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Abstract. We present a definition of an ideal timestamping functionality that maintains
a timestamped record of bitstrings. The functionality can be queried to certify the record
and the age of each entry at the current time. An adversary can corrupt the timestamping
functionality, in which case the adversary can output its own certifications of the record
and age of entries under strict limitations. Most importantly, the adversary initially cannot
falsify any part of the record, but the maximum age of entries the adversary can falsify grows
linearly over time.

We introduce a single-prover non-interactive cryptographic timestamping protocol based on
proofs of sequential work. The protocol securely implements the timestamping functionality
in the random-oracle model and universal-composability framework against an adversary that
can compute proofs of sequential work faster by a certain factor. Because of the computational
effort required, such adversaries have the same strict limitations under which they can falsify
the record as under the ideal functionality. This protocol trivially extends to a multi-prover
protocol where the adversary can only generate malicious proofs when it has corrupted at
least half of all provers.

As an attractive feature, we show how any party can efficiently borrow proofs by interacting
with the protocol and generate its own certification of records and their ages with only a
constant loss in age.

The security guarantees of our timestamping protocol only depend on how long ago the
adversary corrupted parties and on how fast honest parties can compute proofs of sequential
work relative to an adversary, in particular these guarantees are not affected by how many
proofs of sequential work honest or adversarial parties run in parallel.

Keywords: blockchain, immutability, proof-of-sequential-work, time-lock cryptography,
timestamping

1 Introduction

There are many use cases to be able to certify that a certain message was recorded at a certain time.
Bayer, Haber and Stornetta considered time-stamping digital documents as well as digital signatures
[13]. While timestamping evokes the idea of fixing an event in a specific point in clocktime, in
practice most timestamping schemes are relative; they provide an ordering of events. Clock-based
timestamping generally requires stronger trust assumptions, as it is problematic to encode actual
time, so systems that provide this make use of a trusted party provide the actual timestamps. The
main advantage of this second type of timestamping is the ability to compare the timestamps to
events outside the protocol. A known construction for clock-based timestamping encodes events
into Bitcoin transactions, effectively using the blockchain as a trusted third party. Inspired by the
immutability of proof-of-work blockchains, we construct a non-interactive protocol for timestamping
based on the use of sequential work as a way to encode time.

Interestingly, the immutability of blockchains can itself be seen as a timestamping problem. The
proof-of-work based consensus of Bitcoin indirectly provides timestamping guarantees (with certain
limitations) Informally, adversaries that do not have a majority of the total hashing power invested
in the proof-of-work can succeed at rewriting previous blocks in the network only with success
probability that is exponentially small in the depth of rewritten blocks. Moreover, even against
adversaries with a fraction α > 0.5 of the total hashing power, the adversary is computationally
restricted in how deep it can rewrite blocks in a certain amount of time, i.e. on average after
time T the adversary can only successfully rewrite blocks in the network up to T · α/(1− α) time
deep. Even under total adversarial control, the blockchain cannot be arbitrarily rewritten. We are
interested in replicating this resilience to adversarial corruption for timestamps without incurring
in the costs and complications found in a PoW blockchain setting.
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In our cryptographic timestamping protocol we make use of inherently sequential or non-
parallelizable functions which have a long history in cryptography, where they are also known as
time-lock puzzles. Such puzzles have been used for timed-release encryption [24], as way to achieve
pseudonymous authentication [14] and to create non-malleable commitments [18]. Generally these
functions are based on modular arithmetic but other proposals have appeared [19,20] which have a
linear gap between creating the puzzle and solving it. Our use of these puzzles will be opposite to
the common usage, where a puzzle is generated together with a known solution, whereas we want a
puzzle that requires time to find the pseudo-random solution for but which is quick to verify. Such
slow functions, which we will call proofs of sequential work, have been postulated before in order to
generate publicly verifiable randomness [17,22].

1.1 Our contributions

In this work we present a definition of an ideal timestamping functionality Fαtimestamp that maintains
a timestamped record of bitstrings, which can be queried to generate a transferable proof of the
age of each entry at the time the proof was generated. The functionality continues to perform its
goal even under adversarial corruption, as the adversary will only be allowed to forge proofs under
certain constraints. The adversary has a diluting factor that lower-bounds the time required for it
to generate a proof with a malicious entry with a falsified age.

We present a single party timestamping protocol based on proofs of sequential work (PoSW)
which takes ideas from blockchains. The prover will provide non-interactive PoSW to a verifier in
order to attest the age of a bitstring. The ability to create fake proofs will depend solely on the
ability to compute PoSW, which can only be achieved through a faster single processing core. We
show this protocol securely implements the timestamping functionality in the random oracle model
and universal composability framework against an adversary that can compute proofs of sequential
work faster than the prover by a diluting factor. Our timestamping mechanism differs from other
proposals as it does not simply provide an ordering but can also provide absolute timestamping
based on assumptions of computational power. This trivially extends to a multi-party protocol
where the adversary can only generate malicious proofs when it has corrupted at least half of all
parties.

Furthermore, our proofs are publicly verifiable and can be used by parties who do not compute
the proofs of sequential work themselves. We show how any party can efficiently borrow proofs by
interacting with the protocol and generate their own timestamps without doing the computational
work themselves in exchange for a loss in age. Thus our work may benefit any blockchain protocol
that by interacting with the (single party or multi party) timestamping protocol can efficiently
maintain a cryptographically verifiable proof of the age of its blockchain. This may seem to add
a level of centralization to any blockchain. However, this is arguably less than the centralization
implied by relying on a core development team, since one can easily switch to a different instantiation
of the timestamping protocol without invalidating the borrowed proofs of age so far if the need or
desire to do so arises. We believe this is a resource-cheap solution to costless simulation attacks on
non-proof of work consensus protocols [23].

The security guarantees of our timestamping protocol only depend on how long ago the adversary
corrupted parties and on how fast honest parties can compute a single proof of sequential work
relative to an adversary, in particular these guarantees are not affected by how many proofs of
sequential work honest or adversarial parties run in parallel.

1.2 Related Work

Proving the age of a digital document presents many more challenges than doing it in the physical
world. The first paper to deal with digital timestamping is [13] which presents two different solutions
that avoid having to fully trust a third party to validate timestamps. Their first solution uses a
hashchain: an sequence of documents linked through a collision-resistant hash function. The second
solution relies on a pseudorandom function to choose a set of validators for a timestamp, which also
allows to identify misbehaving actors. Both solutions require interaction with distributed validators,
as a different hashchain can be easily generated by an adversarial party.

Modifications and extensions of these protocols have appeared, most notably substituting the
individual records in a hashchain with a Merkle tree (or similar) [2,5]. These timestamping systems
require many parties to mantain records and their timestamps, as well as the availability to answer
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validation queries. Different security properties have been proved for these systems, including the
fact that collision-resistance is not enough for security [6]. Other protocols do not require so much
space, but they require stronger trust assumption on the set of validators [3]. In the classical
literature, every timestamping service requires interaction with a group of validators and provides
security guarantees only to relative timestamping.

Haber and Stornetta’s hashchain protocol served as a fundamental building block ifor the Bitcoin
blockchain [21]. Nakamoto’s blockchain consists of a hashchain where new elements of the chain, or
blocks, are added if and only if they solve a cryptographic puzzle known as a proof-of-work. The
work required to create a new block ensures that the blockchain cannot be easily rewritten, especially
for block long in the past [11]. The protocol is tuned in order to create a block every ten minutes in
average, meaning that one can broadly associate each block to a ten minute slot. This can allow
for timestamping in the absolute sense and not only relatively (although with certain limitations
as this is not its primary purpose1). Current constructions that utilize the blockchain to provide
timestamping [12,26] simply treat it as a trusted party and do not formally prove security. The use
of computational work to encode time is interesting for timestamping purposes, but constructing a
system based on Bitcoin is problematic as it requires a significant investment in computational
resources which come with cost and sustainability concerns [1]. In essence, the Bitcoin blockchain is
simply treated as a trusted third party in this construction so no formal security guarantees are
provided.

Proofs of work can be computed in parallel, making it very problematic to find a link between
work done and clock time, making it impossible without additional assumptions (like in Bitcoin).
However, if the work can only be performed sequentially it could be a source for timestamping. In
order to connect computational work with time, we must ensure that the work can only be carried
out sequentially. In [19], the authors present the concept of a proof of sequential work (PoSW) in
order to verify that a number of computation steps have happened since something existed. It is
inspired in time-released cryptography [24], which attempts to encrypt messages in such a way
that they can be decrypted by anyone after a certain amount of time has passed. Further work
has characterized and optimized these proofs [20,9], which are based on directed acyclic graphs.
An example of a proof of sequential work not based in graphs can be found in which is based on
randomized encodings [4]. In a different context, [17] also presents a function that may be used as
a proof of sequential work based on the difference in the time needed to compute a modular square
root and a simple squaring.

1.3 Proofs of Sequential Work (PoSW)

Informally, proofs of sequential work are proofs that some long and inherently sequential compu-
tation was performed, whereas any verifier can quickly verify the correctness of the proof. More
formally, we consider a (non-interactive) proof of sequential work to be a pair of algorithms
(PoSW.gen,PoSW.verify) with security parameter µ and parameters g, v ∈ N as defined below.

PoSW.gen(x, s) is a slow cryptographic algorithm that for an input x ∈ {0, 1}∗ and strength s ∈ N
computes an output (p, s) ∈ {0, 1}µ × N in s · g parallel time steps.

PoSW.verify(x, p, s) is a fast cryptographic algorithm that for inputs x ∈ {0, 1}∗, p ∈ {0, 1}µ, and
s ∈ N outputs accept if (p, s) = PoSW.gen(x, s), and reject otherwise, in at most s · v time steps.

We will use a canonical unambiguous encoding of integers s ∈ N as bitstrings, so (p, s) has a natural
description as a bitstring p||s ∈ {0, 1}∗

We require perfect correctness: PoSW.verify(x,PoSW.gen(x, s)) = accept for all x ∈ {0, 1}∗
and s ∈ N. The PoSW is called secure if no efficient adversary given an input x with sufficient min-
entropy can compute values (s, p) in less than s·g parallel time steps for which PoSW.verify(x, p, s) =
accept with non-negligible probability. The usability of the PoSW is the factor g/v by which
verification is faster than generation of the proof.

We will also use an extended notion of proof of sequential work to make it variable time, where
one does not have to choose the strength in advance, but whose strength continuously increases
with time spent computing it. A variable-time non-interactive proof of sequential work is a proof of
sequential work defined as above with an additional algorithm PoSW.extend:

1 http://culubas.blogspot.nl/2011/05/timejacking-bitcoin_802.html
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PoSW.extend is a slow cryptographic algorithm that for inputs x ∈ {0, 1}∗, (p, s) = PoSW.gen(x, s)
and s∗ ∈ N returns the output (p∗, s+ s∗), where (p∗, s+ s∗) = PoSW.gen(x, s+ s∗), in s∗ · g
parallel time steps.

A candidate construction that may satisfy this notion is the sloth construction by Lenstra and
Wesolowski [17] that iterates modular square root and (keyed) binary permutation functions.

Our definition for proofs of sequential works differs from other constructions [20,9] in two main
ways: non-interactivity and extensibility. Proofs of sequential work are generally presented through
a protocol where a verifier issues a challenge to a prover who will first commit to and subsequently
proved that they executed the necessary work. Our choice of function avoids the need for two
phases, as the only the input and output of the function are needed for verification. While other
PoSW schemes can be made non-interactive by the Fiat-Shamir transform, sloth is non-interactive
by definition which allows for succint proofs. We additionally present PoSW that can be arbitrarily
extended. This property is relevant for timestamping purposes as we want to encode all the time
since something was stamped, which means that our proofs need to be able to grow arbitrarily. In
fact, we will achieve timestamping by concatenating proofs, but extensibility will allow flexibility
when applied to blockchain protocols.

We are aware of the shortcomings of the sloth function as a proof of sequential work, as presented
in [9]. While the computation-verification gap is only logarithmic, the proof is unique, publicly
verifiable and consists of a single string in {0, 1}µ. These properties allow for efficient proof borrowing
where only the input and the proof (including the strength s) are necessary for anyone to verify
that the computation happened. Even if sloth is computed for an arbitrary number of steps, the
proof will always be of the same size (checkpoints may be added for efficiency but are not necessary
to verify), which is not the case for other functions The fact that a puzzle and a solution cannot
be sampled simultaneously makes sloth unfit for time-release cryptography while simultaneously
allowing it to be secure over our definition (if there is no challenge a prover could simply sample a
puzzle-solution pair and send the solution to the verifier).

In contrast with other presentations of proofs of sequential work, we will deal with real-world
time and not only with computational steps. For this, we will assume that parties have access to a
PoSW-rate γ, which encodes the number of time steps needed to compute a PoSW of strength 1.
In practice, the assumption that party can make computations at a certain clock-speed and not
faster requires additional conditions. However, we are comfortable with this construction due to
the current state of processor technology. Current advances in hardware are based on speeding
up computers through parallelization, which provides no advantages for PoSWs. This allows us to
estimate the fastest possible realistic rate. In Section 5 we present a setting where we believe our
assumptions hold true by having an entity which has access to enough sequential computational
power to provide a public immutability beacon.

2 Model and Definitions

Interactive Turing Machines We will work in the Interactive Turing Machine (ITM) model presented
in [7] where two PPT algorithms Z and A interact with parties executing a protocol. We will
assume a hybrid model where parties have access to random oracles, an unforgeable signature
functionality and the FPoSW

γ functionality that will represent our proofs of sequential work.

Time and network. We consider a setting where time is essentially continuous, but it may be
divided into intervals of time of a certain length which will be context-dependent. For instance,
when a party computes a certain slow function at a rate of γ, then a time-step for this process
will be 1/γ long, but for rounds of a (network) protocol this may be a pre-agreed length of time.
Parties are equipped with synchronized clocks with at most an insignificant difference in time with
respect to rounds of network protocols. We assume that timestamps can be described in bitstrings
of length θ at a sufficient granularity.

Where applicable, we assume that the network graph of honest parties is well connected and
that the length of the time window for each round of a network protocol is sufficient to guarantee
that any message transmitted by an honest party to any other honest party at the beginning of the
round will be received by the end of the round.
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Public-key signatures. We assume a public-key infrastructure for digital signatures with security
parameter κ which we model as a global ideal signing functionality Σ. It generates private-public
key pairs for each party. Parties can interact with Σ in the following way:

– Query public key pkj of party Pj .
– On query Σ.sign(pkj ,msg) (or Σ.sign(j,msg)):

If this was not input by Pj (or the adversary if Pj is corrupted), ignore. Otherwise, gener-
ate sig ∈ {0, 1}κ. If (j,msg, sig, reject) was recorded, halt. Otherwise, output sig and save
(j,msg, sig, accept).

– On query Σ.verify(pkj ,msg, sig) (or Σ.verify(j,msg, sig)):
If Σ has recorded some (j,msg, sig, x), output x.
Otherwise, record (j,msg, sig, reject) and output reject.

The adversary can query the functionality to corrupt parties, in which case the adversary can
also query signatures on behalf of the corrupted parties from then on. We will assume that Σ is
existentially unforgeable prior corruption. In order to realize this we will add a restriction that
whenever the adversary attempts to forge a signature sig for a message msg for a party Pj , e.g.
whenever it sets the signature field of a data structure to some bitstring, the adversary must query
Σ.verify(j,msg, sig) at that time.

Cryptographic hash function. Let H : {0, 1}∗ → {0, 1}λ be a collision-resistant cryptographic hash
function, which we model as a random oracle.

Merkle Trees. Merkle Trees are balanced binary trees, where the ordered leaf nodes are each labeled
with a bitstring, and where each non-leaf node has two child nodes and is labeled by the hash of its
children’s labels. The root hash of a Merkle Tree equals the label of the root node. Merkle Trees
allow for short set membership proofs of length O(log(N)) for a set of size N . For convenience we
define some interface functions that deal with Merkle Trees in some canonical deterministic way.

MT.root(T ) computes the root hash h of the Merkle Tree for some ordered finite sequence T ∈
({0, 1}∗)∗ of bit strings and outputs h ∈ {0, 1}λ.

MT.path(T, v) outputs the Merkle path described as a sequence of strings (x0, . . . , xl) where x0 = v,
xl = MT.root(T ), xi ∈ {0, 1}λ and either xi+1 = H(xi||H(xi−1)) or xi+1 = H(H(xi−1)||xi) for
all i > 0.

MT.verify(P ) given an input sequence P = (x0, . . . , xl) outputs accept if P is a valid Merkle path.
It outputs reject otherwise.

With a slight abuse of notation we also use MT.root(T ) recursively, i.e., if one of the elements
S of T is not a bitstring but a set or sequence, we use MT.root(S) as the bitstring representing
S. E.g., if T = (a, b, S) with bitstrings a, b ∈ {0, 1}∗ and a set of bitstrings S = {c, d, e}, then
MT.root(T ) = MT.root((a, b,MT.root(S))). This similarly extends to MT.path(T, v), e.g., where
v ∈ S in the previous example.

For convenience, sometimes we will use MT(T ) as a short-hand for MT.root(T ).

Proof of sequential work functionality. In this work we will assume that every party and the
adversary have access to certain computational resources (a CPU running at some clock speed) or
some specific optimizations which implies that they each can compute proofs of sequential work
at certain (potentially distinct) rates γ. So for every party we model their capability to compute
PoSW as a slow oracle FPoSW

γ interfacing with a global random oracle as defined below.

Oracle FPoSW
γ

The functionality is parametrized by a computation rate γ > 0. Let PoSW : {0, 1}∗ × N →
{0, 1}µ be a global random oracle each oracle instance has access to. The oracle also has access
to a global clock clock (to exactly measure time elapsed computing the proof of sequential
work). Let Q := ∅ be the (initially empty) query log.

– Upon receiving (start, x) at time t, update Q← Q ∪ {(x, t)}.
– Upon receiving (output, x) at time to = clock():

Let ti be the earliest time such that (x, ti) ∈ Q, return ⊥ if there is no such ti;
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Let s := d(to − ti) · γe be the strength of the resulting proof and p := PoSW(x, s);
Return (p, s) at time ti + s/γ = to + ε, with ε < 1/γ.

– Upon receiving (verify, x, p, s), return accept if PoSW(x, s) = p and reject otherwise.

The main security property of this functionality is unforgeability. That is, no party can create
a PoSW p that the functionality will accept after a (verify, x, p, s) query, as parties cannot query
PoSW directly. This means that given a PoSW (p, s) with input x, there must have been a (start, x)
call to instance of FPoSW

γ at least s/γ time steps ago.

2.1 Random Oracle Sequences

In this work we will analyze recursive calls to the random oracle H and to the random oracle PoSW
underlying all oracles FPoSW

γ and analyze the cumulative strength of the proofs of sequential work.
We have adapted the following lemmas from [9] to this setting.

Lemma 2.1 (Random Oracles are Collision-Resistant). Consider any adversary Ah given
access to a random function h : {0, 1}∗ → {0, 1}n. If A makes at most q queries, the probability it
will make two colliding queries h(x) = h(y) with x 6= y is at most q2/2n+1.

The above lemma applies independently both to H and PoSW, since we assume that their output
spaces are disjoint as λ 6= µ.

Definition 2.2 (H2-sequence). Given functions H : {0, 1}∗ → {0, 1}λ and PoSW : {0, 1}∗×N→
{0, 1}µ, an H2-sequence of length l is defined as a sequence S = ((x0, s0), . . . , (xl, sl)), where
(xi, si) ∈ {0, 1}∗ × (N ∪ {⊥}) and the following holds for each 0 ≤ i < l: if si = ⊥ then H(xi) is
contained in xi+1 as continuous substring; otherwise si ∈ N and PoSW(xi, si) is contained in xi+1

as continuous substring. We call
∑
i=0,...,l−1|si 6=⊥ si the strength of the H2-sequence. By |S| we

denote the total bitlength
∑l
i=0 |xi| of all bitstrings in S.

it is simple to see that any2 Merkle path MT.path(T, v) = (x0, ,̇xl) induces an H2-sequence
of the form

(
(x0,⊥), (x1||H(x0),⊥), . . . , (xl−1||xl−2,⊥), (xl,⊥)

)
of length l + 1. With an abuse of

notation, we will refer to Merkle path MT.path(T, v) as an H2-sequence.

Definition 2.3 (linking H2-sequences). We define linking H2-sequence S2 = {(x2, s2), .̂ . .} to
H2-sequence S1 = {.̃ . .(x0, s0), (x1, s1)} where x1 is a continuous substring of x2 to result in the
H2-sequence S1 ./ S2 = {.̃ . ., (x0, s0), (x2, s2), .̂ . .}.

Note that the result of the query (x0, s0) is a continuous substring of x1, and thus also a continuous
substring of x2, it follows that {.̃ . .(x0, s0), (x2, s2)} is a valid H2-sequence and by concatenating
the rest of S2 it follows that S is a valid H2-sequence.

Lemma 2.4 (Random Oracles are sequential). Consider any adversary A(H,PoSW) which is
given a bitstring x0 of sufficient min-entropy and access to two random functions H : {0, 1}∗ →
{0, 1}λ and PoSW : {0, 1}∗ × N→ {0, 1}µ that it can query. If A makes at most q1 queries of total
length Q1 bits to H and at most q2 queries of total length Q2 to PoSW, then the probability that it
outputs an H2-sequence (x0, s0), . . . , (xl, sl) without making the queries (x0, s0), . . . , (xl−1, sl−1) to
respectively H and PoSW sequentially is at most

2 ·
(
q1 · 2−λ + q2 · 2−µ

)
·

(
Q1 +Q2 +

l∑
i=0

|xi|

)
.

Proof. Constructing an H2-sequence without making the queries (x0, s0), . . . , (xl−1, sl−1) sequen-
tially can happen when there is a cycle such that the adversary can repeat previous queries without
making them again. I.e., there exist 0 ≤ i ≤ j < l such that H(xj) (when sj = ⊥) or PoSW(xj , sj)
(otherwise) is contained in xi. This event can only arise when the output of a query is a substring
of the input of a previous query. Using that outputs of H and PoSW are uniform randomly selected,
the probability of a cycle is upper bounded by q1(Q1 +Q2)2−λ + q2(Q1 +Q2)2−µ.

2 w.l.o.g. we assume that every lement of the sequence starting with x2 is of the form xi = xi−1||xi−2
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If there are no cycles then at least one query did not happen or did not happen after its dependent
query. This event can only arise when an output y of a query to H or PoSW would be a continuous
substring of some bitstring (one of the queried inputs or one of the xj), whether or not the adversary
actually made the query. As outputs of H and PoSW are uniform randomly selected, the probability
of this event is upper bounded by q1(Q1 +Q2 +

∑l
i=0 |xi|)2−λ + q2(Q1 +Q2 +

∑l
i=0 |xi|)2−µ.

The claimed bound follows from a union bound over these two events. ut

Thus when an adversary outputs an H2-sequence of strength L where 2 · (q12−λ + q22−µ) ·
(Q1 +Q2 +

∑l
i=0 |xi|) is negligible, we can assume that it made all queries sequentially. (In practice

this will certainly be the case for output lengths λ and µ of 256 bits and larger.) In particular,
if the adversary can query PoSW(x, s) only through FPoSW

γ with a rate of γ then each query
PoSW(x, s) will take time s/γ time. It follows that the adversary used at least L/γ time to construct
the H2-sequence.

Note that our construction differs from the one in [9] as we aggregate all the calls to PoSW into
one element of the sequence. We do this in order to distinguish the calls to different random oracles
and more directly show the numbers of executions of PoSW. We will effectively treat calls to H as
“free” with regards to time but we are still interested in having them has a part of our H2-sequences
in order to include them into our proofs of age in the case of proof borrowing.

We will go a step further and add timestamps to our H2-sequences making them proofs of age.
We will embed unchangeable timestamps into H2-sequences which we will then call H2T -sequences.
These timestamps will be enforced by each PoSW in the sense that altering the timestamp will
require to redo the PoSW.

Definition 2.5 (H2T -sequence). Let S = ((x0, s0), . . . , (xl, sl)) be an H2-sequence of length l.
Let I = {0 ≤ i < l | si ∈ N} = {i0, . . . , ik} be the index set of the PoSWs in S. We call S an
H2T -sequence if the following two properties hold:

1. For i ∈ I: xi = ti||ri where ti ∈ {0, 1}θ is a timestamp.
2. For i, j ∈ I: if i < j then ti < tj.

If I 6= ∅, we call the first timestamp ti0 the root time of S.

3 LIPWIG – Leaning on Impossible-to-Parallelize Work for
Immutability Guarantees

We will now present our timestamping construction. Our primary goal will be to show that proofs
of sequential work give similar immutability guarantees as a trusted third-party. Additionally, the
proofs are still reliable even when the prover is adversarial up to a linear factor over the adversarial
prover’s hidden rate. In essence, our construction enhances the hashchain from [13] in order to
provide a notion of absolute timestamping to it. We will speak of blockchains instead of hashchains
as we believe that our construction can be applied to this domain, in particular to solve long-range
attacks. This construction can be enhanced in a decentralized setting, where many individual
instances of the protocol are being executed in parallel and interact with each other. In this case,
verification cost can be reduced while reliability increases.

3.1 Ideal timestamping functionality

Now we will present our definition of the ideal timestamping functionality Fαtimestamp. The environ-
ment Z will interact with the functionality through dummy parties P and verifier V , which can be
seen as interfaces of the functionality. We will also define the extent of an adversary’s ability to
influence the functionality in order to make it output false statements.

Informally, the P interface is used to record the messages to be timepestamped by the function-
ality, while queries regarding the age of all recorded messages are input to V . When A ‘corrupts’ the
functionality, it is allowed to choose which messages to output after V is queried as well as being
able to record any message. The adversary can also change the ages of certain messages, bounded
by the amount of time that the functionality has been under A’s control based on a parameter α.
If the functionality has been under adversarial control for Tcorr time steps, then the adversary can
only forge timestamps to look younger than α · Tcorr time steps ago. Essentially, either every record
older than some age α · Tcorr in the honest record should be contained in the falsified record or
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none (modelling that the adversary deletes the old record and started from scratch). Moreover, A
can decide to include each entry younger than age α · Tcorr or not, but each included entry can
have age at most α times its honest age and at most age α · Tcorr .

More formally, we define Fαtimestamp as the ideal timestamping functionality as follows:

Ideal timestamping functionality Fαtimestamp

The functionality is parametrized with an adversarial diluting factor α ≥ 1. It defines the
allowed actions of a player P, the verifier V and the adversary A. The internal variables are
initialized to k := 0, corr := 0, Tcorr := 0. It maintains an internal list for (record,timestamp)-
tuples.

– Record: Upon receiving (record, c ∈ {0, 1}∗) at time t from P , record entry (ck, tk)← (c, t)
and set k ← k+1. As records are public knowledge, (c, t) is also returned to A (irrespective
of corr).

– Corrupt: Upon receiving corrupt at time t from A, set corr ← 1 and Tcorr ← t.
– Prove: Upon receiving prove at time t from V:

1. Let πt := {(ci, ai) | 0 ≤ i < k, ai = t− ti} be the set of all records with corresponding
ages.

2. If corr = 0, then return πt to V.
3. Otherwise, send πt to A and receive π′t back from A.
4. Parse {(ci, a′i) | i ∈ I ⊆ {0, . . . , k − 1}} ← π′t. If parsing fails (e.g., because a ci value

is different from originally recorded), return reject to V.
5. Let A := (t − Tcorr ) · α be the (diluted) time since corruption and πA := {(ci, ai) ∈
πt | ai > A} the subset of records which are older than A.

6. Among the records in πt older than A, either none or all of them have to be present in
π′t. Formally, if π′t ∩ πA /∈ {∅, πA}, then return reject to V.

7. If for any i ∈ I, a′i has been modified by more than α (i.e., a′i > α · ai) or a′i has been
modified beyond A (i.e., ai 6= a′i and a′i > A), then return reject to V.

8. Otherwise, return π′t to V.

Corruption of Fαtimestamp allows A to have certain control over the output of the functionality
after a prove query. It also allows the adversary to see the entire list of records maintained by the
functionality and the ability to add new ones. However, A is not allowed to erase any records or to
(directly) modify the timestamp of any message (even its own). The adversary is only allowed to
affect the timestamps of a message in the output of a prove query and is limited in how much it can
stretch the timestamps by α. A is also forced to record every content that it wishes to timestamp,
otherwise a proposed proof will fail in step 4.

3.2 Single Party PoSW Blockchain

In this section we will define our cryptographic timestamping protocol that implements the ideal
timestamping functionality. To this end we will combine timestamped proofs-of-sequential-work
together with a blockchain structure and digital signatures. The blockchain structure will imply
that if one block is changed then all subsequent blocks must also be changed, and that will allow us
to extract H2T -sequences. Whereas we use digital signatures solely to prevent the adversary from
maintaining its own valid chain before it has corrupted the party.

Definition 3.1 (SP-PoSW-block). We define a SP-PoSW-block for a party P with public key
pk ∈ {0, 1}∗ as a tuple B = (data, sig), where data = (pk, rnd, prev, posw, content) and

1. rnd ∈ N is the sequence number of the block;
2. prev ∈ {0, 1}∗ is the root hash MT.root(Brnd−1) of the previous block Brnd−1, or prev = H(pk)

when rnd = 0;
3. posw = ((t||prev), (p||s)) represents the proof of sequential work, where (p, s) = PoSW(t||prev, s)

and t ∈ {0, 1}θ is a timestamp the PoSW was started, i.e. when the previous block was finished;
4. content ∈ {0, 1}∗ represents some content;
5. sig ∈ {0, 1}∗ is a digital signature on MT.root(data), i.e., Σ.verify(pk, data, sig) = accept.
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For convenience we will use the notation B.data, B.sig as well as B.pk, B.rnd, B.prev, B.posw,
B.t, B.s, B.p and B.content to refer to these elements in block B.

Definition 3.2 (SP-PoSW-chain). We define a SP-PoSW-chain for a party P with public key
pk ∈ {0, 1}∗ as a sequence of SP-PoSW-blocks C = (B0, . . . , Bk) where for all 0 ≤ i ≤ k:

1. Bi.pk = pk;
2. Bi.rnd = i;
3. B0.prev = H(B0.pk) and Bi.prev = MT.root(Bi−1) for i > 0;
4. Bi.posw = ((Bi.t||Bi.prev), (pi||si)) and (pi, si) = PoSW(Bi.t||Bi.prev, si);
5. Bi.t < Bj .t for all i < j ≤ k;
6. Σ.verify(pk,MT.root(Bi.data), Bi.sig) = accept;

Let len(C) = k be the length of C. We define the notations C[i] = Bi for block indexing, C[i, r) =
(Bi, . . . , Br−1) for subchains, and last(C) = Bk for the last block of C.

Note that our definition allows us to extract an H2T -sequence S = ((x0, s0), . . . , (xl, sl)) starting
from any MT.root(Bi) as follows:
Initialize empty sequence S = ((MT.root(Bj),⊥)) and for j = i, . . . , k − 1 do:

– Replace (MT.root(Bj),⊥) at the end of S with (Bj+1.t||MT.root(Bj), Bj+1.s) followed by
(Bj+1.p||Bj+1.s,⊥);

– Link the Merkle path MT.path(Bj+1, Bj+1.p||Bj+1.s) = {Bj+1.p||Bj+1.s, . . . , MT.root(Bj+1)}
to S;

This allows a party to attest a certain age to any content included in block Bi by prepending the
Merkle path from that content to MT.root(Bi). In between blocks, the party appends its running
PoSW over MT.root(Bi) up to that point, which at the same time is also continued until the
creation of the next block since we use a variable-time PoSW.

3.3 SingleLipwig protocol

We define the following algorithm SingleLipwig which allows player P to maintain a SP-PoSW-chain.

Algorithm SingleLipwig

Assume that party P with public key pk has access to H, FPoSW
γ for PoSW-rate γ > 0. P

initializes i := 0, prev := H(pk), t0 := clock(), sends (start, t0||prev) to FPoSW
γ .

– Upon receiving (record, content) from the environment Z, P does the following:
1. retrieve (pi, si) by sending (output, ti||prev) to FPoSW

γ

2. query sig i ← Σ.sign(pk,MT.root(datai)),
where datai = (pk, i, prev , ((ti||prev), (pi||si)), content)

3. set Bi ← (datai, sig i), prev ← MT.root(Bi), and ti+1 ← clock()
4. send (start, ti+1||prev) to FPoSW

γ

5. set i← i+ 1
– Upon receiving prove, P does the following:

1. retrieve (p′i, s
′
i) by sending (output, ti||prev) to FPoSW

γ

2. query sig ′i ← Σ.sign(pk,MT.root(data ′i)),
where data ′i = (pk, i, prev , ((ti||prev), (p′i||s′i)),∅)

3. set B̂i ← (data′i, sig
′
i) and t′i+1 ← clock()

4. send to V the SP-PoSW-chain Ci = (B0, . . . , Bi−1, B̂i) together with time t′i+1

Note that there is some time between steps 1 and 4 in which the proof of sequential work is not
being executed. Therefore, this time is not encoded by our PoSW. We will refer to this “wasted”
time as the PoSW-interrupt time of P and denote it as ε. In this case, the effect of ε is negligible but
whenever there are multiple parties this may not be the case, as ε can be larger whenever parties
need to reach consensus or, as seen in the following chapter, they have different block schedules.

In order to realize the Fαtimestamp functionality, we will construct a Πγ,ε
SingleLipwig protocol, in which

a player P interacts with an uncorruptible verifier V. The verifier will ensure that the blockchain
maintained by P is well-constructed and that the proofs-of-sequential-work actually encode the
time represented in the timestamps.
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(γ, ε)-SP-PoSW-chain-verifier V

The verifier V interacts with party P with public key pk. The verifier’s only role is the following:

1. V sends prove to P and receives back a SP-PoSW-block sequence C = (B0, . . . , Bk)
together with its output time T .

2. V checks all conditions from Definition 3.2 and returns reject if C is not a valid SP-PoSW-
chain for public key pk.

3. For 0 ≤ i ≤ k, let ti := Bi.t and tk+1 := T .
4. For every block Bi, if the rate implied by the time stamps is too small (Bi.s/(ti+1−ti−ε) <
γ), V returns reject.

5. Otherwise, V returns {(Bi.content , T − ti+1) | 0 ≤ i < k}.

Πγ,ε
SingleLipwig Protocol

The environment Z interacts with two parties: a (γ, ε)-SP-PoSW-chain-verifier V and a prover
P running SingleLipwig with access to Σ, FPoSW

γ and PoSW-interrupt time ε. The adversary A
has access to FPoSW

γA (with γA ≥ γ), can communicate with Z and corrupt P at any moment
by inputting corrupt. After corruption, A gains total control of P. The environment Z can
interact with the parties in the following ways:

– Input (record, content) to P
– Input prove to V

In order to prove that the protocol realizes the timestamping functionality we will first define
our simulator S.

Fαtimestamp simulator S for Πγ,ε
SingleLipwig

Given a Πγ,ε
SingleLipwig adversary A and an instance of Fαtimestamp, the simulator spawns an instance

of Πγ,ε
SingleLipwig with a party P with public key pk who constructs a blockchain and a dummy

verifier V who simply forwards messages.. The adversary is given access to FPoSW
γA with γA = α/γ.

The adversary is also allowed a PoSW-interrupt time of ε/α.

– Upon receiving (record, content) from the environment Z, S does the following:
1. Input (record, content) to Fαtimestamp and to P

– Upon receiving corrupt from the adversary A, S does the following:
1. Gives total control of P to A and input corrupt to Fαtimestamp
2. Whenever A queries start(x) FPoSW

γ or FPoSW
γA , if x contains the response of a Σ.sign

query, input (record, x) to Fαtimestamp
– Upon receiving prove from the environment Z, S does the following:

1. Set T ← clock() and input prove to V and to Fαtimestamp
2. If A has input corrupt, take the input C of P to V and verify whether it is a valid

chain according to Πγ,ε
SingleLipwig

3. If C is valid: parse it as {(Bi.content , T − ti+1) | 0 ≤ i < k}, then input it to Fαtimestamp
as the adversarial proof-sequence (step 3) else input any invalid string to Fαtimestamp

4. Forward the output of Fαtimestamp to Z through V.

We are now ready to state our main result in this paper that the cryptographic timestamping
protocol SingleLipwig securely implements the ideal timestamping functionality.

Theorem 3.3. Consider party P with PoSW-rate γ > 0 running the SingleLipwig algorithm and
an adversary A with PoSW-rate γA ≥ γ, where P spends ε ≥ 0 time in between PoSWs (Steps 2
and 3 of the record routine of the algorithm) and A spends ε/α time in between PoSWs. Let V be
the (uncorruptible) (γ, ε)-SP-PoSW-chain-verifier. Then the protocol (P,V) securely implements
the timestamping functionality Fαtimestamp with α = γA/γ with failure probability at most

2 · (q1 · 2−λ + q2 · 2−µ) · (Q1 +Q2 + |C|),
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where C is the total bitlength of the last SP-PoSW-chain and the adversary A made q1 queries with
total bitlength Q1 to H and q2 queries with total bitlength Q2 to FPoSW

γA and FPoSW
γ . This failure

probability is negligible in λ and µ when A is PPT and sufficiently large security parameters.

Proof. Here is a sketch of the proof.
We first prove correctness : consider P running algorithm SingleLipwig uncorrupted. We want to

show that any environment Z which interacts with (P,V) cannot see a difference to interacting
with Fαtimestamp instead. Whenever (record, ci) is sent to P at time Ti, P creates a block Bi with
content = ci and inputs the timestamp ti+1 = Ti + ε with MT.root(Bi) to the PoSW. Whenever
prove is sent to V at time T , the verifier V asks P for a proof, so P also creates a block with
content = ∅ and returns a SP-PoSW-chain C and time T + ε to V . The verifier will correctly output
(ci, ai) with ai = T + ε− (Ti + ε) = T − Ti for all i, as C is correctly constructed and the strength
of each PoSW will be such that Bi.s/(ti+1 − ti − ε) = γ by definition of ε.

To show security against any A, we show that our simulator S from item 3.3 can securely
simulate an execution of Πγ,ε

SingleLipwig such that neither the environment Z or the adversary A can
distinguish. For this, we will show that the probability of distinguishability is at most the claimed
failure probability in the theorem, which is negligible in λ and µ for any PPT A.

What remains is to show that each time S sends π′t to Fαtimestamp, it will give the same output
π′t to the environment except with a certain probability.

First, whenever A sends a sequence C for which V returns reject then Fαtimestamp will also output
reject. The simulator parses the chain as if it were V and if it is correctly constructed it sends the
content in a way that Fαtimestamp can undesrstand. Note that the construction of S ensures that if A
constructed a valid blockchain but outputs an invalid one, it will still be rejected.

Suppose now that A did send a valid SP-PoSW-chain C = (B0, . . . , Bk). If A did not create C
sequentially, through queries to FPoSW

γA , then S will not be able to input the correct record queries
to Fαtimestamp. This means that in the case of Πγ,ε

SingleLipwig the verifier would accept while Fαtimestamp
rejects. By Lemma 2.4 this event can happen only with probability at most

2 · (q1 · 2−λ + q2 · 2−µ) · (Q1 +Q2 + |C|),

where the adversary made q1 queries with total bitlength Q1 to H and q2 queries with total bitlength
Q2 to FPoSW

γA and FPoSW
γ .

We can now assume that A created C sequentially. Note that A had access to Σ for time
Tprove − Tcorr and could not make signature forgeries before corruption, and thus could not make
any meaningful query to FPoSW

γA that could be part of C before corruption. By meaningful, we

mean that no input to FPoSW
γA before Tcorr can consist of an adversarially created block with a valid

signature. We define A′ := (Tprove − Tcorr ) · (γA/γ) which equals A in Fαtimestamp.
We can consider two cases:
No prefix of Cvalid is a prefix of C. This means that A after corruption started its own new

SP-PoSW chain. Since A has PoSW-rate γA and had time Tprove − Tcorr , it can legitimately only
create a SP-PoSW chain with root time at most A′, which matches the case π′t ∩ πA = ∅ in
Fαtimestamp. For each Bi.content with timestamp Bi+1.t in C, it was input to Fαtimestamp at time ti. As
C was considered valid and A has PoSW-rate γA it follows that Tprove −Bi+1.t ≤ α · (Tprove − ti).
Since π′t consists only of pairs (ci, a

′
i) for messages ci recorded at time Tprove − ai where a′i ≤ αai,

it follows that Fαtimestamp outputs π′t and does not reject.
A non-empty prefix of Cvalid is a prefix of C. This means that A after corruption started

extending the shared prefix of Cvalid and C, the remainder of C can cover at most time A′. Since
the timestamps in the shared prefix are unmodified and C is accepted by V it follows that for all ci
that were recorded at time ti < Tprove −A′ that (ci, Tprove − ti) ∈ π′t. For the remainder of C, by
the above reasoning it follows that the remainder of π′t consists only of pairs (ci, a

′
i) for messages ci

recorded at time Tprove −ai where a′i ≤ α ·ai. Hence, this case also satisfies all criteria for Fαtimestamp
to output π′t and not to reject.

ut

3.4 Signature Functionality Subtleties

Our construction restricts the ability of the adversary to always query Σ.verify when attempting
to forge a signature. This restriction arises from the fact that the classical UC construction for
signatures in the UC model [8] can be abused in a way that is not reflected in practice. Unforgeability
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in the UC framework is usually achieved by a functionality which records any valid query. In the
case of signatures, a valid query is one made by someone who should have access to the secret key.
Any attempt to forge a signature will fail, as the functionality will reject every verification query of
a signature it did not create.

In our protocol, where temporality is fundamental, this construction can be easily abused. If
an adversary constructs a block before corrupting P, it can attempt to forge a signature and then
use that block as an input to FPoSW

γA . In the case they could succeed in the forgery, they would
have a PoSW that encodes an age greater than the one expected by the protocol. This would allow
A to distinguish the protocols, as Fαtimestamp would reject this record while it would be acceptable
in Πγ,ε

SingleLipwig. In general, this is allowed, as the possibility of A corectly guessing a signature
is negligible. However, the structure of ideal signing functionalities allows adversaries to always
succeed in this attempt.

In order to account for the predictability of signatures, ideal signing functionalities allow the
adversary to determine the signature for any message. This construction allows an adversary
to retroactively create a valid blockchain (according to V in Πγ,ε

SingleLipwig) The adversary runs
SingleLipwig with the desired content generating a blockchain C∗, substituting signatures (B∗i .sig)
for a random string (of length κ) whenever the block has not been signed by P (which we can assume
is always true if there is a block iin the chain that differs to the one computed by P). Whenever A
corrupts P it queries the signature functionality to sign all the blocks {B∗i .data | B∗i ∈ C∗} which
A had previously created. The functionality will then ask A for the signature, who will then choose
the random string it had used in place of a signature in the block (B∗i .sig). Every block C∗ will
now be valid according to V, with timestamps that precede the time of corruption by more than
the acceptable margin γA/γ.

In practice, this attack is impossible, as an adversary cannot retroactively make signatures valid
in any actual signature scheme. This attack is only made possible by the fact that a verification
query for the forged signatures is only done after corruption, as A simply hides it from view until it
corrupts a party. This is not the case generally, as an adversary can create valid signatures after
corruption without resorting to this trick. Therefore, restricting the adversary to query Σ.verify for
every forgery attempt, while counter-intuitive, actually reflects reality by avoiding this loophole.

3.5 Multi Party Timestamping protocol

The single party protocol SingleLipwig trivially extends to a multi-party protocol by running
multiple instances, where individual proofs are joined together and where the verifier simply applies
a majority vote over the accepted records:

Consider N ∈ N provers P1 . . . ,PN that each run algorithm SingleLipwig individually. Any
record queries are broadcast to all provers and the adversary. At any time V can query all provers
for a proof of their records. Verifier V individually verifies these as in the single-prover case and
thus obtains up to N accepted records, after which it outputs every entry (ci, a

′
i) that occurred

in more than half the accepted records. It is clear that when more than half of the provers are
honest then V outputs the honest record. It is only after the adversary corrupts more than half of
the provers that it can provide enough falsified accepted records that all contain a certain falsified
entry for the verifier to output it. However, even when it corrupted all provers, it is clear from the
security proof of SingleLipwig that the adversary can only generate malicious proofs under the same
constraints as in the single-party protocol.

4 Proof Borrowing

4.1 An Inverse Problem

We are interested in creating proofs that can be verified by anyone, regardless of whether they are
aware of who is computing the proofs of sequential work. Therefore, we cannot make the assumption
that the verifier knows the rate over which the PoSW were computed. This prevents the verifier
from linking computational work to time. There are two approaches to this problem; either the
verifier chooses a rate or they compute the average rate presented by the proof. After finding the
rate implied by an H2T -sequence, a party can choose whether the timestamp is valid or not.

The following verifier checks correctness of H2T -sequences and returns the average PoSW-rate
with respect to the claimed root time of S. It should follow that a higher average PoSW-rate implies
a higher assurance of the real age.
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Definition 4.1 (Time-lock verifier). We define a time-lock verifier V with access to oracles
FPoSW
γ and H as follows.

Whenever V receives sequence S = ((x0, s0), . . . , (xl, sl)), it returns ⊥ if S is not a valid H2T -
sequence. For a valid H2T -sequence V returns the average rate γ = L/(t− t0), where L is the total
strength of all PoSW in S, t is the current time and t0 is the root time of S.

The following game captures the challenge to compute an H2T -sequence that can be claimed τ
older than it really is while still keeping minimum average rate γ.

Definition 4.2 (γ-time-lock game). For τ > 0, positive PoSW-rates γA, γ > 0, we define the
γ-time-lock game with respect to a time-lock verifier V as follows.

Consider an adversary A with access to oracles FPoSW
γA and H. At time t0 the adversary gets

access to an oracle O and queries it for a random bitstring c0 ∈ {0, 1}λ, the adversary can make
additional queries c1, . . . to O later on, but not before time t0. The adversary constructs an H2T -
sequence S = ((x0, s0), . . . , (xl, sl)) with root time t0 − τ and where c0 is a continuous substring of
x0. It sends S to V at time t1 and wins if V outputs rate r ≥ γ.

Here, the oracle O is used to enforce that the adversary can only legitimately start computing S
from time t0, which may seem slightly unnatural. However, in the remainder of the paper we will
treat additional structured data (blockchains) that needs to satisfy additional constraints. One
important case is that every block structure needs a signature by a certain party. In this case the
oracle O can capture the signing capability of that party, to which the adversary only gets access
after it has corrupted that party.

The following lemma lower-bounds the running time it takes an adversary with rate γA to
compute an H2T -sequence with claimed root time that is τ older than the “real” root time, while
still keeping minimum average rate γ, with non-negligible success probability.

Lemma 4.3 (γ-time-locked). If t1 − t0 < τ · γ
γA−γ then the adversary wins the above game with

probability at most

2 · (q1 · 2−λ + q2 · 2−µ) · (Q1 +Q2 + |S|),

where A made q1 queries of total bitlength Q1 to H and q2 queries of total bitlength Q2 to FPoSW
γA .

Proof. In the elapsed time e := t1 − t0 after corruption, the adversary can sequentially compute an
H2-sequence of strength at most e · γA. The required minimum average rate of γ over age T = e+ τ
requires a minimum strength of L = T · γ. It follows that the adversary can sequentially compute
the H2-sequence with probability 1 if and only if e · γA ≥ T · γ or equivalently t1 − t0 ≥ τ · γ

γA−γ .

However, if t1 − t0 < τ · γ
γA−γ then the adversary cannot compute the H2-sequence sequentially

and by Lemma 2.4 succeeds with probability at most

2 · (q1 · 2−λ + q2 · 2−µ) · (Q1 +Q2 + |S|).

ut

The above theorem shows that PoSW offers some sort of immutability for H2T -sequences by
requiring a minimum average PoSW-rate in that the adversary needs a PoSW-rate that is a factor
α = a/b higher to create an H2T -sequence of “age“ a in real time b. Unlike for proof-of-work,
the adversary cannot simply use more CPUs, but he needs to use a substantially faster CPU. It
should be noted that this excludes any kind of protection against forking, i.e. when a = b then the
adversary does not need a higher PoSW-rate.

Furthermore, time-locked PoSW enforces a certain computational obstacle for any adversary
in modifying an existing H2T -sequence with honest timestamps up to the point of the target
modification, since in the malicious H2T -subsequence created by the adversary the earliest malicious
timestamp must still be later than the last honest timestamp.

It should be clear that for honest parties a higher minimum average PoSW-rate implies a
stronger protection against adversaries. It does require though that parties actively maintain their
H2T -sequences by continually extending them with PoSW, lest they fall below the minimum
required rate.
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4.2 Proof Borrowing

The underlying assumption behind our model is that the participant has access to a very fast
processor that is always on and computing proofs of sequential work. The processor must be fast
enough that it provides a reasonable time-lock compared with the fastest available processor. These
assumptions are non-trivial and cannot be achieved by any individual. However, as we show it is
possible for participants to borrow proofs of sequential work from other blockchains. Any number
of blockchains can be time-locked by a single constantly-maintained blockchain with a high rate
through the use of Merkle paths. More importantly, if this blockchain were to disappear or stop
growing, the security guarantees provided by it to another chain are encoded in the latter chain and
are therefore maintained. This also allows a blockchain to connect to another blockchain through a
bilateral agreement but disconnect unilaterally if they so choose.

In this multi-agent model, we continue to work solely with blockchains that are maintained
by individual agents, so no consensus mechanism is required. Interaction between parties consists
solely in choosing to point to another party’s blockchain or not. While the purpose of this section
is to show how proofs of sequential work can be strengthened by connecting blockchains, it is
also important to note the effect that this has on someone attempting to rewrite their own chain.
Participants are incentivized to achieve a stronger time-lock by connecting to other chains. However,
a well-connected block is harder to rewrite, as disappearing every trace of the rewritten block
implies rewriting all the blockchains that point to it.

To borrow a proof of sequential work it is not sufficient to simply take the posw component
of a block. The posw component of a block time-locks the preceding chain because they belong
to the same H2T -sequence. In order to replicate this property for a block that is not part of the
chain, we need to create an H2T -sequence from the block that we wish to time-lock to the proof of
sequential work. Fortunately, this can be achieved by adding a pointer to the block that precedes
the proof of sequential work, as the hash of this block is contained in the argument of PoSW. Then,
it will be possible to link this sequence with the H2T -sequence time-locking the block B in order
to time-lock B∗. Participants can then use these H2T -sequences to borrow the proof of sequential
work computed by other participants in order to secure their own blocks.

In order to work with these proofs of sequential work, we modify the struture of our blocks.
As we are in a setting with multiple parties P1, . . . ,Pn, we add a superscript to identify the
blocks and chains of a party. Thus, the blockchains maintained by Pj becomes Cj . For simplicity,
we refer to j as the identifier of Pj and assume that all parties are aware of this relationship.
Additionally, we divide the content component in each block, which is a generic string, in two
different components: incoming and content . The pointers to each block are added in the former,
while content remains unchanged. All pointers in incoming consist solely of the Merkle roots of the
blocks. At the same time, the parties who are looking to borrow the proof of sequential work are
able to record the H2T -sequence generated by the other party and encode it in their own chain.
This allows participants to maintain the time-lock even if the blockchain from where they borrowed
it disappears. Participants also have the freedom to connect to multiple chains to borrow proofs and
the ability to disconnect from one at will. Whenever we have that a block Bkr contains a pointer to
Bji we write Bji ∈ Bkr .incoming. Additionally, if r0 ≤ r < rl we write Bji ∈ Ck[r0, rl).incoming.

While incoming is used to add the pointers to blocks in order to generate H2T -sequences,
we are also interested in storing said sequences in the block. We do this through H2T -sequences
representing the links between all the blocks in the subchain from where the proofs are borrowed.

Definition 4.4 (Borrowed PoSW). Given a block Bji , we say that a borrowed proof of sequential
work (or borrowed PoSW) from a subchain Ck[r0, rl) is a set of tuples (k, r, S, r + 1) where S is
an H2T -sequence from Bkr to Bkr+1 passing through Bkr+1.posw for r ∈ [r0, rl) and tuples (j, h, S, r)

where S is an H2T -sequence from Bjh to Bkr , with h < i and r ∈ [r0, rl).

Similar to what we have with incoming, we say that Bkr ∈ Cji.Bposw or Ck[r0, rl) ∈ Cji.Bposw
whenever the borrowed proof contains a block or subchain respectively.

Definition 4.5 (P2P-PoSW-block). We define a P2P-PoSW-block for a party Pj with public key
pkj ∈ {0, 1}∗ as a tuple Bj = (data, sig), where data = (pk, rnd, prev, posw, bposw, incoming, content)
and

1. pk ∈ {0, 1}∗ is the public key of the party maintaining the chain;
2. rnd ∈ N is the sequence number of the block;
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3. prev ∈ {0, 1}∗ is the root hash MT.root(Bjp) of the previous block Bjp, or prev = H(pk) when
rnd = 0;

4. posw = {((t||prev), (p||s))} includes both the proof of sequential work computed by Pj, where
(p, s) = PoSW(t||prev, s) and t ∈ {0, 1}θ is a timestamp the PoSW was started;

5. Bposw = {(k, r, S0, r + 1)} ∪ {(j, h, S1, r)} where k 6= j and S0 and S1 are H2T -sequences;
6. incoming ( {0, 1}λ contains root pointers to other blocks;
7. content ∈ {0, 1}∗ represents some content;
8. sig ∈ {0, 1}∗ is a digital signature on MT.root(data), i.e., Σ.verify(pk, data, sig) = accept.

Definition 4.6 (P2P-PoSW-chain). We define a P2P-PoSW-chain Cj for a party Pj with

public key pk ∈ {0, 1}∗ as a sequence of SP-PoSW-blocks Cj = (Bj0, . . . , B
j
k) where for all 0 ≤ i ≤ k:

1. Bji .pk = pkj;

2. Bji .rnd = i;

3. Bj0.prev = H(Bj0.pk) and Bji .prev = MT.root(Bji−1) for i > 0;

4. Bji .posw = ((Bji .t||B
j
i .prev), (pi||si)) and (pi, si) = PoSW(Bji .t||B

j
i .prev, si);

5. If (j, h, (x0, s0), . . . ), r) ∈ Bji .Bposw then h < Bji .rnd and x0 = a|MT(Bjh)|b for some a, b ∈
{0, 1}∗ and there exists (k, r, S, r + 1) ∈ Bji .Bposw such that

(
(x0, s0), . . .

)
./ S is a valid

H2T -sequence;
6. For every (k, r, Sr, r + 1) ∈ Bji .Bposw, S is an H2T -sequence of non-zero strength with

timestamp tr+1 < Bji .t

7. For any two (k, r, Sr, r+1), (k, r+1, Sr+1, r+2) ∈ Bji .Bposw with k 6= j we have that Sr ./ Sr+1

is a valid H2T -sequence;
8. If (r, h, P ) ∈ Bji .M then MT.verify(P ) = accept, P = ((a|MT(Bjr)|b, s0), . . . ) for some strings

a, b and r < i
9. Bji .t < Bjj .t for all i < j ≤ k;

10. Σ.verify(pk,Bji .data,B
j
i .sig) = accept;

Let len(Cj) = k be the length of Cj. We define the notations Cj [i] = Bji for block indexing,

Cj [ir,=)(Bji , . . . , B
j
r−1) for subchains, and last(Cj) = Bjk for the last block of Cj.

All the time that passes between the creation of two blocks in the same chain is encoded in a
proof of sequential work, but we cannot say the same about the time that passes between blocks of
different chains. This “wasted” time implies that in certain situations it is not advantageous to use
the entirety of the borrowed proof, or cases when a proof borrowed from the participant with the
highest rate is not as strong as the one provided by a different party with a slightly lower rate. In
order to choose the correct H2T -sequence that maximally time-locks a block, we need to search all
the possible H2T -sequences between the chains in the network. This process should not take too
much time and while there can be many heuristics and design choices limit the number of blocks
considered, we show that finding the strongest H2T -sequence requires linear time over the number
of blocks.

If we consider a borrowed PoSW from Ck[r0, rl) as a pointer to Bkrl−1, we can see that we can
create a directed graph where blocks are vertices and the H2T -sequences encoded in them (be them
borrowed PoSW, incoming pointers or pointers to the previous blocks) are edges. Even more, we can
have each edge have the strength of the H2T -sequence as a weight whenever two blocks are in the
same chain. This way we can construct a graph of the entire network, with all the H2T -sequences
connecting blocks acting as edges. We can use this graph to find the strongest H2T -sequence for
any block.

Lemma 4.7. Given n blockchains that are maintained by parties P1, . . . ,Pn, the pointers in a
block induce a weighted DAG D = (V,E,W ) with V =

⋃
j∈[n]{B

j
i | i ∈ [len(Cj)]} and E ×W

represents all H2T -sequences between blocks where W are the strengths of these sequences except
with negligible probability in λ.

Proof. First, let V =
⋃
j∈[n]{B

j
i | i ∈ [len(Cj)]}. Then, for each Bji ∈ V , with i 6= 0, add a weighted

edge to E ×W from its predecessor,
(
(Bji−1, B

j
i ), str(B

j
i .posw)

)
. Then for every block in Bkr ∈

Bji .incoming, add an edge
(
(Bji , B

k
r ), 0

)
. Finally, if Ck[r0, rl) ∈ Bji .Bposw and Ck[r0, rl + 1) 6∈

Bji .Bposw, add an edge
(
(Bkrl , B

j
i ), 0

)
. For every edge in E ×W , the edge corresponds to either
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Fig. 1. An example of the DAG induced by two blockchains. Arrows are of the color of the block that
contains the pointer.

a Merkle path (when the weight is 0) or a proof of sequential work (where the weight equals the
strength of the PoSW). Therefore, all edges correspond to H2T -sequences. For a cycle to appear in
this graph, a block would need to have a pointer for a block that appeared after it. This is only
possible if there is a collision in H and two blocks have the same root pointer, which has negligible
probability in λ. ut

The fact that this graph is a DAG allow us to find the best H2T -sequence that time-locks a
block in an efficient manner.

Lemma 4.8. Given n blockchains that are maintained by parties P1, . . . ,Pn, finding the H2T -
sequence S =

(
(MT(Bji ),⊥), . . . , (MT(last(Cj)),⊥)

)
of maximum strength between two blocks takes

linear time over the total number of blocks.

Proof. We can see that every edge of the graph induced by the executions presented in Lemma 4.7
corresponds to an H2T -sequence. As the graph is a DAG, finding the longest path from can be
done in linear time [16]. The longest path between last(Cj) and Bji corresponds to the strongest
H2T -sequence between blocks. ut

An important characteristic about the construction of our blockchains is that after the pointers
have been created, the relevant H2T -sequences to time-lock a block Bji are all encoded in Cj .

Therefore, we present an algorithm to extract the relevant subgraph Dj
i of D in order to find the

strongest H2T -sequence time-locking Bji in a blockchain of length i+ r. We remember that given
an H2T -sequence that includes an instance of PoSW, it is possible to extract a timestamp t from
any term with non-zero strength.

Algorithm makeDAG

Set t∗ ← Bji .t, V ← {B
j
i } and E ×W ← ∅ For each block Bji+h in Cj [i+ 1, i+ r)

1. V ← V ∪ {Bji+h}, E ×W ← E ×W ∪ {
(
(Bji+h−1, B

j
i+h), Bji+h.s

)
}

2. For each (j, i + b, S, l) ∈ Bji+h.posw, with b > 0, let V ← V ∪ {Bkl } and E × W ←
E ×W ∪ {

(
(Bkl , B

j
i+b), 0)}

3. For each (k, l, S, l + 1) ∈ Bji+h.posw, if the timestamp t encoded in S is greater than t∗,

let V ← V ∪ {Bkl , Bkl+1} and E ×W ← E ×W ∪ {
(
(Bkl , B

k
l+1), 0)}

Note that Di
j only includes blocks that are directly connected to blocks in Cj [i, i+ l), this is

not strictly necessary as we can naturally extend our definition of a borrowed PoSW to include
also all the borrowed PoSWs contained in the blocks from where the proofs are being borrowed. In
practice, parties would only borrow proofs from blockchains with a higher average rate than them,
limiting the number of H2T -sequences that are encoded in a block. Additionally, participants are
able to add H2T -sequences to blockchains they are not directly connected by hopping between
blockchains by linking H2T -sequences. However, for this presentation we assume that Bji .Bposw
contains only H2T -sequences that directly connect to Cj .

4.3 A model with n blockchains

We have shown that a participant can generate a stronger proof of sequential work for their
blockchains by borrowing the proofs computed by other participants through Merkle pointers. We
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Fig. 2. An example of the DAG induced by two blockchains. The red arrows represent all of the edges
contained in Bj

i .Bposw.

also showed that this information can be directly encoded in the blockchain itself, meaning that
once a proof is borrowed, it will always be valid even if the source for it disappears. This contrasts
with blockchain-based timestamping protocols in practice, where the timestamp is only valid as
long as the blockchain maintaining it continues to exist and considered trustworthy. This section
focuses on the creation of a model for this setting, showing that sharing proofs of work allows for a
realization of Fαtime-lock for a lower α.

In order to model the communication between the parties, we use a broadcast functionality
Fδcomm through which parties share their blocks. At any time, a party may input a block B to
Fδcomm, which the functionality then sends to A. The adversary is tasked with putting messages
in the inbox of each participant and can delay messages for at most δ time steps, after which it
must add the message to the inbox. Whenever a paprty inputs listen to Fδcomm, they receive all
messages in their inbox in the form of a set M .

Participants decide how to construct the incoming and Bposw components of their blocks from
M in the following way, given a γmin:

Algorithm pointers

Set t∗ := clock, incoming := ∅ and Bposw := ∅
Divide M into n − 1 sequences Mk (k 6= j) ordered by B.i, such that B ∈ Mk iff

Σ.verify(pkk,MT(B.data), B.sig) = accept and B is a valid block.
For each Mk:

– For each Br in Mk = (Bf , Bf+1, . . . , Bl):
• If Br.t ≥ t∗: discard Br and empty Mk;
• Else If Br = Bf :
∗ If γmin > Br.s/(t∗−Br.t): discard Br;
∗ Else If Br.s/t∗−Br.t ≤ γj : set incoming ← incoming ∪ {MT(Br)} ;
∗ Otherwise: Let P be the borrowed PoSW from Mk, set Bposw ← Bposw ∪ P ;

• Else If Br+1.s/Br+1.t−Br.t < γmin: discard Br and empty Mk;
• Otherwise skip;

Output (Bposw, incoming)

The purpose of γmin is to prevent an attack from the adversary where it timestamps a block in
the future and starts computing a proof of sequential work until this point in the future passes.
This would allow A to create a block that would have an exaggerated strength. While this brings no
advantage to the adversary, as the average rate of the chain continues to be constant, the previous
has a very weak proof. This selection mechanism punishes a participant that attempts to perform
this attack.

Alternatively, if the participants know the rate of the other parties, an alternate algorithm can
be chosen such that as long as the blocks are constructed correctly and have timely timestamps,
if the rate of the other party is lower or equal than γj , the root hash is added to pointers and
otherwise the borrowed proof is added to Bposw.

We define the following protocol P2PLipwig with n parties P1, . . . ,Pn who each maintain a
P2P-PoSW-chain:
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Algorithm P2PLipwig

Assume that party Pj with public key pkj has access to H, FPoSW
γj for PoSW-rate γj > 0, a

broadcast functionality Fδcomm and content oracle Oj which outputs the content bitstring for
each block. Pj sets prev = H(pk), t0 = clock(), inputs start(t0||prev) to FPoSW

γ and does the
following for rounds i = 0, . . .:

1. waits till Oj outputs content;
2. lets comm← Fδcomm and (out, in)← pointers(comm);
3. retrieves (pi, si) by querying output(ti||prev) to FPoSW

γ ;
4. queries sigi ← Σ.sign(pk,MT.root(datai)),

where datai = (pk, i, prev, ((ti||prev), (pi||si)), out, in, content);
5. sets Bji ← (datai, sigi), prev ← MT.root(Bji ), and ti+1 ← clock();
6. inputs start(ti+1||prev) to FPoSW

γ ;

7. outputs SP-PoSW-chain Cji = (Bj0, . . . , B
j
i ) together with time ti+1 and inputs Bji to

Fδcomm;

On input prove in round i, P do the following:

1. retrieves (p′i, s
′
i) by querying output(ti||prev) to FPoSW

γ ;
2. queries sig′i ← Σ.sign(pk,MT.root(data′i)),

where data′i = (pk, i, prev, ((ti||prev), (p′i||s′i)),∅);

3. sets B̂i ← (data′i, sig
′
i) and t′i+1 = clock();

4. outputs SP-PoSW-chain Ci = (B0, . . . , Bi−1, B̂i) together with time t′i+1;

Note that contrary to previous models, the oracle Oj is different for all parties. Having multiple
oracles implies two fundamental differences: parties do not need to agree on content and their block
schedules are independent from each other.

Lemma 4.9. Given a time-lock verifier V (Definition 4.1) and parties P1,P2 executing P2PLipwig

with oracles Oj which independently output a string every t
R← (Tmin, Tmax) time steps, with

Tmin � δ and Tmax and rates γ1 < γ2. Given a block B1
i created at time t0, at time Tborrow =

Tmax + 1 + t0 + γ2(Tmax−δ)/γ2−γ1 P1 can generate an H2T -sequence
(
(MT(B1

i ), s)
)
, . . . such that V

outputs γ

Proof. If the parties are following the protocol, the longest it can take for a block B1
i to be pointed

to in a block B2
ki

is Tmax + δ. Therefore, for V to output γ2 − ε, it would be necessary that
γ2 · (Tborrow− t0− (Tmax + δ)) > γ1(Tborrow− t0). After this, the faster chain can take an additional
Tmax − 1 time steps to issue a block containing the requisite proof. ut

Lemma 4.10. Given a time-lock verifier V and parties P1,P2 executing P2PLipwig with rates

γ1 < γ2 and oracles O1 and O2 which independently output a string every t
R← (Tmin, Tmax) time

steps. Given a block B1
i created at time t0, for any γ = γ2 − ξ for ξ arbitrarily small, there exists

a time Tξ = t0 + Tmax − 1 + γ2·Tmax+γ2δ/(−γ+ξ+γ2) such that Tξ that time P1 can generate an
H2T -sequence

(
(MT(B1

i ), s)
)
, . . . such that V outputs γ.

Proof. If the parties are following the protocol, the longest it can take for a block B1
i to be pointed

to in a block B2
ki

is Tmax + δ. Therefore, for V to output γ2 − ξ, it would be necessary that
(γ − ξ) · (Tξ − t0) ≥ γ2 · ((Tξ − t0)− Tmax + δ). After this, the faster chain can take an additional
Tmax − 1 time steps to issue a block containing the requisite proof. ut

These simple lemmas show that as long as the faster chain has a bound on the space between
blocks, a party with a slower rate can always benefit from having pointers to it.

5 Applications

Given the problems inherent in proof-of-work consensus, research has has turned towards the search
for more scalable and less wasteful consensus algorithms. While there are multiple protocols that
have been presented that achieve consensus, none manage to replicate all the desirable properties
from the Nakamoto protocol. In particular, when there is no cost associated to the construction
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of a blockchain, emulation attacks become possible if enough private keys become compromised.
For example, a new party does not have any certainty of whether the blockchain that they are
presented with is the real one. In particular, Proof-of-Stake proposals have a natural vulnerability
to posterior attacks, where participants who no longer own stake in the blockchain (but did in the
past) are incentivized to rewrite the blockchain in some point in the past in order to regain their
past fortune. While solutions to this problem already exist, like forward-secure signature schemes
[10], they do not entirely capture the temporal properties existent in Bitcoin.

We believe that our work is of particular importance in the realm of permissioned blockchains
which operate in a small network. There have been concerns that when a blockchain is maintained
by a small group which uses the same software, the possibility that the whole network can corrupted
by an adversary becomes relatively high [25]. The guarantees presented in our work show that
even in the case of complete corruption of the network, only some limited tail of the chain can be
rewritten, depending on the time that the network stays under adversarial control. By design, while
time intensive, the computations needed to compute the proofs of sequential work will be done by
a single processor, meaning that higher security does not imply higher energy waste.

In Section 4, we showed that the parties maintaining the blockchain do not need to directly
compute the proof themselves. If we wish to secure a blockchain, it is only necessary to have a
blockchain with proofs of sequential work which contains pointers to it. The guarantees achieved
by this process are greater than ones provided by simply adding a hash to a Bitcoin transaction,
as the maintainers of the blockchain will be able to extract the proof and encode it back into
the blockchain. This could lead to a creation of a blockchain containing solely pointers to other
blockchains maintained by multiple parties with their own PoSW blockchains, as seen in [15].
Maintaining such a blockchain would not be too expensive, as only one (arguably very fast)
processor would be needed per participant.

While it might seem that depending on centralized groups to provide time-locking might betray
the decentralized vision for blockchains, many of these groups could exist, allowing a blockchain to
freely choose to change their time-lock provider if they so choose.

Finally, such a blockchain containing pointers from multiple separate blockchains could be a
good candidate to realize a trusted randomness beacon. While there have been numerous proposals
to use blockchains as randomness beacons, the one presented in [22] relies on similar assumptions
to the ones used in this work.
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