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SUMMARY

This study considers an efficient method for the estimation of quantiles associ-
ated to very small levels of probability (up to O(10~°)), where the scalar perfor-
mance function J is complex (eg, output of an expensive-to-run finite element
model), under a probability measure that can be recast as a multivariate stan-
dard Gaussian law using an isoprobabilistic transformation. A surrogate-based
approach (Gaussian Processes) combined with adaptive experimental designs
allows to iteratively increase the accuracy of the surrogate while keeping the
overall number of J evaluations low. Direct use of Monte-Carlo simulation even
on the surrogate model being too expensive, the key idea consists in using an
importance sampling method based on an isotropic-centered Gaussian with
large standard deviation permitting a cheap estimation of small quantiles based

Email: nassim.razaaly @inria.fr on the surrogate model. Similar to AK-MCS as presented in the work of Schobi

et al., (2016), the surrogate is adaptively refined using a parallel infill criterion
of an algorithm suitable for very small failure probability estimation. Addition-
ally, a multi-quantile selection approach is developed, allowing to further exploit
high-performance computing architectures. We illustrate the performances of
the proposed method on several two to eight-dimensional cases. Accurate results
are obtained with less than 100 evaluations of J on the considered benchmark
cases.
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1 | INTRODUCTION

Quantile estimation is of fundamental importance in statistics as well as in design applications,! the main challenge
being the number of observations required when these correspond to the output of expensive numerical simulations.
Variance reduction techniques such as Importance Sampling (IS),? correlation-induction,* and control variates*> have
been proposed. The number of required observations is however large, especially for small quantiles.

Let us introduce a probabilistic model, considering a physical d-dimensional random vector Y fully described by its
probability density function (PDF) f,, and a performance functionJ : R — R representing the system response. The
problem of interest consists in the estimation of the quantile g € R associated to a level of probability « €]0, 1[, with a ~ 0:

a=Py(J(Y) <q), ®
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Py denoting the probability measure induced by Y. It is assumed possible to recast the problem (1) using an isoprobabilistic
transformation* T (eg, Rosenblatt/Nataf transform5?), used to define the standard random vector X and the performance
function G : R? — R in the standard space as

X = T(Y), 2
GX) = J(T"1(X)). 3)

We recall that X ~ N'(0,I) is the standard normal random vector of R¢, described by its PDF f ~.Lp- Equation (1)
consequently reads:

a =Px(GX) < q) = Ex[Lg(X)] = /R d]1G<q(X)fX(X)an “4)

with Px and Ex denoting, respectively, the probability measure and the expectation operator induced by X. 14 is the
indicator function, equal to 1 if G < g, 0 otherwise. The problem of quantile estimation is closely linked to the one of
estimating a failure probability «, where the model response G is associated to the critical value q. A typical approach to
the latter estimation (Equation (4)) consists in resorting to a direct Monte-Carlo (MC) scheme. Its estimator reads

NMC
1
a =Ex[1gce(X)] = — 1 X;), 5
xlLo<g(X)] = Z:, G<q(X:) (5)
where (x1, ..., Xn,,.) ~ X. This estimator is asymptotically unbiased and convergent. Its variance estimator reads:
)
2=2"2 (6)
Nuc

The accuracy of the failure probability estimate can then be measured directly with the coefficient of variation (CoV)
estimator:

1-a

aNyc'

(7

Q@»
Il
§2>|§)>
Il

We recall the definition of the quantile, resorting to the cumulative density function (CDF) F : x — Px(G(X) < x) of
the random variable G(X):

q=F;'(a)=Inf{xeR : F(x) > a}. (8)

A MC estimator Fgy . of the CDF F reads:

Ny
Fon, () = Jﬁ gﬂc(x,.)oc- ©)
A MC-based estimator of the quantile reads:
q="Fgy (o). (10)
A more practical expression reads:
4 = GX[an,c])» (11)

after having reordered the set {G(xy), ..., G(Xn,,.)} in ascending order.

*The proposed method is based on the failure probability estimation algorithm eAK-MCS requiring to work in the Standard Space.



RAZAALY ET AL. 3

WILEY——*

We assume that the CDF Fj; is differentiable in g, and fz(q) > 0, where the PDF of G(X) is defined by fs(x) = %

when it exists. The central limit theorem for quantile estimators (section 2.3.3 of Reference 9) provides an asymptotic
measure of error §:

1 —
VNuc@-q) > N <o, %) : (12)

the arrow — denoting here the convergence in distribution as Ny, goes to infinity. This result permits to theorically build

Confidence Intervals (CI) for the true quantile; for example, the 95% CI reads [q + 1.96% A /%] . A major difficulty
G MmcC

lies in the estimation of the PDF (under existence) at § (10). In this study, we restrict ourselves to estimating the quality
of the quantile estimator by considering the one of the associated failure probability a; = Px(G(X) < ). The accuracy of
1

an Mc aNyc

the MC-based estimator &; of a; is quantified by its CoV estimator i AN . Consequently, if a target CoV of

6 < 1% is desired, a quantile of level 10~° would require a number of simulation Nyc ~ aigz ~ 10" yielding a prohibitive
computational cost for industrial cases, and likely very expensive even using a surrogate model for G.

Various methods have been proposed in the literature to estimate failure probabilities and the reader may refer to
Reference 11 for a critical review. Sampling methods include the aforementioned MC characterized by a low convergence
rate, IS'>13 relying on a prudent choice of the IS density, and subset simulation (SS).!4

Surrogate-based methods rely on the substitution of the performance function by a metamodel, one that is orders of
magnitude faster to evaluate. The approximate model can be used in conjunction with sampling methods, to improve the
latter or to correct the potential bias due to the surrogate model, such as AK-MCS,'> AK-IS,'¢ KAIS,!7 and AK-SS.!3

Several algorithms have been proposed to deal with very small failure probabilities (107> — 10~°) and multiple failure
regions: Meta-IS,!° MetaAK-1S2,2° BSS,*! ASVR,?2 2SMART,?* AK-MCSi,?* GPSS,* AK-MCS-IS,?® S41S,%*” and SS-KK.%-2°
Some other methods such as SORM?® or AK-IS are suitable for very small failure probabilities, but rely on the existence
of an assumed unique so-called most probable failure point.

However, the adaptation of a failure probability estimation algorithm to an algorithm for quantile estimation is not
straightforward, especially in the context of extreme quantiles (ie, quantiles associated with very small probabilities). We
propose here a methodology for such adaptation. This methodology employs a previously developed failure probability
estimation procedure to estimate small quantiles when the performance function J is expensive to calculate (eg, output
of an expensive-to-run finite element model). The failure probabilities and quantiles are defined under a probability
measure that can be recast as a multivariate standard Gaussian law using an isoprobabilistic transformation, regardless
of restrictive assumption on J.

We note that some studies are focused on quantile estimation in case of an expensive performance function, such as
References 31-35. However, these are not adapted for extreme quantiles. By contrast, the methodology proposed here is
well suited for estimation of extreme quantiles, as we demonstrate with several examples.

In particular, Schobi** proposed to formulate the problem of estimation of failure probability and quantile in an uni-
fied way, based on the popular AK-MCS' algorithm, originally developped for the estimation of failure probability. A
Gaussian-Process-based surrogate3® (polynomial chaos kriging, PCK, in Reference 34) of J is adaptively refined until a
convergence criterion is reached, making the most of the uncertainty prediction of the surrogate. More precisely, the
refinement algorithm based on AK-MCS permits to select a batch of samples added to the so-called Design of Experi-
ment (DoE, a.k.a. plan of experiment), where the threshold value is the quantile estimated from a MC population and the
surrogate.

In a very similar fashion, Bichon3’ replaces the AK-MCS adaptive sampling step with efficient global reliability anal-
ysis (EGRA) based on single refinement. Both methods from References 34,35 illustrate the use of failure probability
refinement algorithms for quantile estimation in the context of moderate (not extreme) quantile levels.

When dealing with quantiles of small level, such a surrogate-based approach becomes intractable due to the pro-
hibitive large size of the MC population that needs to be evaluated with the surrogate itself, required to obtain a satisfactory
evaluation of the quantile.

The same comment applies to the computation of small failure probability, where AK-MCS** 1> becomes unaf-
fordable. eAK-MCS*” extends AK-MCS for very small failure probability, inheriting a similar refinement strategy
and general properties. It requires, however, to map the input random vector to the standard space. Similar to
AK-MCS-based quantile estimation, the adaptive refinement algorithm eAK-MCS is used to adaptively refine the
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surrogate for a threshold equal to the estimated quantile. An IS scheme whose Density (ISD) is an isotropic cen-
tered Gaussian with large SD permits to satisfactorily estimate a small quantile (O(10~°)) with a tractable number of
surrogate evaluations (O(107)). Another contribution of this study is a simple technique to propose in a parallel man-
ner several quantiles for which levels the surrogate will be refined, which can be also used in the context of larger
quantiles (O(1072 — 1074)).

It is emphasized that the framework proposed here uses eAK-MCS as a forward model for small failure probability
estimation whose refinement algorithm serves to propose suitable samples to refine the surrogate. In this frame-
work, eAK-MCS could be replaced by any similar surrogate-based methodology’, such as Meta-IS,'” MetaAK-1S?,%° or
MetaAL-OIS.3® The main contribution of this paper lies in adapting such a reliability analysis tool for extreme quantile
estimation.

The paper is structured as follows: Section 2 presents some general concepts such as Gaussian Processes and the
theory of IS. In Section 3, the proposed algorithm named QeAK-MCS is described. Numerical experiments illustrating
the method are presented in Section 4 to illustrate its efficiency. Conclusions are drawn in Section 5.

2 | BASICINGREDIENTS

In this section, we describe two main ingredients for building the method proposed in this paper, that is, Gaussian Pro-
cesses in Section 2.1 and IS in Section 2.2. In Section 2.3, a IS-based quantile estimator based on a Gaussian isotropic ISD
is derived.

2.1 | Gaussian processes and kriging

In this subsection, concise details about Gaussian Processes and Simple/Universal Kriging in the noiseless cases are given.
For comprehensive details about Kriging, the reader may refer to well-known references; %3 more concise descriptions
can be found in Reference 10,40.

The objective is to construct an approximation y of a true (expensive to evaluate) unknown function y : X C
R? - Y C R, based on a training set, a.k.a DoE of size n € N*, T = {x;, Yilieqin)>, Where y; = y(x;). The output of
the deterministic computer experiment y is assumed to be a realization of a real-valued random process Y indexed
over X. The set of the observed outputs y = (y,, ... ,»,) then appear as respective realizations of the random process
Y = (Y(x7), ..., Y(Xy)). For x € X, we assume Y(x) of the form Y(x) = u(x) + Z(x), with u(x) being the mean of Y(x)
and Z(-) being a zero-mean stationary gaussian process, fully characterized by its symmetric positive definite autoco-
variance function (a.k.a. covariance kernel). The specific case of a known mean function yu is equivalent to consider
the kriging formulation, applying the affine map y « y — u, known as simple kriging (SK) with Y(x) = Z(x). Assum-
ing the mean p as a linear combination of so-called basis functions leads to the so-called Universal Kriging (UK)
formulation Y(x) = f(x)7 g + Z(x), where f : X - RP, f(x) = (f;(X), ..., fp(x)) is a map of p € N* user-defined basis func-
tions and f € RP is an unknown vector of weights to be determined. Note that the particular case of UK where f
boils down to x — 1 is known as ordinary kriging (OK), leading to Y(x) = fy + Z(x), with fy € R being the unknown
constant trend. Considering a given x € X (untried location), the objective of kriging is to derive a random predic-
tor of the unknown random process Y at x, based on the observations Y. The so-called best linear unbiased predictor
(BLUP, see Reference 39) Y(x) is considered. The Kriging mean predictor is defined as uy(x) = E[Y(x)], while the
Kriging variance predictor yields 0; x) = E[(Y(x) — Y(x))], E refers to the probability measure induced by the ran-

dom process Y. Details permitting to derive the expression of the BLUP Y(x) and the predictors can be found in
References 36,39.

In this paper, SK is considered with the anisotropic Matérn covariance kernel with regularity g (Library GPy written
by the Sheffield Machine Learning group*'). Note that the algorithm presented in this paper is obviously also compati-
ble with any GP-based metamodel, for instance with more sophisticated trends (eg, PC-Kriging3*) or kernels. In cases
where an isoprobabilistic transform T is used to recast the physical problem into the standard one, it is recommended
to build a surrogate in the physical space, namely for J(y), obtaining: G(x) = Ue(X) = p3(y) and oy(x) = o3(y), where

fSuitable for very small failure probability and multiple failure regions, providing samples for a given threshold value.
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y = T-}(x). In this work, both are systematically built and compared by means of leave-one-out estimation.*? In the
analytical examples treated here, the surrogate built in the physical space was systematically better.

2.2 | Importance Sampling Theory

The Importance Sampling (IS) method*!%!3 is one of the most well-known variance reduction techniques used for assess-
ing small failure probabilities. In this subsection, we present the general concept of IS, and apply it in Section 2.3 for
IS-based quantile estimation.

The idea consists in drawing samples following another distribution than the original one in order to populate more
frequently the so-called failure domain. The failure probability estimate is then obtained as a weighted average of these
draws. We consider the generic computation of

pg = Ex[gX)], (13)

where g is a scalar function (eg, 1,4, given a critical value u € R). Let h be a proposal PDF (a.k.a. biasing/instrumental
PDF or ISD) assumed to dominate gfy in the absolutely continuous sense:

Vx € Dx, h(x)=0 => gx)fx(x) =0. (14)

Then, p, may be rewritten as follows:

Jx(X) JxX)
= hx)dx = E;, [gX)—]| . 15
Dg /Rdg(x) h) ®)dx = Ky, [g(X) X 1s)
It easily leads to the IS estimator:
NIS
. 1 Jx(x1)
= 2, 8x) , (16)
P2 = Nis ;g " h(x;)
where xy, ..., Xn, " h. This estimator is unbiased and its quality may be measured by means of its variance estimator:
Nis 2
A2 1 1 2fX(Xi) )
6, = — X)) ——— — . 17
# NIS—1< 1S ;g( ) h(x;)? o an

The corresponding CoV §,, quantifying the estimation accuracy, is defined (if Dg #0) as

. Oy
= £ (18)
Dy

The accuracy of the approximation given by IS critically depends on the choice of the ISD k. In this study, the ISD is
chosen as N (0, y2I;) where y > 1 is a parameter which is defined using a rule of thumb as discussed in Section 3.5 (or
can also be tuned following Reference 37). Note that a Gaussian mixture ISD with suitable empirical parameters might
be used,® but those empirical parameters would depend on the critical value u, which represents the unknow quantile
q here.

2.3 | Quantile estimation using IS
At each step of QeAK-MCS, several estimations of quantiles based on the surrogate model G are required. When « is

very small (@ < 107%), an accurate estimation using the MC approach becomes expensive, possible unfeasible, even using
surrogate evaluations.
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In the literature, several Variance Reduction Techniques have been investigated for quantile estimation, including
control variates,*>** IS,? and IS combined with stratified sampling.*® In this study, we propose to resort to the IS procedure
using h = fy,21, as the ISD is preferred. We consider the generic problem of estimating the quantile g of level a €]0, 1]
associated to a scalar function g (eg, g(x) = pg(X%)):

a = Px(eX) < ). (19)

iid . . . . L
A set of Nis samples (xy, ..., Xy,) ~ Sn o1y is generated. The IS estimator (Equation (16)) permits to implicitly
evaluate a quantile estimator §:

NIS

G = Argmin {q e Rs.t. Z Tgeq(x l)f;l((( L)) } . (20)

The sample set is re-ordered so (g(x1), ... , g(Xn,,)) is sorted in ascending order. Note that the ISD h = fyr(q,,21,) does not
depend of §. The implicit estimation of § is rewritten as:

NIS
a =) Loy, 1)
i=1
K& . .
where y; = Nk Let ¢; denote:
i
¢ = ny’ Vi€ [[1,Nis] - (22)

=

It is then easy to show that 3! € [[1,Nis — 1] s.t. ¢; < @ < ¢i41, if ¢; < @ < ¢y, A simple estimator of § would then
simply read:

q=8x), if a < (23)
= g(Xn,), if a > cn, (24)
=g(x), if 1 <a<q, L€ [2,N5] . (25)

In order to slightly improve the accuracy of this quantile estimator, a linear interpolation* is performed:

8(Xpy1) — 8(Xk)

q=8x)+(a—c)—, (26)
Ck+1 — Ck
with
k=1, if a<c 27)
= NIS -1, if a > CNIS (28)
=1, if ¢; < a <cng. (29)

Due to numerical robustness considerations, the linear estimator (Equation (26)) is replaced by the simple estimator
(Equation (25))if |ck1 — ck| < 1071, This IS-based quantile estimation is the key of the extension of eAK-MCS for extreme
quantile estimation, since it allows one to significantly decrease the CPU cost associated to the estimation of an extreme
quantile, even based on a surrogate model. The extension is described in the next section.

This step can be replaced by a higher order (eg, quadratic) interpolation. Numerical experiments do not suggest its relevance.
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3 | THE QEAK-MCS ALGORITHM

In this section, we propose a new method for the estimation of extreme quantiles, denoted as the Qe AK-MCS algorithm.
It is aimed at the problem of estimating the quantile g of the performance function G, given the level «, as in Equation (4).
The algorithm builds a GP-based surrogate of G, refining it iteratively considering the estimated quantile as the critical
value of the associated failure probability estimation.

QeAK-MCS is similar to AK-MCS-based quantile estimation,> however it uses IS instead of MC (as is done in
AK-MCS), thereby extending the approach from eAK-MCS*’ to quantile estimation. The main steps of QeAK-MCS can
be summarized as follows:

(1) Initial DoE: An experimental design X is generated by Latin-Hypercube Sampling (LHS) (see Section 3.1).

(2) IS population: A set of Nig sample points S = (X1, ..., Xn,) X Ia,21, is generated.

(3) Metamodel update: The exact response Y of the exact performance function G is carried out on X. The metamodel
is calibrated based on {X, Y} (see Section 2.1).

(4) Critical values/quantiles selection: The surrogate-based quantile estimate q is obtained using IS. A set of K, quantiles
(@1, ---,gk,) around § is selected, based on the surrogate information (see Section 3.2).

(5) eAK-MCS-based samples selection: for each gy, | € [[1,K,], K, samples (x!, ..., xk ) are selected following the refine-
ment step of the algorithm eAK-MCS, for the failure probability Px(G(X) < §)). ]PDetails are given Subsection 3.3 for
the sake of self-completeness of the paper.

(6) Filtering procedure and surrogate update: An a posteriori filtering procedure is performed on the selected samples
Xt = {xj’. Ve[, ], te[ug,] removing too close points: for a, b distinct samples of X, if ||a — b||, < TOL, a is discarded
from X*. It permits to avoid samples too close to each other (thereby preventing metamodel training issues). The
selected samples X* are added to the experimental design X, and Step 3 is applied.

(7) Stopping criterion: If a stopping criterion is satisfied (see Section 3.4), the enrichment stops. Otherwise the algorithm
goes back to step 4.

3.1 | Initial DoE

An initial design of size ny = 5d'°*'0 is generated as described in Reference 21. A compact subset X, = H‘iil lq}.q_,1is
constructed, where g; and g/ _ are, respectively, the quantiles of order 6 and 1 — ¢ of the ith input variable. Working in
the standard space, X, reads [D(5), d(-5)]4, D denoting the CDF of the univariate normal Gaussian law. A LHS design on
[0,1]¢ of size n (criterion maximin here) is then scaled to X, using an affine mapping. This rescaled design is the initial
DoE X.

3.2 | Critical values/quantiles selection

At each step of the refinement algorithm, K, quantiles are proposed, to serve afterward as critical values for the eAK-MCS
refinement algorithm.
First, the surrogate-based quantile § is estimated using IS (Equation (26)):

a =Px(usX) < 9. (30)

Note that if K; = 1, the selected quantile is simply §. Bounds q~, ¢* of the quantile estimate § are derived based on the
surrogate Gaussian nature, using in particular the predictive standard deviation:

a =Px(ugX) + kogX) < 4%), (31)
a =Px(usX) — kog(X) < §°), (32)

where k > 0 sets the confidence level.
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3.2.1 | Linear selection

The approach followed in this paper consists in choosing linearly K, quantiles in [§~, "

o
a=q+0-nT 1

, Ve |[1,Kg| - 33
Kq 1 [[ q ]] ( )

Two other approaches, implemented but not studied in this paper, might be considered. Based on the experience of the
authors, there is no clear advantage of one selection criterion over another. The strategies Linear—a and Linear—k involve
a slight additional computational burden, negligible though since based on surrogate evaluations. They are provided in
Appendix Al, and might be combined during the sampling refinement.

3.3 | eAK-MCS selection

In this subsection, we recall the basics of the refinement selection of eAK-MCS (see Reference 37 for details). Given a
critical value u, K, samples are selected for the refinement of the performance function surrogate G. For each sample
x € R4, the so-called probability of misclassification P,,(x) is defined as Reference 46:

Ph(x) = @ <_M> , (34)
o5(X)
The popular U-function!>3* is defined as:
A(X) —u
U“(x) = M (35)
o5(X)

The eAK-MCS refinement strategy reads as follows:

(1) 1sample x; is selected among S following the single eAK-MCS selection: x* = argmin U*(x).
XES

(2) K, —1samples (xj, ... ,Xl*{p_l) are simultaneously selected among the set ME(u) ={xXeS . puzx)— EGG(X) <u}\

(xesS: puzx + EO’G(X) < u}, using a weighted K-means clustering technique3#37 where the weights are chosen as

P (x) for each sample x € ME(u). If this method returns only K; < K, — 1 samples (K; = 0 possibly), then the very
same method is applied to the full IS population S to provide the remaining K, — 1 — K; samples.

3.4 | Stopping criterion

The stopping criterion adopted is the same as the one proposed in Reference 34, focusing on the accuracy of the quantity
of interest, hence on the upper and lower bounds of the quantile:

it -
Qref

<, (36)

for two consecutive iteration steps, where the quantiles bounds are estimated by:
a = Px(upX) + kop(X) < "), 37
a = Px(ugX) — kop(X) < 47, (38)

the parameter k setting the confidence interval for the stopping criterion. Note that k is in practice different from k used
in the selection of quantiles, and k used for the selection of samples in Section 3.3. g, is a positive scalar value permitting
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TABLE 1 Tuning parameters

k k k 1o s K, K, TOL € v Nis
1 3 2 5d 1073 3 3 1074 5% Equation (39) 107

to normalize the quantile. In industrial cases, experts are likely to be able to provide such normalization constant. In the
analytical benchmark functions studied here, g, is replaced by o, the standard deviation of G(X) under the distribution
of X. It is evaluated beforehand using MC, with a large sample size, on the analytical function G. It is suggested in Refer-
ence 34 to replace q,.¢ by the surrogate-based estimate of the standard deviation of the performance function. According
to the authors experience, this approach can be misleading since at a given iteration step, this estimate might be highly
inaccurate and severely overestimated, leading the refinement algorithm to stop prematurily.

3.5 | Quantile eAK-MCS numerical settings

The tuning parameters mentioned in the method section are summarized in Table 1 with their suggested value, used in
the numerical experiments (except when explicitly mentioned otherwise).

For eAK-MCS,*” the choice of y in the ISD has a large impact on the efficiency of the method, and an automatic tuning
method was proposed based on the evaluation of the failure probability. Here, since the level « is fixed (can be interpreted
as a failure probability, for a critical value equal to §), a less elaborate tuning method only based on « is sufficient to
obtain satisfactory results. If « > 1073, a MC-based method is enough to obtain an accurate quantile (CoV of 1%) with a
reasonable number of samples (107), so y = 1 is fine. For smaller a, a linear law in log,,(a) is chosen, assuming that if
a =107, y = 2.5 permits satisfactory results. The rule of thumb for tuning y is consequently defined as:

y = max (1, i (1- logwa)) : (39)

3.6 | Illustrative example

To showcase the process of selecting multiple additional samples, we consider the example discussed in more detail
in Section 4.2, initialized with a DoE of size 10. In the process of selecting K = K,K,, = 18 samples at each refinement
step, K4 = 3 quantiles (41, 42, §3) are estimated (Section 3.2). Note that (g1 =47, 3> = 4,43 = §*), for K; = 3. Then, K, = 6
samples are selected using the eAK-MCS refinement considering g; as the critical value, as shown in Figures 1, 2, and 3,

(A) Selected from S (B) Selected from MF (¢1) ©) Pg} Contours
FIGURE 1 Refinement illustration for §; = §~ = —4.84. Black crosses and triangles represent, respectively, the initial DoE, and the

selected design of experiment (DoE) at the first refinement step. The dashed black line represents the level G = q based on the true
performance function G and the exact quantile g = —4, the red line represents the level ug = §; based on the surrogate, and the DoE selected
based on the level yz = §; is indicated in red (diamond/squares). The diamond in (A) represents the point selected from the importance
sampling population S shown with grey dots in (A). The squares in (B) and (C) represent the points selected from ME(QI) shown with grey
dots in (B) and (C), with k=2.In (C), the contours of the probability of misclassification with respect to the critical level §; are shown, with
blue ~ 0 and red ~ 1. For clarity, zones where P,, < 10~ are indicated in white. A, Selected from S; B, Selected from ME(QI); C, P?,; contours
[Color figure can be viewed at wileyonlinelibrary.com]
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-10 -5 o 5 10 -10
(A) Selected from S (B) Selected from ME(QQ) © ng Contours

FIGURE 2 Refinement illustration for §, = —3.99. The blue line represents the level y; = g, and the design of experiment selected
based on this level is indicated in blue (diamond/squares). See Figure 1 for legend settings. A, Selected from S; B, Selected from M¥(g,);
C, P2 contours [Color figure can be viewed at wileyonlinelibrary.com]
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(A) Selected from S (B) Selected from MF (u) © Pg{” Contours
FIGURE 3 Refinement illustration for §; = §* = —3.66. The green line represents the level u¢, = g5 and the design of experiment

selected based on this level is indicated in green (diamond/squares). See Figure 1 for legend settings. A, Selected from S; B, Selected from
Mk (u); C, P2 contours [Color figure can be viewed at wileyonlinelibrary.com]

10

(A) Batch Selection (B) Updated Surrogate (C) Levels

FIGURE 4 Illustrative example: Design of experiment and surrogate. Settings are as in Figure 1, with red, blue, and green
corresponding, respectively, to §;, §,, ;. (C) represent the contours for ug = q, g + 204 = q and pg, — 204 = q represented,
respectively, in blue, green, and red dashed lines. A, Batch selection; B, Updated surrogate; C, Levels [Color figure can be viewed at
wileyonlinelibrary.com]

respectively, i = 1, i = 2 and i = 3. For the sake of illustration, the second refinement step is shown, starting from a DoE
composed of the initial DoE, and the samples added to the experimental design after the first refinement step. The size of
the IS population is set here to N = 10°.

Figure 4A,B shows the DoE refinement step, respectively, before and after the metamodel update. Figure 4C represents
the true limit-state surface associated to the exact quantile g = —4, and the surrogate levels associated to the quantile
estimates §,, ¢, and §;.
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4 | NUMERICAL EXPERIMENTS

In this section, we consider the application of QeAK-MCS? to several test-cases, involving a ~ 10~t010~°, to showcase
the suitability of the proposed algorithm to deal with small to extreme quantiles. Three 2D, one 6D, and one 8D examples
are investigated.

Very accurate estimation of extreme quantiles of an analytical function can be a complex task. To alleviate
this issue, test-cases available in the literature in the context of failure probability estimation are considered: the
reference quantile is then taken as the critical value of the problem of interest, while the fixed quantile level «
is set to an accurate estimate of the failure probability (CoV < 0.20%), using either SS?! or IS with a Gaussian
mixture.’’

To the best of the knowledge of the authors, no other method is suitable for extreme quantile estimation as discussed
in the Introduction. This makes comparison of our proposed method to other approaches from the literature difficult.
Notwithstanding, we present an example (Section 4.5) where we compare QeAK-MCS with the AK-MCS approach from
Reference 34, in case of moderate quantiles.

A parallel refinement strategy is adopted, with K;K, =9 samples added at each iteration step (K; = 3, K, = 3),
to showcase the suitability of QeAK-MCS for parallel environment. Note that the exploratory nature of the refine-
ment strategy suggest the use of Ky, K, > 1, even considering sequential refinement?. The other tuning parameters
are the ones provided in Table 1, except when explicitely mentioned. The initial DoE is assumed to be evaluated in
1 iteration.

Because of the stochastic nature of the proposed method, we assess the statistical significance of the results for
each test case with 50 independent runs (replications). Thus, the number of calls N5 to the performance function,

the number of iterations Njer, the quantile estimate g, and the final relative error e; = 13-4l are random variables, and

ref

we show their average over the 50 realizations resulting from the independent runs. Furthermore, we show the CoV
of § (also computed from the 50 realizations), as it is an indicator of the robustness of the method. The lower the
CoV is, the more likely is the algorithm to return an estimate of § which is close to its asymptotic average over many
independent runs.

We point out that the accuracy of the estimates obtained with QeAK-MCS is determined by two ingredients of the
algorithm. One is the quality of the refined GP-based surrogate of the performance function, the other is the accuracy of
the quantile estimation given the surrogate. Thus, there are two main sources of error: (i) the difference between the true
performance function and its surrogate and (ii) the statistical error in the estimation of quantiles based on the surrogate
with IS.

Note that for some analytical examples studied here, the true quantile q is zero, so assessing the classic relative error
is not suitable. Instead, q,.; is chosen here as the standard deviation of the performance function o, estimated on the
analytical using MC with 107 samples. The quantity é, defined as@ = 170 s therefore introduced as a normalized measure

ref

of the quantile estimate.

The average CoV of the estimation of the failure probability E[CoV[&]] based on IS (Equation (18)) is also given in
order to assess the quality of the IS procedure based on the ISD fy-(,,1,), that is, the accuracy of the estimated quantile g
based on the sampling procedure (not the quality of the surrogate).

For each case, figures showing the average relative error ¢4, and the average normalized quantile estimate a as a
function of the number of performance function calls are provided, where additional samples are added even after the
stopping criterion is met, for the sake of illustration. The 2—o confidence interval is represented with black dashed lines.
For two-dimensional (2D) examples, an illustration of the final DoE and refined metamodel is also provided, when the
convergence criterion is satisfied, based on a single run.

Remark. The parallel strategy refinement might propose strictly less than KK, samples due to the a posteriori filtering
procedure. A postprocessing step involving a linear interpolation procedure on ¢4 and § is required at the end of the
50 runs.

$The in-house software is implemented in Python 3.6, using the package GPy for the surrogate modeling.
IThis comment is based on authors experience, and is not supported by rigourous numerical experiments.
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4.1 | Single failure region 2D

A first classic 2D example is taken from References 16,20. This example is characterized by a low failure probability
(a ~ 3 x 107°), avery smooth limit state and a single failure region. The performance function in the standard space reads:

G, xz) = %(xl _2p7 - %(xz —5p -3, (40)

where X7, X, ~ N(0,1). The probability of failure reads a = Px(G(X) < q) = 2.874 x 107>, estimated with a CoV 0f 0.03%
using IS with a Gaussian mixture ISD3 based on 107 samples, for g = 0.

41.1 | Results

In Table 2, we compare the reference with the results of QeAK-MCS, based on 50 independent runs. For all runs, the
QeAK-MCS algorithm stops after one refinement step (nine samples added to the initial DoE), yielding a very accurate
estimate of the quantile, the average relative error being below 0.05%.

An illustration is provided in Figure 5A, showing the refined metamodel for a single run. The DoE selected is well
clustered around the True LSS G = g, showing that both the quantile § and the surrogate are well estimated. This is further
illustrated in the quantile history in Figure 5C where the 2 — o confidence interval of p; rapidly merges and converges
to the reference value. The relative error history, Figure 5B, demonstrates the convergence behavior of the method in
that case, where the mean error is below 0.01% after 60 calls. This convergence behavior is confirmed by the very low
mean CoV of the failure probability estimate based on IS E[CoV'[&]], which assesses the efficiency of the ISD in that low
dimensional case. The method in that case is also very robust, with CoV[§]<0.05%, which is further demonstrated with
the 2 — ¢ confidence interval rapidly merging to the reference value Figure 5B.

The original function being a second-order polynomial easily captured by the metamodel, this example is rather sim-

rel

ple, also because it is characterized by a single failure region and low dimensionality. The low value of €y, can be explained

TABLE 2 Resultsof the

Method ElNcans]  ElNieel  ElQ1 Covlgl [Elgl  ElCoviall . . .

single failure region two
Reference 107 - 0 - 0 < 0.04% dimensional
QeAK-MCS 19.0 2.0 -1.023 x 1073 0.03% 0.02% 0.44%

Note: Solving Px(G(X) < §) = 2.874 x 1075, with q,; = o = 121.334.

aReference: Importance sampling (IS) with a Gaussian mixture as importance sampling density,*® 50 independent
runs. Coefficient of variation (CoV) < 0.04%

bInitial design of experiment size: 10. Nine samples iteratively added. Based on 50 independent runs.

10.0
7.5
5.0
2.5
0.0

-2.5
-5.0
-7.5

-10.0

0 -5 1] 5 10 o 20 40 60 80 100 o 20 40 60 80 100
N N

(A) Metamodel (B) Relative Error History (C) ¢ History

FIGURE 5 Results of the single failure region two dimensional. (A) Legend settings in Figure 4. (B) Green and red thick dashed lines
indicate, respectively, 5% and 1% relative error. The y-axis is logarithmic. The average relative error bias and the associated 2 — ¢ confidence
interval are represented, respectively, in black thick line and black thin dashed lines. (C) The normalized predicted quantile estimate a and
the associated 2 — o confidence interval are represented respectively in black thick line and black thin dashed lines. A, Metamodel; B, relative
error history; C, 3 history [Color figure can be viewed at wileyonlinelibrary.com]|
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by both the good quality of the surrogate, and the accuracy of the quantile based on the IS sampling method, illustrated
by the low E[CoV[&]].

4.2 | Four-branch series system 2D

This example is a variation of a classical structural reliability test case.!*! The performance function is defined as:

( =% _ntx ]
3+ T _\/E

0—%)% | x+x,

. 3+ T + —\/5

Glr,x) =ming  x _x 4 L , (41)

\/57
=00 —x2) + 7

g

J

and X1, X, N (0, 1). The failure probability is @ = Px(G(X) < q) = 5.596 X 107%, estimated with a CoV of about 0.04%,!
based on 100 runs of SS with sample size 107, for ¢ = —4. This 2D example characterized by four failure domains and an
extreme quantile level represents a very challenging case, albeit low dimensional.

421 | Results

The results are presented in Table 3 and Figure 6. QeAK-MCS stops after ~ 99 calls (~ 11 iterations) in average, resulting
in a very accurate and robust result, with respectively a mean relative error of 0.57% and a CoV of §q of 0.82%.

Asseen in Figure 6A, the True LSS is well estimated by the predicted LSS in the region characterized by high density of
input distribution, where the ability of the surrogate to classify samples into the safe/unsafe domain is the most sensitive.
Note also that in that zone, the upper/lower predicted LSS match the predicted LSS, indicating high predictability and
the presence of DoE clustered in that zone. Figure 6B,C shows, respectively, the average relative error and the quantile
estimate history as a function of the number of performance calls, with corresponding 2 — ¢ confidence interval. One
can note that after on average 40 function calls (4-5 iterations), the average predicted quantile g is already of the same
order of magnitude as the reference value, and the convergence is then rather fast, with a mean relative error lower than
1% after ~ 90 function calls (~eight iterations). The average CoV associated with the IS estimate of the corresponding
failure probability P(ug < @) is still low for this 2D case, about 0.95 %, illustrating the efficiency of the IS method with
the Gaussian ISD WN(0, y*I,) in this case. This translates into an accurate estimate of the quantile, for a given surrogate
accuracy, which is confirmed by the convergence trend of the relative error which decreases as the surrogate is refined.

TABLE 3 Results of the

four-branch series system two Method E[Ncans] ElNiter] Efg1 CoVIg] Ele,] E[CoV]a]]
dimensional Reference 107 - -4 - 0 < 0.05%
QeAK-MCS 98.4 10.9 —3.999 0.82% 0.57% 0.95%

Note: Solving Px(G(X) < §) = 5.596 x 10~°, with g,,; = 6 = 0.6265.
aReference: Subset simulation,?! 100 independent runs. Coefficient of variation (CoV) < 0.05%.
bInitial design of experiment size: 10. Nine samples iteratively added. Based on 50 independent runs.

10.0

7.5
5.0
2.5

FIGURE 6 Results of the

0.0

four-branch series system two 2sf

dimensional. Legend Settings in Figure 5. 501

AA, Metamodel; B, relative error history; C, _;:z /

q hlStOI'y [CO]OI‘ ﬁgure can be Vlewed at -10 o 20 40 GON 80 100 120 o 20 40 Gt;v 80 100 120

wileyonlinelibrary.com] (A) Metamodel (B) Relative Error History (C) ¢ History
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4.3 | Deviation of a Cantilever Beam 2D

This 2D example characterized by a single failure region and a small quantile level a ~ 4 x 1079 is taken from Reference
21, where the deflection of the tip of a Cantilever Beam with a rectangular cross-section reads

3L4X1
O, xp) = =L 42
FOa,x2) 2Ex (42)

where L = 6, E = 2.6 x 10%, X; and X, are assumed independent, with X; ~ N (u;, 67), sy = 1073, 61 = 0.2, t, = 0.3 and
65 = 0.1y,. The failure probability reads a = Px(—f(X) < q) = 5.596 X 10~%, estimated with a CoV of about 0.03%,2! based

on 100 runs of SS with sample size 107, for g = —é.

43.1 | Results

The results are presented in Table 4 and Figure 7. The QeAK-MCS algorithm stops after ~ 29 calls on average (three
iterations), yielding a mean relative error lower than 1.2% at the end of the refinement algorithm, whose robustness is
quantified by the final low CoV of §<1.5%. Figure 7B shows that the average relative error is below 10% after one refine-
ment step (~ 19 calls), which explains the sharp decrease to 0 of the mean normalized 5 in Figure 7C. For illustration
purposes, the history is truncated to 35 calls. Indeed, for few runs characterized by very accurate metamodels, the enrich-
ment algorithm proposes candidates that are too close to the existing DoE to be accepted, and the algorithm stops. The
IS-based quantile estimation shows good efficiency, the average CoV of the failure probability estimated with IS being
low E[CoV[a]] ~ 0.51%. The final metamodel is represented in Figure 7A.

44 | Response of a nonlinear oscillator 6D

This example is taken from Reference 21. It consists of a nonlinear undamped single degree of freedom system.!® In
particular, the performance function is given as follows:

G(cr,ca,m, v, by, F1) = 3r — , (43)

2F t
12 sin (_coo ! )
maw; 2

TABLE 4 Resultsofthe

Method E[Ncans]  ElNieer] — E[4] Cov[gl Ele] [E[CoViall . .

deviation of a cantilever beam
Reference 107 - ~ —1.84615 % 10_2 - 0 < 0.04% two dimensional
QeAK-MCS 28.8 3.1 —1.84631 x 102 1.44% 1.17% 0.51%

Note: Solving Py (G(X) < —32—5) =5.596 x 10~°, with q,o; = 6 = 1.1501 x 1073,
aReference: Subset simulation,?! 100 independent runs. Coefficient of variation (CoV) < 0.04%.
bInitial design of experiment size: 10. Nine samples iteratively added. Based on 50 independent runs.

FIGURE 7 Results of the
deviation of a cantilever beam two
dimensional. Legend settings in

/ Figure 5. A, Metamodel; B, Relative error
° 0 e % history; C, 3 history [Color figure can be
(A) Metamodel (B) Relative Error History. (C) q History viewed at wileyonlinelibrary.com]
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TABLE 5 Random variables?! of Example 5

Variable Probability density function Mean SD
m Normal 1 0.05
c Normal 1 0.1

Cy Normal 0.1 0.01
r Normal 0.5 0.05
F; Normal 0.45 0.075
51 Normal 1 0.2

#Variables are independent.

TABLE 6 Results of response of a

. . L . Method ElNcais] ElNie] E[g] Cov[gl Ele] [E[CoV]al]
nonlinear oscillator six dimensional.
Reference? - - 0 - 0 < 0.05%
QeAK—MCSb 41.2 2.2 —246x 107 1.39% 1.01% 2.52%

Note: Solving Px(G(X) < §) = 1.514 x 1078, with q,,; = o = 0.18267.
aReference: Subset sampling,?! 100 independent runs. Coefficient of variation (CoV) < 0.05%.
YInitial design of experiment size: 30. Nine samples iteratively added. Based on 50 independent runs.

FIGURE 8 Results of response of a nonlinear ocillator six 10°
dimensional. Legend settings in Figure 5. A, Relative error

history; B, 3 history [Color figure can be viewed at o ‘\_“ 02
wileyonlinelibrary.com] !
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with wy = % The six random variables (assumed independent) are listed in Table 5, where the variability of F; is
modified with respect to Reference 15 in order to decrease the failure probability, to a = Px(f(X) < q) = 1.514 x 1073, It

is estimated with a CoV of about 0.04%,?! based on 100 runs of SS with sample size 107, for g = 0.

441 | Results

The results for this six-dimensional example characterized by @ ~ 1.5 x 1078 are presented in Table 6 and Figure 8. This
example, due to the higher dimensionality and the very low level of the quantile sought, is rather challenging. Inter-
estingly, QeAK-MCS performs very well here, the algorithm stopping in average after ~ 41 calls (~ 2.2 iterations), with
approximately 1 or 2 refinement steps only. The estimated quantile returned is subjected to a mean relative error of ~ 1%,
in a robust way with a CoV on § of ~ 1.4%, which is remarkable. A look at the history of the mean relative error and q in
Figure 8 A,B, respectively, shows that the estimated quantile rapidly converges to the solution. The mean relative error
reaches a plateau as the surrogate is refined, contrary to the other 2D examples for which it kept decreasing. This behav-
ior can be explained by the deteriorated efficiency of the Gaussian ISD for the IS quantile estimation of the surrogate, for
which the mean CoV of the failure probability estimator E[CoV[&]] is rather large, 2.52%, limiting the accuracy of the
quantile based on the surrogate, independently of the accuracy of the surrogate itself. This tendency confirms the qual-
ity of the proposed refinement algorithm and of the final surrogate, even if the IS procedure cannot extract the quantile
very accurately in this higher dimensional case. This behavior also confirms the tendency observed in Reference 37 for
the very same example, for which the surrogate itself seemed accurate, but the Gaussian ISD could not permit to extract
a highly accurate failure probability.
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TABLE 7 Borehole-functions eight dimensional:

Variable? Distribution Parameters Random variables™
i (m) Uniform (0.05,0.15)

r (m) Lognormal (7.71,1.0056)2

T, (m?/year) Uniform (63070,115 600)°

H, (m) Uniform (990,1110)?

T, (m?/year) Uniform (63.1,116)°

H; (m) Uniform (700,820)°

L (m) Uniform (1120,1680)

K, (m?/year) Uniform (9855,12 045)*

*Variables are independent.
YMinimum and maximum of the distribution.
“Mean and standard deviation of the natural logarithm of the distribution.

4.5 | Borehole-function 8D

This eight-dimensional example characterized by non-Gaussian input distributions and moderate dimensionality is taken
from Reference 34. The associated benchmark function describes the water flow through a borehole:

2z T,(H, — H))

T, 2LT,
In <i) 14 4 4 ——
T T ln(rl)rvaW

with'y = (n,, 1, Ty, Hy, T}, H;, L, K,), W(y) is the fluid water flow measured in m3/year, r,, is the radius of the borehole, r
the radius of influence, T, the transmissivity of the upper aquifer, H, the potentiometric head of the upper aquifer, T; the
transmissibity of the lower aquifer, H; the potentiometric head of the lower aquifer, L the length of the borehole and K,
the hydraulic conductivity of the soil.

The eight independent random variables are listed in Table 7. Two quantile levels are investigated in the present work:

(44)

wy) =

« Moderate quantile level (a ~ 107#): The failure probability reads a = Py(v(Y) > q) = 1.000 x 10~#, estimated with a
CoV of 0.16% using IS with a Gaussian mixture ISD®® based on 107 samples, for ¢ = 260.13. This case is studied in
Reference 34.

« Extreme quantile level (a ~ 107®): The failure probability reads a = Py(v(Y) > q) = 8.732 x 10~°, estimated with a CoV
of 0.20% using IS with a Gaussian mixture ISD3® based on 107 samples, for g = 300.

451 | Results

Far a sake of comparison with AK-MCS* based on both OK and PCK, we set the initial DoE size ny = 12 and use K;K, = 6
samples iteratively added with K; = 2and K, = 3. The results are presented in Table 8 and Figures 9 and 10, corresponding
respectively to the moderate and extreme quantile levels. In both cases, QeAK-MCS stops after few performance function
calls (~ 24 — 35) corresponding to ~three to five iterations and yielding to a satisfactory final quantile estimate with an
average relative error below 3.5%. The low CoV[q] below 1% indicates a high robustness/replicability of the QeAK-MCS
algorithm. Observing the relative error and normalized quantile history curves (in Figures 9 and 10) permits to appreciate
the fast convergence of the method: after 30 to 40 performance function calls, the relative error stops decreasing reaching
aplateau above 1% in both cases, slightly higher for the extreme level case. It shows that the adaptive strategy performs well
and it would have been possible to slightly improve performances with around one additional iteration, the refinement
having stopped shortly prematurily. The average IS-based CoV associated to failure probability estimation is rather large
in both cases (~ 7% — 22%), significantly higher than in the previous test-cases. This loss of efficiency of IS based on the
isotropic Gaussian is likely to be due to the moderate larger dimensionality, the nonlinear isoprobabilistic transform, and
the low levels of quantile a. Interestingly, such large CoV[&] have a moderate detrimental effect on the quantile estimate,
contrary to failure probability estimation (see Reference 37).
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TABLE 8 Resultsofthe

o Method ElNeais] ElNieel El@  CoVigl Ele,l ElCoviall
borehole-function eight
dimensional Moderate quantile level & ~ 107#
Reference® - - 260.13 - 0 <0.16%
QeAK-MCS*¢ 24.1 3.2 261.04 0.67% 3.15% 6.91%
AK-MCS (OK)¢ 210 34 ~260 - <1% <10%
AK-MCS (PCK)c 72 11 ~ 260 - <1% <10%

Extreme quantile level @ ~ 1078
Referenced - - 300 - 0 < 0.20%
QeAK-MCSb 34.9 4.9 300.59 0.68% 3.46% 21.81%

Reference: Importance sampling with a Gaussian mixture as importance sampling density.>

aSolving Py (G(X) > §) = 1.000 x 107, with q,.; = 65 = 45.69.

bInitial design of experiment size: 12. K K, = 6 samples iteratively added, with K, = 2 and K|, = 3. Based on 50
independent runs.

“Results taken from Reference 34, based on a single run. Initial DoE size: 12. Six samples iteratively added. OK and
PCK refer respectively to Ordinary kriging and polynomial chaos kriging. Note a confusion in the quantiles provided in
Reference 34.

dSolving Py (G(X) > §) = 8.732 x 107°, with ¢ = o = 45.69.

FIGURE 9 Results of borehole eight dimensional, with
moderate quantile level @ = 107*. Legend settings in Figure 5. A,
Relative error history; B, ﬁ history [Color figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 10 Results of borehole eight dimensional, with
extreme quantile level @ ~ 1078, Legend settings in Figure 5. A,
Relative error history; B, a history [Color figure can be viewed at
wileyonlinelibrary.com]|
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QeAK-MCS is compared to AK-MCS** (based on a single run) in the case of Moderate quantile level, with the
same initial DoE size and considering six samples added at each refinement. Very surprinsigly, QeAK-MCS sig-
nificantly outperforms AK-MCS (OK and PCK) in terms of number of performance function evaluations. It seems
that the multiple quantile selection and the adaptive refinement of eAK-MCS provide a significant beneficial impact
on QeAK-MCS. We outline that QeAK-MCS is based on SK metamodeling, and AK-MCS (PCK) makes use of
PCK which is expected to overperform SK3* in terms of surrogate accuracy. This striking difference in terms of
performances might be the result of different causes. The convergence criterion used in Reference 34 might be
over-conservative (as a convergence history curve might permit to conclude) while we observe on Figure 9A that
QeAK-MCS stopped slightly prematurely: we notice in Table 8 that QeAK-MCS provide less-accurate quantile esti-
mates (mean relative error of 3.15%), while after around 36 performance functions calls (five iterations), the mean
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relative error stabilizes slightly over 1%. Moreover, it seems that for some benchmark cases, the quantile estimation
with such kind of methodology (QeAK-MCS, AK-MCS** for quantile estimation) may have a smoothing effect that
simplifies the analysis with respect to failure probability estimation”. Additionally, it might be possible that there
are some beneficial effects either due to the construction of the initial DoE, or the failure probability refinement
strategy (eAK-MCS!)

5 | CONCLUSION

This paper proposes an extension of AK-MCS as presented in Reference 34 to make it suitable for the estimation of extreme
quantiles. It uses a centered uncorrelated Gaussian distribution to sample candidate points and use the IS method to esti-
mate the quantile. The refinement algorithm of eAK-MCS for failure probability estimation permits to select candidates
points for the DoE, based on the quantiles estimates. A parallel quantile selection (also suitable for quantile estimation
in the scope of Reference 34) is also proposed.

The performance of the proposed algorithm is assessed and illustrated through some benchmark analytical func-
tions, showing very satisfactory accuracy and robustness, in less than 100 evaluations of the original model in average,
for the considered examples. To the best of the knowledge of the authors, there is no algorithm in the litera-
ture able to estimate such extreme quantiles accurately, especially when the number of performance evaluations is
limited.

The first limitation of the method is inherent to the choice of the GP-surrogate: low dimensionality and mod-
erate size of the DoE. It also depends on its ability to fit the performance function J. The second limitation is in
the physical input distribution, that needs to be accurately mapped onto the standard space. The last limitation con-
cerns the accuracy of the IS-based quantile estimation: It strongly depends on the ability of the Gaussian ISD to
reduce the variance when estimating the failure probability & based on the estimated quantile. The same problem
occurs even when evaluating a reference value with an analytical function based on a given small quantile level a.
This IS quantile estimation is expected to deteriorate as the dimension increases, as identified in the 6D-oscillator
and the 8D-borehole examples: the relative error reaches a stagnation value as the number of samples increases.
Indeed, the IS CoV of « is significantly larger than in the 2D cases considered. This represents the main axis of
improvement for the present method: Improving the IS-based quantile estimator accuracy, by improving the quality of
the ISD.

This work also illustrates an important aspect of the eAK-MCS method, as an extension of AK-MCS for the estimation
of very small failure probabilities: The possibility to adapt AK-MCS-based algorithms (eg, quantile-based optimization®”
or quantile estimation*) for such context. Here, the key of the adaptation of Reference 34 for extreme quantile is an
IS-based quantile estimator from the surrogate, requiring a reasonable number of evaluations. A last contribution of this
paper is the proposition of a parallel quantile selection that could also be applied for quantile estimation using the classic
AK-MCS.3*

Future work would aim to improve the efficiency/accuracy of the IS quantile estimation, and apply the refinement
step proposed in QeAK-MCS for design under uncertainty or reliability-based optimization where an extreme quantile is
involved that needs to be estimated efficiently.
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APPENDIX A: CRITICAL VALUES/QUANTILES SELECTION: ADDITIONAL CRITERIA
A.1 Linear —« Selection
Similar linear selection is conducted, considering the surrogate-based bounds a~, a* associated to the failure probability
with § as critical value, calculated using the IS estimator for failure probability (Equation (16)):
o = Py(up(X) + kop(X) < ). (A1)

ot = Px(up(X) - kop(X) < §). (A2)

Correspondingly, the K, quantiles are chosen based on levels linearly selected in [@~, a*]. Thus:

.
a =a_+(l—1)aKq—_al. (A3)
@ = Px(up(X) < @), Vi€ [LK,] . (A4)

A.2 Linear —k Selection
Here, a linear discretization of the range [k, k] defined by the parameter k setting the confidence interval is chosen.
Defining:

ki=—k+ (- 1)quf -, (AS)
@ = Px(ue(X) + kiog(X) < ), VI € K], (A6)
the K; quantiles are chosen to satisfy
a = Px(usX) < qo. (A7)
In order to always include g in the selection, the following replacement is performed once (§1, ... , gk, ) is selected:

o ifK,isodd, gx+ =q.
o ifK iseven,a 2is randomly sampled with a ~ V[0, 1]:
°ifa<s, 45 =4

o

. 1 A N
ifa > E’ql%+1 =q.
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