained from M by deleting

elements with xi = 0 and contracting those with xi = 1. It is well-

known that there is equivalent chain family C = {C1, . . . ,Cℓ}, with

C1 ⊂ C2 ⊂ · · · ⊂ Cℓ of tight sets, such that rank constraint of every

S ∈ F lies in the linear span of the constraints for sets in C. Let

ck = |C| and dk = |Dk |. We setW (k )
to be degree constraints in

Dk and rank constraints in C.

Claim 5.2. dim(W (k )) ≤ (1 − δ )nk .

Proof. It suffices to show that ck +dk ≤ (1−δ )nk . As each xi is
fractional and as rk (C) are integral, it follows that any two sets in

chain family differ by at least two elements, i.e. |Ci+1 \Ci | ≥ 2. This

implies that ck ≤ nk/2. We also note that rk (C1) < rk (C2) · · · <

and in particular the rank r (Cck ) of the largest set in C is at least

ck . This gives that
∑
i ∈Ak xi ≥ ck .

Next, as ej ≥ q/(1 − 2δ ) for each j ∈ Dk , we have qdk ≤ (1 −

2δ )
∑
j ∈Dk

ej . Moreover, by definition of ej∑
j ∈Dk

ej =
∑
j ∈Dk

∑
i ∈Ak∩Sj

(1 − xi ) =
∑
i ∈Ak

qi (1 − xi )

where qi = |{j : i ∈ Sj , j ∈ Dk } is the number of tight degree

constraints in Dk that contain element i . As qi ≤ q, the above is at
mostq

∑
i ∈Ak (1−xi ) ≤ qnk−qck , wherewe use that

∑
i ∈Ak xi ≥ ck ,

and

∑
i ∈Ak 1 = |Ak | = nk .

Together this gives, dk ≤ (1 − 2δ )(nk − ck ), and adding 2δ times

the inequality ck ≤ nk/2 to this gives that dk + ck ≤ (1 − δ )nk as

claimed. □

Remark: As the underlying LP has exponential size and implicit,

some care is needed on how to maintain the chain family and

compute the step size of the walk. These issues are discussed in

[10].

5.4 Multi-budgeted Matching
Consider a bipartite graph with n vertices on each side, and let

xe be a solution to the perfect matching polytope defined by the

constraints

∑
e ∈δ (v) xe = 1 for all v . If the support of x is a cycle,

then the tight constraints have rank exactly 2n− 1 and there is only

one way to write x as a convex combination of perfect matchings:

consisting of all odd edges or all even edges in the cycle. In particular,

this also shows that no concentration is possible without relaxing

the perfect matching requirement.

We sketch an alternate proof of the following result of [15].

Theorem 5.7. Given a fractional perfect bipartite matching, there
is a rounding procedure that given any δ > 0, outputs a random
matching where each vertex is matched with probability at least 1−δ ,

each edge occurs with probability (1 − δ )xe , and satisfies O(1/δ )-
concentration.

We begin with a simple graph theoretic lemma.

Lemma 5.8. Let G = (V ,E) be connected graph such that G is not
a cycle, and has no path P = v1, . . . ,vt of t vertices with each vi
of degree exactly two. Then for t ≥ 2, |E | ≥ (1 + (1/4t))(d2 + d≥3),
where d2 (resp. d≥3) is the number of degree 2 (resp. ≥ 3) vertices in
G.

Proof. Consider the decomposition of the edges ofG into paths

P = u,v1, . . . ,vℓ ,w where each vi , i ∈ ℓ has degree two, and u
andw have degree other than 2 (we allow u = w or ℓ = 0). Such a

decomposition can be obtained by repeating the following. Start

from some vertex of degree other than 2 (which must exist as G is

not a cycle) and visiting previously unexplored edges until some

vertex of degree other than 2 is reached.

For each such path P , put a charge of ℓ/2 on the edges e = (u,v1)
and e ′ = (vℓ ,w). As P has ℓ degree 2 vertices, the total charge

put is d2. As e and e ′ are contained in exactly one path P , the
charge on each edge e is at most t/2 (if e = e ′, then the edge

can get contribution twice, but this only happens if ℓ = 0). So

d2 ≤ (t/2)(d1 +
∑
j≥3 jdj ). As 2|E | = d1 + 2d2 +

∑
j≥3 jdj , this gives

|E | ≥ d2(1+ 1/t). Multiplying this by 1/4 and adding it to 3/4 times

the trivial bound |E | ≥ d2 + (3/2)d≥3 gives the result. □

Proof. (Theorem 5.7) By Theorem 1.2, to getO(δ )-concentration
it suffices to show how to create δ -slack. We will show how to main-

tain while ensuring that any edge or vertex constraint is dropped

over all the iterations with probability at most δ .
Consider some iteration k , and let Gk be the graph supported

on fractional edges of x (k ). We assume thatGk is connected, else

each component can be considered separately. Then nk = |E(Gk )|

and dim(Wk ) ≤ d2 + d≥3 as there are no constraints on degree 1

vertices. To create slack, we will simply drop some small fraction

of edges whenever there is a long path of degree two vertices in

Gk , and apply Lemma 5.8. Let t = δ/8.
For a cycle of length ℓ, the tight constraints have rank ℓ − 1,

as they have the form ye − ye ′ = 0, where e and e ′ are the edges
adjacent to a vertex. So ifGk is a cycle of length ℓ ≤ 8t , we already
have δ -slack. IfG is a cycle of length ℓ ≥ 4t , we pick a random edge

and drop this and every consecutive 4t-th edge. An edge is deleted

with probability at most 1/2t = δ/2, and the edges inGk will not

be considered again for dropping after this step as the support will

only consist of paths of length at most 4t .
If Gk is not a cycle and has some path P of degree two vertices

of length more than 4t , we apply the following deletion step. Pick

a random offset in [1, 4t] and drop that edge and every subsequent

4t-th edge on P . Clearly, an edge is dropped with probability at

most 1/(4t) in this step. We now show that the edges of P can

be considered at most once for deletion in future steps. After the

dropping step above,Gk breaks into components that are paths of

length at most 4t , and two or fewer other components containing

the initial prefix or suffix of P of length at most 4t . In later iterations
this prefix/suffix of P could become a part of a degree two path of

length more than 4t , but after that deletion step these edges will

for a component of size at most 4t and not considered for deletion

anymore. □
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6 CONCLUDING REMARKS
We gave a general approach to obtain concentration properties

whenever iterated rounding can be applied with some slack.We also

described some applications where iterated rounding can be applied

with slack without losing much in the approximation guarantee.

While it is quite easy to create slack in most applications of iterated

rounding, one example where it not clear to us how to do this is

the survivable network design problem for which Jain [19] gave a

breakthrough 2-approximation using iterated rounding (see [25] for

a simpler proof). It would be interesting to see ifO(1)-concentration
can also be achieved here while maintaining anO(1) approximation.

A TIGHT EXAMPLE FOR THEOREM 1.2
The following simple example shows that the dependence in Theo-

rem 1.2 cannot improved beyond constant factors.

Let δ = 1/t for some integer t . There are n variables x1, . . . ,xn ,
partitioned into n/t blocks B1, . . . ,Bn/t where each block Bi has t
variables x(i−1)t+1, . . . ,xit . For each block we have t−1 constraints
given by x(i−1)t+1 = x(i−1)t+2 = . . . = xit , and hence there are

(t − 1)(n/t) = n(1 − δ ) constraints in total. Given any starting

feasible solution, as the algorithm proceeds the variables within

a block evolve identically (in iteration k , setW (k )
consists of the

constraints for blocks whose variables are not yet fixed to 0 or 1).

As all the variables in a block are eventually to the same value, it is

easily seen that the linear function S = x1 + · · · + xn will only be

1/δ -concentrated, as opposed to 1-concentrated under randomized

rounding that rounds all the n variables independently.

B THIN SPANNING TREES
Given an undirected graph G = (V ,E), a spanning tree T is called

α-thin, if for each subset S ⊂ V , the number of edges in T crossing

S is at most α times that in G, i.e. δT (S) ≤ αδG (S). The celebrated
thin tree conjecture states that any k edge-connected graph G has

an O(1/k)-thin tree. This conjecture has received a lot of attention

recently, due to its connection to the asymmetric TSP problem

[3]. Despite the recent breakthrough on ATSP [32], the thin-tree

conjecture remains open.

Since any k-edge connected graph has a packing of k/2 edge dis-
joint spanning trees, finding a β/k-thin tree in a k-edge connected
graph is equivalent to the following. Given a fractional point x in

the spanning tree polytope, find a tree X such that δX (S) = βδx (S),
where δx (S) is the fraction of edges across S in x . A cut-counting

argument from [3] shows that any spanning tree X that satisfies

concentration satisfies β = O(logn/log logn), and by now several

negative dependence based methods such as maximum-entropy

sampling, swap-rounding, sampling from determinantal measures

and Brownian walks [3, 14, 18, 27], are known for sampling such a

random tree.

For any fractional spanning tree x , the result of [29] gives an
integral spanning tree with degree of any vertex at most 1 more

than the ceiling of the fractional degree of that vertex. As any

fractional spanning tree has vertex degree at most 1, this implies

that the tree produced satisfies β = 2 for vertex cuts.
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